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Abstract
The recently discovered wild yeast Wickerhamomyces sp. UFFS-CE-3.1.2 was analyzed through a high-throughput experi-
mental design to improve ethanol yields in synthetic media with glucose, xylose, and cellobiose as carbon sources and acetic 
acid, furfural, formic acid, and NaCl as fermentation inhibitors. After Plackett–Burman (PB) and central composite design 
(CCD), the optimized condition was used in a fermentation kinetic analysis to compare this yeast's performance with an 
industrial Saccharomyces cerevisiae strain (JDY-01) genetically engineered to achieve a higher xylose fermentation capac-
ity and fermentation inhibitors tolerance by overexpressing the genes XYL1, XYL2, XKS1, and TAL1. Our results show that 
furfural and NaCl had no significant effect on sugar consumption by UFFS-CE-3.1.2. Surprisingly, acetic acid negatively 
affected glucose but not xylose and cellobiose consumption. In contrast, the pH positively affected all the analyzed responses, 
indicating a cell's preference for alkaline environments. In the CCD, sugar concentration negatively affected the yields of 
ethanol, xylitol, and cellular biomass. Therefore, fermentation kinetics were carried out with the average concentrations of 
sugars and fermentation inhibitors and the highest tested pH value (8.0). Although UFFS-CE-3.1.2 fermented glucose effi-
ciently, xylose and cellobiose were mainly used for cellular growth. Interestingly, the genetically engineered strain JDY-01 
consumed ~ 30% more xylose and produced ~ 20% more ethanol. Also, while UFFS-CE-3.1.2 only consumed 32% of the 
acetic acid of the medium, JDY-01 consumed > 60% of it, reducing its toxic effects. Thus, the overexpressed genes played 
an essential role in the inhibitors' tolerance, and the applied engineering strategy may help improve 2G ethanol production.

Keywords Wickerhamomyces sp. · Saccharomyces cerevisiae · Fermentation · Glucose · Xylose · Acetic acid

Introduction

Second-generation (2G) biorefineries use lignocellulosic res-
idues as raw material, and this production process depends 
on the hydrolysis of these biomasses rich in cellulose and 
hemicellulose. As a result of this hydrolysis, mainly the 
hexose glucose, the pentose xylose, and the disaccharide 
cellobiose (consisting of two glucose molecules joined 
together by a ß-1,4 glycosidic bond) are obtained—cellobi-
ose, though, is present in a proportion of at least five times 
smaller in relation to the two mentioned monosaccharides 
[1–4]. Therefore, the production of 2G ethanol depends on 
the efficient fermentation of glucose, xylose, and cellobiose. 
However, the yeast species currently used in the bioethanol 
production (Saccharomyces cerevisiae) is capable of fer-
menting only the hexose among these three carbohydrates. 
To overcome this problem, 2G ethanol depends either on the 
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selection of new species that can metabolize not only glu-
cose but also xylose and cellobiose, or on the construction 
of genetically modified strains of S. cerevisiae to enable it 
to ferment these two carbohydrates [5, 6].

Biorefineries, however, can produce more than one prod-
uct from the same lignocellulosic residue. In fact, in addi-
tion to ethanol, more recently, xylitol has also been widely 
discussed in the literature, given its numerous applications, 
especially in the pharmaceutical, cosmetics, and food indus-
tries [7–9]. In this sense, while glucose and cellobiose can 
be fermented to ethanol by the yeasts used in the process, 
xylose can be converted either into ethanol or into the so-
referred sugar-alcohol.

For xylose fermentation into ethanol, yeast cells are 
required to be able to express the enzymes xylose reduc-
tase (XR), xylitol dehydrogenase (XDH), and xylulokinase 
(XK). In subsequent reactions, these enzymes will convert 
xylose to xylitol, xylulose, and, finally, xylulose-5P, which 
is then destined for the pentose phosphate pathway. Also, it 
is desirable for XR and XDH to be capable of recycling the 
same coenzyme in both oxide-reduction reactions (NADH/
NAD+), thus avoiding a possible redox imbalance inside the 
cells, which tends to accumulate xylitol to the detriment of 
ethanol production [6, 10]. Indeed, this causes some species 
of yeast to end up only generating xylitol from xylose, which 
also, as mentioned above, presents itself as an important 
biotechnological product [11, 12].

However, the fermentative capacity is not the only desir-
able characteristic for the microorganism to be used in the 
process. Inhibitor compounds of the fermentative metabo-
lism, such as furfural, formic acid, and predominantly acetic 
acid, are generated in the pretreatment and hydrolysis stages 
of the process, which are carried out before fermentation. 
Due to the presence of these compounds, to guarantee effi-
ciency in the process, it is necessary to select yeasts (pros-
pecting wild species or strains) tolerant to their toxic effects 
[3, 13, 14] or to genetically engineer S. cerevisiae to increase 
its tolerance to those inhibitor compounds. Thus, in the con-
text of genetic-engineered yeasts, besides the heterologous 
expression of XR and XDH enzymes recycling the same 
coenzyme, and the overexpression of XK, some authors 
have pointed to the modification of the genes that encode 
the enzymes of the pentose phosphate pathway (PPP) as a 
strategy to increase tolerance to the inhibitory compounds 
[15–19]. In their work with laboratory strains of S. cerevi-
siae, Hasunuma et al. [20, 21] demonstrated that increas-
ing tolerance to inhibitors through overexpression of PPP 
enzymes (such as the transaldolase encoded by the TAL1 
gene) consequently increased ethanol yields in fermenta-
tions carried out under different concentrations of weak 
acids (acetic acid and formic acid). However, as most of 
these studies used laboratory strains of S. cerevisiae, there 
is still uncertainty regarding the reproducibility of the results 

when conducted in industrial strains or strains derived from 
them and isolated from industrial environments, which have 
genomic adaptations different from those found in laboratory 
yeasts [22, 23]. Indeed, several reports have started to show 
that the phenotypic consequences of genomic modifications 
(e.g., gene deletions) can vary considerably between dif-
ferent strain backgrounds [24], an issue that can have sig-
nificant implications in metabolic engineering strategies for 
generating optimized industrial yeast strains [25, 26].

Another desirable characteristic of an industrial yeast 
is its tolerance to the osmotic stress caused by high sugar 
concentration. This is, in fact, one of the differentials of S. 
cerevisiae, which is widely recognized for its high fermen-
tative performance even at sugar concentrations as high as 
200 g/L [27]. Not that this is a rule for every bioprocess, 
but normally the higher the sugar concentration, the higher 
the productivity of the target product, in such a way that the 
prospection or development of new yeasts includes higher 
tolerance to a hyperosmotic environment as a targeted trait. 
Although the industrial fermentation vats are known to 
select and domesticate xerotolerant yeasts [28], nature also 
presents niches with reduced water activity where resistant 
wild strains can be found, and this has recently shown to be 
quite promising [29].

Last but not least, besides the factors mentioned above, 
the biorefineries' water footprint has also been identified as 
a parameter to be optimized [30]. In this sense, the employ-
ment of seawater in the fermentation vats is envisaged, 
partially or totally replacing the use of freshwater. For this, 
however, fermenting microorganisms must also tolerate high 
concentrations of salt in addition to the characteristics men-
tioned above [31–33].

In this context, the present work compared the biotechno-
logical potential of two taxonomically distant yeast strains: 
the recently isolated wild yeast Wickerhamomyces sp. UFFS-
CE-3.1.2 [1] and a new genetically modified industrial 
strain derivative from the widely known S. cerevisiae PE-2 
[34–36]. After subjecting UFFS-CE-3.1.2 to two subsequent 
experimental design analyses in synthetic media with the 
carbohydrates glucose, xylose, and cellobiose, as well as the 
inhibitors furfural, acetic acid, formic acid, and NaCl, the 
optimized culture condition was applied to a fermentation 
kinetics assay to compare the performances of both the wild 
and genetically engineered strains.

Materials and methods

Yeasts

Two yeasts were used: the wild yeast Wickerhamomyces sp. 
UFFS-CE-3.1.2, previously isolated from decaying wood 
samples [1], and the genetically modified strain S. cerevisiae 
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JDY-01. This industrial recombinant strain was constructed 
based on the efficient industrial fuel ethanol yeast strain 
PE-2 [36]. This diploid S. cerevisiae strain was initially 
transformed with the chromosome-integrative plasmid 
pAUR-XKXDHXR [37] allowing overexpression of xylose 
reductase (XR, encoded by XYL1) and xylitol dehydrogenase 
(XDH, encoded by XYL2) from Scheffersomyces stipitis, as 
well as xylulokinase (XK, encoded by XKS1) from S. cer-
evisiae [38, 39]. Briefly, plasmid pAUR-XKXDHXR was 
digested with BsiWI, and then chromosomally integrated 
into the AUR1 locus of the yeast strain. After 90 min culti-
vation on rich YP medium (10 g/L yeast extract and 20 g/L 
peptone, pH5.0) containing 20 g/L glucose, the transformed 
cells were selected on plates of the same medium contain-
ing 20 g/L agar and 0.5 mg/L aureobasidin A (Takara Bio, 
Kyoto, Japan), producing strain MP-P5 (isogenic to PE-2, 
but AUR1-C::PPGK1-XKS1-TPGK1,  PPGK1-XYL2-TPGK1, 
 PPGK1-XYL1-TPGK1). Yeast transformation was performed 
by the lithium acetate method [40]. Strain MP-P5 was fur-
ther improved by promoting the overexpression of the S. 
cerevisiae TAL1 gene encoding the transaldolase enzyme of 
the non-oxidative pentose phosphate pathway [41, 42]. The 
promoter region of this TAL1 gene was modified accord-
ing to the polymerase chain reaction (PCR)-based gene 
replacement procedure [43]. The kanMX-PADH1 module from 
plasmid pFA6a-kanMX6-PADH1 [43] was amplified using 
primers TAL1-Kanr-F and TAL1-PADH1-R (Table 1), and 
the PCR product of 2394 bp (flanked by 40 bp of homology 
to the promoter and start regions of the TAL1 gene) contain-
ing the kanMX6 gene and the constitutive promoter of the 
ADH1 gene was used to transform competent yeast cells. 
After 2-h cultivation on YP-20 g/L glucose, the transformed 

yeast cells were plated on the same medium containing 
20 g/L agar and 200 mg/L G-418 (Merck Sigma Aldrich 
Brasil, Barueri, Brazil) and incubated at 28 °C. G-418-re-
sistant isolates were tested for proper genomic integration of 
the kanMX-PADH1 cassette at the TAL1 locus by diagnostic 
PCR using 3 primers (V-TAL1-F, V-TAL1-R, and V-kanr-
F; Table 1). This set of three primers amplified a 501 bp 
fragment (primers V-TAL1-F and V-TAL1-R) from a nor-
mal TAL1 locus, or yielded a 2,700 bp fragment (primers 
V-TAL1-F and V-TAL1-R) or a 1479 bp fragment (primers 
V-kanr-F and V-TAL1-R) if the kanMX-PADH1 module was 
correctly integrated at the promoter region of the TAL1 gene, 
producing strain JDY-01.

Culture media and growth conditions

Cells were grown in cotton-plugged Erlenmeyer flasks with 
1/5 of their volume filled with culture medium in a shaker 
with controlled temperature and agitation. Before each 
experimental design, the yeasts were pre-grown for 48 h 
at 30 °C and 150 rpm in YP rich media containing 20 g/L 
of glucose until they reached the exponential growth phase 
 (OD570nm ~ 3,5). Then the cells were inoculated in minimal 
YNB synthetic media (6.7 g/L of yeast nitrogen base) plus 
different concentrations of glucose, xylose, cellobiose, acetic 
acid, furfural, formic acid, and NaCl, according to the exper-
imental designs described below. Likewise, the cultures were 
carried out in different pH ranges, temperature, and agitation 
according to the matrices presented in Tables 2 and 3.

Plackett–Burman's experimental design

The Plackett–Burman (PB) experimental design matrix was 
assembled and analyzed using the Protimiza Experimental 
Design software [44] with the following variables: tempera-
ture, pH, agitation, and concentration of inoculum, sugars, 
and inhibitors (Table 2). The inoculum of each PB fermenta-
tion was prepared with yeasts pre-grown as described above. 
Then the cells were centrifuged (5000g, 3 min), washed 
twice with distilled water, and resuspended in the fermenta-
tion culture medium to reach an initial cell concentration of 
1, 3, or 5 g/L (Table 2). After 48 h fermentation, cells were 
centrifuged (5000g, 3 min), and supernatants were filtered 
(0.45 μm) for subsequent quantification of sugar consump-
tion by HPLC as described in the "Analytical methods".

Central composite design

The central composite design (CCD) was also assembled 
and analyzed with Protimiza software. Pre-grown cells 
were inoculated at the concentration of 1:100 (v/v—vol-
ume of pre-inoculum per volume of medium to be inocu-
lated). Yeasts were cultivated at 30 °C and 150 rpm in 

Table 1  Primers used in this study

a Bold sequences are homologous to the upstream and downstream 
region of the target TAL1 gene and its promoter that was modified, 
and italicized sequences allow amplification of the transformation 
module present in plasmid pFA6a-kanMX6-PADH1 [37]

Primers: Sequence (5′ → 3′)a

TAL1-Kanr-F GTG TAT GTG TAC ACC TGT ATT 
TAA TTT CCT TAC TCG CGGG 
CCA GCT GAA GCT TCG TAC GC

TAL1-PADH1-R AGT TGT TAG CAA CCT TTT GTT 
TCT TTT GAG CTG GTT CAGA 
CAT TGT ATA TGA GAT AGT TG

V-TAL1-F GAG CTA CTG GTT GCT GTG AC
V-TAL1-R GCA ATA GAG CCG AAA TCA CC
V-kanr-F CCG GTT GCA TTC GAT TCC 
RT-PCR TAL1-F GGC CCA AGT TAC TTT GAT TTCC 
RT-PCR TAL1-R TCG GCT TCA CCC TTG TAA TC
RT-PCR ACT1-F TGG ATT CCG GTG ATG GTG TT
RT-PCR ACT1-R CGG CCA AAT CGA TTC TCA A
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YNB medium containing 1.0 g/L of furfural, 0.5 g/L of 
formic acid, 17.5 g/L of NaCl, and different concentra-
tions of carbohydrates and acetic acid (Table 2). The pH 
was also analyzed as a variable of this CCD. In Table 3, 
the column "total sugars" represents the combination 
of the three carbohydrates analyzed: 40 g/L of glucose, 
40 g/L of xylose, and 8 g/L of cellobiose (88 g/L total 
sugar); 25 g/L glucose, 25 g/L xylose, and 5 g/L cel-
lobiose (55 g/L total sugar); and 10 g/L glucose, 10 g/L 
xylose, and 2 g/L cellobiose (22 g/L total sugar). The 
remaining sugars and the concentration of xylitol and 
ethanol produced were determined by HPLC as described 
in the "Analytical methods".

Fermentation kinetics

For the fermentation kinetics, YNB media containing 
25 g/L of glucose, 25 g/L of xylose, and 5 g/L of cellobi-
ose (55 g/L of total sugars) were inoculated at the concen-
tration of 1:100 (as described above). The inhibitors were 
added to the culture medium at concentrations of 1.0 g/L 
of furfural, 0.5 g/L of formic acid, 2.5 g/L of acetic acid, 
and 17.5 g/L of NaCl, and the pH was adjusted to 8.0. 
The assays were carried out with agitation of 150 rpm 
and a temperature of 30 °C. A total of ten samples were 
collected from each culture during 48 h of incubation to 
determine cellular growth by turbidity measurements at 
570 nm  (OD570nm) [45], and sugars, acetic acid, ethanol, 
and xylitol concentration through HPLC analysis (see 
below).

Analytical methods

During cell cultures, samples were periodically harvested, 
centrifuged (5000g, 3 min), and filtered (0.45 μm) for sub-
sequent quantification of carbohydrates, ethanol, xylitol, 
and acetic acid by high-performance liquid chromatography 
(HPLC) as described by Tadioto et al. [8]. The analyses were 
performed using an LCMS-2020 chromatograph (Shimadzu) 
with a refractive index detector (RID-10, Shimadzu). For all 
compounds, a column for organic acids (Aminex HPX-87H, 
Bio-Rad) was used with a flow rate of 0.6 mL/min, using 
5 mM of  H2SO4 as mobile phase at a temperature of 50 °C. 
Calibration curves were used with four different concentra-
tions of each analyzed compound.

Quantitative RT‑PCR analysis

Quantitative RT-PCR (qRT-PCR) was conducted to verify 
the overexpression of the TAL1 gene in strain JDY-01 when 
compared to the expression of this gene in strain MP-P5. The 
yeast strains were grown in YP-20 g/L glucose medium to 
mid-log phase, centrifuged (5000g, 4 min at 4 °C), washed 
with cold distilled water, and according to the manufacturer's 
protocols, the total RNA of the cell pellets was extracted 
using the  RNeasy® Mini Kit (Qiagen Brazil, São Paulo, Bra-
zil). The total RNA of each sample (1 ug) was reverse tran-
scribed to cDNA using the  QuantiTect® Reverse Transcrip-
tion Kit (Qiagen). The qRT-PCR reactions were performed 
with the  QuantiFast® Sybr Green PCR Kit and the Rotor-
Gene® Q equipment (Qiagen) using the primers for the TAL1 
gene (primers RT-PCR TAL1-F and RT-PCR TAL1-R, 

Table 3  Central composite 
design and analysis with three 
variables and seven responses 
in 48 h batch fermentation 
by Wickerhamomyces sp. 
UFFS-CE-3.1.2

a Data are expressed as mg of ethanol per g of total sugar available at the beginning of the fermentation
b Data are expressed as mg of xylitol per g of xylose available at the beginning of the fermentation
c Data are expressed as mg of dry yeast cells per g of total sugar available at the beginning of the fermenta-
tion

Variables Responses

Total sugar 
(g/L)

pH Acetic acid 
(g/L)

Sugar consumption (%) Yield (mg/g)

Glucose Xylose Cellobiose Ethanola Xylitolb Biomassa

22.0 2.0 0.0 0.00 0.00 0.00 0.00 0.00 12.61
88.0 2.0 0.0 0.00 0.00 0.00 0.00 0.00 3.07
22.0 8.0 0.0 100.00 88.07 100.00 0.00 50.50 706.82
88.0 8.0 0.0 100.00 19.91 7.71 101.93 82.15 143.47
22.0 2.0 5.0 0.00 0.00 0.00 0.00 0.00 11.25
88.0 2.0 5.0 0.00 0.00 0.00 0.00 0.00 2.13
22.0 8.0 5.0 100.00 100.00 100.00 0.00 0.00 665.91
88.0 8.0 5.0 100.00 18.20 14.42 110.16 24.55 140.06
55.0 5.0 2.5 100.00 38.97 61.13 61.38 23.00 328.64
55.0 5.0 2.5 100.00 42.21 68.67 65.23 29.92 348.64
55.0 5.0 2.5 100.00 40.20 69.75 83.01 34.66 340.45
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Table 1) and for the actin gene (ACT1) that was selected as 
the endogenous reference gene (primers RT-PCR ACT1-F 
and RT-PCR ACT1-R, Table 1). A dissociation curve was 
generated for each assay to confirm the amplification of only 
one product. The  2−∆∆CT method [46] was used to calculate 
the relative expression levels of the TAL1 gene relative to the 
ACT1 gene, for each yeast strain, in triplicate.

Results and discussion

High‑throughput analysis of a recently discovered 
Wickerhamomyces sp. strain

Although it has been only recently isolated from rotten wood 
[1], the wild yeast Wickerhamomyces sp. UFFS-CE-3.1.2 
has already displayed high biorefinery employment poten-
tial when it was submitted to lignocellulosic [1, 3] and pec-
tin-rich hydrolysates [47] even with seawater-based media 
[48]. Indeed, we have previously shown that the wild strain 
UFFS-CE-3.1.2 showed 50% higher ethanol productivity in 
seawater-based papaya hydrolysates than the well-known 
industrial S. cerevisiae CAT-1 [48], another widely used 
yeast in the Brazilian fuel ethanol industry [22, 35, 38, 49]. 
Thus, aiming to reach even higher performances with the 
yeast Wickerhamomyces sp. UFFS-CE-3.1.2, we designed 
a widely comprehensive Plackett–Burman (PB) experimen-
tal plan to evaluate the effects of 11 variables on glucose, 
xylose, and cellobiose metabolism by the cells. The data in 
Table 2 show that UFFS-CE-3.1.2 is able to metabolize the 
three most abundant sugars in lignocellulosic hydrolysates, 
however, with a marked advantage for glucose, corroborat-
ing our previous studies [1, 3, 47, 48]. Indeed, this prefer-
ence for glucose metabolism is a prevailing feature in yeasts 
[50–52]. After glucose, cellobiose was the most consumed 
sugar, although the concentration of this disaccharide was 
always lower than that of the glucose and xylose, which is 
usual in lignocellulosic hydrolysates [1–4].

The PB statistical analysis showed that the pH effect (cal-
culated t) was significantly positive for glucose and xylose 
consumption considering p ≤ 0.05, and for cellobiose con-
sumption considering p ≤ 0.1 (Fig. 1), indicating that higher 
pH values favor sugar metabolization. Sugar concentration 
also had a significant effect on the percentual of their con-
sumption, although, in this case, the influence was always 
negative, meaning that higher sugar concentration led to 
lower consumption (in percentual terms). Glucose uptake 
was negatively affected by high glucose and cellobiose titer; 
cellobiose consumption was impaired by itself and xylose; 
and the percentual of xylose internalized was only decreased 
in higher concentrations of this pentose (Fig. 1). In fact, the 
negative effects of one sugar on another have been described 
elsewhere [52–54], and it was somehow already expected 

that the higher the sugar concentration, the lower the per-
centual of sugar consumption by the yeast cells.

Besides the sugar concentration and pH, all the other vari-
ables had no consistent influence on the metabolization of 
the three carbohydrates analyzed; some of them had signifi-
cant effects on one response but not on the other two (Fig. 1). 
Surprisingly, this was the case with acetic acid, which is 
known to impair sugar consumption, especially under low 
pH values, when it is in its undissociated (liposoluble) form, 
easily diffusing through the plasma membrane lipid bilayer 
and reaching the cell cytoplasm. In the cytosol, pH values 
higher than the external environment provide the dissocia-
tion of acetic acid to the ionic form, releasing protons that 
decrease cytoplasmic pH and consequently may damage the 
cell and thus produce lower ethanol yield [55–58].

Moreover, our data showed that this carboxylic acid 
exerted a significantly negative effect (p ≤ 0.05) only on 
glucose consumption, although most data in the literature 
indicate that xylose fermentation is usually more impaired 
by acetic acid [3, 57, 59]. Nevertheless, considering that ace-
tic acid is probably the most common fermentation inhibitor 
in second-generation biorefinery processes, we decided to 
include it as a variable in a next step experimental design 
(see below). It should also be noted that NaCl had no sig-
nificant influence on sugar consumption by UFFS-CE-3.1.2.

Since curvature (which represents a favorable trend for 
the average values of the variables) had a significant positive 
effect (p ≤ 0.05) on the three responses analyzed (Fig. 1), 
the variables other than sugars, pH, and acetic acid were 
kept in their central values in the central composite design 
(CCD) that followed the PB analysis. In the CCD, glucose, 
xylose, and cellobiose concentrations were taken together 
as one variable: total sugar concentration (Table 3). Once 
again, acetic acid showed no significant effect on xylose and 
cellobiose consumption (data not shown), even though it 
significantly impaired ethanol and xylitol yields (Fig. 2a, 
b). Higher pH values always favored yeast metabolism, 
and sugar concentration had significant positive effects on 
ethanol and xylitol but a negative effect on cellular biomass 
yields (Fig. 2).

In the next step, UFFS-CE-3.1.2 was subjected to a fer-
mentation kinetic analysis. To this end, except for pH (which 
has consistently proven to have a beneficial influence at alka-
line values), the other analyzed variables were kept in their 
central values (see "Fermentation kinetics" at "Materials 
and methods"). The kinetic analysis suggests that glucose 
was almost entirely fermented into ethanol, while xylose 
and cellobiose were mostly used as carbon sources for cel-
lular growth (Fig. 3). Although xylose has not entirely been 
exhausted by the yeast cells, our data show an improvement 
in the consumption rate of this pentose compared with a pre-
vious study [3], indicating that PB and CCD led to an opti-
mization of the UFFS-CE-3.1.2 fermentation performance. 
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Fig. 1  Calculated t and p value 
for Wickerhamomyces sp. 
UFFS-CE-3.1.2 Plackett–Bur-
man's experimental design 
(PB), considering the percentual 
of glucose (a), xylose (b), and 
cellobiose (c) consumption as 
responses. Significant effects 
are labeled with * for p < 0.05 
and with ** for p < 0.1
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Fig. 2  Calculated t and p value 
for Wickerhamomyces sp. 
UFFS-CE-3.1.2 central compos-
ite design (CCD), considering 
the yields of ethanol (a), xylitol 
(b), and cellular biomass (c) as 
responses. Significant effects 
are labeled with * for p < 0.05 
and with ** for p < 0.1. Coeffi-
cients of determination: 79.42% 
(ethanol yield), 96.13% (xylitol 
yield), 94.52% (biomass yield)
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Moreover, it is worth noting that this better performance 
was achieved in the presence of acetic acid (2.5 g/L), formic 
acid (0.5 g/L), furfural (1.0 g/L), and NaCl (17.5 g/L), which 
have shown to inhibit sugar metabolism at similar concentra-
tion ranges [21, 31, 60, 61].

Only a small amount of the xylose consumed by the cells 
(~ 5%) was secreted in the media as xylitol (Fig. 3b), indicat-
ing that the common redox imbalance is not impairing the 
first two reactions in xylose metabolization (catalyzed by 
XR and XDH) by Wickerhamomyces sp. UFFS-CE-3.1.2. 
In contrast, this also indicates a low potential of this yeast 
for xylitol production in a multiproduct biorefinery context 

since previous studies have shown xylitol yields by wild 
yeasts up to 11 times higher in similar fermentation condi-
tions [8, 62, 63].

Comparing the wild yeast with a genetically 
engineered industrial strain

Although bioprospection of wild yeasts has shown to be a 
promising approach for making many biorefinery processes 
economically viable [64–66], genetic engineering has also 
proven to be a feasible alternative to improve residual bio-
masses conversion into bioproducts [5, 67, 68]. In this sense, 
we decided to compare the wild yeast Wickerhamomyces 
sp. UFFS-CE-3.1.2 fermentation performance with that of 
a genetically modified industrial S. cerevisiae strain. The 
recombinant fuel ethanol S. cerevisiae strain JDY-01 is 
derived from strain PE-2, an efficient fermenting diploid 
strain used in first-generation bioethanol production in Bra-
zil [36], but unable to ferment xylose [4, 69]. However, in 
this study, PE-2 was initially transformed with a chromo-
some-integrative plasmid to overexpress the three enzymes 
(XR, XDH, and XK) required for xylose utilization, yield-
ing strain MP-P5. This strain was further improved by pro-
moting the overexpression of the S. cerevisiae transaldo-
lase encoded by the TAL1 gene, a rate-limiting enzyme of 
the non-oxidative pentose phosphate pathway required for 
improved xylose consumption [41, 42]. Our PCR analysis 
revealed that, in strain JDY-01, only one of the TAL1 genes 
had its promoter region replaced by the kanMX-PADH1 mod-
ule, and thus the other TAL1 gene present in this diploid 
strain retained its normal promoter.

Interestingly, S. cerevisiae JDY-01 in the presence of the 
inhibitors (acetic and formic acids, furfural, and NaCl) con-
sumed glucose faster than the wild yeast Wickerhamomy-
ces sp. UFFS-CE-3.1.2, and consumed ~ 30% more xylose, 
displaying a ~ 20% higher ethanol production, even with 
no cellobiose utilization (Fig. 3). As expected, this higher 
ethanol production reflects its lower xylitol production and 
cellular growth, indicating that the engineered S. cerevisiae 
strain deviates more sugar (glucose and xylose) to the alco-
holic fermentation route than Wickerhamomyces sp. UFFS-
CE-3.1.2, thus being more suitable for the 2G ethanol indus-
try. At this point, it is important to remember that the strain 
JDY-01 lacks a periplasmic ß-glucosidase (or a cellobiose 
transporter plus an intracellular ß-glucosidase) to allow it to 
consume and ferment cellobiose, which could ensure an even 
higher ethanol yield if this recombinant yeast were further 
modified to ferment this disaccharide.

As it can be claimed that the overexpression of XR, XDH, 
and XK may be the major reason behind the better fermenta-
tive performance of JDY-01, it is worth mentioning that this 
strain also consumed more xylose and produced more etha-
nol than its parental strain MP-P5 (data not shown), which 

Fig. 3  Fermentation kinetics of Wickerhamomyces sp. UFFS-
CE-3.1.2 (closed symbols) and S. cerevisiae JDY-01 (open symbols) 
in the presence of fermentation inhibitors. During 48  h incubation 
period, samples were harvested from the media for the quantification 
of glucose (circle), xylose (triangle), or cellobiose (square) consump-
tion (a), ethanol (cross-hair circle), and xylitol (diamond) production 
(b), and cellular growth (inverted triangle) and acetic acid concen-
tration (hexagon) in the medium (c). The data are expressed as aver-
ages ± standard errors from three completely independent experi-
ments
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overexpresses the same three enzymes. The only difference 
between these two strains is the strong promoter  PADH1 
upstream of the TAL1 gene in strain JDY-01. When TAL1 
expression was analyzed through qRT-PCR, we observed 
that this gene was 5.4 times upregulated in JDY-01 com-
pared to MP-P5. Thus, JDY-01 higher transaldolase activity 
most likely led this strain to increase its xylose consumption 
capacity even in the presence of fermentation inhibitors. This 
is corroborated by the acetic acid consumption by JDY-01, 
since during the 48 h incubation, this strain consumed over 
60% of this acid available in the medium (Fig. 3c), probably 
using it as a carbon source and thus reducing its toxic effects. 
Significantly, strain UFFS-CE-3.1.2 only consumed 32% of 
the acetic acid, mostly at the end of the fermentation.

By consuming acetic acid at such a rate, JDY-01 shows 
to be able to use it as a carbon source. Ending or decreasing 
the repressive catabolic effect of glucose, acetate may be 
converted into acetyl-CoA and then stimulate the glyoxylate 
cycle and gluconeogenesis [60, 70]. By doing this, the strain 
JDY-01 not only has the toxic effect of acetic acid reduced 
but also has it used as an energy source [71, 72]. Thus, our 
results suggest that, as previously hypothesized [15, 20, 21], 
overexpression of TAL1 may increase yeast tolerance to the 
so-referred carboxylic acid.

Moreover, it should be noted that the fermentative perfor-
mance observed for the strain JDY-01 was achieved in the 
presence of 17.5 g/L of NaCl, which corresponds to approxi-
mately half the concentration of this salt in seawater [73]. 
In this sense, our data indicate that the engineered strain S. 
cerevisiae JDY-01 could handle 2G ethanol production in a 
lower water footprint condition, considering, for instance, a 
situation where freshwater and seawater are used in a ratio 
of 1:1 (v/v) in the wort.

It is also worth noting that our results not only presented 
a new engineered S. cerevisiae strain with high potential to 
be employed in the 2G ethanol industry but also a highly fea-
sible approach to improve xylose fermentation by this yeast 
species. Considering the genotypic and phenotypic variabil-
ity among several S. cerevisiae strains [23, 74], it would 
be interesting to reproduce the same genetic modifications 
herein analyzed in other genetic backgrounds. With the aim 
of increasing water security during 2G ethanol production, 
the marine S. cerevisiae strains that Zaky and coworkers 
[32, 33, 75, 76] have been isolating and characterizing, for 
instance, are certainly worth trying.

Conclusion

The newly discovered wild yeast Wickerhamomyces sp. UFFS-
CE-3.1.2 has previously shown biotechnological potential 
when analyzed in seawater-based lignocellulosic and pec-
tin hydrolysates. In the present study, a high-throughput 

experimental design was used to improve its fermentation 
performance in the presence of the main sugars and inhibitors 
found in the biorefinery vats. Although acetic acid, furfural, 
formic acid, and NaCl showed to play a low (or no) effect on 
its sugar metabolism, this yeast was unable to ferment xylose 
when subjected to intermediary concentrations of these inhibi-
tory compounds. In this situation, the strain Wickerhamomyces 
sp. UFFS-CE-3.1.2 consumed ~ 62% of the xylose available 
through the respiratory route generating cellular biomass. 
Nevertheless, the experimental designs that were carried out 
highly improved the xylose consumption capacity of this yeast 
(compared to our previous studies) and allowed the cells to 
fully consume cellobiose.

On the other hand, the genetically engineered strain S. 
cerevisiae JDY-01 consumed over 83% of xylose from the 
medium and produced 20% more ethanol than the wild yeast 
in the presence of the same fermentation inhibitors. Further-
more, this higher fermentative performance was achieved 
despite lacking cellobiose consumption, which was completely 
metabolized by the wild yeast. Thus, if JDY-01 is addition-
ally engineered to ferment this disaccharide, it will very likely 
be able to further increase ethanol yield in a seawater-based 
biorefinery context.
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