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Abstract
Polyhydroxyalkanoates (PHAs) are biodegradable polyesters accumulated in a wide variety of microorganisms as intracel-
lular carbon and energy storage compounds. Poly(3-hydroxybutyrate-co-3-hydroxyvalerate) (PHBV) is one of the most 
valuable biopolymers because of its superior mechanical properties. Here, we developed a bioprocess utilizing recombinant 
Bacillus megaterium strain for PHBV over-production from glucose, without any precursor addition. PHA production was 
performed in a controlled bioreactor by batch and fed-batch modes using wild-type B. megaterium and rec-B. megaterium 
cells overexpressing the native phaC gene. The effect of oxygen transfer rate on biomass formation and PHA accumulation 
was also investigated, under different dissolved oxygen levels. Structural and thermal properties of PHA were characterized 
by GC–FID, 1H‐NMR, TGA and DSC analyses. Significantly, the copolymer produced from glucose as the carbon source 
in rec-B. megaterium was composed of 58 mol% of 3‐hydroxyvalerate monomers. After 66 h, rec-B. megaterium cells in 
fed-batch fermentation with a pre-determined growth rate µ0 = 0.1 h−1 produced the highest CDW (7.7 g  L−1) and PHA con-
centration (6.1 g  L−1). Moreover, an exponential glucose feeding profile resulted in 2.2-fold increase in PHA yield compared 
to batch cultivation. Overall, this study paves the way to an enhanced biopolymer production process in B. megaterium cells, 
where the highest product yield on cell was obtained as YP/X = 0.8 g g−1.

Keywords Poly(3-hydroxybutyrate-co-3-hydroxyvalerate) · Recombinant B. megaterium · Fed-batch fermentation · Oxygen 
transfer · Copolymer

Introduction

Polyhydroxyalkanoates (PHAs) have been considered as an 
eco-friendly alternative to petroleum-based plastics owing 
to their biorenewability, biocompatibility and biodegrada-
bility. PHAs are biodegradable polymers, accumulated in 
wide variety of microorganisms, including Gram-negative 
bacteria, Gram-positive bacteria, cyanobacteria and archaea 

as intracellular cytoplasmic inclusions for carbon and energy 
storage material, under environmental and nutritional stress 
conditions (limited nitrogen, phosphorus or oxygen) and 
excess carbon source [1, 2]. PHAs can be classified as short-
chain length (SCL) (C3-C5), medium-chain length (MCL) 
(C6-C14) and SCL–MCL groups (C3 to C6–C14) depending 
on the monomer structure. Poly (3-hydroxybutyrate) (PHB) 
and poly (3-hydroxybutyrate-co-3-hydroxyvalerate) (PHBV) 
are the most well-known polyesters of the SCL-PHA fam-
ily. PHB is a highly crystalline and brittle biopolymer with 
limited processability [3]. Hence, there have been attempts 
to improve the processability of PHB by incorporation of 
3-hydroxyvalerate (3HV) through fermentation using expen-
sive prescursors, such as sodium valerate [4, 5] or propionic 
acid [6, 7], unrelated carbon sources [8–11] or via limited 
number of attempts in metabolic engineering of Escherichia 
coli [12–14], Haloferax mediterranei [15], Rhodospirillum 
rubrum [16] or Ralstonia eutropha [17]. On the other hand, 
B. megaterium is a natural producer of P(3HB-co-3HV) 
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from unrelated carbon sources [8, 10, 18–20] with a yield 
of up to 16.6 mol% of 3HV fraction, and this fraction goes 
up to 33 mol% for B. thuringiensis [21].

The incorporation of 3HV unit into the PHB crystal 
structure leads to dramatic changes in material properties 
of synthesized PHBV copolymers, such as low melting 
temperature, low crystallinity and toughness [22]. PHBV 
synthesis occurs via three-step enzymatic process catalyzed 
by β-ketothiolase (PhaA), β-ketoacyl-CoA reductase (PhaB) 
and PHA synthase (PhaC) sequentially [23]. PhaC enzyme 
is responsible for polymerization of PHA polyesters [24].

Currently, the major drawback for PHA production at 
large scale is the high production cost and low product yields 
compared with petroleum-based plastics [25]. Therefore, 
efforts have also been carried out to reduce the production 
cost using inexpensive and renewable carbon sources, the 
development of genetically-engineered better PHA-synthe-
sizing strains and more efficient and sustainable bioprocess 
strategies for higher productivities [26–29].

There are various factors, such as microorganism selec-
tion, growth medium, nitrogen sources, carbon-to-nitrogen 
ratio, temperature, pH and dissolved oxygen demand, to 
obtain a higher polymer yield and volumetric productivity 
[25]. Various fed-batch fermentation strategies have been 
successfully used for PHA production by B. megaterium 
strains to achieve high cell densities and high PHA pro-
ductivity [30, 31]. On the other hand, to maximize volu-
metric PHA productivity, oxygen transfer rate (OTR) is an 
important factor in fed-batch cultivation due to high oxygen 
demand [32]. Various studies have reported the increase in 
SCL-PHA synthesis in several microorganisms from sugars 
at low DO conditions [33, 34].

This study aimed to develop an engineered Bacillus meg-
aterium NRRL B-14308 strain by overexpressing the native 
phaC gene for PHA production from glucose. Furthermore, 
the engineered B. megaterium strain was evaluated for 
PHBV production in laboratory-scale bioreactors by batch 
and fed-batch modes and compared with the wild-type B. 

megaterium NRRL B-14308 strain. Generally, PHBV copol-
ymers were biologically produced by feeding its petroleum-
based precursors like propionate or valeric acid, resulting in 
limited actual production due to their high cost and toxicity. 
This study is significant for production of PHBV by B. mega-
terium strain with the highest 3HV content from structurally 
unrelated carbon sources, such as glucose, without a 3HV 
precursor addition. The influence of oxygen transfer rate on 
the biomass production and PHA synthesis in laboratory-
scale bioreactors under different DO concentrations was also 
investigated.

Materials and methods

Bacterial strains and plasmids

All bacterial strains and constructed plasmids used in this 
study are listed in Table 1. For construction of the recom-
binant plasmid of pC-HIS1623hp-phaC, the PHA synthase 
gene (phaC) (2590 bp) of B. megaterium NRRL B-14308 
strain (GenBank Accession No. KGJ86215.1) was ampli-
fied from genomic DNA by colony PCR method, using the 
specific primers phaC_F (ATG ACT ACT AGT AAG GAG 
GTG AAT ATA CAA TGG CAA TTC CTT ACG-TGC AAG ) 
and phaC_R (ATG ATC GCA TGC TTA GTG ATG GTG ATG 
GTG A-TGA GAA CCG CCT TTA GAG CGT TTT TCT AGC ) 
(underlined sequences indicate SpeI for phaC_F and SphI 
for phaC_R, respectively).

The amplified phaC fragment was digested with SpeI and 
SphI followed by purification, ligation and transformation of 
Escherichia coli DH5α by  CaCl2 method, with 100 µg mL−1 
ampicillin in selective solid medium. Single colonies were 
picked and the purified plasmids were confirmed via 
restriction digestion and DNA sequence analysis. Molecu-
lar biology protocols used in this study were as outlined 
by Sambrook and Russell [35]. B. megaterium protoplasts 
were transformed by a modified minimal media protoplast 

Table 1  Bacterial strains and 
plasmids used in this study

Name Description References

Strains
E. coli DH5α F- (f80dlacZΔM15) Δ(lacIZYA -argF) U169 

deoR recA1 endA1 hsdR17 (rk−, mk+) 
supE44, thi-1, gyrA96, relA1

Invitrogen, USA

B. megaterium
NRRL B-14308

Wild type ARS, USA

Plasmids
pC-HIS1623hp Expression vector,  AmpR

(E. coli) and  TetR (Bacillus)
MoBiTec GmbH, Germany

pC-HIS1623hp-phaC Derivative of pC-HIS1623hp with phaC down-
stream of a xylose inducible promoter with 
Gly-Gly-Ser linker and 6xHis-tag

This study
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transformation protocol [36], and the selected colony was 
stored in glycerol stocks at − 86 °C.

Culture medium and growth conditions

The recombinant B. megaterium were grown in lysogeny 
broth (LB) medium containing 10 g  L−1 peptone, 5 g  L−1 
yeast extract and 10 g  L−1 NaCl and selective antibiotics 
to maintain the plasmid stability. The bacterial culture was 
inoculated using a 1:100 inoculum ratio into 20 mL LB 
medium in 250 mL Erlenmeyer flasks. The cells were cen-
trifuged and re-suspended in 50 mL Minimal Medium (MM) 
[20] and the flasks were incubated at 37 °C and 200 rpm for 
66 h. After fermentation, the cells were harvested by cen-
trifugation at 10,000×g for 10 min.

Recombinant protein analysis

Whole-cell lysates were used for recombinant protein anal-
ysis, where total protein concentration was determined in 
duplicates using Bradford assay with bovine serum albumin 
(BSA, Sigma-Aldrich) as standard. The samples were sub-
jected to SDS-PAGE (12%) and Western Blotting analysis. 
Proteins were visualized with Coomassie Blue (Bio-Rad) 
staining by GelDoc EZ imaging system (Bio-Rad). Then, 
proteins were transblotted onto PVDF membranes, blocked 
with blocking reagent (Bio-Rad) at room temperature (RT), 
and probed with anti-His (1:1000, Abcam) followed by anti-
rabbit-HRP (1:2500, Promega) antibodies in 1% BSA-PBST. 
The immunoreactive bands were visualized using Opti-4CN 
colorimetric kit (Bio-Rad) according to manufacturer’s 
instructions.

Bioreactor operation in batch and fed‑batch modes

All bioreactor experiments were carried out in a 500 mL 
fully controlled bioreactor system (My-Control miniBio, 
Applikon Biotechnology, Delft, Netherlands) with a work-
ing volume of 300 mL. The Minimal Medium (MM) was 
used as initial fermentation medium. A glucose solution of 
100 g  L−1 was fed separately for fed-batch cultivations. The 
500 mL bioreactor was assembled with a pH sensor, opti-
cal DO sensor, L-type gas sparger and 2 Rushton impel-
lers. The temperature and pH were maintained at 37 °C and 
7.0 ± 0.1, respectively. The pH was controlled by 1 M HCl 
and 1 M NaOH solutions. The initial agitation rate was set 
at 300 rpm. Three different dissolved oxygen values (10%, 
20% and 30% DO) were evaluated in this study and adjusted 
via agitation and/or aeration rates.

Fed-batch cultivations were performed using wild-type 
and recombinant Bacillus megaterium strains. The culture 
was initially carried out in a batch mode for 42 h and then 
fed-batch mode was initiated with exponential glucose 

feeding at a pre-determined specific growth rate (µ0) to 
achieve a higher PHA yields. During the exponential glucose 
feeding stage, feeding profile, F(t), was controlled based on 
the following equation [37]:

where F(t) (L  h−1) is the total substrate feeding rate, µo  (h−1) 
is the desired specific growth rate, V0 (L) is the initial vol-
ume, CX0 (g  L−1) is the initial biomass concentration, CS0 
(g  L−1) is the feed substrate concentration and YX/S (g  g−1) 
is the biomass yield on substrate. In the fed-batch phase, 
YX/S for the feeding profile equation was set as 0.36 g g−1, 
pre-determined from batch experiments. All runs were per-
formed in duplicates.

Determination of oxygen transfer parameters

To determine the oxygen transfer parameters, such as volu-
metric mass transfer coefficient (kLa), biological enhance-
ment factor (E), oxygen uptake rate (OUR), and oxygen 
transfer rate (OTR) for PHA production, the Dynamic 
method [38] was used.

Analytical procedures

Cell growth was analyzed by measuring the optical density 
at 600 nm  (OD600) using a UV–visible spectrophotometer 
(Thermo Fisher Scientific Genesys 10S UV–VIS, USA). The 
cell dry weight was determined gravimetrically. The residual 
glucose concentration was determined spectrophotometri-
cally using a modified microplate 3,5-dinitrosalicylic acid 
(DNS) assay [39]. PHA was measured spectrofluorometri-
cally with fluorescence spectrophotometer (Varian Cary 
Eclipse, Agilent, Santa Clara, CA, USA) as given in our 
previous study [20].

PHA content and monomer determination

The PHA content quantification and monomer compo-
sition were determined by gas chromatography (GC) 
of methyl esters and verified by 1H-NMR. The lyophi-
lized biomass was subjected to acidic methanolysis reac-
tion [40]. The 3-hydroxyalkanoic acid methyl esters were 
analyzed by GC using an Agilent Technologies 6890 N 
chromatograph equipped with an HP-5 capillary col-
umn (25 m × 0.32 mm × 0.25 μm) and a flame ionization 
detector (FID). The temperatures of injection and detector 
were 300 °C. The oven temperature profile was: from 50 
up to 100 °C at a rate of 5 °C min−1, then from 100 up 
to 300 °C at a rate of 20 °C min−1, and finally 300 °C for 
5 min [41]. Helium was used as a carrier gas at a flow rate 

F(t) =
�0V0CX0

CS0YX/S

exp
(

�0t
)

,
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of 1 mL min−1. Methyl benzoate was used as an internal 
standard.

Polymer characterization

1H-NMR spectroscopy was used for determination of the 
chemical structure of PHA polymers. Briefly, about 20 mg of 
PHA sample was dissolved in deuterated chloroform and 1H-
NMR spectra were recorded at 25 °C on Bruker (Billerica, 
MA, USA) 300 MHz spectrometer.

The thermal properties of PHA samples were analyzed 
by TGA (SII Exstar 6000 TG–DTA 6300, Perkin Elmer Inc, 
Waltham, MA, USA) and DSC (Diamond DSC, PerkinElmer 
Inc., Waltham, MA, USA). To determine the thermal degra-
dation profile of the polymer, about 10 mg of PHA sample 
was heated from room temperature to 500 °C at a heating 
rate of 10 °C min−1 under nitrogen gas.

The melting temperatures (Tm) of the PHA polymers 
were determined by DSC analysis. Briefly, about 10 mg of 
PHA sample was encapsulated in an aluminum DSC pan 
and then heated from − 30 °C to 200 °C at a heating rate of 
10 °C min−1 under nitrogen gas.

Statistical data analysis

Average and standard deviation values were calculated 
according to standard procedures and the results were ana-
lyzed by ANOVA test. Tukey’s test was used to compare 
mean values and to evaluate the significance of the differ-
ences between mean values to assess the PHA production. 
All statistical analyses were carried out using GraphPad 
Prism 8 software.

Results and discussion

The Gram-positive bacteria display the advantage of pro-
ducing endotoxin-free PHAs, in contrast to Gram-negative 
organisms like E. coli. B. megaterium can grow on a wide 
variety of carbon sources and has no obvious alkaline pro-
teases degrading recombinant gene products [42]. In the pre-
sent study, the native PHA synthase genes of B. megaterium 
NRRL B-14308 were amplified by PCR and cloned into pC-
HIS1623hp expression vector to construct the recombinant 
plasmid overexpressing its native PhaC enzyme, with the 
aim of enhancing PHA production. Successful construc-
tion of the recombinant plasmid pC-HIS1623hp-phaC was 
confirmed via DNA sequencing. The PhaC synthase was 
then overexpressed in the B. megaterium/pC-HIS1623hp-
phaC system. SDS-PAGE analysis revealed the presence 
of the recombinant PhaC synthase gene with the expected 
molecular weight of 42 kDa (Fig. S1). The results were fur-
ther confirmed by Western blot analysis using anti-His and 

anti-rabbit HRP antibodies and wild-type B. megaterium 
strain as the negative control.

The PHBV formation in the B. megaterium involves 
two parallel pathways, leading to  C4 monomer (3-hydroxy-
butyrate) and  C5 monomer (3-hydroxyvalerate) in the 
copolymer (Fig. 1). In the PHBV biosynthesis, first, two 
acetyl-CoA moieties or acetyl-CoA and propionyl-CoA 
are condensed to form thioester intermediates acetoacetyl-
CoA and 3-ketovaleryl-CoA, respectively, by expressing 
phaA. Then, the thioester intermediates are reduced to 
two PHA monomers 3HB-CoA and 3HV-CoA by express-
ing phaB gene. Finally, by expressing phaC gene, the two 
PHA monomers are randomly polymerized to form PHBV 
copolymer [13, 43]. B. megaterium polyhydroxyalkanoate 
synthase gene complex is a heterodimer protein composed 
of PhaR and PhaC (catalytically active unit) subunits [44]. 
In this study, we overexpressed only the catalytically active 
unit, PhaC, where PhaR is not required for the expression 
of phaRBC operon. Similarly, there are several studies on 
overexpression of a single subunit from the heterodimeric 
forms [45–47]. Provided that the monomers are present, 
overexpressing this final enzyme in the pathway, PhaC, 
could enhance the PHA yields and change the copolymer 
composition. The former would especially hold true, if the 
polymerization step is the rate limiting step, and the latter 
if the PhaC enzyme has different affinities toward different 
monomers.

PHA production in batch mode

It has been clearly known that dissolved oxygen (DO) is one 
of the most important key parameters for cell growth and 
PHA accumulation. PHA synthesis can be triggered under 
oxygen-limited conditions by Bacillus megaterium strains 
[48]. The limitation of DO concentration results in the devia-
tion of carbon flux from biomass production towards PHA 
accumulation [49].

B. megaterium NRRL B-14308 wild-type strain was cul-
tivated in 500 mL scale, fully controlled bioreactor for 66 h 
using glucose as the carbon source to observe cell growth 
and PHA accumulation under different DO levels (10%, 20% 
and 30% DO) (Fig. S2) in batch cultivations. The fermenta-
tion kinetics and yields related to PHA production in the 
batch mode are shown in Table 2. The results showed that 
the highest PHA concentration and intracellular PHA con-
tent were reached at 20% DO set point compared to other 
DO levels. The 20% DO level showed higher cell dry weight 
than 10% DO level, whereas the lowest cell dry weight and 
PHA accumulation were obtained at 30% DO set point. On 
the other hand, the highest PHA yield,  YP/S, was obtained 
for 20% DO set point. Based on these results, 20% DO was 
selected for further studies in bioreactor cultivations at batch 
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and fed-batch modes with wild-type and rec-B. megaterium 
strains, to maximize the efficiency of the PHA accumulation.

The total cell dry weight (CDW), maximum PHA accu-
mulation, PHA content, biomass yield (YX/S), product 
yields (YP/S and YP/X) and PHA volumetric productivity 
(qPHA) obtained from batch cultivations of wild-type B. 

megaterium and rec-B. megaterium cells are also summa-
rized in Table 2. With a defined fermentation medium, cell 
dry weight reached 3.06 g  L−1 with 2.43 g  L−1 PHA accu-
mulation for the wild-type B. megaterium strain. However, 
the highest CDW (3.52 g  L−1) and maximum PHA accu-
mulation (2.76 g  L−1) were achieved when fermentation 

Fig. 1  Schematic representa-
tion of the metabolic pathways 
involved in the biosynthesis of 
the P(3HB-co-3HV) copoly-
mers in Bacillus megaterium 
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Table 2  Kinetic and 
stoichiometric parameters 
of PHA produced from 
B. megaterium NRRL 
B-14308 wild-type strain and 
recombinant B. megaterium 
strain by batch cultivation mode 
at various dissolved oxygen (% 
DO) levels

Fermentation CDW
(g  L−1)

PHAmax
(g  L−1)

PHA
(%)

YX/S
(g  g−1)

YP/S
(g  g−1)

YP/X
(g  g−1)

qPHA
(g  L−1 h−1)

B. megaterium wild-type strain
10% DO 2.66 ± 0.03 2.08 ± 0.03 78 ± 1 0.32 ± 0.03 0.26 ± 0.03 0.78 ± 0.02 0.11 ± 0.02
20% DO 3.06 ± 0.04 2.43 ± 0.03 79 ± 2 0.38 ± 0.02 0.31 ± 0.02 0.76 ± 0.03 0.12 ± 0.03
30% DO 2.49 ± 0.03 1.96 ± 0.04 78 ± 2 0.31 ± 0.02 0.26 ± 0.03 0.77 ± 0.02 0.09 ± 0.02
Recombinant B. megaterium
20% DO 3.52 ± 0.04 2.76 ± 0.05 78 ± 2 0.44 ± 0.03 0.35 ± 0.02 0.78 ± 0.03 0.15 ± 0.02
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was carried out using rec-B. megaterium cells after 66 h of 
cultivation. The highest final PHA content and the highest 
PHA volumetric productivity were also attained using rec-B. 
megaterium cells as 78 wt% and 0.15 g  L−1 h−1, respectively. 
Consequently, there is 1.2-fold increase in the PHA final 
concentration for rec-B. megaterium cells compared to wild-
type B. megaterium cells in the batch mode.

PHA accumulation reached a steady state after approxi-
mately 66 h of batch cultivation, even when glucose was 
not consumed totally by the cells, confirming that glu-
cose was not the limiting nutrient in the minimal medium 
(Fig. 2). PHA synthesis continued in the stationary phase 
(t = 42–66 h), confirming that B. megaterium accumulated 
PHAs by adopting growth-associated and non-growth-asso-
ciated mechanisms [50, 51].

Fed‑batch cultivations for PHA production

Fed-batch cultivations have been extensively employed to 
reach high cell density cultures and improve polymer pro-
ductivity by monitoring DO, pH and carbon levels as feed-
back control parameters [52]. In this study, exponential 
glucose feeding profiles at several pre-determined specific 
growth rates were implemented to achieve higher PHA pro-
duction in fed-batch fermentation.

The cultivation was initiated with a glucose concentration 
of 10 g  L−1, and the reactor was operated in a batch mode 
for 42 h, followed by a fed-batch phase (42–66 h) (Fig. 3). 
Ammonium sulfate (1 g  L−1) as the nitrogen source was only 
supplemented at the beginning of the cultivation, to promote 
cell growth.

Fig. 2  Glucose consumption 
(Cs, dashed line), cell  (OD600, 
gray line) and PHA  (CPHA, 
solid line) accumulations dur-
ing batch production by a B. 
megaterium NRRL B-14308 
wild-type strain; b recombi-
nant B. megaterium strain. 
Data expressed are the mean 
values and all experiments were 
performed in duplicate (n = 2, 
maximum SD =  ± 21.2%, mini-
mum ± 1.9%)
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The fed-batch phase was initiated after the batch phase (at 
t = 42 h) by automatically feeding the fermentation medium 
with glucose solution under exponential feeding profiles, 
controlled 20% DO and pH 7.0 for wild-type and rec-B. 
megaterium cells.

The three different exponential glucose feeding profiles 
were based on the pre-determined specific growth rates: 
µ0 = 0.05 h−1, µ0 = 0.075 h−1, µ0 = 0.1 h−1. Therefore, a series 
of batch cultivations in the bioreactor were performed to 
determine the initial biomass yield on substrate (YX/S), as 
YX/S = 0.36 g biomass  g−1 glucose. This value was applied in 
fed-batch experiments to evaluate the different exponential 
glucose feeding strategies and was consistent with previous 
studies [53, 54] for PHA production.

Comparing the fermentation profiles, the trends of cell 
growth (Fig. 3) and PHA concentration (Fig. 4) were sim-
ilar in the batch phase, whereas the accumulation curves 
diverged for the fed-batch phase, i.e. after 42 h, because of 
the increasing PHA accumulation and a reduced biomass 
formation as a consequence of the exponential glucose feed-
ing and nitrogen limitation. During the fed-batch stage, the 
PHA concentration increased exponentially to 6.15 g  L−1 as 
the highest level, by the end of the fermentation (Fig. 4). The 
high rate of PHA accumulation observed in rec-B. megate-
rium strain at the higher pre-determined specific growth rate 
(µ0 = 0.1 h−1) towards the end of the process was potentially 
due to the high exponential glucose overfeeding and nitrogen 
depletion in the growth medium.

Fig. 3  Cell growth  (OD600) 
during fed-batch production by 
wild-type and recombinant B. 
megaterium strains, using differ-
ent exponential glucose feeding 
profiles starting at t = 42 h. 
The experimental data are the 
mean data from two data points 
(n = 2, maximum SD =  ± 28.3%, 
minimum ± 4.2%)
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The kinetic and stoichiometric parameters for the fed-
batch cultivation of wild-type and rec-B. megaterium cells 
at different exponential glucose feeding rates are demon-
strated in Fig. 5. The exponential fed-batch strategy resulted 
in a 2.2-fold increase in PHA production compared to batch 
cultivations. The highest final cell concentration (7.68 g 
 L−1), PHA content of the cells (80%), volumetric PHA 
productivity (0.54 g  L−1 h−1), as well as cell and product 
yields on substrate (0.74 g g−1 and 0.62 g g−1, respectively) 
were obtained with rec-B. megaterium cells at the higher 
pre-determined specific growth rate (µ0 = 0.1 h−1), confirm-
ing the positive effect of genetic modification for PHA bio-
synthesis. The results also showed that rec-B. megaterium 
NRRL B-14308 strain could accumulate higher amount of 
PHA content compared to other Bacillus strains (Table 3). 
Moreover, if a high cell density fed-batch strategy is applied, 
the PHA yields could be even further improved. Neverthe-
less, a relatively high YP/X value, 0.8 g g−1, was obtained via 
strain and bioprocess improvements.

Oxygen transfer parameters of fed‑batch 
fermentations

During PHA production by wild-type and rec-B. megaterium 
cells in fed-batch cultivation using different glucose feed-
ing rates, the dynamic method was applied to determine the 
oxygen transfer parameters, such as volumetric mass transfer 
coefficient  (kLa), enhancement factor (E), oxygen uptake rate 
(OUR) and oxygen transfer rate (OTR). The oxygen transfer 
parameters were determined for all fed-batch fermentations 
and are summarized in Table 4.

The kLa values first increased and then decreased with 
the cultivation time. The kLa values are considerably 
affected by a lot of factors, including geometrical char-
acteristics of bioreactors, viscosity and surface tension 
of the broth, temperature, aeration rate, agitation speed, 
foam formation, and microorganisms’ morphology [55]. 
The bioreactor operational parameters, such as temper-
ature, agitation speed, aeration rate, were kept constant 

Fig. 5  The kinetic and stoichiometric parameters for the fed-batch 
cultivation of wild-type and rec-B. megaterium cells at different expo-
nential glucose feeding rates. Asterisks indicate the significance lev-

els of two-way ANOVA test comparisons with Tukey test, *p < 0.1, 
**p < 0.01, ***p < 0.001, ****p < 0.0001

Table 3  A comparison of PHA production by Bacillus strains using various fermentation techniques

Microorganism Culture conditions Carbon substrate CDW (g  L−1) PHA (% w/w) PHA
(g  L−1)

3HV (mol %) References

B. megaterium Batch Red-algae 4.1 30 1.24 n.d [69]
B. megaterium BBST4 Shake-flask batch Starch 1.72 24 0.42 9.8 [10]
B. megaterium BBST4 Shake-flask batch Glycerol 2.60 20 0.53 7.8 [19]
B. megaterium OU303A Shake-flask batch Glucose n.d 58 n.d 2.5 [18]
B. megaterium Fed-batch Acid treated red algae 8.2 53 4.37 n.d [70]
B. megaterium uyuni S29 Fed-batch Glucose 28.6 30 8.58 n.d [71]
B. megaterium DSM 32 Batch Sucrose 5.32 62 3.30 n.d [48]
B. megaterium NCIM 5472 Batch Cheese Whey Permeate 4.2 87 3.64 16.6 [7]
B. megaterium strain A1 Shake- flask batch Molasses n.a 78 n.a 11 [8]
B. cereus SPV Shake-flask batch Glucose 1.35 38 0.52 10 [11]
B. thuringiensis Batch Glucose, glycerol and 

propionic acid
4.5 46 2.07 58 [21]

Recombinant B. megate-
rium NRRL B-14308

 Fed-batch  Glucose  7.68  80  6.15  58  This study
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throughout the bioprocesses and an antifoam agent was not 
used. Therefore, this decrease can be related to the viscos-
ity of the fermentation broth. The viscosity of fermenta-
tion broth increased as the B. megaterium cells were in 

exponential growth phase and during PHA accumulation. 
The increase in broth viscosity reduced oxygen transfer to 
the cells, resulting in a resistance zone for mass transfer 
[37, 56].

Table 4  The variations in 
oxygen transfer parameters 
with different glucose feeding 
profiles for fed-batch PHA 
production

Fed-batch strategy t (h) kLa  (s−1) E (kLa/kLa0) OTR × 103 
(mol  m−3 s−1)

OTRmax × 103 
(mol  m−3 s−1)

OUR × 103

(mol  m−3 s−1)

B. megaterium wt
μ0 = 0.05 h−1 0 0.009 1.00 – – –

2 0.027 3.00 3.40 5.40 3.40
4 0.026 2.89 4.20 5.20 4.20

18 0.024 2.67 4.80 4.80 4.80
24 0.024 2.67 4.60 4.70 4.60
42 0.021 2.33 4.20 4.20 4.20
49 0.020 2.22 4.00 4.00 4.00

μ0 = 0.075 h−1 0 0.010 1.11 – – –
2 0.031 3.44 4.30 6.30 4.30
4 0.029 3.22 5.20 6.00 5.20

18 0.026 2.88 5.80 5.80 5.80
24 0.025 2.77 5.40 5.40 5.40
42 0.023 2.56 4.80 4.90 4.80
49 0.021 2.33 4.50 4.50 4.50

μ0 = 0.1 h−1 0 0.010 1 – –
2 0.036 3.60 5.40 8.80 5.40
4 0.032 3.20 6.70 8.10 6.70

18 0.027 2.70 7.80 7.80 7.80
24 0.027 2.70 7.20 7.20 7.20
42 0.024 2.40 6.50 6.60 6.50
49 0.021 2.10 5.90 5.90 5.90

Recombinant B. megaterium
μ0 = 0.05 h−1 0 0.010 1.00 – – –

2 0.030 3.00 3.80 6.20 3.80
4 0.027 2.70 4.40 5.60 4.40

18 0.026 2.60 4.90 4.90 4.90
24 0.026 2.60 4.60 4.60 4.60
42 0.023 2.30 4.20 4.20 4.20
49 0.021 2.10 3.90 3.90 3.90

μ0 = 0.075 h−1 0 0.011 1.10 – – –
2 0.036 3.60 4.56 6.70 4.56
4 0.030 3.00 5.40 6.20 5.40

18 0.027 2.70 6.08 6.0 6.10
24 0.025 2.50 5.75 5.80 5.75
42 0.022 2.20 5.20 5.20 5.20
49 0.020 2.00 4.80 4.80 4.80

μ0 = 0.1 h−1 0 0.011 1.00 – – –
2 0.039 3.54 5.90 9.54 5.90
4 0.034 3.09 7.10 8.70 7.10

18 0.029 2.64 8.30 8.30 8.30
24 0.027 2.45 7.70 7.72 7.70
42 0.024 2.18 6.54 6.54 6.54
49 0.020 1.82 5.90 5.90 5.90
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The oxygen uptake rate (OUR) is one of the most funda-
mental parameters in fermentation processes and depends 
on metabolic activity of cells. OUR increases in the expo-
nential growth phase due to the high substrate consumption 
at the start of the cultivation process. The OUR was at its 
maximum for 18 h of the fermentation processes because 
of the high-specific oxygen demand for culture viability. 
After exponential growth phase, OUR decreased because 
of decreasing metabolic activity of cells [57]. The oxygen 
transfer rate (OTR) in fermentation processes has been 
related to volumetric mass transfer coefficient, kLa and oxy-
gen consumption by the microorganism. The OTR increased 
because of high oxygen demand for 18 h. The OTR is a 
critical factor for PHA biosynthesis, because OTR is equal 
to OUR under oxygen limitation. Thus, variation in cellu-
lar respiration could increase the reducing power (NADPH/
NADP+), which is an important cofactor involved in PHA 
biosynthesis and regulation [5].

Besides,  kLa, OTR and OUR values in rec-B. megaterium 
cells were generally higher than wild-type cells. This can be 
explained by rec-B. megaterium cells having a higher meta-
bolic activity, especially in biopolymer synthesis. Moreo-
ver, with the increasing glucose feeding rates, higher oxygen 
transfer parameters were attained, due to the increased oxy-
gen demand of the cells, as expected.

Polymer characterization

1H-NMR spectroscopy was performed to identify the chemi-
cal structure of the produced PHA polymers, as shown in 
Fig. 6. The peak at 0.90 ppm corresponds the protons of the 
terminal methyl group of 3HV monomer unit. The peaks at 
1.25 ppm, 1.55 ppm, 2.58 ppm and 5.27 ppm correspond 
to the methyl group of 3HB unit, internal –CH2 group of 
3HV unit, the –CH2 groups and the –CH groups of 3HB 
and 3HV monomer units, respectively [58]. The molar frac-
tion of 3HV monomer unit was determined from the relative 
intensities of methyl groups of 3HV (0.90 ppm) and 3HB 
(1.25 ppm) monomer units in the 1H-NMR spectra according 
to the following equation [53]:

The 1H-NMR spectrum confirms that the chemical 
structure of the biopolymers produced in this study corre-
sponds to PHBV copolymer. According to the above equa-
tion, integrating the area under the peaks at 0.90 ppm and 
1.25 ppm, the PHBV copolymer was found to be composed 
of 58 mol% of 3HV monomer units. The content of 3HV 

% 3HV =
area CH3(3HV)

area CH3(3HV) + area CH3(3HB)
× 100% .

Fig. 6  1H-NMR spectrum of PHA synthesized in wild-type and recombinant B. megaterium NRRL B-14308 cells under batch and fed-batch cul-
tivations, using: a PHA-B-wt, b PHA-B-rec, c PHA-FB-wt, d PHA-FB-rec
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monomer units in PHBV copolymer is important for indus-
trial applications because P(3HB-co-3HV) copolymers 
containing more than 20 mol% 3HV monomers exhibit 
superior material properties, such as impact strength and 
polymer flexibility, suitable for manufacturing of films and 
fibers [59, 60]. This study is significant for production 
of PHBV by B. megaterium strain with the highest 3HV 
content from unrelated carbon sources, without a precursor 
addition (Table 3).

Although there is no clear evidence from metabolic path-
way analysis on the increase of 3HV content in recombinant 
B. megaterium cells only overexpressing phaC gene, it could 
be explained by the increment in microbial growth, which 
may digest organic acids and release odd-fatty acid com-
pounds as metabolites, precursors for 3HV production. On 
the other hand, the observed increase in the 3HV fraction 
could also be due to the higher PHA synthase activity from 
the additional copy of phaC. In recombinant strains, the 
higher PHA synthase activity would promote the polymeri-
zation of 3HV-CoA in the medium. Briefly, the higher PhaC 
activity in recombinant B. megaterium cells pulls more C5 
intermediates into P(3HB-co-3HV) synthesis prior to con-
version into shorter C4 intermediates, resulting in a higher 
3HV fraction than wild-type strain [61, 62]. Moreover, a fur-
ther study on enzyme kcat values for each enzyme in the PHA 
synthesis pathway, especially for PhaA, PhaB and PhaC, the 
phenomenon could be better explained, and accordingly plan 
a better strategy for metabolic engineering. This could also 
be performed via an initial metabolic flux analysis.

To determine the PHA content and monomer composi-
tion within bacterial cells, GC analysis was performed after 
methanolysis. GC analysis also confirmed the produced 
polymer to be PHBV copolymer, as two different peaks 
were observed at retention times of ~ 0.9 min and ~ 1.7 min, 
corresponding to 3HB and 3HV methyl esters in the PHA 
sample, respectively (Fig. S3). From the GC peak areas, the 
PHA produced from recombinant B. megaterium cells on 
fed-batch fermentation mode was found to contain 54 mol% 
HV and 46 mol% HB, where the monomer ratios were con-
sistent with the results obtained from 1H-NMR analysis.

The thermophysical properties of the produced PHA 
polymers were analyzed by TGA and DSC (Table 5). PHA 
polymers showed two main degradation temperature ranges 
in agreement with previous studies [20, 63, 64]. The TGA 
curves for produced PHA showed a gradual weight loss with 
the increasing temperature, which started at around 260 °C 
and entirely degrading at around 455 °C. Two-step degra-
dation temperatures are likely due to the incorporation of 
different monomers, such as 3HV, in the PHA samples. The 
first-step degradation temperature can be ascribed to decom-
position of the crosslinked polymer chain. The second-step 
degradation is due to the decomposition of the main block 
of PHBV polymer chain [65].

The melting temperatures of PHBV polymers were exam-
ined using DSC analysis. The DSC thermogram showed two 
melting points for the produced PHBV polymers (Table 5). 
It can be seen that the two melting temperatures were both 
lower than the melting temperatures of PHB homopolymer, 
ca. 170 °C [66]. As the proportion of 3HV monomer units in 
the PHBV polymer chain increases, the melting temperature 
of the polymer decreases, resulting in an improvement in 
impact strength and polymer flexibility and broader appli-
cations [67]. The occurrence of two melting temperatures 
could be observed due to melting–re-cyrstallization–re-
melting process of PHBV polymers [68].

Conclusion

PHAs are currently being produced at about 270,000 tons 
 year−1 with an increasing demand [29]. The present study 
aimed to produce PHA biopolymer from Bacillus megate-
rium NRRL B-14308 strain with a higher production effi-
ciency, by investigating the bioprocess design parameters, 
including dissolved oxygen level and fermentation mode. 
Also, aiming to increase the production of PHA synthase 
enzyme (PhaC), recombinant strains were constructed via 
phaC overexpression in B. megaterium.

The batch experiments showed that the highest PHA 
concentration and intracellular PHA content were reached 
at 20% DO set point. Furthermore, in the batch fermenta-
tion mode, there was 1.2-fold increase in the PHA final 
concentration for rec-B. megaterium cells against wild-
type B. megaterium cells. To maximize PHA productivity, 
fed-batch fermentations with different exponential glucose 
feeding rates based on desired specific growth rate were per-
formed. The results demonstrated that fed-batch cultivation 
increased the volumetric PHA productivity 2.2 times com-
pared to batch cultivation. By controlling the DO level, the 
highest cell biomass (7.7 g  L−1), final PHA concentration 
(6.1 g  L−1), volumetric PHA productivity (0.54 g  L−1 h−1) as 
well as cell and product yields on substrate (0.74 g g−1 and 
0.62 g g−1, respectively) were achieved at the end of the fed-
batch cultivation by rec-B. megaterium strain at µ0 = 0.1 h−1. 

Table 5  Thermophysical properties of produced PHA polymers from 
wild-type (-wt) and recombinant (-rec) B. megaterium strains by 
batch (-B) and fed-batch (-FB) mode of operation and commercial 
PHB (PHB-C)

Polymer Td1 (°C) Td2 (°C) Tm1 (°C) Tm2 (°C) %3HV

PHA-FB-wt 274 452 124 156 52
PHA-B-wt 266 449 129 163 42
PHA-FB-rec 279 455 122 152 58
PHA-B-rec 261 441 126 159 49
PHB-C 287 – – 172 –
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Also, the experimental data indicated that well-tuned DO 
level and availability of excess carbon source and nitrogen 
limitation enhance the synthesis of PHAs in B. megaterium. 
The characterization of synthesized PHAs was performed 
by 1H-NMR, GC-FID, TGA and DSC analyses. The results 
revealed that the synthesized PHAs composed of 42 mol% 
of 3HB and 58 mol% of 3HV monomers. Thus, this study 
is significant for the production of PHBV copolymer with 
a high 3HV content by B. megaterium from an unrelated, 
simple carbon source, glucose, with no need of precursor 
addition.
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