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Abstract
With the advent of nanotechnology, the treatment of cancer is changing from a conventional to a nanoparticle-based approach. 
Thus, developing nanoparticles to treat cancer is an area of immense importance. We prepared silver nanoparticles (AgNPs) 
from methanolic extract of Alpinia galanga rhizome and characterized them by UV–Vis spectrophotometry, Fourier trans-
form Infrared (FTIR) spectroscopy, Zetasizer, and Transmission electron Microscopy (TEM). UV–Vis spectrophotometry 
absorption spectrum showed surface plasmon between 400 and 480 nm. FTIR spectrum analysis implies that various phy-
tochemicals/secondary metabolites are involved in the reduction, caping, and stabilization of AgNPs. The Zetasier result 
suggests that the particles formed are small in size with a low polydispersity index (PDI), suggesting a narrow range of 
particle distribution. The TEM image suggests that the particles formed are mostly of spherical morphology with nearly 
20–25 nm. Further, the selected area electron diffraction (SAED) image showed five electron diffraction rings, suggesting 
the polycrystalline nature of the particles. The nanoparticles showed high anticancer efficacy against cervical cancer (SiHa) 
cell lines. The nanostructures showed dose-dependent inhibition with 40% killing observed at 6.25 µg/mL dose. The study 
showed an eco-friendly and cost-effective approach to the synthesis of AgNPs and provided insight into the development 
of antioxidant and anticancer agents.
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Graphical abstract
Schematic representation of synthesis and characterization of AgNPs.
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Introduction

In the biomedical field, nanotechnology offers unique 
opportunities for studying and managing a wide range 
of techniques at the nanoscale, with the potential to have 
a revolutionary impact on biology, medicine, and other 
health-related fields [1]. At the nanoscale level, altera-
tions in size and shape occur due to the increased surface-
to-volume ratio, which affects the physical properties of 
materials. Thus, these nanostructures can be engineered 
to enhance drug solubility, improve bioavailability, and 
enable targeted delivery, minimizing side effects and maxi-
mizing therapeutic efficacy [2]. In diagnostics, nanotech-
nology contributes to the development of highly sensitive 
imaging agents and biosensors, allowing for early disease 
detection and personalized medicine [3]. In addition, nano-
materials are employed in tissue engineering and regenera-
tive medicine, fostering advancements in the repair and 
replacement of damaged tissues [4]. Various nanoparticles 
(NPs), such as solid lipid NPs, metallic NPs, polymeric 
NPs, carbon nanotubes, nanogel-based compounds, nano-
capsules, nanofluids, nanowires, and liposomes are just a 
few examples of the diverse range of nanomaterials with 

biomedical prominence. Their potential use for therapeu-
tic applications has been examined, with a focus on their 
appropriateness and biocompatibility, medication admin-
istration, and antimicrobial applications [5–9].

Among non-communicable diseases, cancer is the leading 
cause of death worldwide [10]. The conventional approaches 
for cancer management include surgery, chemotherapy, and 
radiotherapy. Recently, nanotechnology has been used in the 
diagnosis and therapeutic intervention of cancers, showing 
efficacy in cancer treatment [11]. Cancer nanotechnology 
opens new vistas in medical science wherein a multidiscipli-
nary approach to explore chemistry, medicine, engineering, 
and biology has paved the way for remarkable advancements 
in cancer detection, diagnosis, and treatment [12]. The high 
surface area-to-volume ratio of nanoparticles provides an 
expansive canvas for functionalization and customization 
leading to significant improvement in reactivity [13]. Sev-
eral nanoparticles encapsulating anticancer drugs have been 
developed to treat cancer. Many of them, such as Doxil® 
(Johnson & Johnson, New Brunswick, NJ, USA), Abrax-
ane® (Celgene, Summit, NJ, USA), and Myocet™ (Perrigo, 
Dublin, Ireland), etc., received approval from the US Food 
and Drug Administration for clinical use [1]. These formula-
tions have reduced the toxicity of anticancer drugs to some 
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extent in healthy cells [5]. Nonetheless, the production of 
organic nanoparticles tends to be relatively costly, and while 
these nanoparticles effectively mitigate a substantial por-
tion of drug-induced toxicity, they still carry the potential 
for some degree of harm to healthy cells, which cannot be 
entirely eliminated [6].

The development of metal nanoparticles from noble met-
als such as silver, gold, platinum, etc., exhibits significant 
promise across diverse domains, including cancer [7–9]. 
However, the synthesis of metal nanoparticles by physical 
and chemical methods is associated with some disadvan-
tages. Physical methods of synthesis demand substantial 
energy consumption and often result in solvent contami-
nation, which raises environmental and safety concerns. 
Furthermore, achieving uniformity in nanoparticle size 
and properties through physical methods can be challeng-
ing, potentially compromising their effectiveness in vari-
ous applications [14, 15]. The chemical modes of synthesis 
include chemical vapor synthesis, sol–gel, solvothermal and 
hydrothermal methods, plasma-assisted as well as reverse 
micelle techniques [16]. The mode of preparation involves 
the use of toxic and hazardous chemicals [17], restricting 
its usage in medical science. These drawbacks led to the 
development of an eco-friendly, less energy-consuming, 
and greener approach to nanoparticle synthesis, utilizing 
bio-origin molecules such as various parts of plants, algae, 
fungi, bacteria, etc. [18–20].

The green synthesis of AgNPs has garnered immense 
attention in recent years due to its one-step synthesis pro-
cess, eco-friendly nature, cost-effectiveness, and high yield 
[21, 22]. Moreover, the ability to control size, shape, and 
composition with precision is often enhanced in biological 
methods. This innovative approach has demonstrated great 
potential across a wide array of applications [23]. Further, 
the presence of phytochemicals/secondary metabolites, poly-
saccharides, proteins, and many compounds with functional 
groups like amine, ketone, and aldehyde act, as reducing, 
capping, and stabilizing agents to synthesize AgNPs [24].

Green synthesized silver nanoparticles (AgNPs) have 
many biological uses, including anticoagulant [25], analge-
sic [26], anti-inflammatory [27], wound healing [28], anti-
diabetic [29], antivenom [30], and neurodegenerative [31]. 
Furthermore, the therapeutic potential of green-synthesized 
silver nanoparticles (AgNPs) has also been rigorously evalu-
ated against a spectrum of targets, encompassing bacteria, 
fungi, and tumor cells [32], making them a compelling 
eco-friendly alternative to traditional antibiotics in medi-
cal settings [33]. Nowadays, advanced coating technologies 
are employed to integrate silver nanoparticles into various 
materials for antimicrobial purposes, such as coatings for 
wound dressings, medical devices, textiles, and surfaces in 

healthcare settings [28, 34]. This approach could potentially 
lead to the development of new therapeutic agents that could 
combat antibiotic-resistant microbial infections as well as 
neoplasms.

Alpinia galangal, commonly known as galangal or blue 
ginger, is a medicinal plant with a rich source of bioactive 
compounds, including antioxidants and polyphenols. These 
compounds serve as greener and more stable reducing 
agents for the one-pot synthesis of AgNPs [35]. The bioac-
tive compounds present in Alpinia galangal contribute to the 
effective reduction of silver ions, leading to the synthesis of 
AgNPs with distinct properties [36] The ethanolic extract of 
Alpinia galanga-based AgNPs has shown significant efficacy 
in restricting the growth of bacteria [36].

To the best of our knowledge, this is the first report of 
biosynthesizing silver nano-assemblies using a methanolic 
extract of Alpinia galanga rhizome. The biogenic NPs were 
characterized by various techniques such as UV–Visible 
spectrophotometry, Fourier Transform Infrared spectroscopy 
(FTIR), Zetasier, and TEM. The antioxidant activity of the 
AgNPs was analyzed by DPPH method. The anticancer effi-
cacy of AgNPs was evaluated on oral squamous carcinoma 
(CAL27) and cervical carcinoma (SiHa) cell lines.

Materials and methods

Material

Alpinia galangal (rhizome) procure from local market, Luc-
know, India. Silver nitrate, Sulforhodamine- B (SRB), 2, 
2-Diphenyl-1-picrylhydrazyl (DPPH), and KBr purchased 
from Sigma-Aldrich. Dulbecco’s modified Eagle’s medium/
Nutrient Mixture F-12 (DMEM/F-12), Fetal bovine serum 
(FBS), Penicillin and Streptomycin, Gentamycin, 0.5% 
Trypsin–EDTA were purchased from Thermo Fisher Sci-
entific (Waltham, MA). Milli-Q water was prepared in the 
Central molecular laboratory (GIPMER). Cancer cell lines, 
oral squamous cell carcinoma (CAL27), cervical carcinoma 
(SiHa), and noncancerous Human embryonic kidney cell 
line (Hek293) were obtained from ATCC.

Methods

Preparation of silver nitrate (AgNO3) solution

Silver nitrate solution (10 mM) was made by dissolving 
0.169 g of AgNO3 in 100 mL of Milli-Q water, and the solu-
tion was filtered to remove any undissolved solid. To avoid 
photodegradation, the solution was prepared in an amber-
colored reagent bottle.
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Preparation of Alpinia galangal methanolic extract

The rhizomes obtained were washed thoroughly in run-
ning water and subsequently with Milli-Q water. The 
washed rhizomes were then dried in a hot air oven under 
a controlled temperature of 45–50 ℃ for two days. Fine 
powder of dried rhizome was prepared using mortar and 
pestle. Then, 50 mL of methanol was added into 5 g of 
dried powder in a volumetric bottle and kept overnight in 
a dark place at room temp. The (10% w/v) solution was 
sonicated using a bath type sonicator (Branson 5800) for 
1 h and was filtered in a glass bottle using No.1 Whatman 
filter paper. The filtrate was stored at 4 ℃ for two weeks 
for further use [37].

Green synthesis of AgNPs

The biogenic synthesis of AgNPs is a hassle-free and 
environment-friendly technique that utilizes plant 
extracts, from different parts of the plant, for the reduc-
tion of silver ions into AgNPs. The formation of nano-
particles occurs mainly in three stages: ion reduction, 
cluster formation, and nanoparticle synthesis. The char-
acteristics of each stage depend on several factors such 
as concentration of plant extract, molarity of AgNO3, 
temperature, and pH of solution.

For the preparation of green synthesized nanoparti-
cles, we used the methanolic extract of Alpinia galangal. 
To prepare small sizes, we tried different parameters, 
such as temperature, concentration of plant extract and 
AgNO3, pH of the solution, rotation (rpm), and time 
duration. After varying each parameter, the particle size 
was analyzed using Zetasizer. However, we have obtained 
the smallest size of AgNPs with a 100:1 ratio of 1 mM 
AgNO3 (30 mL) and 0.3 mL of Alpinia galanga rhizome 
methanolic extract. The solution was kept on a magnetic 
stirrer plate (Daihan Scientific, South Korea) at 500 rpm 
at 70 ℃ for 1 h. A gradual colour change from colour-
less solution to pale yellow and light brown to brown 
with the increase of time duration was observed. How-
ever, a prominent brown colour was observed after 1 h. 
This optical change in colour suggests that biomolecules 
reduced the silver ions into AgNPs.

The biosynthesised AgNPs were centrifuged at 12,000 
rpm for 12 min (Eppendorf, Centrifuge 5425R; Ham-
burg, Germany). The supernatant was gently removed 
and the pellet containing AgNPs was washed 2–3 times 
with Milli-Q water. The washed AgNPs were dried in a 
vacuum oven at 45 ℃ for 2 h at 0.8 bar (Daihan Scien-
tific, South Korea) and stored at −80 °C until biological 
activity was performed.

Characterization of AgNPs

UV–Vis spectrophotometry

UV–Visible spectrophotometer was used to analyze the 
surface plasmon resonance (SPR) of the synthesized silver 
nanoparticles. The intensity of electronic transitions between 
300 and 600 nm was traced. To analyze the transition of 
electrons, the extract and AgNPs were scanned from 300 to 
700 nm [38].

Functional groups analysis by FTIR analysis

The presence of functional groups of the phytochemicals 
responsible in the reduction and capping of the prepared 
nanoparticles from the methanolic extract of Alpinia galanga 
rhizome was analyzed using FTIR at a scanning range of 
4000–400 cm−1 with spectral resolution 1 cm−1 in transmit-
tance mode (Brucker, Optika GmbH, Karlsruhe, Germany) 
using KBr pellet method.

Zetasizer & zeta potential analysis

The mean particle size and their polydispersity index (PDI) 
were analyzed using a Malvern Zetasizer Pro Blue instru-
ment (Malvern Analytical Ltd, Malvern UK) containing 
He–Ne laser (4 mW) at 633 nm under ambient temperature. 
For the measurement of zeta potential, the AgNPs were two 
to three folds diluted in Milli-Q water beforehand.

Transmission electron microscopy (TEM) analysis

TEM of the prepared AgNPs was further performed to 
analyze their morphology and corroborate its size with 
Zetasizer. The prepared AgNPs were sonicated for 5 min 
in a bath-type sonicator (Branson, 5800) beforehand. Then, 
AgNPs were 100 folds diluted in Milli-Q water, and 5 µL 
samples were put on a carbon-coated copper grid and air 
dried under a lamp. The TEM image of the AgNPs was 
examined with FEI Tecnai G220S-Twin acquired by oper-
ating at 200 kV. Micrographs were captured using a Gatan 
bottom mount camera using Digital Micrographs software.

X‑ray diffraction analysis

X-ray diffraction (XRD) technique is used to analyze the 
phase and the crystalline structure of the synthesized 
AgNPs. The AgNPs were characterized by Rigaku D/Max-
IIIC diffractometer with a monochromatic source of cu-kα 
and AXIS Supra using a monochromatic X-ray source of Al 
Ka-1486.6 eV between 2θ of 10 and 80°.
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Antioxidant activity analysis

The antioxidant activity of the methanolic extract of Alpinia 
galanga rhizome and prepared AgNPs was analyzed by the 
procedure of DPPH radical scavenging assay [39] In brief, 
100 µL of various concentrations of methanolic extract and 
AgNPs were taken in a 96-well ELISA plate, while the vary-
ing concentration of ascorbic acid in 100 µL was used as a 
standard. Subsequently, 100 µL of DPPH prepared in 80% 
ethanol (0.5 mM) was added into each well and allowed to 
react in dark for 0.5 h at room temperature. The absorbance 
of the reaction mixture and control was measured using a 
multimode reader at 517 nm (Thermo-scientific). The for-
mula given below is used to calculate the percentage of free 
radical scavenging activity.

Culturing of cell lines

The cervical cancer cell line (SiHa), oral squamous cell 
carcinoma cell line (CAL27), and noncancerous human 
embryonic kidney (Hek293) cell lines were cultured in 
DMEM/F-12 media with the addition of 10% FBS, 1% Peni-
cillin–Streptomycin and Gentamycin (50 mg/L) at 37 °C in 
a CO2 incubator with 5% CO2.

Analysis of anti‑proliferative activity on cancer cell 
lines

To quantify the cytotoxic activity of AgNPs prepared from 
methanolic extract of Alpinia galanga, the sulforhodamine-
B (SRB) colorimetric assay was performed by following a 
published procedure [40] SiHa and CAL27 cancer cells, and 
noncancerous Hek293 cells were seeded in a 96-well plate 
(104 cells/well) and incubated for 24 h at 37 °C in the CO2 
incubator. The DMEM medium was removed and different 
concentrations of AgNPs (3.125, 6.25, 12.5, 25, 50, and 
100 µg/mL) dissolved into the medium were added to their 
respective wells (triplicates). After 24 and 48 h incubation, 
cells were washed once with PBS and fixed in trichloroacetic 
acid (10% w/v) for 1 h at 4 °C. Subsequently, the plate was 
washed (quadruple times) with sterile Milli-Q water, and 
cells were stained by adding100 µL of 0.057% SRB solution 
(Sigma-Aldrich, Bangalore, India) for 0.5 h at ambient tem-
perature. Once the incubation was over, cells were quickly 
rinsed with 1% acetic acid solution (quadruple times), and 
the plate was kept for drying at ambient temperature. Pro-
tein-linked SRB was dissolved (200 µL/well) using 10 mM 
tris-base solution (pH 10.5) under shaking conditions (5 min 
at 200 rpm) and absorbance was taken at 564 nm using a 

DPPH radical scavenging assay (%) =
(Abs of control − Abs of sample)

Abs of control
× 100

SPECTROstar Nano plate reader (BMG Labtech, Ortenberg, 
Germany).

Statistical analysis

The data obtained were analyzed in a grouped two-way 
ANOVA following Dennett’s t test method. P value <0.05 
was considered significant between the treated and control 
groups.

Result and discussion

The biogenic synthesis of AgNPs is a hassle-free and 
environmentally friendly technique that utilizes plant 

extracts, from different parts of the plant, to reduce silver 
ions into AgNPs. The formation of nanoparticles occurs 
mainly in three stages: ion reduction, cluster formation, 
and nanoparticle synthesis. The characteristics of each 
stage depend on several factors such as concentration of 
plant extract, molarity of AgNO3, temperature, and pH of 
solution. Plant biomolecules that contain hydroxyl groups, 
such as amino acids, proteins, alkaloids, flavonoids, poly-
phenols, enzymes, tannins, carbohydrates, and saponins, 
are responsible for the reduction, capping, and stabiliza-
tion of silver ions. The formation of silver nuclei leads to 
the production of AgNPs. Unlike conventional chemical 
synthesis methods, this approach does not require the use 
of harsh chemicals or high temperatures, making it a safer 
and more sustainable option.

UV–Vis spectral analysis

The appearance of light yellowish-brown colour in aqueous 
medium was due to surface plasmon vibration [41] As the 
varying quantities of methanolic Alpinia rhizome extract 
were added to the fixed molar clear silver nitrate solution 
(1 mM), the colour of the solution gradually changed from 
light yellow and then light brown, which suggests the for-
mation of AgNPs have formed. Numerous studies have 
implied that the formation of AgNPs led to the change of 
colour [42, 43], confirming the completion of the reaction 
between methanolic Alpinia galanga extract and AgNO3. 
The UV–Vis spectrum was recorded after the formation of 
a light brown colour (Fig. 1). The absorption spectrum of 
the formed AgNPs suggests that the absorption increases 
again at 400 nm and reaches at maxima peak at around 
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454–462 nm, which was due to the SPR of electrons present 
on the surface of AgNPs [44]. A relationship between the 
absorption peak and crystal structure of the AgNPs has been 
established [45]. The authors have suggested that absorption 
peaks at 385, 435, and 515 nm correspond to the cubical 
structure of AgNPs, while those showed absorption maxima 
at 400, 430, and 462 nm are suggestive of spherical, cuboc-
tahedral, truncated cubes, or crystalline structure of formed 
nanoparticles, respectively [45]. The maximum absorption 
peak at 454–462 nm, suggests the crystallinity of the particle 
is face centered cubic (fcc) in nature.

FTIR analysis of AgNPs

FTIR spectroscopy is often used to detect the second-
ary metabolites/phytochemicals or other compounds 
containing aldehyde, alcohol, and ketone as a func-
tional group, which are responsible in the reduction of 
silver ions into AgNPs. The FTIR spectrum of Alpinia 

Fig. 1   UV–Vis spectrum of the methanolic extract of Alpinia galan-
gal rhizome based AgNPs

Fig. 2   FTIR spectrum of AgNPs prepared from the methanolic rhizome extract of Alpinia galanga 
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galanga methanolic extract exhibits major absorption 
peaks at 3391.5, 2949.6, 2865.4, 2053, 1652, 1454, 1346, 
1216, 1114, 1018, and 655.5 cm−1 Similarly, little shift 
in the FTIR spectrum of the prepared AgNPs showed 
major peaks at 3468.2, 2925, 2854.5, 2086.3, 1634.3, 
1459, 1384, 1302.3, 1225, 1161.4, 1013.6, 677.27, and 
536.06 cm−1. The appearance of AgNPs peaks suggests 
that the presence of phytoconstituents acts as a reduc-
ing, capping, and  stabilizing agents (Fig.  2). Thus, 
from these peaks shift, we can speculate the probable 
functional groups containing compounds in the extract 
involved in the conversion of silver ions into AgNPs. A 
shift in the peak at 3391.5–3468.2  cm−1 is due to the 
involvement of the O‒H or N‒H stretching of phenolic 
compounds present in the extract [46]. The absorption 
bands at 2925 cm−1 suggest the presence C–H stretching 
of the aliphatic functional group/ methylene group and 
is also the characteristic peak of triterpenoid saponins 
[47]; peaks at 2854 cm−1 showed asymmetric and sym-
metric stretches of alkenes. The shift of slightly higher 
wavelength from 2053 to 2086.3 cm−1 suggests the pres-
ence of alkyne groups in the phytochemical constituents 
[48]. The absorption peak at 1635.86 cm−1 corresponds 
to the C=C group in the aromatic compounds [49]. The 
absorption band detected   at 1459  cm−1 indicate S=O 
(sulphate ester) group. The peak at 1384 cm−1 spectrum 

suggests the presence of germinal methyl groups; the peak 
observed at 1225 cm−1 is due stretching vibration of C–C 
phenol and tertiary alcohol. The peaks at 1161.4 and 
1013.6 cm−1 suggest the stretching of C–O of the ether 
group [43], while the absorption band at 677.27  cm−1 
is due to the =CH group of the aromatic compounds. 
The peak at 536.06 cm−1 showed the presence of C=C 
of alkyne [50]. Thus, the FTIR analysis confirmed that 
various phenolic compounds present in the methanolic 
extract of Alpinia galanga rhizome are responsible for the 
reduction of silver ions and, subsequently, capping and 
stabilization leading to the synthesis of AgNPs.

Size and zeta potential analysis of silver 
nanoparticle

DLS technique was used to analyze the particle hydro-
dynamics size distribution, PDI, and surface charge 
(ζ-potential) of the green synthesized AgNPs. Nanopar-
ticles were two to three folds diluted in Milli-Q water 
during size measurement to minimize the background of 
scattering. The mean particle size was observed to be 
102 nm with a PDI of 0.24 (Fig. 3a). Further, the size 
and the respective percentage of different sizes of parti-
cles are shown on the secondary axis of Fig. 3c, which 
would enable the reader to comprehend the particle size 

Fig. 3   Nanoparticle size measurements a Mean size b Zeta potential c size vs. (%) nanoparticles
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distribution. The principle of DLS techniques is to meas-
ure the hydrodynamic size that includes the hydration 
layer present around the AgNPs; thus, the hydrodynamic 
size of the particles is usually larger compared to TEM 
images. Furthermore, the adsorption of phytochemical 
constituents of the methanolic extract of Alpinia galanga 
rhizome might contribute to the hydrodynamic size. Vari-
ation in the particle size might be due to the presence of 
different proportions of the phytoconstituents on the par-
ticles. AgNPs of this range have been synthesized from 
different parts of the plants [51]. The measurement of 
the ζ-potential of the particles is important because it 
suggests particle stability. The high negative and positive 
ζ-potential suggests higher stability, which correlates the 
better colloidal properties owing to electrostatic repulsion 
and higher dispersity [52]. The observed ζ-potential of the 
synthesized nanoparticle is -23mV advocating stability of 
the AgNPs (Fig. 3b). Further, the presence of negatively 
charged functional groups on the surface of nanoparticles 
shows the colloidal stability of the synthesized AgNPs 
[53].

Transmission electron microscope analysis

The TEM images were acquired at different magnifica-
tions to analyze the morphology of the formed AgNPs 
(Fig. 4a–c). The images clearly suggest that most of the 
formed particles are spherical with nearly 20–25 nm in 
size; however, some of the particles of cylindrical shape 
are also evident. The size of the particles is corrobo-
rating the Zetasizer result. At very high magnification 
(650,000X), the fringes of the particles are also visible, 
suggesting uniform distribution of phytochemical con-
stituents on silver ions (Fig. 4d).

Selected area electron diffraction (SAED) analysis of AgNPs

The SAED image provides information related to the crys-
talline structure of the AgNPs [54]. The result of the SAED 
image showed bright five electron diffraction rings, which 
can be seen in Fig. 4f. The presence of a bright ring suggests 
the polycrystalline nature of the formed AgNPs [54]. Ear-
lier, Kanniah et al., have observed five electron diffraction 
ring patterns in the AgNPs, which correspond to the lattice 

Fig. 4   a–c TEM image of AgNPs with different magnifications d HR-TEM image with fringes e Dark Field image f SAED image of AgNPs
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pattern of [111], [200], [220], [311], and [222], suggesting 
the fcc structure of the AgNPs [55]. Thus, the presence of 
five electron diffraction rings of the lattice planes might cor-
respond to Bragg’s lattice pattern confirming the fcc struc-
ture of the synthesized AgNPs. Our obtained data on crystal 
planes are in concordance with the earlier findings [56–58].

X‑ray diffraction (XRD) analysis

The XRD analysis was performed to understand the nature 
of the synthesized AgNPs. The crystallinity of the synthe-
sized AgNPs is an important parameter that needs to be 
proven pragmatically. Thus, besides SAED image analysis, 
XRD was performed to verify the SAED result, and also 
provide the supportive evidence of the crystallinity of the 
synthesized AgNPs. The analyzed XRD pattern, however 
showed four 2θ diffraction prominent peaks that include 
32.304, 46.17, 54.76, and 77.330° (Fig. 5). These peaks in 
the spectrum correspond to the [111], [120], [202], and [311] 
planes, respectively, suggesting the fcc and the crystalline 
nature of the synthesized AgNPs, which is in concordance 
with the SAED image of the synthesized AgNPs. Elumalai 
et al. observed XRD peaks of the green synthesized AgNPs 
from the extract of Leucas aspera, which corresponded 
to [110] [111], [121], [200], and [311] planes, suggesting 
the polycrystalline fcc structure [59]. Dehghanizade et al., 
observed an additional XRD peak at 81.7° corresponding 
to the plane [222] of the synthesized AgNPs from Anthemis 
atropatana extract, suggesting the fcc structure of the parti-
cles [43]. Thus, these peaks suggest that the crystallization 
of the metabolite present on the surface of silver ion (Ag+) 
promotes the formation of AgNPs, which is in accordance 
with earlier findings [60]. The result provides pragmatic 
evidence that the presence of phytochemicals in the Alpinia 

galanga methanolic extract causes reduction of silver ions 
and the synthesis of polycrystalline AgNPs.

Antioxidant activity analysis using DPPH Assay

The antioxidant activity of the methanolic extract and 
AgNPs was analyzed by a DPPH assay. The result suggests 
that both extracts and AgNPs showed a dose-dependent 
increase in the scavenging effect at lower concentrations 
(Fig. 6). Ascorbic acid was used as a standard. Further, the 
AgNPs result showed a significantly higher free radical 
inhibition compared to the extract; the IC50 values of the 
free radical inhibition of AgNPs and extract are 7.56 and 
38.92 µg/mL, respectively.

Anticancer activity

To minimize the loss of precious human lives due to cancer, 
innovative approaches are required for better management. 
The traditional treatment approaches have their limitations. 
In contemporary times, nanotechnology has exploited the 
utility of different materials to synthesize nanoparticles, and 
their usefulness was evaluated in the treatment of cancers [5, 
6]. Of these approaches, inorganic nanoparticles have shown 
great potential to scientists due to their attributes, which 
could prove useful in the treatment of cancer, provided the 
dosage, frequency, and toxicity are carefully analyzed [61]. 
Moreover, numerous studies have been conducted to evalu-
ate the anticancer activity of AgNPs in different cancer cell 
lines [44, 62].

The efficacy of the prepared nanoparticles was ana-
lyzed on two cancer cell lines, viz. oral squamous cell car-
cinoma (CAL27) and cervical cancer cell lines (SiHa) at 

Fig. 5   X-ray Diffraction spec-
trum of AgNPs prepared from 
methanolic extract of Alpinia 
galanga rhizome 
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varying concentrations, such as 3.125, 6.25, 12.5, 25, 50, 
and 100 μg/mL using sulforhodamine-B (SRB) assay. The 
result suggests that very limited anticancer activity of the 
particles was observed on oral squamous cell carcinoma 
cell lines, i.e., at 100 µg/mL, 25 and 30% cells are killed at 
24 and 48 h of incubation, respectively (Fig. 7). However, 
the formulation showed dose-dependent activity of AgNPs 
on SiHa cell lines. At a low concentration (6.25 µg/mL), 

nearly 40% of SiHa cells are killed; however, with further 
increase of doses up to 25 µg/mL, no significant increase of 
cancer cell killing was observed. Further increase of AgNP 
concentration to 50 µg/mL, nearly 55% of cancer cells were 
killed, while at 100 µg/mL, around 80% of cells were killed 
at 24 h of incubation, which was superior to the earlier 
prepared AgNPs [63–65]. The result suggests that the pre-
pared AgNPs are highly effective against SiHa cell lines. 

Fig. 6   Antioxidant activ-
ity of the methanolic extract 
of Alpinia galanga rhizome 
AgNPs and ascorbic acid. P 
values among the statistically 
significant in the AgNPs group 
of different doses 4 vs. 8 µg/mL; 
4 vs. 12 µg/mL, <0.001)

Fig. 7   Cytotoxicity of AgNPs after 24 h (a) and 48 h (b) to SiHa and 
CAL27 cancer cells exposure (SRB assay) The percentage of viable 
cells is expressed on the y-axis. The control (untreated) viable cells 
are assumed to be 100% viable. The concentration (µg/ml) of AgNPs 
are plotted on the x-axis. All data were expressed as means ± SEM 
(standard error of the mean) for n  =  3 independent experiments. P 

values among the statistically significant to the SiHa cells post 24 h 
treatment (12.5 vs. 50 µg/mL; and 12.5 vs. 100 µg/mL; 50 vs. 100 µg/
mL, <0.05) and 48  h post treatment (12.5 vs. 25  µg/mL; 12.5 vs. 
50 µg/mL; 12.5 µg/mL vs. 100 µg/mL, <0.05). P values among the 
statistically significant to the CAL27 cell lines post 24  h treatment 
(25 vs. 100 µg/mL; 50 vs. 100 µg/mL, <0.05)
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Fascinated by the result, the AgNP incubation duration was 
increased to 48 h to evaluate their efficacy. At 12.5 µg/mL 
dose, nearly 60% of cells were killed. Further increase of the 
formulation concentration, a dose-dependent killing of SiHa 
cells was observed. At 25, 50, and 100 µg/mL of AgNP con-
centrations, nearly 75, 80, and 84% of SiHa cells were killed, 
respectively. However, with the increase of time duration 
of AgNPs incubation, no significant number of SiHa cells 
killed was observed at 100 µg/mL (Fig. 7). From the results, 
we conclude that the prepared nanoparticles are highly effec-
tive against SiHa cell lines.

To date, the exact mechanisms underlying the anticancer 
activity of AgNPs are not fully elucidated. Dey et al., have 
suggested that AgNPs induce the production of reactive oxy-
gen species (ROS), which damages the mitochondrial mem-
brane, leading to the death of cancer cells [66]. AgNPs have 
been implicated in oxidative-stress-mediated inflammatory 
responses [67], and can induce ROS production, resulting 
in the phosphorylation of ERK and JNK, but not p38 [68]. 
This suggests a potential involvement of downstream pro-
teins from ERK in modulating cell cycle progression and 
apoptosis [69]. In another study, AgNPs have been shown 
to activate p38 MAPK and are associated with DNA dam-
age, leading to the inhibition of cell cycle progression and 
apoptosis, indicating mechanisms for both cytotoxicity and 
genotoxicity in Jurkat T cells [70]. In addition, AgNPs, when 
present within the nucleus, have been shown to induce oxi-
dative base damages, strand breaks, and mutations in DNA, 
collectively contributing to genotoxic effects, as evidenced 
by the presence of 8-Oxoguanine (8-oxoG) [71]. However, 
it is important to highlight that while these mechanisms are 
proposed, the specific effects of AgNPs can vary depending 
on factors such as size, shape, concentration, colloidal state, 
and surface coating. Furthermore, the potential toxicity of 
silver nanoparticles to normal cells and tissues remains a 
concern [72], emphasizing the need for further research to 
understand their safety profile before considering them for 
clinical applications in cancer therapy.

Cytotoxicity analysis

Encouraged by the efficacy of the prepared AgNPs especially 
against the SiHa cancer cell line, it was necessary to evaluate 
the efficacy of the formulation against the noncancerous cell 
line. The HEK293 cell line is a well-characterized model cell 
line, which is widely used to evaluate the cytotoxic effects of 
chemicals and AgNPs [73, 74]. This cell line was chosen due 
to it delicate structure in the kidney filtration system, playing 
a pivotal role in the filtration of bodily fluids and the excre-
tion of waste products. It is quite possible that inappropriate 
exposure to the AgNPs may affect renal cell structure and 
function. Thus, to investigate this possibility, we have evalu-
ated the efficacy of the prepared AgNPs with varying doses 

to analyse the cytotoxicity. At the dose up to 12.5 µg/mL, 
no significant untoward effect of the prepared AgNPs was 
evident on the HEK293 cells. However, with the increase 
of AgNPs doses, the toxicity of the AgNPs was evident in a 
dose-dependent manner (Fig. 8). At 25 µg/mL concentration, 
40–45% HEK293 cells showed growth inhibition. Further 
increase in doses resulted in more prominent inhibition of 
HEK293 cells. Thus, we conclude that the prepared AgNPs 
showed some level of toxicity to the noncancerous HEK293 
cells. Therefore, it is advised to check the toxicity of the syn-
thesized AgNPs on the other noncancerous cell lines before 
introducing them in clinical settings.

Conclusion

The green synthesis of AgNPs has drawn the attention of 
the scientific community around the globe. The process of 
synthesis is simple, energy-efficient, eco-friendly, and cost-
effective. Further, its production can be easily scaled up. 
The green synthesis of AgNPs has shown efficacy against 
microbes and anticancer cells. Thus, it can be used as a 
potential candidate to improve human lives and could be 
proven effective in treating various diseases including can-
cers. We have synthesized AgNPs from methanolic extract 
of Alpinia galanga rhizome and characterized them with 
various techniques that include UV–Vis spectrophotometry, 
FTIR, Zetasizer, and TEM. The FTIR analysis suggests that 
various phytochemical/secondary metabolites are involved 
in the reduction, capping, and stabilization of silver ions 
into AgNPs. Zetasizer results showed that particles with a 

Fig. 8   Cytotoxic effect of AgNPs on the noncancerous Hek293 cells. 
P values are statistically significant among different doses (25 vs. 
50 µg/mL; 25 vs. 100 µg/mL, <0.05)
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mean size of 102 nm and PDI of 0.24. The size was cor-
roborated by TEM images. High-resolution transmission 
electron micrography (HR-TEM) images showed fringes on 
the surface of nanoparticles, suggesting a uniform distri-
bution of phytochemicals in the synthesis of AgNPs. The 
polycrystallinity of the prepared nanoparticles was estab-
lished by five electron diffraction rings of the SAED image 
and XRD analysis. The anticancer activity of the prepared 
AgNPs showed remarkable activity against SiHa cell lines, 
while its activity against CAL27 cell lines showed limited 
activity. Moreover, the IC50 of the AgNPs against SiHa cell 
lines was 51.56 µg/mL, which is lower than AgNPs prepared 
from different plants and their IC50 was evaluated against 
different cancer cell lines [75–77]. We conclude that the 
prepared AgNPs are highly effective against SiHa cell lines. 
The study showed eco-friendly and less expensive method 
for the synthesis of antioxidant and anticancer agents.
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