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Abstract
In the present investigation, biocorrosion inhibition efficiency of Syzygium aromaticum (clove) aqueous extract on carbon 
steel in presence of four corrosion causing bacterial strains (Bacillus subtilis, Streptomyces parvus, Pseudomonas stutzeri, 
and Acinetobacter baumannii) was explored. Weight loss, potentiodynamic polarization, and AC impedance studies were 
carried out with and without bacterial strains and clove extract. The results obtained from weight loss and AC impedance 
studies indicate that these corrosion causing bacterial strains accelerated the biocorrosion reaction and biofilm playing a 
key role in this process. However, the addition of clove extract into the corrosive medium decreased the corrosion current 
and increased the solution and charge transfer resistance. The significant inhibition efficiency of about 87% was archived in 
the mixed consortia system with clove extract. The bioactive compounds were playing an important role in the antibacterial 
activity of the clove extract. It was revealed that clove extract has both biocidal and corrosion inhibition properties.
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Introduction

Corrosion is the destruction of the metallic structure by 
chemical and electrochemical reactions which is a major 
issue in almost all industrial sectors. Cost of the corrosion by 
direct and indirect causes is about 5% of the gross national 
product (GNP) of almost all the countries worldwide [1]. 
The United States alone spends about $500 billion for the 

management of corrosion issues [2]. Among the corrosion 
cost, microbiologically influenced corrosion (MIC) contrib-
uted about 20–50% directly or indirectly [3, 4]. Acceleration 
or speed up of the corrosion phenomenon by the action of 
a different kind of microorganisms such as bacteria, fungi, 
and archaea is defined as MIC, which leads to system failure 
and metal deterioration [5–9]. Biofilms playing a key role in 
the biocorrosion process in the pipeline structures [10–12]. 
Biofilms are highly hydrated, a mixture of both aerobic and 
anaerobic microbial colonies with the self-produced matrix 
of extracellular polymeric substances (EPS), which include 
both organic and inorganic (together with metals) substances 
[13–17]. Compared to the planktonic microbiota, biofilm 
consists of wide community ranges with massive cell con-
centrations up to  106 to  1011 [18, 19].

The impact and seriousness of the MIC have been fre-
quently encountered in many industrial sectors such as in 
oil and gas industries, nuclear power plants [20], process 
plants, fuel reprocessing units, geothermal plants, power 
plants, sewage drains [21], storage tanks, pipelines [22], 
oilfields and their relevant areas like pumps, valves, and ves-
sels [23], oil recovery systems, cooling water towers, fire 
sprinkler systems [24], pulp and paper industry [25], railway 
tracks [26] and radioactive disposal facilities [27]. So many 
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accidents and incidents were recorded due to the direct and 
indirect causes of MIC in history. In 1977, a weld failure 
due to the MIC caused by sulfate-reducing bacteria (SRB) 
in hydro-testing water leads to the refrigerated propane tank 
explosion, which turns to a loss of about $179 million. One 
of the well-known major issues due to the MIC is the Prud-
hoe Bay oil spill in the Alaskan North slope, which makes 
a huge impact on the marine habituates, since 212,000 gal-
lons of crude oil was discharged into the seawater due to 
the resolving of the deep-water leakage problem was taken 
several months [28]. Notable other accident due to the MIC 
is natural gas pipeline leakage followed by an explosion due 
to the internal corrosion in Carlsbad, New Mexico, United 
States.

Carbon steel is widely used in many industrial applica-
tions including oil and gas refineries, power plants, pet-
rochemical plants, ships, and distillers due to its strong 
mechanical strength and low cost, and easy availability [29, 
30]. The major problem associated with carbon steel is a 
higher susceptibility to corrosive environments especially 
in the higher alkaline and acid conditions [31, 32]. Differ-
ent methods/approaches are tried to minimize the corro-
sion problems like using protective coatings and inorganic/
organic inhibitors. These approaches are given significant 
protection to the carbon steel but the major problems are 
their higher cost, toxicity to the environment as well as to 
the living organisms. The alternative options to replace the 
chemical inhibitors are green inhibitors.

Plant-based green inhibitors are low cost, easily avail-
able, non-toxic, eco-friendly, and biodegradable. Some of 
the plant’s derivatives are tested as the green inhibitors for 
the protection of carbon steel and other metallic structures 
from the corrosion problems such as Melia azedarach L. 
extract [33], ginger roots extract [34], Ficus tikoua leaves 
extract [35], Areca plant extracts [36], Salvia officinalis plant 
extract [37], curcumin, parsley, and cassia bark extracts [38], 
lemongrass extract [39], Phellodendron chinense Schneid 
bark extract [40], Cistus ladanifer [41], etc. Very surpris-
ingly, very few green inhibitors only investigated for carbon 
steel which is susceptible to microbial corrosion such as 
ginger extract [42], Azadirachta indica leaves extract [6, 43, 
44], Allium sativum extract [45], Daphne gnidium L. [46].

The spices are supposed to have many valuable properties 
and are used in the food for their aroma and nature. Among 
the spices, clove (Syzygium aromaticum) buds are widely 
considered for their antimicrobial and antioxidant properties. 
The clove tree is usually grown well in the coastal region 
with maximum altitudes of 200 m above sea level. Once 
the tree has grown up it will start to produce buds, before 
the flowering, flower buds will be harvested for commercial 
uses [47]. From the literature, it is believed that clove is 
rich with many bioactive compounds like acetyl eugenol, 
vanillin, betacaryophyllene, tannins, crategolic acid, methyl 

salicylate, gallotannic acid; the flavonoids like kaempferol, 
eugenin, eugenitin, and rhamnetin; triterpenoids like stig-
masterol, oleanolic acid. Among these compounds, eugenol 
is the key bioactive compound present in the clove buds [48].

To date, so many green inhibitors are tried to minimize 
the chemical corrosion as well as microbial corrosion for 
carbon steel, and still, it is very challenging to find an inhibi-
tor with the highest capability and potential alternative to the 
chemical inhibitors. With this current shortfall, we selected 
clove as an alternative green inhibitor to minimize the micro-
bial growth and control the biocorrosion problems in the 
hypersaline condition. The primary interest in chosen clove 
bud extract as green inhibitors is their antimicrobial proper-
ties to the broad microbial groups and also it is enriched with 
many bioactive compounds. Hence in this study, we applied 
the clove buds extract to the carbon steel API 5LX, which is 
suspected of the biocorrosion caused by the four corrosive 
bacterial strains. In this study, weight loss experiments, elec-
trochemical impedance spectroscopy, Tafel polarization, and 
surface analysis with scanning electron microscopy (SEM) 
and X-ray diffraction (XRD) are carried out to confirm the 
anticorrosion mechanism of the clove extract on carbon steel 
in hypersaline conditions.

Materials and methods

Bacterial strains and culture conditions

From our previous works [19, 49], we have isolated and 
identified many bacterial strains from the oil reservoir sam-
ples such as crude oil and produced water samples. Among 
the isolated bacterial strains, four strains were confirmed as 
potential corrosion causing bacterial strains such as Bacil-
lus subtilis A1 (National Center for Biotechnology Infor-
mation Accession No. KP895564), Streptomyces parvus B7 
(KP895570), Pseudomonas stutzeri NA3 (KU708859), and 
Acinetobacter baumannii MN3 (KU708860). These strains 
were retrieved from the glycerol stock (-20 °C) and sub-
cultured into the Luria–Bertani (LB) agar plates (g/L: 10.0 
sodium chloride, 5.0 yeast extract, 10.0 tryptone, and 15.0 
agar (Himedia, Mumbai, India)) and incubated for 24 h at 
37 °C. From these plates, a contamination-free pure single 
colony and sub-cultured using the LB broth medium in the 
shaking condition.

Preparation of corrosion inhibitor

The clove (Syzygium aromaticum) buds were purchased from 
the local market and air-dried at 40 °C for 2 days and mortar 
and pestle were used to ground into the fine powder. 10 g 
of this powder was added with 100 mL of the deionized 
water and kept at room temperature for 24 h. After a day of 
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immersion in the deionized water, clove (Syzygium aromati-
cum) buds extract (SAE) was filtered using Whatman filter 
paper and the filtrate was kept in a vacuum oven at 40 °C and 
the obtained residual extract was stored in the refrigerator for 
the further uses. The functional groups present in clove buds 
extract was analyzed using the Fourier transform infrared 
spectrum (FT-IR). The extracted sample was ground well 
with potassium bromide in a ratio of 1:99 and the sample 
was analyzed in the range of 400–4000  cm−1.

Antibacterial activity of the clove buds extract

The antibacterial activity and minimal inhibitory concentra-
tion of clove bud extract were confirmed as previously men-
tioned in Parthipan et al. [6]. Briefly, Mueller Hinton Agar 
(MH) (Himedia-India) plates were used for this purpose 
and six various concentrations of clove bud extract were 
tested such as 20, 50, 100, 150, 200, and 250 ppm. Selected 
four corrosion causing bacterial strains such as B. subtilis 
A1, S. parvus B7, P. stutzeri NA3, and A. baumannii MN3 
were used for this antibacterial study. Pre-cultured bacterial 
strains were spread over the agar plates and a glass borer was 
used to make wells and 50 µL of each selected concentration 
of the clove buds extract were added in each well of four 
bacterial plates separately. Gentamycin (10 μg) was used 
as a positive bactericidal compound, which has inhibition 
activity against a wide range of bacterial strains. Zone of 
the inhibition was calculated after the 24 h of incubation at 
37 °C and all the experiment was carried out in triplicates.

Biocorrosion studies

The biocorrosion experiments were carried out as described 
in our previous work [6]. Carbon steel API 5LX with weight 
percentage (wt%) of: C 0.070, Mn 1.05, Si 0.195, Ni 0.02, 
Cu 0.05, Cr 0.03, Al 0.029 and balanced with Fe. Carbon 
steel with two dimensions such as 25 × 25 × 4  mm and 
10 × 10 × 2 mm were prepared for the weight loss and elec-
trochemical studies, respectively. These metal coupons were 
initially smoothened using a different grade of silicon car-
bide papers from 180 to 1500 and 0.3 μM alumina powder 
was used for the final polishing. Produced water (salinity: 
36 g/L) collected from the crude oil reservoir was used as 
the corrosive medium for the weight loss and electrochemi-
cal studies.

Weight loss studies

The coupons for the weight loss and electrochemical studies 
were surface sterilized with trichloroethylene and ultravio-
let (UV) light before immersion into the corrosive medium. 
For weight loss experiments, initial weight was measured. A 
weight loss study was carried out as mentioned in Parthipan 

et al. [6]. Briefly, 300 mL of produced water alone taken 
into a wide-open 500 mL Erlenmeyer flask and triplicate 
coupons (both weight loss and electrochemical study cou-
pons) were immersed and noted as a system I. System II–XII 
are similar to that of a system I, system II was added with 
150 ppm of SAE inhibitor. Systems III, V, VII, and IX were 
added with  104 colony-forming unit per milliliter (CFU/
mL) of each bacterial strain separately and system IV, VI, 
VIII, and X were inoculated with each bacterial strain and 
150 ppm of SAE inhibitor, respectively. System XI was 
inoculated with mixed consortia (B. subtilis A1, S. parvus 
B7, P. stutzeri NA3, and A. baumannii MN3) of four strains 
and system XII was similar to system XI in addition to that, 
the inhibitor was added. These corrosion systems were kept 
stagnantly without any disturbance for the 20 days at room 
temperature. During the weight loss studies, coupons were 
retrieved at 2 days interval for sessile cell count. At the 
end of the weight loss experiments, rust products formed 
over the metal surface was carefully scraped and dried for 
the X-ray diffraction (XRD) analysis using the Bruker D8, 
samples are scanned with CuKα radiation (Ni filter). The 
coupons were then pickled with Clark solution as described 
in Parthipan et al. [6]. Coupons from the abiotic control sys-
tem and mixed consortia system with and without inhibitor 
were subjected for the scanning electron microscopy (SEM) 
observation using Hitachi, S-3400N model. Besides, pits 
formed over the surface of the mixed consortia system was 
observed using SEM as described in Parthipan et al. [49]. 
After the picking process, the coupons were dried, further 
final weight of each coupon was measured and their weight 
loss was calculated from their initial weight. The corrosion 
rate was calculated from the weight loss information [50]. 
The inhibition efficiency (IE%) of SAE on the different cor-
rosion systems was calculated based on the weight loss in 
each system as mentioned in our previous report [19]. All 
the studies were performed in triplicates.

Electrochemical analysis

The potentiodynamic polarization and AC impedance stud-
ies were carried out using the CH Instruments Inc., USA 
(Model: CHI-608E). At the end of the 20th day, the carbon 
steel retrieved from each corrosion system was used as the 
working electrode, saturated calomel electrode (SCE) used 
as reference electrode and platinum wire was used as a coun-
ter electrode. Corrosive medium recovered from the weight 
loss studies was utilized as the electrolyte solution for these 
studies. AC impedance was recorded at the frequency of 
0.1–105 Hz with a scan rate of 10 mV/min. The potentiody-
namic polarization measurements were carried out by polar-
izing towards +200 mV anodically and -200 mV cathodi-
cally with the scan rate of 0.002 V/s concerning corrosion 
potential (Ecorr). All the experiments were repeated three 
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times. Electrochemical data obtained from this study were 
analyzed using the Zsim Demo 3.20d software.

Results and discussion

FT‑IR analysis of clove extract

The FT-IR analysis of the clove extract was done as shown 
in Fig. 1, accordance with the wavenumbers, their func-
tional groups were confirmed. This will provide us the 
structural properties of clove extract. The highly inten-
sive band at 3427  cm−1 represents the OH group, alkyl 
CH stretch  (sp3) was noted at 2932  cm−1. A sharp peak at 
1723  cm−1 represented the frequency pattern of ester group 
C–O, a peak at 1617  cm−1 belong to the aliphatic alkenes. 
A sharp peak at 1512  cm−1 represents the aromatic group, 
a peak at 1451  cm−1 indicates the presence of methylen 
 (CH2), sharp peaks at 1358 and 1205   cm−1 belongs to 
methyl groups  (CH3). Another sharp peak at 1043  cm−1 
represents C–O. Moderate bands at 916 and 760   cm−1 
indicate the presence of  CH2 and C=C, respectively [51]. 
These specific functional groups are well-matched with the 

standard eugenol functional groups; hence it is confirmed 
the presence of eugenol in the clove extract [52].

Antibacterial activity of SAE on corrosive bacterial 
strains

The aqueous extract of clove buds was tested against four 
corrosion causing bacterial strains. As mentioned in Table 1, 
very less inhibition activity was observed at the lower con-
centrations like 20, 50, and 100 ppm. Inhibition activity was 
increased with the increasing concentration of the extract. 
Significantly, 10–12 ± 1 mm of the inhibition was obtained at 
150 ppm. Maximum inhibition of 20 ± 1 mm was observed 
at the tested concentration of 250 ppm. These outcomes 
revealed that clove buds contain a broad range of bioactive 
compounds, which shows a very good bactericidal activity 
on both Gram-positive and Gram-negative bacterial strains 
[47, 53]. Based on the zone of inhibition, 150 ppm of SAE 
was selected as the inhibitor concentration to apply to the 
corrosion systems.

Biocorrosion studies

Weight loss and inhibition efficiency

Weight loss study was carried out with and without bacte-
rial strains and clove inhibitor. For each system, triplicates 
carbon steel coupons were utilized to confirm the accurate 
weight loss during the 20 days of immersion period. The 
weight loss obtained from different corrosion systems were 
presented in Table 2. The produced water alone used in sys-
tem I was considered as the abiotic control system which 
was recorded with 16 ± 1 mg. This weight loss confirmed 
the presents of the higher content of chloride ions in the 
produced water, which causes chemical corrosion over the 
surface of carbon steel. At the same time, while adding the 
clove extract into the produced water (system II) weight loss 
was decreased considerably with 3.3 ± 0.2 mg. Corrosion 
causing bacterial strains leads to very severe corrosion over 
the carbon steel surface by recording a higher amount of 
weight loss comparatively with an abiotic control system 
with the range of 32.8 ± 1 (system IX, with strain MN3) to 
40.2 ± 2 mg (system-V, with strain B7). Higher weight loss 

Fig. 1  FT-IR analysis of an aqueous extract of Syzygium aromaticum 
(clove extract)

Table 1  Antibacterial 
performance of Syzygium 
aromaticum extracts on the 
different corrosion causing 
bacterial strains

A1, B. subtilis; B7, S. parvus; NA3, P. stutzeri; MN3, A. baumannii

Bacterial strains Zone of inhibition (in mm) at different inhibitor concentration

20 ppm 50 ppm 100 ppm 150 ppm 200 ppm 250 ppm

A1 2 ± 0.5 5 ± 1 7 ± 1 11 ± 1 14 ± 1 18 ± 2
B7 3 ± 0.5 6 ± 2 8 ± 1 12 ± 1 15 ± 1 19 ± 1
NA3 3 ± 0.5 6 ± 1 7 ± 2 11 ± 1 16 ± 1 20 ± 1
MN3 2 ± 0.5 5 ± 2 8 ± 1 10 ± 1 15 ± 2 19 ± 1
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was noticed in the mixed consortia system with 48.2 ± 2 mg. 
Similar to system II, the addition of clove extract into the 
bacterial systems (IV, VI, VIII, X, and XII) decreased the 
weight loss enormously with a range of 4.4 to 6.4 ± 0.5 mg. 
From the weight loss studies, it revealed that clove extract 
added into different biocorrosion systems inhibited bacte-
rial growth and development. Besides, clove extracts playing 
a dual role by suppressing bacterial growth as well as by 
forming a protective layer over the surface of carbon steel, 
which leads to very less chemical damage in the rich chlo-
ride environment [54].

The corrosion rate in the presence and absence of the 
bacterial strains and clove inhibitor was calculated from 
weight loss information and presented in Table 2. The cor-
rosion rate in the abiotic control system is 0.060 mm/y, 
which was reduced to the 0.012 mm/y while included with 
the clove extract. Corrosion rates were very high ranging 
from 0.114 to 0.150 mm/y in presence of each bacterial 
strain. At the same time, the inhibitor added bacterial sys-
tem found less corrosion rate with the range of 0.016 to 
0.018 mm/y. Among these corrosion systems, a very higher 
corrosion rate was recorded in the mixed consortia system 
with 0.179 mm/y due to the vigorous bacterial corrosion. 
Outcomes from this observation strongly support that bac-
terial strains actively participated in the biocorrosion pro-
cess and leads to the metal deterioration, interestingly the 
clove extract showed very good corrosion inhibition activity 
in the presence of mixed consortia by inhibiting both the 
Gram-positive and Gram-negative biofilms forming bacte-
rial strains.

Based on the weight loss information, corrosion inhibi-
tion efficiency (IE) of the clove extract on different corro-
sion systems was calculated and presented in Table 2. Strain 

S. parvus was highly sensitive to the clove extract with an 
IE of 89% followed by the B. subtilis A1 (88%), P. stutzeri 
NA3 (88%), and A. baumannii MN3 (85%). Least IE was 
noticed in the abiotic control system with 79%. Still, clove 
extract performed a considerable level of corrosion inhibi-
tion. Clove extract showed good inhibition activity while 
adding into the mixed consortia system with an IE of 87%. 
The inhibition efficiency obtained from this study was much 
higher than the clove extract tested on the acidic and alkaline 
corrosive medium on different metals [54, 55].

During the biocorrosion experiments, the total viable 
count of each corrosion system was calculated at 2 days 

Table 2  Corrosion rate and 
inhibition efficiency of carbon 
steel API 5LX in the presence 
and absence of bacterial strains 
and Syzygium aromaticum 
inhibitor

Note. SAE, Syzygium aromaticum extract (concentration: 150 ppm)

Systems Carbon steel API 5LX

Weight loss (mg) Corrosion rate 
(mm/y)

Corrosion inhibi-
tion efficiency 
(%)

I: Abiotic control 16.0 ± 1 0.060 –
II: Abiotic control with SAE 3.3 ± 0.2 0.012 79
III: B. subtilis A1 38.6 ± 2 0.114 –
IV: B. subtilis A1 with SAE 4.5 ± 0.4 0.016 88
V: S. parvus B7 40.2 ± 2 0.150 –
VI: S. parvus B7 with SAE 4.6 ± 0.3 0.017 89
VII: P. stutzeri NA3 36.4 ± 1 0.136 –
VIII: P. stutzeri NA3 with SAE 4.4 ± 0.5 0.016 88
IX: A. baumannii MN3 32.8 ± 1 0.122 –
X: A. baumannii MN3 with SAE 4.8 ± 0.5 0.018 85
XI: Mixed consortia 48.2 ± 2 0.179 –
XII: Mixed consortia with SAE 6.4 ± 0.5 0.023 87

Fig. 2  Total viable count of bacterial colonies from different bio-
corrosion systems. The viable colonies are monitored every 2 days 
interval during the weight loss studies. Note. AC abiotic control; A1 
B. subtilis; B7 S. parvus; NA3 P. stutzeri; MN3 A. baumannii; SAE 
Syzygium aromaticum extract; MC mixed consortia
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interval to confirm their viability towards the end of the 
corrosion experiments and presented in Fig. 2. There is no 
bacterial colony was observed in the abiotic control which 
ensures that the corrosion system is free from the contam-
inations. In presence of the bacterial strains, growth was 
counted up to  105 to  106 (CFU/cm2). The stationary growth 
phase for each bacterial strain was observed between 8 to 
10th day of incubation and further colonies were started 
to decrease with an increasing incubation period. A very 
few colonies  101 (CFU/cm2) was observed on the bacterial 

system while the addition of the clove extract by the second 
day of incubation, which was subsequently disappeared, and 
no visible colonies were observed with a further incuba-
tion period. These biofilms forming bacterial strains were 
formed as very dense biofilm over the metal surface of car-
bon steel and create vigorous pitting type of corrosion, at the 
same time clove extract inhibited bacterial growth and also 
decreased the corrosion rate as well.

Electrochemical studies

Potentiodynamic polarization analysis

Potentiodynamic polarization curves were recorded after 
the 20 days of the corrosion studies and presented in Fig. 3. 
From polarization curves, the corrosion current den-
sity (Icorr), corrosion potential (Ecorr), anodic Tafel slopes 
(βa) and cathodic Tafel slopes (βc) were calculated and 
were given in Table 3. A very high corrosion current was 
observed in the bacterial system which indicates that bacte-
rial strains promoted the corrosion reactions. From Fig. 3, it 
was very clear that Ecorr of the bacterial systems was moved 
towards the negative direction. At the same time, this shift 
was changed towards the positive side when included with 
the clove inhibitor. From Table 3, the Icorr value of the mixed 
consortia is 3.19 ± 0.17 ×  10–4 V vs SCE. But it was reduced 
to 1.11 ± 0.12 ×  10–4 V vs SCE in addition of the clove 
extract into the corrosive medium. This shifting trend was 
noticed from many green inhibitors in recent studies [45, 
56]. Interestingly, both the anodic and the cathodic current 
densities were decreased in the inhibitor included systems 
compared to the respective uninhibited systems, which indi-
cates that added SAE inhibitor solution adsorbed over the 
carbon steel surface and inhibited both the anodic and the 

Fig. 3  The potentiodynamic polarization curves of different cor-
rosion systems with and without bacterial strains and clove extract. 
Respective growth medium (produced water) is used as an electrolyte 
solution for this measurement. These polarization measurements are 
carried out by polarizing towards +200 mV anodically and -200 mV 
cathodically with the scan rate of 0.002  V/s concerning corrosion 
potential. Note. AC abiotic control; A1 B. subtilis; B7 S. parvus; NA3 
P. stutzeri; MN3 A. baumannii; SAE Syzygium aromaticum extract; 
MC mixed consortia

Table 3  Polarization parameters 
of carbon steel API 5LX in the 
presence/absence of bacterial 
strains and clove (Syzygium 
aromaticum) extract

Icorr, Corrosion current; Ecorr, corrosion potential; βa, anodic tafel slope; βc, cathodic tafel slope; SAE, 
Syzygium aromaticum (concentration: 150 ppm)

Systems Polarization data

Icorr (A/cm2) Ecorr (V) vs. SCE βa (mV/dec) βc (mV/dec)

I: Abiotic control 1.93 ± 0.15 ×  10–4 −620 ± 5 8.33 ± 0.32 2.39 ± 0.08
II: Abiotic control with SAE 1.06 ± 0.06 ×  10–4 −575 ± 4 7.32 ± 0.35 1.73 ± 0.09
V: B. subtilis A1 2.35 ± 0.12 ×  10–4 −623 ± 6 8.49 ± 0.42 3.76 ± 0.12
VI: B. subtilis A1 with SAE 1.36 ± 0.13 ×  10–4 −589 ± 5 7.43 ± 0.36 2.12 ± 0.06
III: S. parvus B7 3.04 ± 0.16 ×  10–4 −619 ± 6 9.06 ± 0.38 3.88 ± 0.05
IV: S. parvus B7 with SAE 1.46 ± 0.11 ×  10–4 −596 ± 7 7.63 ± 0.31 2.38 ± 0.08
VII: P. stutzeri NA3 3.02 ± 0.15 ×  10–4 −634 ± 8 9.68 ± 0.43 3.53 ± 0.06
VIII: P. stutzeri NA3 with SAE 1.48 ± 0.18 ×  10–4 −608 ± 6 7.82 ± 0.38 2.72 ± 0.07
IX: A. baumannii MN3 2.51 ± 0.13 ×  10–4 −615 ± 7 9.28 ± 0.48 3.65 ± 0.08
X: A. baumannii MN3 with SAE 1.16 ± 0.14 ×  10–3 −603 ± 8 6.55 ± 0.28 2.29 ± 0.04
XI: Mixed consortia 3.19 ± 0.17 ×  10–4 −638 ± 6 10.2 ± 0.32 3.73 ± 0.06
XII: Mixed consortia with SAE 1.11 ± 0.12 ×  10–4 −596 ± 9 7.63 ± 0.25 2.07 ± 0.05
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cathodic corrosion reactions. Also, SAE inhibitor acting as 
a mixed type of inhibitor for the biocorrosion control.

AC impedance analysis

AC impedance was analysed at the end of the biocorrosion 
experiments and the equivalent circuit (Fig. 4) was used to fit 
the impedance data and calculated different parameters such 
as Rs: solution resistance, Qf: capacitance of biofilm, Rb: 
biofilm resistance, Qdl, capacitance of electric double layer 
and Rct, charge transfer resistance were presented in Table 4 
(Fig. 5). During the corrosion reactions, the accumulation 

of solution species at the metal–solution interface conse-
quences the development of an electric double layer with 
capacitance and resistance structures to transfer of charges. 
So, this double layer could affect the rate of electron transfer 
and mechanism between anodic and cathodic sites over the 
surface of the metal. In this study, Table 4 provides details 
of dielectric properties of metal–solution interface, the effect 
of the inhibitor on electric double layer.

It was clearly illustrated that the semi-circle curves in 
the inhibitor system were larger than that of in bacterial 
strain alone system, which suggesting that very little corro-
sion with the clove extract added system [57, 58]. Solution 

Fig. 4  Equivalent circuits used 
to fit the Nyquist plot a abiotic 
system b biotic systems

Table 4  AC impedance parameters of the carbon steel API 5LX in the presence and absence of corrosive bacterial strains and Syzygium aromati-
cum extract

A1; B. subtilis; B7, S. parvus; NA3; P. stutzeri; MN3, A. baumannii; Rs, Solution resistance; Qf, capacitance of biofilm; Rb, biofilm resistance; 
Qdl, capacitance of electric double layer and Rct, charge transfer resistance; SAE, Syzygium aromaticum (concentration: 150 ppm)

Systems Rs (Ω  cm2) Qf  (10−4Ω−1  cm−2) Rb (Ω  cm2) Qdl (Ω−1  cm−2) Rct (Ω  cm2) Σχ2

AC 6.253 ± 0.24 – – 0.00665 ± 0.00015 190 ± 2.2 2.46 ± 0.2 ×   10−3

AC + SAE 9.98 ± 0.26 – – 0.00154 ± 0.00005 820.2 ± 22.5 2.1 ± 0.1 ×   10−4

A1 9.701 ± 0.29 0.01224 ± 0.00015 32.39 ± 0.82 0.04995 ± 0.00025 169.8 ± 5.2 8.4 ± 0.3 ×   10−4

Al + SAE 7.078 ± 0.21 0.0006192 ± 0.0000088 3.811 ± 0.21 0.01903 ± 0.00018 507.6 ± 15.4 6.8 ± 0.2 ×   10−4

B7 7.493 ± 0.25 0.0009115 ± 0.0000158 23.07 ± 0.62 0.06667 ± 0.00096 230.5 ± 7.5 3.9 ± 0.3 ×   10−4

B7 + SAE 6.954 ± 0.22 0.04851 ± 0.00055 5.22 ± 0.31 0.03524 ± 0.00072 827.6 ± 19.8 1.8 ± 0.1 ×   10−3

NA3 8.595 ± 0.23 0.001732 ± 0.000065 41.12 ± 0.92 0.00447 ± 0.000018 183.1 ± 5.2 6.7 ± 0.2 ×   10−4

NA3 + SAE 5.691 ± 0.11 0.0084 ± 0.0006 6.47 ± 0.24 0.00026 ± 0.00004 672.7 ± 18.4 1.4 ± 0.1 ×   10−3

MN3 8.36 ± 0.18 0.009448 ± 0.000125 24.66 ± 0.75 0.02228 ± 0.00058 296.8 ± 6.9 6.7 ± 0.2 ×   10−4

MN3 + SAE 6.611 ± 0.21 0.0003629 ± 0.0000206 8.82 ± 0.41 0.00205 ± 0.0008 837.2 ± 16.4 6.0 ± 0.3 ×   10−4

MC 9.102 ± 0.29 0.005764 ± 0.0000120 307.3 ± 2.4 0.215 ± 0.007 237.9 ± 7.6 1.4 ± 0.1 ×   10−3

MC + SAE 7.357 ± 0.23 0.003701 ± 0.000085 37.31 ± 0.86 0.0131 ± 0.0006 863.4 ± 18.5 2.4 ± 0.2 ×   10−4
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resistance (Rs) in the abiotic control system was observed at 
6.253 ± 0.24 Ω  cm2, which was very lesser compared to the 
bacterial systems (i.e. 9.102 ± 0.29 Ω  cm2 in the mixed con-
sortia system). Rs was increased while the corrosive medium 
was included with the clove extract in both biotic and abiotic 
systems. Similarly, Rct in the biotic systems was very less, 

which indicates that bacterial strains formed the biofilm over 
the metal surface and decreased the metal resistance [59]. At 
the movement, when clove extract was added into the corro-
sive medium, the Rct was increased into 3–4 folds than their 
respective biotic and abiotic systems. Interesting information 
was obtained from the biofilm resistance (Rb) that, Rb is very 
high in the biotic system and which was decreased when the 
clove extract suppressed the biofilm development; this trend 
was according to the recent works by Zhai et al. [60] and Jia 
et al. [57]. These observations strongly support that bioac-
tive compound playing a key role in biofilm control as well 
as corrosion protection from the chloride attack.

Surface analysis

At the end of the weight loss study, rust product formed over 
the surface of the carbon steel during the corrosion reaction 
was collected and analyzed using the XRD and presented in 
Fig. 6. In the abiotic system, the major rust products were 
ferrous hydroxide (Fe(OH)2), manganese (II) hydroxide 
(Mn(OH)2), and ferrous chloride (Fe(Cl)2). In turn, ferric 
oxide  (Fe2O3) and manganese oxide  (Mn3O4) were found as 
the major rust products on the biotic systems. The observa-
tion of these rust products in the individual as well as in the 
mixed consortia indicates that all these bacterial strains can 
oxidize the inorganic metal components present in the car-
bon steel API 5LX [6, 45, 61]. The intensity of these peaks 
almost disappears or reduced in the clove extract added 

Fig. 5  AC impedance curve of different corrosion systems with and 
without bacterial strains and clove extract. Impedance is recorded at 
the frequency range of 0.1–105  Hz with a scan rate of 10  mV/min. 
Note. AC abiotic control; A1 B. subtilis; B7 S. parvus; NA3 P. stutzeri; 
MN3 A. baumannii; SAE Syzygium aromaticum extract, MC mixed 
consortia

Fig. 6  XRD analysis of the 
surface rust products collected 
from the different corrosion 
systems. Rust product is dried at 
room temperature before analy-
sis. Note. AC abiotic control; A1 
B. subtilis; B7 S. parvus; NA3 
P. stutzeri; MN3 A. bauman-
nii; SAE Syzygium aromaticum 
extract; MC mixed consortia
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system, which indicates that clove extract formed as a pro-
tective film over the carbon steel surface and protect them 
from further corrosion attack as does other green inhibitors 
[42, 45].

The surface of the abiotic coupons and mixed consor-
tia coupons was analysed using the SEM and presented in 
Fig. 7. The bare metal clearly shows the smooth surface of 
the coupons (Fig. 7a). Abiotic control coupon in presence 
of produced water was vigorously corroded as shown in 
Fig. 7b, but SAE added abiotic coupon shows no such cor-
rosion (Fig. 7c). Similarly, mixed consortia examined using 
SEM shows sessile biofilm formation over the carbon steel 
surface (Fig. 7d, e). At the same time, SAE extract added 
into the mixed consortia system clearly shown that added 
inhibitor utterly suppressed the biofilm formation over the 
carbon steel surface (Fig. 7f) [49]. Massively, a very vigor-
ous pitting type of corrosion was observed in the surface 
of the mixed consortia coupons (Fig. 8a, b). These surface 
analysis studies confirmed that SAE inhibitor suppressed 
corrosion in both biotic and abiotic systems as well mixed 
consortia caused pitting type of corrosion in the carbon steel 
surface.

Mechanism of biocorrosion inhibition by clove 
extract

The highly corrosive nature of the produced water was 
initiated the attacking type of corrosion over the carbon 
steel surface in the abiotic and biotic systems. In the biotic 

systems, in addition to chloride ion, bacterial biofilm play-
ing a key role in corrosion acceleration, it can be found from 
the weight loss and corrosion rate of the biotic and abiotic 
systems. Biofilm formation in each system was monitored 
by the sessile cell counts as well as from the electrochemi-
cal analysis. In each biotic system color of the medium was 
turning into the yellowish-orange (rust) color which indi-
cates that bacterial strains added to the corrosive medium 
started to colonize over the surface of the carbon steel and 
started to corrode them. This biofilm formation was made 
an impact on the metal/solution interface, in specific, the 
negative shift in Ecorr values and also increase the corrosion 
rate of carbon steel [56, 62]. The development of biofilm 
over the carbon steel can enhance these corrosion processes 
by accepting electrons from the metal matrix, which lead 
to the formation of a pathway of electron transfer from the 
anodic site (beneath biofilms) to the cathodic site (over the 
surface metal), where electrons were accepted by oxygen, 
and consequently, corrosion reactions were accelerated [63].

However, biotic systems included with the clove extract 
showed a positive shift in the Ecorr and Icorr (Fig. 3, Table 3). 
The Rct was also increased, which was confirmed from the 
AC impedance studies (Fig. 5, Table 4). SEM analysis of the 
biotic and abiotic systems (Figs. 7, 8) indicates that green 
inhibitors protected the carbon steel from corrosion prob-
lems. The biocorrosion protection mechanism by the clove 
extract can be explained based on the outcome of these stud-
ies. It is well known that clove extract contains vast bioactive 
molecules and among all, eugenol was present in the higher 

Fig. 7  SEM micrograph of abiotic and mixed consortia with and without of SAE inhibitor, a bare carbon steel, b abiotic control, c abiotic con-
trol with 150 ppm of SAE, d, e mixed consortia with low and higher magnifications and f mixed consortia with 150 ppm of SAE
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quantity (9300 to 14,600 mg per 100 g clove) and which 
has very good antibacterial activity against a broad range 
of microbial strains [47]. Before included in the corrosion 
system, the antibacterial activity of the clove extract was 
confirmed against these corrosive bacterial strains (Table 1). 
These interesting observations proposed that adsorption and 
development of bioactive molecules present in the clove 
extract protected carbon steel from the bacterial attack and 
minimized the biocorrosion reactions.

Conclusions

Corrosion inhibition capability of clove extract has been 
studied for the first time on carbon steel API 5LX in hyper-
saline corrosive medium with and without corrosion causing 
bacterial strains (B. subtilis A1, S. parvus B7, P. stutzeri 
NA3, and A. baumannii MN3). Antibacterial activity of the 
clove extract was confirmed against these corrosive bacterial 

strains and 150 ppm was selected as minimum inhibitory 
concentration. Clove extract reduced the weight loss and 
corrosion rate tremendously. The inhibition efficiency of the 
clove extract in presence of the mixed consortia was 87%. 
The potentiodynamic polarization parameter showed that 
corrosion current in the inhibitor system was shifted towards 
the positive direction which means very less corrosion. This 
statement was strongly supported by AC impedance analysis 
in which charge transfer resistance in the mixed consortia 
was very less (237.9 ± 7.6 Ω  cm2) and at the same time, the 
addition of clove extract, that was increased to 863.4 ± 18.5 
Ω  cm2. Very less corrosion resistance was observed from 
the bacterial systems, which confirmed that these corrosion 
causing bacterial strains formed a dense biofilm over the 
carbon steel and accelerating the pitting type of corrosion. 
XRD analysis revealed that bacterial strains convert  Fe2+ to 
 Fe2O3, which confirms that they can oxidize the inorganic 
metal species present on the surface of carbon steel API 
5LX, which was suppressed by clove inhibitor. The bioac-
tive and antibacterial compounds present in the clove extract 
such as eugenol forming a protective layer over the metal 
surface and control the biofilm as well as corrosion reaction.
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