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Abstract
Hybrid semi-parametric modeling, combining mechanistic and machine-learning methods, has proven to be a powerful 
method for process development. This paper proposes bootstrap aggregation to increase the predictive power of hybrid 
semi-parametric models when the process data are obtained by statistical design of experiments. A fed-batch Escherichia 
coli optimization problem is addressed, in which three factors (biomass growth setpoint, temperature, and biomass concentra-
tion at induction) were designed statistically to identify optimal cell growth and recombinant protein expression conditions. 
Synthetic data sets were generated applying three distinct design methods, namely, Box–Behnken, central composite, and 
Doehlert design. Bootstrap-aggregated hybrid models were developed for the three designs and compared against the respec-
tive non-aggregated versions. It is shown that bootstrap aggregation significantly decreases the prediction mean squared error 
of new batch experiments for all three designs. The number of (best) models to aggregate is a key calibration parameter that 
needs to be fine-tuned in each problem. The Doehlert design was slightly better than the other designs in the identification of 
the process optimum. Finally, the availability of several predictions allowed computing error bounds for the different parts 
of the model, which provides an additional insight into the variation of predictions within the model components.

Keywords Hybrid semi-parametric modeling · Hybrid modeling · Bagging · Design of experiments · Sampling error · Data 
portioning · Ensemble methods

Introduction

Hybrid semi-parametric models (hereinafter shortly referred 
to as hybrid models) are a class of models that combine 
parametric and nonparametric functions in the same math-
ematical structure [1]. A classic example is the bioreactor 
dynamic model that combines machine-learning methods 
such as artificial neural networks (nonparametric) with mass 

conservation laws (parametric) [1–7]. The mass conserva-
tion laws represent well-established scientific knowledge, 
while machine-learning “learns” unknown (or less under-
stood) cellular kinetics/dynamics from process data. The 
conceptual advantage is the conjugation of different forms 
of knowledge/information, which otherwise are not consid-
ered together in the same model. The practical advantage 
is that the number of experiments for process development 
may be significantly reduced when the underlying model 
embodies more reliable knowledge at each development 
step making it more predictive of novel (optimal) process 
conditions for the next development iteration. Many studies 
reported different hybrid structures, identification algorithms 
and process applications reviewed by von Stosch et al. [8]. 
The most frequently applied machine-learning methods are 
artificial neural networks (e.g., [2]), partial least squares [9], 
and more recently support vector machines [10].

The data quantity, quality, and structure are critical for the 
identification of the nonparametric components of hybrid 
models. As in standalone nonparametric identification, the 
data are ideally partitioned into three sets: (1) a training 
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set used to estimate the parameter values; (2) a validation 
set used to stop parameter estimation and to validate the 
model; and (3) a test set used to assess the performance of 
the model on independent data not used for model identifica-
tion (also sometimes referred to as external validation). For 
low amounts of data or for data covering distinct process 
conditions [obtained for instance by Design of Experiments 
(DoE)], the decision on which data to include in each of 
the sets is not straightforward. The data-partitioning method 
can have a significant impact on the model properties and 
performance, as it can bias/prime the applicability of the 
model [11]. Heuristics are many times used to guide the data 
partitioning, namely, (1) the training data should span the 
explored process conditions; (2) the validation set should 
contain a repetition experiment to provide a notion for the 
system noise to variation ratio; and (3) the test data should 
comprise conditions that evaluate the model performance 
in the region of interest. However, data partitioning can be 
addressed more systematically acknowledging the fact that 
it is essentially a sampling problem, whose effects can be 
tackled using re-sampling methods. Bagging (short for boot-
strap aggregating) is a re-sampling-based ensemble method 
that was successfully applied to neural networks [12], partial 
least square models [13, 14], and decision trees [15, 16]. In 
bagging, the data are re-partitioned several times, one model 
is developed on every partition, and then, the models are 
aggregated [17], e.g., by averaging.

In the field of hybrid modeling, bagging and in general 
ensemble methods have found limited attention to date. 
Carinhas et al. [14] applied a bagging strategy to obtain 
the confidence limits for a PLS model in a parallel hybrid 
structure. Zhang and co-workers showed that the perfor-
mance of stacked neural networks in hybrid models is 
superior to standard neural networks [18], stacking being 
another ensemble method in which the contributions of 
each neural network to the final prediction are weighted 
according to their performance on the input domain. A 
method that simultaneously identifies several parallel 

nonparametric models and their weighted contributions to 
the hybrid model has been developed by Peres et al. [19]. 
This method could be classified as a boosting method, yet 
another ensemble method. Despite the few reported stud-
ies, it seems particularly interesting to adopt and investi-
gate ensemble methods with hybrid models, because they 
allow evaluating the propagation of uncertainty from one 
part of the hybrid model into the next, an aspect that has 
not been studied thus far. This could help to understand 
the extrapolation performance of hybrid models better, an 
aspect that is of particular importance for process control 
and optimization [20].

Methods

Case study: E. coli fed‑batch process

A previously modeled and optimized E. coli fed-batch pro-
cess serves as case study [21]. A synthetic data set was gen-
erated through process simulations, since in this way, the 
different modeling methods can be impartially compared 
without the bias of unknown biological and/or experimental 
variability. Details of the simulation model are provided in 
“Appendix A”. Briefly, the model describes the dynamics of 
biomass, substrate, and product concentrations in a stirred 
tank fed-batch bioreactor by applying mass conservation 
laws. The specific growth, substrate uptake, and product 
formation kinetic rates are defined as non-linear functions 
of the substrate concentration and temperature using Monod-
type kinetics, where the temperature dependence determines 
the maximally achievable rates. The design factors were the 
temperature, T, varying between 29.5 and 33.5 °C, specific 
growth rate setpoint, �Set, between 0.1 and 0.16 h−1 and bio-
mass concentration at induction, Xind , varying between 5.0 
and 19.0 g/kg. This model was simulated for different values 
of design factors applying three statistical distinct design 
methods (see Table 1):

Table 1  Different designs of 
experiments, a short explanation 
of the DoE, and the respective 
number of experiments required

The three factors investigated in all DoEs are: biomass concentration at induction ( Xind = X
(

tind
)

 ), tem-
perature ( T  ) and the desired biomass growth rate ( �set ), which was used to compute the exponential feeding 
rate: F = 1∕Sf ⋅ YsX ⋅ �Set ⋅ X

(

tind
)

⋅ V
(

tind
)

⋅ exp
(

�Set ⋅

(

t − tind
))

 . The respective ranges of the factors are: 
5–19 (g/l), 29.5–33.5 (C), and 0.1–0.16 (1/h). The center point experiment was repeated three times in each 
DoE

Design of experiment Number of 
experiments

Number points Design factors ranges

�set

(

h−1
)

T (°C) Xind

(

g

kg

)

Inscribed central composite 
design (CCD)

17 249 0.1–0.16 29.5–33.5 5–16.2

Box–Behnken design (BBD) 15 222 0.1–0.16 28.5–33.5 5.0–19.0
Doehlert design (DD) 15 214 0.1–0.16 28.8–33.2 6.3–17.7
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(1) Inscribed central composite design (CCD) resulted in 
17 cultivation experiments (including two repetitions 
of the center point) and 249 measured points;

(2) Box–Behnken design (BBD) resulted in 15 cultivation 
experiments and 222 measured points;

(3) Doehlert design (DD) resulted in 15 cultivation experi-
ments and 214 measured points.

The simulated process data were corrupted with 5% 
white noise. The three synthetic data sets are available as 
Supplementary file A. These data were used for the hybrid-
modeling studies described below.

General bioreactor hybrid model

A stirred tank bioreactor system (as the E. coli process 
described above) can be generically represented by the 
hybrid model structure, as shown in Fig. 1a. The mass 
conservation laws are the basis of this model, namely, the 
dynamic material balance of compounds in an ideally mixed 
bioreactor:

with c a vector of concentrations, K a matrix of known 
yield coefficients, D the dilution rate, u a vector of volu-
metric feeding rates (control inputs), and r(c, x) a vector of 
volumetric reaction rates. The latter are complex non-linear 
functions of the concentrations c and other physicochemical 
properties x (e.g., temperature and pH). While the structure 
of mass conservation laws in Eq. (1) is well-established, the 

(1)
dc

dt
= K ⋅ r(c, x) − D ⋅ c + u,

reaction rate functions r(c, x) are case dependent and not 
known with the same level of detail. In the general hybrid 
model, they are defined as a flexible mixture of paramet-
ric and nonparametric functions with the following general 
form:

The term r(g, c, x) is a parametric function with well-
defined structure based on knowledge. For instance, the 
Monod cell growth model in case it is applicable. The term 
g = g(f (c, x),w) is a nonparametric function representing 
unknown phenomena that needs to be “learned” from data. 
There are many possibilities to define g = g(f (c, x),w) , but 
the most frequent [8] is a simple feedforward neural network 
with three layers (also adopted here):

The transfer functions of the neurons in the input and 
output layer are linear, while the ones of the hidden layer are 
hyperbolic tangential. The vector w = {w1,1,w1,2,w2,1,w2,2} 
refers to the parameters that need to be identified from data. 
The inputs to the nonparametric function typically com-
prise the concentrations, and/or additional variables, x. For 
some problems, a non-linear pre-processing function f (c, x) 
might facilitate the identification of g(⋅) , as, for example, 
concentration ratios as inputs to a neural network (see, e.g., 
[22–24]) or other meaningful pre-processing function. The 
application of this framework to the E. coli case study is 
direct. The main assumption is that the material balance 
equations are known, while the specific rate equations are 

(2)r(c, x) = r(g(f (c, x),w), c, x).

(3)
g = g(f (c, x),w) = w2,1

⋅ tanh
(

w1,1
⋅ f (c, x) + w1,2

)

+ w2,2.

Fig. 1  a Hybrid-modeling 
framework, where the white 
boxes represent parametric 
models and the black boxes 
represent nonparametric models 
(here Artificial Neural Net-
works), symbols as in the text. b 
Schematic representation of the 
bootstrap-aggregated hybrid-
modeling structure



1856 Bioprocess and Biosystems Engineering (2019) 42:1853–1865

1 3

unknown. The resulting model equations are provided in 
“Appendix B”. A detailed discussion of the E. coli hybrid 
model is provided elsewhere [21].

Bootstrap‑aggregated (bagging) hybrid‑modeling 
framework

The development of hybrid models from small data sets is 
challenging, because the partitioning of the data may have a 
significant impact on the performance of the model. Bagging 
may diminish this impact. It consists in the following three 
main steps (Fig. 1b):

Step 1: Resample the data contained in the training and 
validation a given number of times.

Step 2: Parameter estimation resulting in a different 
model for each pair of training and validation set re-sampled.

Step 3: Aggregate the developed models by averaging 
their outputs.

Step 1: data re-sampling
The data for hybrid model identification are partitioned 

into three sets: (1) a training set comprising 2/4 data points 
used to estimate the parameter values; (2) a validation set 
comprising 1/4 data points used to stop the parameter esti-
mation and validate the model; and (3) a test set comprising 
1/4 of data points used to assess the performance of the 
model on independent data not used for model identification. 
The experiments comprised in the test set are kept always the 
same (more to this in the results section). The experiments 
in the training-validation sets are randomly re-sampled nboot 
times from the uniform distribution, yielding nboot training/
validation partitions. Re-sampling is performed experi-
mentwise not observationwise. Care must be taken that the 
exact same validation set is not selected more than once 
to avoid giving more weight to any particular experimental 
conditions. It follows that the maximum number of samples 
is nboot =

(

ntr + nvd
)

!∕
(

nvd! ⋅ ntr!
)

 , with ntr the number of 
experiments contained in the training set and nvd the number 
of experiments contained in the validation set.

Step 2: parameter estimation and model validation
A different hybrid model is developed for each of the nboot 

training/validation samples. The hybrid model structure and 
size (i.e., the number of hidden nodes in the neural network) 
is kept always the same. The only variation allowed is in the 
network parameter values, w . These values are randomly 
initialized between [− 0.01, 0.01] from the Gaussian dis-
tribution. Then, parameter estimation is accomplished by 
minimizing a weighted least squares (WMSE) loss function 
for the training set (comprising ntr experiments):

(4)min
w

{

WMSE =
1

nC×nD

nc
∑

i=1

nD
∑

j=1

(

ci,j,mes − ci,j
)2

�i2

}

,

where nc are the number of concentrations, nD are the num-
ber of data points in the training set for concentration, i , 
ci,j,mes are the measured concentration values, ci,j are the 
respective model predictions, and �2

i
 is the variance com-

puted from the experimental data. The loss function is 
minimized applying a gradient-based approach, namely, 
the Levenberg–Marquardt algorithm (Matlab lsqnonlin 
function). The gradients are obtained using the sensitivi-
ties’ approach [2, 7]. The WMSE loss function is also moni-
tored for the validation partition comprising nvd experiments. 
The decision to stop the parameter estimation is made by 
cross validation, i.e., parameter estimation is stopped when 
the validation WMSE starts to increase to avoid modeling 
measurement noise. Since gradient approaches get stuck in 
local minima, parameter estimation was repeated 100 times 
from randomly initialized parameter values. From these 100 
repetitions, only the best performing model (joint WMSE of 
the train-validation partition) was selected for aggregation.

Step 3: aggregation
As shown in Fig. 1B, the last stage is the aggregation 

of the nboot hybrid models by averaging their output vari-
ables. In practice, only the n ≪ nboot best hybrid models are 
aggregated. The models are ranked according to their joint 
training-validation WMSE. Then, only the n best models are 
aggregated with n being a design parameter of this frame-
work (discussed in “Results”). The predicted concentrations 
at a given time instant, t, are then calculated as the mean of 
concentrations of the n best hybrid models:

The corresponding time-dependent prediction standard 
deviation, �ci(t) , can be computed as

Finally, aggregation can be performed at the level of con-
centrations as given in Eqs. (4) and (5) or at other parts of 
the model. Since the only part of the model that changes is 
the nonparametric function g = g(f (c, x),w) , aggregation can 
be performed at this level only, or alternatively at the level 
of the volumetric reaction rates r(g, c, x) . Understanding how 
the variability propagates from g to r to c is another interest-
ing feature of the bootstrap aggregation framework.

(5)ci(t) =
1

n

n
∑

k=1

ck
i
(t).

(6)�ci(t) =

√

√

√

√

1

n − 1

n
∑

k=1

(

ck
i
(t) − ci(t)

)2
.
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Results and discussion

Process data

Figure 2 shows the variability in the process response origi-
nated by the DD, CCD, and BBD. In the case of biomass 
time profiles (Fig. 2a), the mean concentration of biomass 
and upper and lower limits (±�) are remarkably concordant 
among the DD and CDD. The BDD resulted in a similar 
average response, but with a much higher dispersion moti-
vated by the fact that the BBD explores more extreme factor 

values than the other designs particularly in the range of 
biomass concentration at induction (Table 1). As for the 
case of substrate concentration time profiles (Fig. 2b), the 
differences between the designs are more marked, because 
at the low concentration range explored, the substrate con-
centration is far more sensitive to the design factors than the 
other state variables. However, again, the explored region 
is concordant among the three designs. The more complex 
abrupt changes in this signal are the result of biomass induc-
tion perturbations at different timepoints. Again, the BBD 
explores a slightly wider region than the other designs. As 
for the product time profiles (Fig. 2c), the DD and the CDD 

Fig. 2  Synthetic E. coli process 
data generated by model of 
“Appendix A” and by apply-
ing 3 distinct statistical design 
methods, namely, CCD 
central composite design, BBD 
Box–Behnken design and DD 
Doehlert Design. a Biomass 
concentration over time, b sub-
strate concentration over time, 
c product concentration over 
time. Dashed line: mean profile; 
full line: ± standard deviation; 
the different colors represent 
the different DoE methods. Raw 
data available as supplementary 
file A
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explore a very similar space as before. The BBD, however, is 
clearly different in this case, since it explores a much broader 
space and comparatively lower product concentrations than 
the other designs. For details in the data, see supplementary 
file A.

Effect of data partitioning

Hybrid bootstrap aggregation was first applied to the Doe-
hlert data set. Three experiments (13, 14, and 15) were 
selected for testing, comprising one center point and two 
extreme experiments with variations in all three design fac-
tors (test experiments were always the same). The first 1–12 
experiments were selected for training/validation re-sam-
pling with ten experiments for training and two experiments 
for validation. Re-sampling was performed nboot = 14 times 
resulting in 14 distinct combinations of ten training/two-
validation experiments. A hybrid model with the same struc-
ture and size was developed for each of the re-sampled data 
sets using the method previously described. Table 2 sum-
marizes the final modeling error obtained for the nboot = 14 
hybrid models. The train/valid WMSE varied between 
0.0062 (Model 2) and 0.0835 (Model 12), which represents 
a 13-fold variation. The test WMSE varied between 0.0056 
(Model 1) and 0.1630 (Model 12), with a 29-fold variation. 
The best model was model 2 (lowest combined train/valid/
test error), while the worst model was model 12. These 
results clearly show that data partitioning plays a critical role 
in the development of the hybrid model. The fact that the 
data originate from statistical design of experiments intensi-
fies the problem. Statistical design of experiments explores 
very dissimilar conditions at the lowest number of experi-
ments possible. It is thus very likely that models developed 
on subsets of such data result to be also very dissimilar.

Effect of aggregation

The hybrid models in Table 2 were ranked from high-to-low 
train/valid WMSE, and then, only the n top-ranked models 
(with the lowest train/valid WMSE) were selected for aggre-
gation by averaging the predicted concentrations. Figure 3 
shows the effect of n on the train/valid and test WMSE of 
the aggregated hybrid model. The optimal aggregation num-
ber is n = 4 in this particular case, which corresponds to 
the minimum WMSE, as shown in Fig. 3. It becomes clear 
that aggregating the best n = 4 models decreases the train/
valid WMSE (16.1% reduction in relation to the best sin-
gle model), but more importantly, it also decreases the test 
WMSE by 38% in relation to the best single model. Figure 3 
also shows that WMSE increases sharply for n > 10 . This 
is the point, where the hybrid models with very large errors 
are aggregated. They may be seen as “outlier” models that 

should be removed from the analysis. It is thus very impor-
tant to drop out the least performing models in the bagging 
framework. This also makes sense from a sampling point of 
view, as samples (experiments) that are either based on very 
different process conditions or that exhibit very different 
behavior as compared to the other experiments, may keep 
the training from converging to the overall best performance 
in cases that these samples are contained in the validations 
set. This might be the case for data obtained by statistical 
design of experiments, as the edges of the designs might 
contain extreme conditions that are not easily extrapolated 
by the hybrid model.

Table 2  Hybrid-modeling results for the DD data set composed by 15 
batch experiments

nboot = 14 models were developed by re-sampling ten training batches 
and two-validation batches. Test batches (13, 14, 15) were always the 
same

Model Train/
valid

Test Data partition

WMSE WMSE Train(10)/Valid(2)/[Test](3)

1 0.0078 0.0056 1,2,3,4,5,6,7,8,9,10,11,12,[13],[14],[15]
2* 0.0062 0.0096 1,2,3,4,5,6,7,8,9,10,11,12,[13],[14],[15]
3 0.0086 0.0066 1,2,3,4,5,6,7,8,9,10,11,12,[13],[14],[15]
4 0.0071 0.0092 1,2,3,4,5,6,7,8,9,10,11,12,[13],[14],[15]
5 0.0613 0.1390 1,2,3,4,5,6,7,8,9,10,11,12,[13],[14],[15]
6 0.0084 0.0101 1,2,3,4,5,6,7,8,9,10,11,12,[13],[14],[15]
7 0.0120 0.0113 1,2,3,4,5,6,7,8,9,10,11,12,[13],[14],[15]
8 0.0081 0.0120 1,2,3,4,5,6,7,8,9,10,11,12,[13],[14],[15]
9 0.0126 0.0171 1,2,3,4,5,6,7,8,9,10,11,12,[13],[14],[15]
10 0.0754 0.1326 1,2,3,4,5,6,7,8,9,10,11,12,[13],[14],[15]
11 0.0070 0.0086 1,2,3,4,5,6,7,8,9,10,11,12,[13],[14],[15]
12** 0.0835 0.1630 1,2,3,4,5,6,7,8,9,10,11,12,[13],[14],[15]
13 0.0087 0.0092 1,2,3,4,5,6,7,8,9,10,11,12,[13],[14],[15]
14 0.0617 0.1167 1,2,3,4,5,6,7,8,9,10,11,12,[13],[14],[15]

Fig. 3  Weighted mean squared error (WMSE) for the train/valid and 
test partitions of the Doehlert data set as function of aggregation 
number, n, i.e., number of best hybrid models to aggregate
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Mean and variance of dynamical profiles

One advantage of bagging is the straightforward and auto-
matic calculation of prediction error bounds in a dynami-
cal system. Bagging thus delivers a predicted value (the 
mean) and also the predicted error bound ( ±� around the 
mean) along time (Eqs. 4–5). This is here illustrated for the 
case of DD with n = 4 aggregated hybrid models (discussed 
above). Figure 4 shows the predictions of biomass and prod-
uct concentrations as well as the respective specific rates 
for two experiments of the DD-training set. The rates and 
concentrations’ profiles clearly show the switch between 
the growth and the production phases once the pre-defined 
induction biomass concentration, Xind , is reached. The error 
bounds of the specific biomass rates are greater during the 
growth phase than during the production phase. In addi-
tion, while the specific rates vary significantly in some 
parts, the respective predictions of the concentrations show 
only minor variations. These observations can partially be 

explained by the fact that the integration of the material bal-
ances has a damping effect on error propagation, which also 
means that slight differences in the rates do not cause major 
deviations in the concentrations. However, in the case of the 
experiment with greater biomass concentration at induction, 
it can be seen that (1) the error bounds of the concentra-
tions (biomass and product) get wider towards the end of 
the experiment and (2) the error bounds of the rates are of 
constant and growing width for specific biomass growth and 
specific product formation, respectively. This is plausible, 
as consistent and growing variations in predictions of the 
reaction rates will ultimately impact on the predictions of 
the concentrations (accumulating the variation in the pre-
dicted concentrations). In case of the product concentra-
tions, it is interesting to note that the multiplication of the 
specific product formation rate with the predicted biomass 
concentration could be thought to result into significant 
variations in the product concentration predictions, which, 

Fig. 4  Experimental and predicted biomass and product concentrations, as well as the predicted specific rates and standard deviations in pre-
dicted concentrations and rates over time for two representative experiments from the test set of the Doehlert design
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however, is not the case. This might be partially due to the 
integration.

Is hybrid bagging beneficial?

For a more confident answer to this question, the hybrid boot-
strap aggregation framework was extended to the three data 
sets (DD, CCD, and BBD designs). These designs produce 
different data sets, thus resulting in different models and dif-
ferent aggregation results. The total number of experiments 
was 15 for DD and BBD and 17 for the CCD (Table 1). For 
comparability, ten experiments for training and two experi-
ments for validation were selected in all cases. For the DD 
and BBD designs, the last three experiments (13–15) were 
selected for testing, while for the CCD, the last five experi-
ments (13–17) were selected for testing. The number of re-
sampling events was kept the same in all cases (nboot = 14) , 
while the optimal aggregation number was investigated in the 
same way as for the DD design above. The optimal number 
of best models to aggregate was determined to be four for 
DD, three for CCD, and three for BBD. Table 3 compares the 
WMSE of the best single hybrid model with that of the boot-
strap-aggregated hybrid model for the three designs. Taking 
all results together, the bootstrap aggregation methodology 
improved results across the three designs. Improvements are 
less expressive in the train/valid partition. Reduction of the 
WMSE (of aggregated model in relation to the best single 
mode) was 16.1%, 9.1%, and 2.0% for the DD, BBD, and 
CCD, respectively. Improvements are particularly significant 
in the test data set. The reduction of the WMSE (of aggre-
gated model in relation to the best single model) was 38.1%, 
51.6%, and 40.0% for the DD, BBD, and CCD, respectively. 
The substantial reduction of the WMSE in the test partition 
is particularly meaningful, since it attests the capacity of the 
final hybrid model to predict new experiments outside the 
data used for model development.

Overall predictive power

Figure 5 shows predicted over measured values of biomass 
and product for the 3 data sets using the hybrid models of 
Table 3. Prediction error bounds were calculated and dis-
played as black bars. The predictions of biomass and prod-
uct match remarkably well the experimental values in both 
the training/validation and test partitions for the three data 
sets (with a few exceptions discussed below). The prediction 
errors of the test set are slightly higher but comparable to 
those of the training–validation set.

Comparing the three designs, there are a few differences 
worth remarking. In the case of the BBD, the magnitude 
of prediction errors in the test data set is the highest of the 
three DoEs, which might be explained by the nature of the 
design. BBD explores extreme experiments that span the 
space (Fig. 2), but make it difficult to obtain a model that 
can describe the behavior of the system across the entire 
space. In this particular case, the aggregation of the mod-
els can in principle improve the model performance across 
the entire space, which was indeed the case with a twofold 
decrease of WMSE in the test data set. This seems to sug-
gest that the more extreme is the design, the more benefi-
cial might be bootstrap aggregation. In addition, the error 
bounds are higher in the region of high biomass concentra-
tions (Fig. 4b). These biomass values stem from three differ-
ent experiments, carried out at very different conditions. It 
might be that the single hybrid models have not captured the 
overall behavior of the system due to the changing presence 
of every one of these experiments in the training and valida-
tion set, which lead to the greater error bounds. However, 
the aggregated model (mean value) seems to capture the 
behavior of the system well.

In case of the CCD, the model slightly overpredicts one 
test data experiment exhibiting low product concentrations 
(Fig. 3a). This experiment was carried out at the lowest 
design temperature, and therefore, the aggregated model 
extrapolates, which is known to deteriorate prediction power.

Finally, in case of the DD, the experiment that yielded the 
highest product concentration is comprised in the test set and 
the aggregated hybrid model predicts very well the single 
highest product concentration point (Fig. 3c). This results 
shows that the model is predictive for product concentra-
tions greater than those observed in the training-validation 
data, a desired feature when aiming at the maximization of 
the final product titer.

Identification of process optimum

Methods of design of experiments are routinely applied 
for process optimization, where the optimum is expected 
to be found within the process conditions explored by the 
design (i.e., interpolation of process optimum). Therefore, 

Table 3  Mean squared error (MSE) for the best hybrid model (BHM) 
compared with that of the Bootstrap-Aggregated Hybrid Model 
(BAHM) for the training/validation partition and test partition

The models were developed on data from different designs. The opti-
mal numbers of aggregated models were: 5 (CCD), 3 (BBD), and 4 
(DD)
CCD inscribed centered composite design, BBD Box–Behnken 
design DD Doehlert design

DoE Best model MSE BAHM MSE

Train/valid Test Train/valid Test

CCD 0.0051 0.0210 0.0050 0.0126
BBD 0.0055 0.0632 0.0050 0.0306
DD 0.0062 0.0096 0.0052 0.0059
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it is interesting to compare the final product concentra-
tion predictions of the three aggregated hybrid models of 
Table 3. Figure 6 shows the “true” final product concentra-
tions (at cultivation time of 17 h) as a function of explored 
design space (Fig. 6a) and the respective predictions by the 
bootstrap-aggregated hybrid models derived from CCD, 
BBD, and DD data sets (Fig. 6b–d). It can be observed that 
all three aggregated hybrid models correctly indicate the 
process region in which the highest product concentrations 
can be found. However, the shape of this region and the 
accuracy of the predicted concentrations are only conserved 
well for the CCD- and DD-bootstrap-aggregated hybrid 
models (BAHM). The CCD-BAHM describes the product 
concentrations within the overall space best, which could be 
expected, as the space had been well characterized by the 

experiments, as described above. The DD-BAHM seems to 
describe the behavior of the process towards the limits of 
the investigated ranges better than the other designs and the 
predictions across the overall space are good. It seems that 
the space-filling manner in which the DD explores the space 
helps the hybrid model to learn the systems behavior, which 
is also in agreement with the findings of other researchers 
for other modeling techniques [25, 26].

Sometimes, the process optimum may lay outside the 
explored design space. In the problem studied here, the 
conditions that maximize the final product titer are outside 
of the explored process region, namely, at a higher biomass 
induction concentration (25 g/kg at optimum, studied range 
5–19 g/kg). This was done on purpose to assess the extrap-
olation capabilities of the hybrid-modeling framework. 

Fig. 5  Predicted biomass and 
product concentrations over 
experimental measured concen-
trations for the bootstrap-aggre-
gated hybrid models developed 
on data originating from the 
CCD central composite design, 
BBD Box–Behnken design, 
and DD Doehlert design. Red 
x: training and validation set; 
green +: test set; black bars: 
standard deviations of the three 
predictions
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Studying the impact of these changes seems particularly 
interesting, as on one hand miss predictions of biomass 
concentration cause subsequent miss predictions in all other 
compounds (it is multiplied with the specific rates, where-
fore it impacts on the evolution of all concentrations), but 
on the other hand, it also is an input to the nonparametric 
model (which typically does not extrapolate well). Figure 7 
shows the predictions of the three aggregated hybrid models 
and the true response surface for the final product concentra-
tions at the optimal biomass induction concentration (25 g/
kg). It can be seen that the predicted response surfaces of all 
three models agree fairly well with the true response surface. 
Apart from the BBD-BAHM, which suggest that the optimal 
conditions are outside the investigated ones (for temperature 
and feeding rate), the optimal conditions are fairly accurately 
captured by the models. The error bounds provide an indica-
tion of the reliability of the predictions and it can be seen 
that the CCD-BAHM provides the most reliable predictions 
followed by the DD-BAHM.

Conclusions

This study investigated a hybrid-modeling method that com-
bines mechanistic modeling with machine-learning methods 
to extract knowledge from data. In particular, a bootstrap-
aggregated hybrid-modeling framework was studied to 

reduce the bias of the training and validation data choice, 
which is particular pronounced for small data sets with dis-
tinct changes in conditions, such as data obtained from sta-
tistical design of experiments. Three synthetic data sets of an 
E. coli fed-batch process generated by three distinct designs 
(central composite design, Box–Behnken design, and Doe-
hlert design) were used to compare the different methods. 
Taking all results together, it may be concluded that the 
proposed bootstrap aggregation framework significantly 
increases the predictive power of hybrid semi-parametric 
models when the data are obtained by statistical design of 
experiments. This advantage is vital in a context of bio-
process development, because optimal operating conditions 
can be more accurately predicted by the hybrid model at 
each process development stage, thus globally reducing the 
experimental effort for process development. The ability to 
easily compute reliable error bounds of a dynamical system 
and for different model parts is particularly interesting for 
process monitoring and process optimization/control. Online 
decisions can be made not only on the basis of a profit func-
tion, but also on a quantitative measure of the reliability of 
predictions. The main downside is of course the increased 
computation time, which can be roughly estimated to be nboot 
times higher (in our case 14 times higher) when compared 
to not doing bootstrap aggregation. However, with the ever-
increasing computation power, this disadvantage is not seen 
as a severe limitation in practice. In the future, it should 

Fig. 6  Final time product 
concentrations (tf = 17 h) over 
process conditions for a true 
process model; b CCD-; c 
BBD-, and d DD bootstrap-
aggregated hybrid models. Note 
that the process conditions 
reach into a process region, i.e., 
initial biomass concentrations 
greater than 19 g/kg, that were 
not covered in the original DoEs 
and, therefore, has explorative 
character
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be studied whether other aggregation methods than averag-
ing, e.g., data-domain-specific model prediction weighting 
(stacking or boosting alike) can improve the prediction per-
formance even further.
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Appendix

A: E. coli simulation fed‑batch model

The model describes the production of viral capsid protein 
by a recombinant E. coli strain in a fed-batch bioreactor. This 
model has been proposed by [21], which is an adaptation of 
the model by [27]. The model comprises the material bal-
ances for biomass, substrate, and product concentration as 
well as the overall mass balance in a stirred tank bioreactor:

(7)
dX

dt
= � ⋅ X − D ⋅ X,

(8)
dS

dt
= −vS ⋅ X − D ⋅

(

S − Sf
)

,

(9)
dP

dt
= vP ⋅ X − D ⋅ P,

with � , vS , and vP the specific rates of biomass growth (1/h), 
substrate uptake (1/h), and product formation (U/g/h), X , 
S , and P the biomass (g/kg), substrate (g/kg), and product 
concentrations (U/kg), D = uF∕W (1/h) the dilution rate, and 
uF the feeding rate (kg/h).

The specific biomass growth rate was modeled using the 
expression:

with �max = 0.737 (1/h), KS = 0.00333 (g/kg), Ki = 93.8 (g/
kg), � = 0.0495 (1/C), Tref = 37 (°C), and T  (°C) the tem-
perature of the culture broth.

The specific substrate uptake rate is modeled via:

with YXS = 0.46 (g/g) and m = 0.0242 (g/g/h).
The specific product formation rate is modeled by

with

(10)
dW

dt
= uF,

(11)� = �max ⋅
S

S + KS

⋅

Ki

S + Ki

⋅ exp
(

� ⋅

(

T − Tref
))

,

(12)vS =
1

YXS
⋅ � + m,

(13)vP =
ID

TPX
⋅

(

vP,max,T ⋅ � ⋅ km

k
�
+ � + �2∕ki�

− pX

)

,

(14)vP,max,T =
5 ⋅ 1010 ⋅ exp

(

−Aeng

R⋅(T+273.15)

)

1 + 3 ⋅ 1093 ⋅ exp
(

−Reng

R⋅(T+273.15)

) ,

Fig. 7  Response surface of the 
final time product concentra-
tions ( tf = 17 h) at an initial 
biomass concentration of 25 g/
kg obtained from the true 
process model and the CCD-, 
BBD-, and DD bootstrap-
aggregated hybrid models. In 
addition, the standard deviations 
of the predictions are presented
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wi t h  Aeng = 62  ( k J /mo l ) ,  Reng = 551 ( k J /mo l ) , 
R = 8.3144e − 3 (kJ/mol/K), TPX = 1.495(h), pX = 50

(U/g),k
�
= 0.61(1/h), km = 751(U/g), ki� = 0.0174 (1/h), and 

the induction parameter ID = 0 before induction and ID = 1 
afterwards.

For the feeding rate, an exponential profile was adopted 
to match a desired constant specific biomass growth, �set , 
that is

where X0 = X
(

t0
)

 (g/kg) is the initial biomass concentration 
and W0 = W

(

t0
)

 (kg) is the initial weight of the culture broth.
The process was divided into two phases, a growth and 

a production phase. During the growth phase, �set = 0.3 
 (h−1) and T = 34 (C). The duration of the growth phase was 
adapted to yield the initial biomass concentration, Xind, set 
out by the DoEs. The substrate concentration in the feeding 
solution was set to Sf = 300 (g/kg). Data for online vari-
ables were logged every 6 min. The biomass and product 
concentrations (offline variables) were measured 20 times 
during each fermentation. The data were corrupted with 5% 
Gaussian (white) noise.

B: E. coli hybrid semi‑parametric model

The parametric part of the hybrid model is based on the 
material balance equations of biomass and product, that is

where D is the dilution rate, X and P are the biomass and 
product concentrations (to note that the hybrid model does 
not consider substrate dynamics), with specific reaction rates 
� and vp . Thus, the volumetric rate Eq. (2) simplifies as fol-
lows for the present problem:

The specific rates � and vp are much more difficult to 
establish; thus, they were modeled by a simple feedforward 
neural network with three layers only:

with w = {w1,1,w1,2,w2,2,w2,2} . The network has only three 
inputs, namely, biomass, X , the feeding rate, F , and cul-
tivation temperature, T  . Thus, the pre-processing function 
(Eq. (3)) reduces to the following form:

(15)uF =
1

Sf ⋅ YXS
⋅ �set ⋅ X0 ⋅W0 ⋅ exp

(

�set ⋅

(

t − t0
))

,

(16)
dX

dt
= � ⋅ X − D ⋅ X,

(17)
dP

dt
= vp ⋅ X − D ⋅ P,

(18)r(c, x) =
[

�, vp
]T

⋅ X.

(19)g =
[

�, vp
]T

= w2,1
⋅ tanh

(

w1,1
⋅ f (c, x) + w1,2

)

+ w2,2,

Preliminary tests have shown that five neurons in the hid-
den layer are optimal for the present case study data set used, 
which corresponds to dim (w) = 4 × 5 + 6 × 2 = 32 param-
eters to be identified in each run. The number of hidden 
nodes of the neural network was thus selected to be five in 
all studies performed.
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