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Abstract
Solid-state cultivation (SSC) is the microbial growth on solid supports, producing a nutrient-rich solution by cell enzymes 
that may be further used as a generic microbial medium. “Second-generation” ethanol is obtained by fermentation from 
mainly the acid hydrolysates of lignocellulosic wastes, generating several microbial growth inhibitors. Thus, this research 
aimed at evaluating the feasibility of ethanol fermentation from sugarcane bagasse hydrolysate after SSC with vinasse as the 
impregnating solution by a consortium of A. niger and T. reesei as opposed to the conventional method of acid hydrolysis. 
Fermentation of the hydrolysate from SSC leading to the yield of 0.40 g  g−1, i.e., about 78% of maximum stoichiometric 
indicating that the nonconventional process allowed the use of two by-products from sugarcane processing in addition to 
ethanol production from glucose release.
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Introduction

Ethanol is obtained by the processes of fermentation–dis-
tillation in Brazil from sugarcane molasses, juices, or a 
mixture of both. Alternatively, it can also be obtained from 
lignocellulosic wastes composed mainly of cellulose and 
hemicellulose in the so-called “second-generation etha-
nol–2G” [1]. Thus, to meet the increasing demand of 2G 
ethanol, sugarcane bagasse, a low-cost by-product of sugar-
cane processing, has been extensively investigated for over a 
decade [2–5]. The high degree of structural complexity due 
to the presence of lignin and hemicellulose is considered the 
main limiting factor for the efficient conversion of sugarcane 
into fermentable sugars; this results in lower ethanol yield 
and a higher selling price of ethanol.

The main components of lignocellulosic wastes are cel-
lulose and hemicelluloses that consist of hard and fibrous 
structures formed by aromatic alcohols known as lignin [6]. 

In contrast, different types of pretreatment of lignocellulosic 
biomass (chemical, physical, biological or a combination 
of all) can be used to make the cellulose and hemicellulose 
chains more accessible to hydrolytic agents, whether in acid 
or enzymatic hydrolyses [7].

Different approaches in dilute acid pretreatments have 
been employed prior the enzymatic hydrolysis [8, 9]. This 
type of pretreatment promotes the hydrolysis of hemicel-
lulose and partial decomposition of lignin, increasing the 
digestibility of biomass and favoring subsequent hydrolysis 
of this material [10, 11].

The acid hydrolysis process utilizes concentrated or dilute 
acids, and the main products of these hydrolytic chemical 
reactions are hexoses (glucose, galactose, and mannose), 
pentoses (xylose and arabinose), lignin, and acetic acid, in 
varying proportions depending on the raw material [7, 12]. 
However, acid hydrolysis leads to the formation of fermenta-
tion-inhibiting components such as 5-hydroxymethylfurfural 
(HMF) and furfural. These compounds, if not removed, can 
lead to microbial inhibition when the hydrolysates are used 
as culture media in bioconversion processes [13–15]. Alter-
natively, enzymatic hydrolysis presents advantages asso-
ciated with superior yields under moderate temperatures. 
However, operational aspects related to high process times 
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and the high cost of enzymes has led to uncertainties regard-
ing the economic viability [7, 16].

The development of an integrated simultaneous sac-
charification–fermentation process of bagasse for ethanol 
production has been of great interest [16]. On the other 
hand, studies on microbial growth, particularly co-cultures, 
would make it possible to obtain higher amounts of eas-
ily fermentable hydrolysates from lignocellulosic material 
and also minimize the action of inhibitors in the subsequent 
process. As an example, while Trichoderma reesei produces 
three cellulases and presents a low activity of β-glucosidase, 
Aspergillus niger displays a higher β-glucosidase activity 
and a lower production of two cellulases [17]. Therefore, 
solid-state cultivation (SSC) may be defined as microbial 
growth on solid supports in the absence of free water, i.e., 
similar to the occurrence of fungi in nature [18, 19]. This is 
a potential process for the in situ production of cellulolytic 
enzymes from several strains of A. niger and T. reesei [4]. 
Moreover, mixed cultures of microorganisms could com-
plement the metabolic capacities in SSC, increasing the 
bioconversion capacity of solid substrates [20, 21]. In SSC, 
solid supports are usually impregnated with nutrient solu-
tion. Thus, vinasse, the main wastewater from the sugarcane 
process, has been used for moistening bagasse and providing 
nutrient supply for SSC [21].

Thus, SSC can generate sufficient enzyme titer; addition-
ally, the undigested substrate may be further hydrolyzed to 
produce a nutrient-rich solution. This solution can be used as 
a generic culture medium in the form of a “microbial hydro-
lysate” with potential use to produce several bioproducts. 
This sequential process is innovative and has been the focus 
of few studies in the literature [22–24].

This research aimed at evaluating the feasibility of etha-
nol fermentation from bagasse hydrolysate after SSC by the 
consortium of A. niger and T. reesei in comparison with the 
acid hydrolysate process.

Material and methods

Inoculum

Trichoderma reesei CMAA 1168 and Aspergillus niger CCT 
4355 strains used for SSC were maintained on a medium 
consisting of 200  g   L−1 sucrose, 2.5  g   L−1 ammonium 
nitrate, 1.0 g  L−1 potassium phosphate, 0.25 g  L−1 mag-
nesium sulfate, and 0.04 g  L−1 copper sulfate (w/v) pH 4.0 
at 4 °C [20]. Prior to each experiment, the inocula were 
grown in flasks for at least 7 days, in an incubator at 30 °C 
without agitation in the medium mentioned above. The 
industrial strain PE-2 of the Saccharomyces cerevisiae yeast 
was used for the ethanol fermentation experiments and was 

maintained on the YPD medium (10 g  L−1 yeast extract, 
20 g  L–1 peptone, 20 g  L−1 dextrose, and 20 g  L−1 agar).

Sugarcane bagasse and vinasse

Sugarcane bagasse and vinasse used in the experiments were 
collected in a sugarcane processing industry located in the 
city of Araras, São Paulo, Brazil. After collection, the sam-
ples were dried in an oven at 50 oC for approximately 48 h, 
reaching a final moisture of 10%. After this stage, the parti-
cles were crushed in a knife mill and then classified in a set 
of TYLER sieves  FOBRAS® (São Paulo, Brazil) to select 
material with a particle size (mean diameter) between 0.59 
and 0.84 mm. Sterilization of the material used in the tests 
was performed in an autoclave at 127 °C, 1.5 kgf  cm−2 for 
20 min. Bagasse was characterized by total organic carbon 
(TOC) in the  SHIMADZU® (Tokyo, Japan) SSM-5000A 
solid sample combustion unit, vinasse was characterized in 
terms of pH by potentiometry, glucose by the method of 
glucose oxidase–peroxidase enzyme  LABORLAB® (Guarul-
hos, Brazil), carbon (TOC), and total nitrogen (TN) were 
characterized by  SHIMADZU® (Tokyo, Japan) TOC-LCPN 
total organic carbon analyzer.

Bagasse hydrolysates

Solid‑state cultivation for microbial hydrolysates

Solid-state cultivation (SSC) was set up with a 50:50 sus-
pension (inoculum volume ratio) of A. niger and T. reesei 
(according to Inoculum) corresponding approximately to 
50% in volume of the moisture liquid impregnating the solid 
particles and vinasse as the nutrient solution [21, 25, 26]. 
In addition to TOC and TN, sugarcane vinasse was char-
acterized in terms of zinc, copper, iron, and manganese by 
atomic absorption spectroscopy in AAS Perkin  Elmer®—
PINAACLE T900 (Waltham, Massachusetts, EUA) [27]. A 
packed-bed column bioreactor of 30 mm diameter was filled 
up to 60 mm bed height with the selected particles of sugar-
cane bagasse without any further pretreatment besides the 
sterilization in autoclave as solid support. SSC conditions 
were 30 °C and air flow-rate of 0.2 L  min–1 of water-satu-
ration as shown in Fig. 1 [26]. The solid medium presented 
initial moisture of 80% (vinasse as impregnating solution 
and inoculum suspension with 50% of A. niger and 50% of 
T. reesei). All SSC experiments were set up in triplicate.

The fungal extract was obtained with 1:15 deionized water 
(solid–water) by rotating in an orbital shaker at 100 rpm 
and 28 °C for 90 min according to conditions adapted from 
[28, 29] and optimized according to [26]. The fungal extract 
obtained for each condition was filtered to 0.45 µm pores 
diameter to remove bagasse and spores. The pH was deter-
mined by potentiometry, glucose by the  LABORLAB® 



2123Bioprocess and Biosystems Engineering (2021) 44:2121–2128 

1 3

kit; and carbon and total nitrogen by  SHIMADZU® TOC-
LCPN. For ethanol fermentation by yeasts, the filtration of 
fungal extract (filter unit of 0.45 µm) allows cell-free extract 
according to the SSC conditions optimized previously [22, 
25, 26, 30, 31].

For SSC, the yield “bulk” from nutrient solution and 
bagasse “solid medium” were calculated as a function of 
the TOC present in the impregnating solution and the TOC 
in the sugarcane bagasse particles, respectively.

Acid hydrolysates

The sugarcane bagasse particles were pretreated with 1% 
(volume) sulfuric acid at 127  °C and 1.5  kgf   cm−2 for 
60 min. After autoclaving, the particles were vacuum-filtered 
to separate the liquid and the bagasse particles. In sequence 
of the pretreatment, sulfuric acid was added in the propor-
tion of 100 mg of sulfuric acid per g of bagasse at a ratio of 
1:10 solid/liquid, 127 °C and 1.5 kgf  cm−2 for 50 min in the 
autoclave [32]. The material was then vacuum-filtered with 
a qualitative filter paper to separate the liquid. The pH was 
adjusted to 5.5 using NaOH and then centrifuged an RCF 
1844 × G at 15 min by  SOLAB® (Piracicaba, Brazil).

Ethanol fermentation from hydrolysates

The inoculum was centrifuged and transferred to microbial 
(SSC) or acid hydrolysate for testing. For acid hydrolysate, 
the inoculum was subjected to adaptation containing 50% of 
the hydrolysate and 50% of sterile distilled water for 24 h. 
In each vial containing 30 mL of the sterile hydrolysate, 
10 mL of the cell suspension (about 1 g of yeast wet mass) 
was incubated at 30 °C and rotated at 150 rpm. Biomass 
was evaluated by measuring the optical density at 600 nm, 

glucose by the  LABORLAB® kit, ethanol, acetic acid, fur-
fural and 5-hydroxymetylfurfural by Gas-Phase Chroma-
tography. Ethanol fermentation was set up in triplicate and 
evaluated in terms of the kinetic profiles of ethanol produc-
tion, yeast growth, and glucose consumption, allowing the 
estimation of yield and maximum productivity in ethanol, 
and specific production rates from both hydrolysates.

Analyses

Ethanol, acetic acid, furfural and 5-hydroxymethylfural 
(5-HMF) were determined by gas chromatography on a 
GC-2010 Plus  SHIMADZU® instrument,  Stabilwax®-DA 
30 m, 0.25 mm ID, 0.25 μm column and FID detector.

Results and discussion

Solid‑state cultivation by Aspergillus niger 
and Trichoderma reesei for glucose release 
from sugarcane bagasse

Studies conducted with SSC revealed that T. reesei and 
A. niger are potential fungi for cellulase production and 
growth from sugarcane bagasse as the solid support [21]. 
SSC processes can be effectively used to produce cellu-
lases from lignocellulosic material. Endoglucanases and 
β-glucosidases can be produced from SSC with this type 
of microbial association [33, 34]. Significant increases in 
the activities of total cellulases, endoglucanases, and xyla-
nases were related to the addition of simple sources of 
nitrogen, yeast extract, peptone, and potassium phosphate 
in A. niger cultures [35]. Mineral salts and trace elements 
such as iron sulfate, manganese sulfate, zinc sulfate, and 
cobalt chloride were also effective for T. reesei cellulase 
production [33]. Thus, the solid support sugarcane bagasse 
was impregnated with vinasse, the wastewater from ethanol 
fermentation-distillation processes. It has several mineral 
salts that contributed to the production of cellulases, as well 
as low concentration of alcohol that influenced the fungal 
growth. It should be noted that the vinasse used to moisten 
the solid particles of bagasse had a favorable C/N ratio of 
around 20 (TOC 10.360 mg  L–1, total nitrogen 502.7 mg  L–1, 
zinc 0.69 mg  L–1, copper 0.035 mg  L–1, iron 14.5 mg  L–1, 
and manganese 3.11 mg  L–1). According to Khonngram and 
Salakkam [4], fungal growth should be enhanced to increase 
the hydrolysis efficiency and improve the activities of the 
cellulolytic enzymes. Thus, it is fundamental to adjust the 
media components, particularly to obtain a suitable C/N 
ratio. Therefore, usually solid supports such as bagasse with 
carbon sources are impregnated with nutrient solutions con-
taining nitrogen source and ions as wastewaters (vinasse or 
dry spent yeast) [4, 21, 22].

Fig. 1  SSC scheme of packed-
bed column bioreactor used in 
SSC [adapted from 28]. (A) 
System of water-saturated inlet 
air; (B) Inlet air; (C) Solid bed; 
(D) Off-gas
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According to Table 1, the glucose content after 24 h of 
SSC was approximately 0.8 g  L–1, i.e., this was the amount 
of glucose released in the extract after fungal cultivation. 
Whereas the initial glucose concentration in vinasse was 
0.14 g  L–1, the total (final) amount of glucose released was 
due to the hydrolysis of the structural polysaccharides of 
bagasse by the process of SSC. However, after the sterili-
zation process to fermentation, the glucose content of the 
extract obtained from SSC decreased from 0.8 to 0.35 g  L−1. 
This factor could be attributed to the synergistic effect of 
temperature and acidic pH in the medium containing a larger 
amount of vinasse; it presented colloidal organic matter 
that may have been associated with glucose, making this 
sugar unavailable. A relatively lower glucose concentration 
(0.8 g  L–1) was obtained in the current study in comparison 
with other studies on enzymatic hydrolysis [2, 35, 36]. How-
ever, it should be clarified that the sugarcane bagasse used 
here did not undergo a pretreatment process, a step normally 
used in enzymatic hydrolysis and in this sense, pretreatment 
can be an alternative to decrease the cellulose crystallinity 
and increase the sugar yield [37]. This is the glucose content 
obtained from the extract in the 1:15 ratio (solid–water). 
Thus, considering that cellulose around 45% [37] of the dry 
mass of the particles, there was the release of 0.8 g  L−1 of 
glucose from an original amount 5.3 g of cellulose per liter. 
Moreover, it should also be considered that part of this glu-
cose was used for fungal growth.

Rodrigues et al. [38] obtained a glucose concentration 
of around 1 g  L–1 in the acid hydrolysate from sugarcane 
bagasse. On the other hand, Martini et al. [3] reported values 
close to 3 g  L–1, but with high concentrations of inhibitors 
such as furfural and 5-hydroxymethylfurural. Rocha et al. 
[37] found similar values but with pretreated sugarcane 
bagasse. The glucose yield from the mass of sugarcane 
bagasse particles was in the same magnitude (between 0.04 
and 0.08 g  g–1 in terms of reducing sugars) as the values 
obtained by Khonngam and Salakkam [4] in their study 
on A. niger. According to these authors, the highest first-
order reaction rate for the release of the reducing sugar by 

hydrolysis of sugarcane bagasse with dry spent yeast was 
0.15  h–1; it resulted in a generation time of about 5 h in less 
than 24 h of SSC (Table 1). In addition, there was no opti-
mization of glucose release by SSC, suggesting the potential 
of higher glucose content in different conditions of solid 
particle size, fungal inoculum ratio, and temperature, as 
examples.

The TOC content of the impregnating solution with 
vinasse (10,360 mg   L–1) resulted in hydrolytic enzyme 
activity due to the limited use of carbon in the liquid 
phase; very less amount was available in the form of sim-
ple sugars. Thus, the structural polysaccharides of the sug-
arcane bagasse also led to slightly higher glucose content 
(0.8 g  L–1). The results from Table 1 indicate the organic 
carbon consumption of sugarcane bagasse, suggesting pol-
ysaccharide degradation and sequential glucose release in 
the fungal extract for use in ethanol fermentation. Yields of 
carbon-glucose indicated carbon consumption from both the 
solid medium (0.2 mg C glucose to mg C bagasse) as well 
as from vinasse as the nutrient solution (0.077 mg C glucose 
to mg C of bulk phase). Thus, SSC allowed the release of 
glucose and obtained a fungal extract that could be reused as 
a culture medium for fermentation, i.e., a “microbial hydro-
lysate”. In terms of mass balance of carbon, the difference 
between TOC sugarcane bagasse particles in the 24 h of 
SSC was an amount of 0.024 g of carbon consumed and the 
release of 0.012 g of carbon released in terms of glucose, 
both per gram of bagasse. Therefore, results from this mass 
balance indicates that a half of the carbon from sugarcane 
bagasse has been converted into biomass or fungal metabo-
lites, while the other half being released into the extract as 
glucose, in addition to part of the carbon from the nutrient 
solution (vinasse).

Ethanol fermentation of hydrolysates 
from solid‑state cultivation and acid treatment 
of sugarcane bagasse

Fermentative assays with S. cerevisiae PE-2 yeast were set 
up for 72 h from the microbial hydrolysates obtained by SSC 
for 24 h with sugarcane bagasse particles impregnated with 
vinasse. Biomass and pH (data not shown) values remained 
practically constant during the tests. Della-Bianca et al. [39] 
reported that the PE-2 strain proved efficient for product 
formation in the pH range of 3–5. In addition, the pH of 4.5 
ensured better ethanol yield and higher cell integrity during 
the fermentation process with the PE-2 strains [40]. The pro-
files indicated that ethanol production was directly linked to 
glucose depletion in the first 6 h, thus limiting yeast growth.

Table 2 presents ethanol-glucose yields of 0.40 g  g–1, 
about 78% of maximum stoichiometry. This yield was 
similar (0.42 g  g–1) to the one reported by Salakkam et al. 
[23]. However, these authors utilized soybean residue 

Table 1  Performance of SSC with the fungal consortium from sugar-
cane bagasse

SSC parameter Value

Glucose content (g  L–1) 0.80
Glucose after sterilization (g  L–1) 0.35
Yield of glucose to bagasse by SSC (g  g–1) 0.03
TOC sugarcane bagasse particles at initial level (g 100  g–1) 27.9
TOC sugarcane bagasse particles at 24 h of SSC (g 100  g–1) 25.5
Yield “bulk” nutrient solution (mg C glucose released to mg 

C)
0.077

Yield bagasse “solid medium” (mg C glucose released to mg 
C)

0.2
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supplemented with sugarcane molasses at the concentra-
tion of about 110 g  L–1 of total sugars to produce ethanol. 
Blomqvist et al. [41], in fermentations with diluted hydro-
lysate, reported a yield of 0.2 g  g–1 for Dekkera bruxellen-
sis and Saccharomyces cerevisiae yeasts. Several studies 
using Pichia stipitis, one of the most important pentose-
fermenting yeasts from hydrolysates, reported yields of 
0.35–0.48 g  g–1 at 36 h of cultivation [42–48]. In contrast, 
we observed depletion of glucose after only six hours of 
cultivation, leading to a maximum yield of ethanol within 
this time. It is important to note that concentrations of ace-
tic acid, 5-HMF, and furfural inhibitors were not detected 
in this microbial hydrolysate (data not shown), which may 
suggest the highest yield. Thus, these results are promis-
ing, since there was no optimization of SSC or comple-
mentation of the fungal extract with other sugars.

Even though the Saccharomyces yeast was admittedly 
unable to consume pentose’s, similar or even higher yields 
were obtained from both extraction conditions when com-
pared with the production of 2G ethanol from acid hydro-
lysates [1, 49]. Thus, it was suggested that there was little 
influence of inhibitors, the results were promising, and 
could be further optimized with sugarcane bagasse pre-
treatment steps.

Table 3 shows the kinetic parameters for ethanol fer-
mentation from acid hydrolysates. Glucose depletion 
occurred after 12 h of cultivation, i.e., it was slower than 
that for the fermentation condition from “microbial hydro-
lysates”, suggesting a lower conversion rate. Moreover, the 
yield of glucose in ethanol was around 0.08 g  g–1, which 
means approximately 16% of efficiency, suggesting some 
limitation or inhibition. The results of inhibitors present in 
the acid hydrolysate may indicate that the synergic effect 
of acetic acid, 5-HMF, and furfural contributed as a poten-
tial inhibitor of ethanol fermentation. This was in addition 

to lower productivity as a probable response to the effect 
of other components in the medium.

Results suggest that, unlike the “second-generation etha-
nol” conventionally obtained via the acid hydrolysis of lig-
nocellulosic materials, there was no considerable inhibition 
of yeast growth in the present method. Potential inhibitors of 
ethanol fermentation were formed and released from hemi-
cellulose, cellulose, and lignin by the thermochemical route 
of hydrolysis. Examples include furfural, 5-hydroxymethyl-
furfural (HMF), levulinic acid, acetic acid, and formic acid 
among others [49]. In this context, phenols are considered 
inhibitors and deactivators of cellulolytic enzymes and gly-
cosidases. Tannic acid was a major inhibitor and deactivator 
for all enzyme activities tested in the literature, with mono-
meric phenolic compounds having a less pronounced effect 
[50]. In this research, the inhibitory effects of polymeric and 
monomeric phenols were evaluated in different microorgan-
isms commonly used to produce commercial enzymes aimed 
at converting cellulose into ethanol. These authors indicate 
that alternative strategies should be tested including enzy-
matic hydrolysis in shorter periods to minimize the effect of 
time, removing phenolics before the enzyme hydrolysis by 
separation methods, including washing the solids, or using 
microbial, enzymatic, and chemicals to inactivate pheno-
lics. It is known that phenolics compounds derived from 
pretreated sugarcane bagasse (liquid hot water) pretreatment 
deactivate cellulolytic and hemicellulolytic enzymes [51]. 
In this sense, proposals for detoxification by bio-abatement 
have been set up to remove enzymatic inhibitors from bio-
mass liquors. Bio-abatement by Coniochaeta ligniaria led to 
a 1.2- to1.5-fold increase for cellulose conversion in com-
parison of non-biotreatment [52]. Thus, it was concluded 
that these inhibitors, if present in the fermentation from SSC 
hydrolysates, occur in non-inhibitory concentrations.

In terms of specific production rates (µP), the results 
indicated higher values for fermentation in the medium 

Table 2  Observed yields from glucose to ethanol  (YP/S), maximum 
productivities (Prod), and specific ethanol production rates (µP) by 
ethanol fermentation and initial concentration of inhibitors from 
microbial hydrolysate of SSC

Maximum ethanol fermentation parameters SSC hydrolysate

ΔX  (gbiomass  L–1) 0.35
ΔS  (gglucose  L–1) 0.35
ΔP  (gethanol  L–1) 0.14
YP/S  (gethanol  gglucose

–1) 0.40
Prod  (mgethanol  L–1  h–1) 23.45
µP (mg  g–1  h–1) 3.89
Initial concentration of inhibitors
 Acetic Acid (mg  L–1)  < 0.1
 5-HMF (mg  L–1)  < 0.1
 Furfural (mg  L–1)  < 0.1

Table 3  Observed yields from glucose to ethanol  (YP/S), maximum 
productivities (Prod), and specific ethanol production rates (µP) by 
ethanol fermentation and initial concentration of inhibitors from the 
acid hydrolysate

Maximum ethanol fermentation parameters Acid hydrolysate

∆X  (gbiomass  L–1) 0.96
ΔS  (gglucose  L–1) 0.90
ΔP  (gethanol  L–1) 0.071
YP/S  (gethanol  gglucose

–1) 0.08
Prod  (mgethanol  L–1  h–1) 11.83
µP (mg  g–1  h–1) 2.40
Initial concentration of inhibitors
 Acetic acid (mg  L–1) 197.8
 5-HMF (mg  L–1) 14.0
 Furfural (mg  L–1) 68.37
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containing microbial hydrolysate. Even with the lowest bio-
mass production (0.35 g  L–1, Table 2), there was high pro-
ductivity (23.45 mg per liter per hour), indicating anaerobic 
conditions and supply of carbon, nitrogen, and nutrients that 
made ethanol fermentation possible. This SSC hydrolysate 
could be used as a culture medium under these conditions. 
Therefore, the fermentation results from “microbial hydro-
lysates” could have been even better and the next steps need 
to evaluate the composition of the crude extract in addition 
to that of glucose. In addition, the selection of the SSC inoc-
ulum proportion (A. niger and T. reesei) itself was critical for 
greater glucose release and nutrient balance in the unconven-
tional medium that would be used for ethanol fermentation.

Conclusions

The results indicated that the proposal of a sequential SSC-
ethanol fermentation allowed the use of two relevant indus-
trial by-products of this region of Brazil (sugarcane bagasse 
and vinasse as the impregnating solution) and glucose was 
released. SSC with the fungal consortium released glucose, 
and high yields were obtained in the ethanol fermentation 
from these sugars in the hydrolysate. This indicated the tech-
nical viability of its use for 2G ethanol production due to 
the release of sugars without the presence of inhibitors in 
comparison to acid hydrolysates.
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