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Abstract
A hybrid neural model (HNM) and particle swarm optimization (PSO) was used to optimize ethanol production by a floc‑
culating yeast, grown on cashew apple juice. HNM was obtained by combining artificial neural network (ANN), which pre‑
dicted reaction specific rates, to mass balance equations for substrate (S), product and biomass (X) concentration, being an 
alternative method for predicting the behavior of complex systems. ANNs training was conducted using an experimental set 
of data of X and S, temperature and stirring speed. The HNM was statistically validated against a new dataset, being capable 
of representing the system behavior. The model was optimized based on a multiobjective function relating efficiency and 
productivity by applying the PSO. Optimal estimated conditions were:  S0 = 127 g L−1,  X0 = 5.8 g L−1, 35 °C and 111 rpm. In 
this condition, an efficiency of 91.5% with a productivity of 8.0 g L−1 h−1 was obtained at approximately 7 h of fermentation.

Keywords Ethanol production · Cashew apple juice · Artificial neural network (ANN) · Hybrid neural model (HNM) · 
Particle swarm optimization (PSO)

Nomenclature
A1  Initial value of horizontal asymptote
A2  Final value of horizontal asymptote
ANN  Artificial neural network
dx  Model increment
Ftab  Tabled value for the Fisher Test F
HNM  Hybrid neural model
n  Number of samples
nv  Number of variables estimated
N  Stirring speed (rpm)
p  Number of model parameters
P  Product concentration (g L−1)
Pf  Final product concentration (g L−1)
PSO  Particle Swarm Optimization
RSD  Residual standard deviation (%)
S  Substrate concentration (g L−1)
S0  Initial substrate concentration (g L−1)

Sf  Final substrate concentration (g L−1)
T  Time (h)
tf  Final time (h)
x  Model variable
x0  Average value between horizontal asymptotes
X  Cell concentration (g L−1)
X0  Initial cell concentration (g L−1)
ε  Error (%)
μS  Specific substrate consumption rate  (gsubs.g−1

cell.h−1)
μP  Specific product production rate  (gproduct.g−1

cell.h−1)
μX  Specific growth rate of cells  (h−1)

Superscript
cal  Calculated
exp  Experimental
min  Minimum
max  Maximum
n  Normalized

Introduction

Currently, ethanol is the main substitute for gasoline and can 
be obtained from alcoholic fermentation [1–3]. The main 
raw materials used for the industrial production of ethanol 
are corn and sugarcane. Other sources of biomass have also 
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been studied and used, such as barley and wheat. However, 
the increase in world demand encourages the search for other 
alternative raw materials. In this context, some authors eval‑
uated the potential of cashew apple juice as culture medium 
[4–8], and ethanol was produced in a laboratory scale at high 
yields and productivities.

In these processes, yeasts are widely used and Saccharo-
myces cerevisiae, which naturally evolved to efficiently con‑
sume sugars such as sucrose, is one of the most important 
cell used in industrial ethanol production due to its robust‑
ness, stress tolerance, genetic accessibility, simple nutrient 
requirements [9]. Moreover, it is one of the most studied 
yeast by the scientific community [9–11]. In this work, 
however, a flocculent S. cerevisiae was evaluated aiming to 
eliminate the cost of separation of cells.

The modified S. cerevisiae (FLO5α gene) tends to form 
small flocs that decant on the bottom of the fermenter at 
the end of reaction. This characteristic allows the microor‑
ganism to be easily separated from the fermented medium, 
which reduces process costs once centrifugation becomes 
unnecessary [12]. Nevertheless, to favor substrate diffusion 
into the cell or inside the flocs, the stirring speed is essential 
to avoid that the cells assume a flocculated state during fer‑
mentation [13–15]. Therefore, the influence of stirring speed 
in the reaction medium containing the flocculating S. cerevi-
siae should be considered as a fermentation parameter [7].

Modeling of real fermentation processes presents a high 
degree of complexity due to genetic characteristics, physico‑
chemical and biochemical laws involved, besides the non‑
linearity of its kinetics [16]. Biochemical reactions involve 
many stages of multiple reactions (in series and parallel) and 
depend on several transport phenomena that may limit the 
observed reaction rates [17].

In general, the rigorous approach of the involved pro‑
cesses can be difficult to apply in the kinetic modeling due to 
inherent non‑linearity, lack of information and experimental 
inaccuracy, as well as deviations from ideal conditions [18]. 
Thus, finding a faster and simpler way to describe fermenta‑
tive processes may be more advantageous. Hybrid modeling 
emerges as an alternative to combine prior knowledge of the 
process through mass balances with artificial neural network 
(ANN) that describe the unknown kinetics of the process. 
Several authors have already proposed the hybrid modeling 
strategy in their studies and concluded that they are reliable 
[17, 19–21].

Mathematical model allows to optimize the physi‑
cal–chemical parameters that influence the general produc‑
tivity of the process. In this study, the operating conditions 
such as temperature, stirring speed, initial cell and sub‑
strate concentrations play a synergistic role in controlling 
cell growth and ethanol production. Therefore, the use of 
advanced modeling and optimization tools, including artifi‑
cial neural network (ANN) and particle swarm optimization 

technique (PSO), was proposed. Those algorithms have been 
found to be more efficient than other statistical optimization 
techniques in deriving global optimal solutions for complex 
and non‑linear bioprocesses [22–25].

PSO is a non‑deterministic bio‑inspired population opti‑
mization method and can be applied to optimize non‑linear 
and non‑continuous problems with multivariable [26]. It is 
based on a constructive method to obtain the initial popula‑
tion and a local search technique to improve the solution of 
the population. With this intention, the individuals (solu‑
tions) of this population should evolve according to specific 
rules that consider the exchange of information among the 
individuals, leading the population to an optimal solution 
[27]. Compared with other evolutionary algorithms, PSO 
has some advantages such as ease implementation, better 
efficiency, less memory requirement, and constructive coop‑
eration between individuals. Therefore, it is more likely and 
quicker to “flock” into the better solution areas and discover 
the optimal results much faster [26, 28].

The originality of this work consists in the use of an 
HNM‑PSO combined strategy to optimize the operational 
conditions, creating a faster, simpler and more efficient alter‑
native to a mechanistic model. Therefore, a hybrid neural 
model (HNM) was proposed to represent the alcoholic fer‑
mentation of cashew apple juice by a flocculating S. cerevi-
siae, including the influence of cell and substrate concen‑
tration, as well as temperature and stirring speed. Then, a 
combined HNM‑PSO algorithm was implemented to maxi‑
mize ethanol production by changing operational conditions.

Materials and methods

Experimental data

Ethanol was produced by Saccharomyces cerevisiae 
CCA008 (with the modified gen FLO5α) using cashew 
apple juice (750 mL of medium at pH 4.5) in a 1 L bench‑
scale bioreactor (Tec‑Bio, Model 1.5, Tecnal, SP, Brazil). 
All experiments were performed in duplicate as reported by 
Pinheiro et al. [29].

The operating conditions, efficiency and productivity of 
the fermentative process are summarized in Table 1. The 
initial concentration of substrate was varied from 70  to 
170 g L−1, temperature from 26 to 42 °C, initial cell con‑
centration from 4 to 10 g  L−1 and stirring speed from 80 to 
800 rpm with a processing time of 10 h.

Data processing

Regressions, interpolations, and normalization of experi‑
mental data were performed to increase the number of 
points available per intermediate points prediction. This data 
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processing was necessary, since the ANN algorithms require 
a large amount of data. Moreover, mathematical model cali‑
bration and neural networks training should avoid bias in the 
data, due for example to experimental measurement error. 
Therefore, Boltzmann’s regression model [30] (Eq. 1) was 
selected, because it has the necessary functional features to 
fit the behavior of curves (inflection points and asymptotes). 
The least squares method was applied to determine the func‑
tion parameters for substrate, cell and product concentra‑
tion profiles at each operational condition. The coefficient 
of determination (R2) was employed aiming to certify the 
quality of each fitting, varying between 0.97 and 1.00:

The functions were interpolated in intervals of 30 min, 
to quadruple the data intended for ANNs training. Thus, 
specific rates of glucose consumption, cell growth and etha‑
nol production were estimated, calculating the derivative of 
the correspondent Boltzmann’s equation for the 19 assays, 
according to Eqs. 2–4:

(1)y =
A1 − A2

1 + e
(x−x0)

dx

+ A2

(2)�X(t) =

dX(t)

dt

X(t)

In summary, the implemented algorithm (Fig. 1) to treat 
the data requires as input the experimental dataset, including 
duplicates, a function for regression (Boltzmann’s regression 
model) and a time interval in which the data points will be 
interpolated. As output, the concentration and specific rate 
profiles are obtained, as well as the interpolated data for 
both, also called pseudo‑experimental data.

Subsequently, the pseudo‑experimental data must be nor‑
malized before applying the artificial intelligence methods, 
since there is a significant improvement in the data distribu‑
tion. It numerically corresponds to adequate the order of 
magnitude of different variables that can be very diverging 
in magnitude. In this work the min–max normalization was 
adopted, Eq. 5, with unitary interval:

(3)�S(t) =

dS(t)

dt

X(t)

(4)�P(t) =

dP(t)

dt

X(t)

(5)zn
i
=

zi − zmin
i

zmax
i

− zmin
i

Table 1  Operational conditions 
of batch fermentation 
to produce ethanol by 
Saccharomyces cerevisiae 
CCA008 using cashew apple 
juice as substrate

a Standards uncertainties: Initial Substrate Concentration  (S0) = 5.45  g/L, Temperature (T) = 2  °C; Initial 
Cell Concentration  (X0) = 0.41 g/L, Stirring Speed (N) = 5%

Assay S0 (g L−1) T (°C) X0 (g.L−1) N (rpm) Efficiency (%) Productiv‑
ity (g  L−1 
 h−1)

1 70 30 4 150 83.6 3.8
2 80 30 4 150 82.6 4.2
3 90 30 4 150 90.0 5.4
4 110 30 4 150 93.0 5.8
5 130 30 4 150 89.5 6.2
6 170 30 4 150 80.2 5.3
7 100 26 5 150 62.3 3.7
8 100 30 5 150 84.5 5.4
9 100 34 5 150 94.4 6.5
10 100 38 5 150 84.3 5.1
11 100 42 5 150 84.0 5.4
12 100 34 3 150 96.8 4.2
13 100 34 8 150 82.7 5.5
14 100 34 10 150 74.6 5.4
15 110 34 7 80 89.7 6.0
16 110 34 4 300 94.1 6.2
17 110 34 5 490 94.2 6.5
18 110 34 5 650 92.8 6.2
19 110 34 5 800 84.2 5.6



332 Bioprocess and Biosystems Engineering (2021) 44:329–342

1 3

Neural network development

Figure 2 shows the typical structure of the neural networks 
developed, with input and output data fed for training, con‑
sisting of three types of layers: input, hidden and output. 
The interconnection between the neurons in each layer is 
defined by weights and biases. ANN learns the cause–effect 
relationship between input and output variables of the given 
dataset, updating their weights so that the error between the 
given data and the simulated output is minimized.

In this work, the described neural networks were devel‑
oped by an iterative procedure implemented in Python/
IPython Notebook version 2.7.8 language associated with 
PyBrain library for machine learning with backpropagation 
trainer.

Of the 19 operational conditions, 01 experiment was ran‑
domly chosen for validation (assay 13) and 18 experiments 
were used for train/test the ANN: the experimental data were 
randomly split into two groups, reserving 75% of data to 
the training phase and the remaining 25% to test the neural 
networks.

The architecture of the ANN (number of nodes in each 
layer and the number of hidden layers) was defined by a trial‑
and‑error procedure. For that, the coefficient of determina‑
tion (R2), as well as the maximum and average error between 
experimental and predicted data by ANN was observed.

Fig. 1  Algorithm diagram implemented for data processing

Fig. 2  ANN typical structure
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Mathematical modeling

Hybrid neural model (HNM)

The fermentative models consist of a set of differential equa‑
tions obtained by combining batch reactor mass balances by 
component (cell, substrate and product) to specific rates of 
reaction (μ). The simplifying hypotheses for the mathemati‑
cal are:

 i. All cells in the fermentative medium were viable;
 ii. Perfecting mixing system, justified by the presence of 

a mechanical stirring device;
 iii. Isothermal, since the bioreactor was equipped with a 

temperature control system;
 iv. Constant reaction volume;
 v. Substrate consumption for the cell maintenance was 

neglected.

In this case, the HNM proposed for the alcoholic fermenta‑
tion of cashew apple juice by S. cerevisiae CCA008 combines 
mass balances with ANNs. The ANNs work as estimators for 
the specific rates of cells growth, substrate consumption and 
production formation. Thus, three networks were created: 
ANN1 ( �X ) ANN2 ( �S)nd ANN3 ( �P).

For better performance in the ANNs training step, the 
input and output layers were fed with normalized data (Eq. 9), 
assigning the same weight for each input variable:

As the specific rates were normalized (ANNs), an alge‑
braic manipulation between normalization function (Eq. 11) 
and Eqs. 6 to 8 was necessary, resulting in the hybrid model 
presented in Eqs. 11–15:

(6)
dX

dt
= �X .X

(7)
dS

dt
= −�S.X

(8)
dP

dt
= �P.X

(9)�
n = f (Xn, Tn, Sn,Nn)

(10)

ANN = f

(
X − Xmin

Xmax − Xmin
,

T − Tmin

Tmax − Tmin
,

S − Smin

Smax − Smin
,

N − Nmin

Nmax − Nmin

)

(11)�
n =

� − �min

�max − �min

(12)� = �
n.
(
�
max − �

min
)
+ �

min

HNM implementation

The implemented HNM is schematized as reported in 
Fig. 3. Initially, the operational conditions are specified 
to calculate initial specific rates of reaction (ANN1, ANN2 
and ANN3). Next, the HNM is resolved by a combination 
of ANNs previously trained and the developed mathemati‑
cal model, combined with two mechanistic conditions to 
guarantee the physical meaning of the model:

(13)
dX

dt
=
[
ANN1.

(
�
max
X

− �
min
X

)
+ �

min
X

]
.X

(14)
dS

dt
= −

[
ANN2.

(
�
max
S

− �
min
S

)
+ �

min
S

]
.X

(15)
dP

dt
=
[
ANN3.

(
�
max
P

− �
min
P

)
+ �

min
P

]
.X

Fig. 3  HNM implementation flowchart
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 i. Maximum theoretical yield for ethanol production is 
0.511  gethanol/gglucose, due to stoichiometry.

 ii. No reaction takes place in absence of substrate 
( dX∕dt = 0 , dS∕dt = 0 and dP∕dt = 0).

Thus, the specific rates can be estimated as a function of 
the fermentative medium conditions (substrate and cells con‑
centrations, temperature and stirring speed) for each instant of 
the reaction. The new conditions are the responses of the ODE 
system solution in the instant t + Δt until it reaches the time 
determined to end the reaction and attainment of the concen‑
tration profiles of biomass, substrate and product.

Accuracy assessment

The precision quality of HNM was evaluated by statistical 
analysis, as follows: residual standard deviation—RSD (%) 
and modified F test. The RSD suggested by Cleran et al. [31], 
as seen in Eq. 16, was used to assess the quality of the predic‑
tion models:

The modified F test is a way to discern models by calcu‑
lating the variance of the error between experimental data 
and theoretical data [32]. This hypothesis test can be used to 
verify the adequacy of a mathematical model, when the aver‑
age experimental error of the data is greater than the apparent 
experimental error calculated by the model ( Eexp > E

apparent ). 
With the Eqs. 17 and 18, it is possible to estimate the apparent 
experimental error (Eq. 19):

(16)RSD =

�∑n

i=1

�
y
exp

i
− ycal

i

�2
n

(17)

S2
m
=

∑n

j

��
X
exp

j
− Xcal

j

�2

+
�
S
exp

j
− Scal

j

�2

+
�
P
exp

j
− Pcal

j

�2
�

3n − p

(18)
S2
e
=

E
2 ∑n

j

��
X
exp

j

�2

+
�
S
exp

j

�2

+
�
P
exp

j

�2
�

3n − nv

(19)
E
exp

>

������
S2
m
.(3n − p)

Ftab.
∑n

j

��
X
exp

j

�2

+
�
S
exp

j

�2

+
�
P
exp

j

�2
�

Optimization method

Particle swarm optimization—PSO

In this work, the optimization aims to determine the opti‑
mal operational conditions for the alcoholic fermentation 
of cashew apple juice, that maximizes efficiency and etha‑
nol productivity. For that, PSO was used combined to the 
HNM.

PSO uses a swarm population, where each individual 
within the swarm is denominated particle. According to 
Jiao, Lian and Gu (2008) [33], a particle i in an interaction 
k moves through the search space with two attributes [33]:

• The current position within the search N‑dimensional 
space Xk

i
=
(
xk
1
,… , xk

n
,… , xk

N

)
 of the problem, with 

xmin
n

≤ xk
n
≤ xmax

n
 for each n ∈ [1,N] , where xmin

n
 and xmax

n
 

are the limits of coordinate n
• I t s  s p e e d  i s  ve c t o r i a l ly  r e p r e s e n t e d  by 

Vk
i
=
(
vk
1
,… , vk

n
,… , vk

N

)
 in the same N‑dimensional 

space of the problem.

After each iteration the speed and position of all par‑
ticles are updated according to the two best values found 
during the search. The first one is calculated by the PSO 
regarding each individual best value found during its life‑
time, pbest. The other one is calculated considering the 
best value of ensemble of points, swarm, named as gbest. 
After finding the two best values, the position and speed 
of the particles are obtained by Eqs. 20 and 21:

PSO implementation

The first step for PSO implementation is to define the con‑
trol variables and the objective function to be used for 
maximization.

 i. Control variables: cells and substrate initial concentra‑
tions, temperature and stirring speed.

 ii. Objective function: efficiency and productivity.

(20)
Vk+1
i

= w.Vk
i
+ c1.r1.

(
pbestk

i
− Xk

i

)
+ c2.r2.

(
gbestk − Xk

i

)

(21)Xk+1
i

= Xk
i
+ Vk+1

i

Table 2  Side bounds of the search space

X0 (g  L−1) T (°C) S0 (g  L−1) N (rpm)

Lower bounds of variables 3 26 70 80
Upper bounds of variables 10 42 170 800



335Bioprocess and Biosystems Engineering (2021) 44:329–342 

1 3

The objective function associates each point of the solu‑
tions space to a real number that allows measuring the 
response quality towards the initial objective. Perceiving 
that the individual function analysis would not be suffi‑
cient to determine the optimal operation point, the prob‑
lem now becomes multiobjective. To simplify the optimi‑
zation, the association of objective functions method was 
chosen, applying a geometric mean between efficiency and 
productivity (F2). Equations 22, 23 and 24 show the objec‑
tive functions for efficiency (F1), productivity (F2) and the 
geometric mean (F3) for both, respectively:

(22)F1 = max

(
Pf

0.511.
(
S0 − Sf

)
)

(23)F2 = max

(
Pf

tf

)

(24)F3 = max

⎛⎜⎜⎝

����
�
Pf

tf

�
.

�
Pf

0.511.
�
S0 − Sf

�
�⎞⎟⎟⎠

Fig. 4  Process optimization flowchart

Table 3  PSO parameters

Number of particles in the swarm 100

Particle Speed Factor 0.5
Maximum number of iterations 100
Minimum swarm pitch 10−3

Minimum error of objective function value 10−3

Table 4  ANNs architecture

Layer Neurons number Activation function

ANN1 (�
X
)

1st hidden layer 20 Hyperbolic tangent
2nd hidden layer 5 Hyperbolic tangent
Output layer 1 Linear
ANN2 (�

S
)

1st hidden layer 25 Hyperbolic tangent
2nd hidden layer 20 Hyperbolic tangent
3rd hidden layer 20 Hyperbolic tangent
Output layer 1 Linear
ANN3 (�

P
)

1st hidden layer 30 Hyperbolic tangent
2nd hidden layer 20 Hyperbolic tangent
3rd hidden layer 5 Hyperbolic tangent
Output layer 1 Linear
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Due to the reaction stoichiometry, the theoretical yield 
 (YP/S) for the ethanol production is 0.511  gethanol/gglucose+fructose, 
which limits the efficiency obtained by the HNM, avoiding 
non‑realistic results. Thus, Eqs. 25 and 26 represent the ine‑
quality constraints used in the optimization:

Since the objective functions and inequality constraints are 
defined, lateral restrictions of the search space of interest vari‑
ables are defined and presented in Table 2.

The optimization algorithm is illustrated in Fig. 4, in which 
the PSO input parameters are necessary and the limits of the 
search space. Then, the HNM is solved (ODE system com‑
bined with ANN) and the objetive functions are calculated for 
optimal fermentation time (dP∕dt = 0) testing the inequality 
constraints when necessary. Finally, when the objective func‑
tion is maximized, the optimal operational conditions for the 
process are shown.

PSO algorithm used was obtained from PySwarms library 
and the optimization algorithm was implemented in Python/
IPython Notebook version 2.7.8. The performance parameters 
used by the PSO algorithm were chosen to reconcile the simu‑
lation time and computational cost with the quality of the pre‑
dictions and the parameters are shown in Table 3.

Results and discussion

Mathematical modeling

The kinetic model was determined in accordance with the 
architectures shown in Table 4. The specific rates of cells 
growth (ANN1), substrate consumption (ANN2) and prod‑
uct formation (ANN3) were estimated as a function of the 
instant concentration of substrate and cells, temperature 
and stirring speed. Several training rounds were conducted 
with different neural network architectures (1 to 4 hidden 
layers, 5 to 30 neurons per layer) of symmetrical type.

As it can be seen in Fig. 5, the simulated data are ran‑
domly spread in relation to the bisector line. These results 
indicate that the values predicted by the neural networks 
are satisfactory to represent the specific rates, as shown 
in Table 5.

The maximum errors of the ANN are higher than the 
10%, which is the standard error value accepted in bio‑
process [34]. However, the amount of data above this limit 
is irrelevant against the total set. Moreover, all the mean 
deviations calculated were below 2% (Table 5), indicating 
the quality of the ANN’s prediction.

(25)Sf ≥ 0

(26)max

(
Pf

S0 − Sf

)
< 0.511

Fig. 5  ANNs simulations: Comparison between RNA predictions and 
pseudo‑experimental data (circles); (—) Bisector line (—) Specific 
error of 10%

Table 5  Maximum and average 
errors of neural networks

Maximum 
error (%)

Average 
error 
(%)

ANN1 10.1 1.4
ANN2 14.0 1.1
ANN3 13.5 1.6
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Fig. 6   Experimental and simu‑
lated data for assay 4: (closed 
circles) cell concentration (g 
 L−1); (closed square) substrate 
concentration (g L−1); (closed 
triangles) ethanol concentra‑
tion (g  L−1); (—) HNM, (—) 
Confidence interval with 90% 
significance level for the experi‑
mental data
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Fig. 7   HNM validation (Assay 
13): (closed circles) cell 
concentration (g L−1); (closed 
square) substrate concentration 
(g L−1); (closed triangles) etha‑
nol concentration (g L−1); (—) 
HNM, (—) Confidence interval 
with 90% significance level for 
the experimental data



339Bioprocess and Biosystems Engineering (2021) 44:329–342 

1 3

Table 6 shows the statistical analysis for the ANNs 
learning process, where the RSDs values represent 
the standard deviation of the data in comparison to the 
model. The apparent error calculated for the process was 
𝜀exp > 8.37% , proving that the HNM is a more direct and 
efficient alternative to represent the process of ethanol pro‑
duction by S. cerevisiae CCA008 using cashew apple juice 
as substrate when compared to the mechanistic model pre‑
viously reported by our group [7].

To verify the adequacy of the model to the experimen‑
tal data used in the training of the ANN, experimental and 
simulated data for assay 4 (see operational conditions in 
Table 1) were compared (Fig. 6). The model is capable to 
describe the behavior of the fermentation, since the model 
not only represent the experimental points but also is con‑
tained in the confidence interval of the duplicates, with 90% 
significance level.

Model validation

After confirming the HNM statistical adequacy, the next step 
was the model validation by checking if it fits a new dataset 
(Assay 13), not included in learning. Figure 7 shows the 
comparison between the simulated and experimental data 
of assay 13, where it is possible to see that the model was 
able to predict the experimental data. Therefore, this simula‑
tion represents the general validation of the proposed model, 
since it tests the capability of the HNM to properly predict 
the system behavior, as verified on the statistical analysis 
presented on Table 6.

The hybrid model validation returns higher RSD values 
and a lower apparent mean error when compared to the train‑
ing step, reproducing satisfactorily the assays.

The performance of the HNM is comparable to the one 
obtained by the experimental data used to execute the phases 
of the training and test. Reasonable values of RSDs and 
apparent errors (Test F) were obtained, lower than experi‑
mental mean errors of the assays for biomass (11.8%), sub‑
strate (16.2%) and product (11.9%) concentrations.

Thus, the results obtained show that the ANNs are capa‑
ble to adequately predict the system behavior, even when 

operating in non‑explored conditions. The HNM developed 
is particularly useful regarding the control and optimization 
of processes, providing trustworthy predictions for biotech‑
nological applications.

Optimization

One of the biggest challenges of this work was the optimi‑
zation of objective multimodal functions deriving from the 
inherent complexity of the biochemical processes and the 
number of optimization variables. Due to this, the analysis 
was restricted to a maximal time of 10 h of fermentation 
with low stirring speed, but enough to keep the process well 
mixed. This selection was made to minimize the energy con‑
sumption costs of the process. Table 7 presents the maximal 
values and operation conditions obtained by PSO to each 
objective function chosen.

The optimization of the objective function Efficiency  (F1) 
is in accordance to the statistical model proposed and experi‑
mentally validated in a previous work [29], using the Monod 
model [6, 29]. This fact indirectly validates the optimization 
model HNM‑PSO. In these conditions, the productivity was 
6.3 g  L−1h−1 after 8 h of reaction.

High values of productivity  (F2) were obtained (8.5 g  L−1) 
after 7 h of fermentation with an efficiency of 83%, which is 
also in accordance with the optimization of the mechanistic 
model proposed before [7]. Comparing  F1 and  F2, the initial 
concentration of substrate and temperature are different. To 
maximize the productivity, high levels of substrate should be 
available in the reaction medium, which promotes a higher 
ethanol concentration. Temperature also improves rates, 
which has an impact on productivity.

Therefore, to evaluate a combination of productivity and 
efficiency, a multiobjective function  (F3) was proposed.  F3 
was defined to equilibrate the relation between substrate 
consumption to produced ethanol and time of reaction. Fig‑
ure 8 shows a simulation for the ideal condition of fermen‑
tation (initial substrate concentration 127 g L−1, tempera‑
ture 35 °C, initial cells concentration 5.8 g L−1, and stirring 
speed 111 rpm), achieving an efficiency and productivity of 

Table 6  HNM statistical analysis. The RSDs values represent the 
standard deviation of the data in comparison to the model. εexp is the 
experimental error

Biomass Substrate Product

Training 𝜀
exp

( % ) > 7 10.9 9.4
RSD 0.6 8.0 3.3

Validation 𝜀
exp

( % ) > 8 10.8 8.2
RSD 1.2 9.0 4.9

Table 7  Maximum values and optimal conditions of objective func‑
tions for efficiency  (F1), productivity  (F2) and the geometric mean 
between efficiency and productivity  (F3)

F1 = 94.5% F2 = 8.5 
(g L−1 h−1)

F3 = 2.7

X0 (g L−1) 6.0 6.0 5.8
S0 (g L−1) 101.5 148.2 127.0
T (°C) 34.0 36.0 35.0
N (rpm) 110.0 107.0 111.0
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Fig. 8   HNM simulation for 
objective function optimiza‑
tion  F3
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91.5% and 8.0 g L−1 h−1, respectively, at approximately 7 h 
of bioprocess.

The optimal conditions of initial substrate concentration 
and temperature for function  F3 are comprised in the interval 
of  F1 and  F2, while the initial cell concentration and stirring 
remained almost constant. This fact was expected, because 
the objective function  F3 captures the combined effect of the 
efficiency and productivity parameters.

Conclusion

The HNM approach proved to be a very efficient tool to 
analyze and simulate the alcoholic fermentation of cashew 
apple juice by a flocculant yeast (S. cerevisiae CCA008). 
The algorithm appears as an alternative for biotechnologi‑
cal processes that presents a high level of complexity due to 
physicochemical and biochemical laws and evolved genetics. 
In this work, the use of ANN allowed to disregard a com‑
plex reaction mechanism. In addition, the HNM presented 
a high level of generality, allowing this model to be applied 
to other fermentation processes. Last but not least, the com‑
bination of advanced modeling techniques and optimiza‑
tion was successfully applied to maximize efficiency and 
reaction productivity. Generally speaking, the HMN‑PSO 
optimization technique can be very useful in the optimiza‑
tion of bioprocesses, traditionally non‑linear and involving 
multiple variables.
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