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Abstract
To achieve the goals of sustainable development, supplies of renewable energy must be increased and methods of stable pro-
duction developed. This study focused on the anaerobic digestion process using biomass as a raw material, which represents 
a renewable energy resource which is robust to environmental change and can be adjusted to suit supply and demand. A 
state-space model of the process was built in this study, consisting of two differential equations and one algebraic equation. 
The parameters included in the model are dependent on the operating conditions of the process. Automatic estimation of 
parameters from the input and output data of the process enables easy use of the model under any operating conditions. An 
adaptive-identifier control system was introduced as the parameter-estimation system, which made it possible to obtain the 
least squares estimate of parameters. When accumulated biogas generation per day was predicted using the model, goodness-
of-fit analysis indicated an accuracy of over 80% in all cases, validating the model and estimated parameters. Future tasks 
will involve implementation of model predictive control into anaerobic digestion processes with the model and parameter-
estimation system developed in this study.
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Introduction

Presently, there is a strong worldwide reliance on non-
renewable resources such as fossil fuels. The current situa-
tion, in which these resources are becoming scarce, means 
that the necessary cessation of all production activities is 
becoming a significant risk. Increasing and stabilizing the 
supply of renewable energy, which will not be exhausted, are 
key in the achievement of sustainable-development goals. 
However, the production of renewable energy by wind and 
solar power, which currently represent the largest contribu-
tion to renewable energy worldwide, fluctuates according 
to environmental conditions. These resources are therefore 
termed variable renewable energy sources. Stable power 
sources such as thermal or nuclear power and energy carriers 

such as hydrogen must be produced by advanced technol-
ogy to compensate for the output fluctuation of renewable 
energy, and enable its practical use. Biomass is a renewable 
resource that is robust to environmental changes. This has 
attracted a lot of interest because it represents a raw mate-
rial from which an energy system can be developed that 
is completely independent of fossil fuels. Such a system, 
involving the combination of variable renewable energy and 
robust energy, can compensate for fluctuations in the output 
of variable renewable energy sources through the produc-
tion of energy from biomass. The issue of biogas production 
should be managed so that the energy supply is stabilized.

Of the energy production technologies that utilize bio-
mass, anaerobic digestion is an excellent method, which 
can simultaneously perform waste treatment and energy 
recovery [1, 2]. Furthermore; the digestate, which is a by-
product of anaerobic digestion, can be used as a fertilizer 
[1, 2]. The numerical optimization of the anaerobic diges-
tion process has been studied for various methods. Mendez-
Acosta et al. regulated volatile fatty acid concentration and 
total alkalinity, inhibitors of anaerobic digestion, to improve 
process stability using a dynamic model [3]. Mauky et al. 
developed a feeding management strategy to compensate 
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for the difference between energy supply and demand in the 
International Water Association (IWA) Anaerobic Diges-
tion Model No. 1 (ADM1) [4, 5]. Therefore, there have 
been some attempts to exploit the advantages of anaerobic 
digestion for energy supply and demand adjustments, and 
the models enable accurate prediction of gas generation and 
offer flexibility and robustness in various operating condi-
tions. However; in terms of feasibility, the construction of a 
model for control of biogas production is complex because 
the current biogas generation prediction model has many 
parameters which must be determined in the various dif-
ferent operating conditions (for example, the temperature 
of the digester and solid concentration of the sludge) [6]. 
It is cumbersome and undesirable to determine all of the 
parameters included in ADM1 for each operating condi-
tion experientially. A simplified model for the prediction 
of biogas generation may address some of these challenges. 
From the viewpoint of feasibility at the industrial scale of a 
biogas plant, Hend et al. developed a simple model of biogas 
generation and conducted a parametric study for optimiza-
tion of the model constants [7].

It is not possible to compensate for fluctuations in the 
output of variable renewable energy because the process is 
currently used for treating daily waste (e.g., food waste), 
and the amount of raw material input is therefore limited. 
If the raw material input is changed rapidly, the fermen-
tation state may shift excessively and inhibit fermentation 
[8]. An improved model for predicting biogas generation 
while presuming the fermentation state is needed. To this 

end, AMD1 is widely used, but the present study aimed to 
represent the state-space of the anaerobic digestion process 
due to the above-mentioned reasons. The state-space model 
can predict the unobserved fermentation state, including 
parameters such as bacterial and substrate concentrations, 
from the measured gas flow rate. Furthermore, it is prefer-
able to be able to easily estimate the parameters contained 
in the model. The objective of this study was, therefore, to 
construct a state-space model that is suitable for controlling 
biogas production as well as a system that can automati-
cally estimate the necessary parameters representing input 
and output characteristics of the anaerobic digestion process 
from actual operation data.

Materials and methods

Anaerobic digestion process flow

Figure 1 presents the flow diagram of the anaerobic digestion 
process used in this study. Food waste from the cafeteria and 
copy-paper waste from Hokkaido University were used as raw 
materials. Food waste was ground using a food processor and 
copy-paper waste was cut using a shredder. Food waste was 
bagged in small portions and stored frozen, and paper waste 
was stored at ambient temperature until use as feedstock. To 
make the feedstock, N-rich material—namely, food waste—
was mixed with paper as an auxiliary material to adjust the 
C/N ratio to around 40 to reduce ammonia inhibition (which 

Fig. 1   Anaerobic digestion processing flow. Feedstock prepared in 
the pre-treatment unit from food and paper waste was added to the 
anaerobic digester in an anaerobic-digestion unit. Biogas was col-

lected by gas trap bag in the energy unit and the digestate was dis-
posed of via the disposal unit
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can be a result of anaerobic digestion of N-rich feedstock) [9, 
10]. To this end, the ground food waste and shredded paper 
were mixed in a mass ratio of 2.5:1. The resulting feedstock 
was added to a horizontal cylindrical reactor (effective volume: 
0.235 m3) which was heated to around 52 °C and regularly 
stirred to allow for degassing and ensure adequate mixing of 
the feedstock. Biogas was collected using a gas trap bag. A 
portion of the discharged digestate was collected at the time 
of feeding and the residual digestate (excluding the returned 
digestate) was taken as the surplus digestate.

The total and volatile solids contents of the feedstock were 
about 40% and 35%, respectively. The sludge in the reactor 
was maintained at thermophilic temperature (52 °C). The 
anaerobic digestion process flow that was used in this study 
was therefore classified as dry thermophilic processing, and 
was expected to minimize digestate emissions because addi-
tional water was not required [6].

State‑space model of anaerobic digestion process

We made some assumptions about the anaerobic digestion 
process to simplify the construction of the model. The overall 
reaction from the input of organic compounds (substrate) to 
biogas generation is represented by the model. The reactor was 
a semi-batch type and its sludge flow was complete-mixing 
flow. The volume of sludge in the reactor remained constant 
at 0.200 m3. To describe the mathematical state of the process, 
the bacterial concentration “n(t)” and substrate concentration 
“s(t)” were considered as the state variables that represented 
the fermentation status of the reactor. The bacterial and sub-
strate concentrations in the feedstock were considered the 
manipulated variables “un(t)” and “us(t)”, respectively, and 
biogas was a controlled variable “v(t)”. Using these factors, 
the reactor was simplified as shown in Fig. 2.

The mathematical model of anaerobic digestion was based 
on the mass balance theory. The state equation comprises two 
differential equations; the first representing bacterial growth 
and the second representing substrate decomposition. In this 
study, we used the logistic difference equation to represent 
bacterial growth, as it is an effective equation in the field of 
population biology [7]. The substrate decomposition equation 
shows that degradation of the substrate occurs in line with 
bacterial growth. The output equation refers to biogas flow 
rate, which represents the generation of biogas as the sub-
strate decomposes and the bacteria multiply [11]. The specific 
growth rate in these equations is given by the modified Monod 

equation [12]. The mathematical model of the anaerobic diges-
tion process is given by concatenating two differential equa-
tions and one algebraic equation (Eq. 1):

where n(t) is the bacterial concentration (kg/m3), �(s) is the 
specific growth rate (h−1), b is the autolysis rate (h−1), nmax 
is the maximum bacterial concentration (kg/m3), un(t) is the 
bacterial input (kg/m3/h), s(t) is the substrate concentration 
(kg/m3), Y  is the bacterial cell yield, us(t) is the substrate 
input (kg/m3/h), v(t) is the biogas flow rate (m3/h), m is the 
sludge volume (m3), kg1, kg2 is the biogas generation coef-
ficients, �max is the maximum specific growth rate (h−1), ks 
is the dissociation constant (kg/m3), and ki is the inhibition 
coefficient.

The perturbation method near the equilibrium point was 
applied to this nonlinear model. By disregarding the sec-
ond- and higher-order terms after Taylor expansion of a 
two-variable function, referring to the appendix for details 
(Eq. 8–11), the linear time invariant state-space model was 
obtained (Eq. 2):

(1)

⎧⎪⎪⎨⎪⎪⎩

dn(t)

dt
= (�(s) − b)n(t)

�
1 −

n(t)

nmax

�
+ un(t)

ds(t)

dt
= −

1

Y
�(s)n(t) + us(t)

v(t) =
�
kg1b + kg2

1

Y
�(s)

�
mn(t)

,

�(s) = �max

s(t)

ks + s(t) + kis
2(t)

Fig. 2   Graphical representation of the semi-batch-type reactor used 
for anaerobic digestion in the present study. un(t) bacterial input (kg/
m3/h), us(t) substrate input (kg/m3/h), n(t) bacterial concentration (kg/
m3), s(t) substrate concentration (kg/m3), v(t) biogas flow rate (m3/h)
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(2)

dX(t)

dt
= ApX(t) + BpU(t)

y(t) = CpX(t),

where: X(t) =

[
n(t)

s(t)

]
, U(t) =

[
un(t)

us(t)

]
, y(t) = v(t),

Ap =
�F

�X(t)

||||(Xeq,Ueq,t)
=

[
a11 a12
a21 a22

]
,

Bp =
�F

�U(t)

||||(Xeq,Ueq,t)
=

[
b11 b12
b21 b22

]
,

Cp =
�g

�X(t)

||||(Xeq,t)
=
[
c11 c12

]
,

a11, a12, a21, a22, b11, b12, b21, b22, c11, c12 = Jacobian elements,

F(X(t),U(t), t) =

[
f1(X(t),U(t), t)

f2(X(t),U(t), t)

]
,

f1(X(t),U(t), t)∶
dn(t)

dt
= (�(s) − b)n(t)

(
1 −

n(t)

nmax

)
+ un(t),

f2(X(t),U(t), t)∶
ds(t)

dt
= −

1

Y
�(s)n(t) + us(t), and

g(X(t), t)∶ v(t) =
(
kg1

1

Y
�(s) + kg2b

)
mn(t).

Here, the matrices that are coefficients of the vector of 
the state variables “X(t)” and the vector of the manipulated 
variables “U(t)” are partial derivative matrices evaluated 
by the equilibrium point of the Jacobian matrix. They are 
parameters which provide information relating to the char-
acteristics of the anaerobic digestion process according to 
operating conditions.

Parameter‑estimation system

First, we performed a Z-transformation on the state-space 
model, referring to the appendix for details (Eqs. 12–14), 
to obtain discrete input and output relational expressions 
(Eq. 3):

The parameters of the original model (Eq. 2) were con-
verted to “a1,2” and “b1,2,3,4”. Once their values are estimated, 
biogas generation—“y(k)”—can be predicted by inputting 
the bacterial and substrate concentrations in the feedstock—
“U(k)”—into Eq. 3. Next, we developed a control system using 

(3)

af (q)y(k) = Bf(q)U(k),

where: af (q) = q−2 +
(
−a11 − a22

)
q−1 +

(
a11a22 − a12a21

)

= q−2 + a1q
−1 + a2,

and Bf(q) =
[
c11

(
q−1 − a22

)
+ c12a21 c11a12 + c12

(
q−1 − a11

) ]

=

[
b1q

−1 + b2 b3q
−1 + b4

]
.

Fig. 3   Adaptive identifier. U(k) feedstock input (kg/m3/h), un(t) bac-
teria input (kg/m3/h), us(t) substrate input (kg/m3/h), y(t) biogas flow 
rate (m3/h), ym(t) scaled biogas flow rate (L/h), ξ11,12,21,22,3,4 control 
signals, a1,2” and “b1,2,3,4 parameters, h(q−1) is the filter, mn scaling 

coefficient related to bacterial output, ms scaling coefficient related 
to substrate output, l control system design constant, ŷ m(t) predicted 
scaled biogas flow rate (m3/h), ε(k) error (m3/h), KAI coefficient for 
least squares method, 𝛩̂ estimated parameters
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the adaptive identification theory to estimate these parameters 
from actual operation data of the process [13]. The control 
system shown in Fig. 3 was denoted as the adaptive identifier. 
Input and output data were multiplied by the filter to provide 
the control signals “ξ11,12,21,22,3,4” in the adaptive identifier. The 
control signals were multiplied by the operation parameters 
and integrated, and the linear relationship between the output 
and parameters with the proportionality constant as the control 
signal was derived using Eq. 4:

The parameters converted in Eq. 3 were further integrated 
into “Θ” in Eq. 4. If the values of this matrix element are 
obtained as described above, biogas generation can be pre-
dicted using Eq. 3. The difference between the measured out-
put value and the value that was calculated using the estimated 
value of the parameter was defined as the output error “ε(t)” 
using Eq. 5:

(4)

y(k) = h(q)�T
�(k),

where ∶ � =
[
b1 b3 b2 b4 2l − a1 l2 − a2

]T
, and

�(k) =
[
�11(k) �12(k) �21(k) �22(k) �3(k) �4(k)

]
T.

(5)𝜀(k) = y(k) − h(q)�̂
T
�(k).

With the assumption that the estimated value of the param-
eter obtained with minimized error was a true value, the least 
squares method was applied to Eq. 5 with n data sets repre-
senting input and output. The least squares estimate of the 
parameter was obtained using the normal equation (Eq. 6):

To quantitatively evaluate the prediction accuracy of the 
model with the estimated parameters, the goodness-of-fit 
index (GFI) was introduced (Eq. 7) [14]:

The adaptive identifier includes a switch relating to sub-
strate input because we consider anaerobic digestion pro-
cess to be a 2-input and 1-output system. This enables the 
estimation of all parameters either with or without substrate 
input. The filter “h(q−1)”, scaling coefficient “mn and ms” 
and control system design constant “l” were tuned so as to 
obtain the desired estimation result.

(6)

�̂ =
(
�n�

T
n

)−1
�nY

T
n
,

where: �n =
[
�(1) �(2) ⋯ �(n)

]T
, and

Yn =
[
y(1) y(2) ⋯ y(n)

]T
.

(7)GFI
[
%
]
= 100

(
1 −

y(k) − ŷ(k)

y(k) −mean(y)

)
.

Fig. 4   Simulation data for (I) feedstock input and (II) gas generation rate
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Simulation data

Substrate concentration was defined as the mass reduction 
that occurred following heating at 105 °C for 24 h then 
600 °C for 3 h in an oven. Biogas generation was measured 

hourly with a wet gas meter (W-NKDa-0.5B, SHINA-
GAWA) and recorded using a data logger (Data mini LR 
5000, HIOKI).

The data used in the simulation were the actual opera-
tion data collected in our laboratory in 2017 (Fig. 4). Bacte-
rial input at 0 h was taken as the amount of substrate con-
tained in the digestate at the beginning of the process, and 
feedstock input was performed four times at 0, 24, 72, and 
96 h. Data of 3 days from 04/07/2017 (72 h data) when no 
feedstock was loaded and 1 week from 04/17/2017 (168 h 
data) when feedstock was loaded were used for model 
construction to estimate parameters. Data obtained dur-
ing two 1-week periods from 06/05/2017 (168 h data) and 
06/12/2017 (168 h data) were used for model validation. The 
organic loading rates of the model-construction period and 

Table 1   Tuned constants

h(q−1) filter, mn scaling coeffi-
cient related to bacterial output, 
ms scaling coefficient related to 
substrate output, l control sys-
tem design constant

h(q−1) mn ms 1

1 1 0.001 0.1

Fig. 5   Control signals related to (I) bacterial input and (II) substrate 
input. Definitions: ξi is the controls signal. Numbers in the figure leg-
end refer the subscripts of the control signals “i”

Fig. 6   Estimated parameters related to bacterial input for (I) the out-
put side in (Eq. 3) and (II) the input side in (Eq. 3). Numbers in the 
figure legend refer the subscripts of the parameter “i”. Definitions: ai 
parameter on the output side in Eq. 3, bi parameter on the output side 
in Eq. 3
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the model-validation periods were different; the former was 
3.96 (kg-VS/m3-digester/day) and the latter were 2.17 and 
3.25 (kg-VS/m3-digester/day).

Results and discussion

The results of tuning the constants related to the control 
system are shown in Table 1. The control signals generated 
by the adaptive identifier are illustrated in Fig. 5. The bacte-
rial and substrate inputs originally appear as several pulse 
signals because the anaerobic digestion processing flow used 
in this study was a semi-continuous system. As can be seen 
from Fig. 5, the pulse input is converted into a control signal 
that changes continuously according to the input. Figure 6 
shows the results of parameter estimation using data from 

the days where feedstock was not added. Although the esti-
mated value of the parameter fluctuated largely at first, it 
gradually stabilized as the data increased, converging after 
about 24 h. This indicates that at least 24 h of identifica-
tion experiment is required to estimate parameters related 
to bacterial input.

The parameter estimation results from data of the days 
when feedstock was loaded; in other words, the result of 
executing adaptive identification by turning on the switch 
relating to substrate input are shown in Fig. 7. The estimated 
value of the parameter changed greatly at the beginning of 
the experiment, converging after 120 h. Therefore, at least 
120 h of identification experiment are necessary for the esti-
mation of parameters related to substrate input.

Figure 8 shows the results of biogas generation prediction 
using a model constructed with the estimated parameters, 

Fig. 7   Estimated parameters relating to substrate input on (I) the out-
put side in (Eq. 3) and (II) the input side in (Eq. 3). Numbers in the 
figure legend refer the subscripts of the parameter “i”. Definitions: ai 
parameter on the output side in Eq. 3, bi parameter on the output side 
in Eq. 3

Fig. 8   Predicted gas generation for the data set that was used for 
model construction in relation to (I) bacterial input and (II) substrate 
input
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which reveal the high accuracy of the model. Figure 9 repre-
sents the results of validation performed with different data 
sets to those used for model construction. This was carried 
out to confirm the prediction accuracy of the model. The ini-
tial bacterial concentration of the model-construction period 
from 04/07/2017 to 04/17/2017 and the model-validation 
periods from 06/05/2017 to 06/12/2017 were different; the 
former values were 41 and 38 (kg/m3) and the latter values 
were 33 and 34 (kg/m3). The predicted biogas generation 
for the validation data sets exhibited low GFI (38.1% and 
9.84%) because degassing due to agitation and heating had 
a significant influence on the recorded value for each hour. 
Therefore, a graph of accumulated biogas generation was 
constructed (Fig. 10). The GFIs for the two datasets are 
84.39% and 96.53%. Figure 11 shows the GFI of accumu-
lated biogas generation per day, which is more than 80% 

even at the lowest value except for the values after the 4th 
day of the period from 06/05/2017, when biogas generation 
of the 3rd day could not be predicted. This indicates that the 
model and parameter-estimation system constructed in this 
study provide high prediction accuracy for periods of 1 day 
or more. By applying this model and parameter-estimation 
system, it is possible to predict the biogas generation of an 
anaerobic digestion process under various operating condi-
tions. However, in an actual plant it is necessary to con-
sider that operating conditions such as feedstock composi-
tion change continually. This issue could be overcome by 
introducing an oblivion factor that limits input data for the 
parameter-estimation system to, for example, only the last 
72 h. Estimated parameters are thereby adaptively controlled 
in response to changes in operating conditions, enabling 
accurate prediction of biogas production.

Fig. 9   Predicted gas generation for the data set that was used for 
model validation from the periods beginning (I) 06/05/2017 and (II) 
06/12/2017

Fig. 10   Accumulated gas generation of the data set that was used for 
model validation from the periods beginning: (I) 06/05/2017 and (II) 
06/12/2017



53Bioprocess and Biosystems Engineering (2020) 43:45–54	

1 3

Conclusions

In this study, which aimed to construct a biogas produc-
tion management system that can be employed to stabi-
lize renewable energy supplies, we established a model 
and parameter-estimation system which is applicable to 
anaerobic digestion processes with various operating con-
ditions. The adaptive identifier control system can auto-
matically estimate parameters from input and output data. 
Use of this adaptive identifier revealed that at least 24 and 
120 h of identification experiments were required to con-
verge the parameters with respect to bacterial and substrate 
inputs, respectively. The model and estimated parameters 
exhibit high prediction accuracy, and future developments 
should focus on constructing biogas production manage-
ment systems that incorporate model predictive control of 
biogas generation. Such systems will enable the stabiliza-
tion of renewable energy supplies.

Acknowledgements  We thank Amy Phillips, PhD, from Edanz Group 
(www.edanz​editi​ng.com/ac) for editing a draft of this manuscript.

Compliance with ethical standards 

Conflict of interest  The authors declare that they have no competing 
interests.

Appendix

Equation 2 was derived by the following procedure. First, the 
time evolution of state and output variables of a plant were 
considered as follows (Eq. 8):

Assuming a reaction near the equilibrium point, Eq. 8 
became Eq. 9:

The right side of Eq. 9 was rewritten by disregarding the 
second- and higher-order terms after Taylor expansion of a 
two-variable function (Eq. 10):

Finally, Eq. 2 was given by transporting the equilibrium 
point of Eq. 10 to the origin (Eq. 11):

Equation 3 was derived by Z-transformation of the state-
space model (Eq. 2). This is equivalent to Laplace transform 
on discrete time, and it replaces the operator in the Laplace 

(8)
dX(t)

dt
= F(X(t),U(t), t)

y(t) = g(X(t), t).

(9)

dX(t)

dt
= F

(
Xeq + X′(t),Ueq + U′(t), t

)

y(t) = g
(
Xeq + X′(t), t

)
,

where
(
Xeq,Ueq

)
= equilibrium point,

and
(
X′(t),U′(t)

)
= perturbation.

(10)

F
(
Xeq + X′(t),Ueq + U′(t), t

)
≈ F

(
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)

+

(
X′(t)
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F(X(t),U(t), t)

|||||(Xeq,Ueq,t)

y(t) = g
(
Xeq

)
+ X′(t)

�g

�X(t)

||||(Xeq,t)

(11)

dX(t)

dt
=

�F

�X(t)

||||(Xeq,Ueq,t)
X(t) +

�F

�U(t)
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||||(Xeq,Ueq,t)
X(t).

Fig. 11   Goodness-of-fit values per day of accumulated gas generation 
for the periods beginning: (I) 06/05/2017 and (II) 06/12/2017

http://www.edanzediting.com/ac
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transform with a delay operator. The Z-transformation of Eq. 2 
is represented by Eq. 12:

Since the coefficient of the first variable on the left side 
of Eq. 12 is arithmetically scalar, Eq. 13 was obtained from 
Eq. 12:

Here, we did not consider the initial value in this study. 
Equation 3 was finally given by combining the two expres-
sions of Eq. 13, as follows:

To verify the mechanism of the adaptive identifier shown 
in Fig. 3, we obtained the expansion of Eq. 4, as follows:

Furthermore, organizing Eq. 15:

(12)

q−1X(k) − X(0) = ApX(t) + BpU(t)

y(k) = CpX(k),

where q−1 = delay operator.

(13)
X(k) =

(
q−1I − Ap

)−1(
BpU(t) + X(0)

)

y(k) = CpX(k).

(14)

y(k) = Cp
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)−1
BpU(t),
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(
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)−1
=

adj
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(
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)

=
1

q−2 +
(
−a11 − a22

)
q−1 +

(
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)

×

[
q−1 − a22 a12
a21 q−1 − a11

]
.

(15)

y(k) = h(q)
(
b
1
�
11
(k) + b

3
�
12
(k) + b

2
�
21
(k)

+b
4
�
22
(k) +

(
2l − a

1

)
�
3
(k) +

(
l2 − a

2

)
�
4
(k)

)

= h(q)

(
b
1

q−1

(q−1 + l)
2
un(k) + b

3

1

(q−1 + l)
2
un(k)

+b
2

q−1

(q−1 + l)
2
us(k) + b

4

1

(q−1 + l)
2
us(k)

+
(
2l − a

1

) q−1

(q−1 + l)
2
y(k) +

(
l2 − a

2

) 1

(q−1 + l)
2
y(k)

)

= h(q)

(
b
1
q−1 + b

3

(q−1 + l)
2
un(k) +

b
2
q−1 + b

4

(q−1 + l)
2
us(k)

+
2q−1l − a

1
q−1 + l2 − a

2

(q−1 + l)
2

y(k)

)
.

(16)

((
q−1 + l

)2
−
(
2q−1l − a

1
q−1 + l2 − a

2

))
y(k)

= h(q)
((
b
1
q−1 + b

3

)
un(k) +

(
b
2
q−1 + b

4

)
us(k)

)
.

It can be said that this equation and Eq. 3 are identical. 
Therefore, the linear relationship between the output and 
parameters (Eq. 4) was derived from Eq. 3 and gave reliable 
estimation results.
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