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Abstract
Biogas, a gaseous effluent from the anaerobic digestion of organic waste, is considered an important source of energy, since 
it has a composition mainly of methane  (CH4; 55–75%) and  CO2 (20–60%). Today,  CO2 from biogas is an excellent carbon 
source to induce high microalgal biomass production; however, each microalga strain can have different optimal  CO2 con-
centrations for maximizing their bio-refinery capacity as well as different ability to endure stressful conditions of industrial 
effluents. This study assessed the bio-refinery capacity of Chlorella sp. and Scenedesmus sp., native of Lago de Chapala, 
Mexico, from biogas, as well as the effect of high  CO2 and methane concentrations on the physiological performance to 
grow, capture  CO2 and biochemical composition of both microalgae cultured under different biogas compositions. The results 
show that both microalgae have the biotechnological potential to endure biogas compositions of 25%  CO2–75%  CH4. Under 
this condition, the biomass production attained by Chlorella sp. and Scenedesmus sp. was 1.77 ± 0.32 and 2.25 ± 0.20 g L−1, 
respectively, with a biochemical composition mainly of carbohydrates and proteins. Overall, this study demonstrates that 
both microalgae have the ability to endure the stressful biogas composition without affecting their physiological capacity 
to capture  CO2 and biosynthesize high-value metabolites. Moreover, it is worth highlighting the importance of screening 
wild-type microalgae from local ecosystems to determine their physiological capacity for each biotechnological application.
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Introduction

The supply of  CO2 from industrial gases to microalgae cul-
ture is a bio-refinery approach used with different purposes, 
such as increasing biomass production and biosynthesiz-
ing high-value metabolites, and reducing production costs 
and  CO2 emissions to the atmosphere [1, 2]. Specifically, 
biogas, a gaseous effluent from the anaerobic digestion of 
organic waste, is considered an important source of energy, 
since it has a composition of methane  (CH4; 55–75%),  CO2 
(20–60%), and sulfidic acid  (H2S; 0.005–2%) [3]. To date, 

several studies have demonstrated that  CO2 from biogas is 
an excellent carbon source to induce high microalgal bio-
mass production and simultaneously perform  CH4 upgrad-
ing, since  CO2 content reduces the calorific value of  CH4 
preventing meeting the specifications of fuel gas [3–9]. Nev-
ertheless, this dual purpose varies in each microalga strain, 
because the potential to endure high  CO2 and  CH4 concen-
trations is strain-dependent; besides, the high concentration 
of both metabolites causes stress on several strains decreas-
ing their physiological activity [3, 10]. Thus, selecting the 
appropriate strain is the main factor to ensure success of 
biomass production and cell compound accumulation from 
 CO2 content from biogas [2, 3, 10, 11].

According to Varshney et al. [12], an ideal microalgal 
strain for  CO2 fixation from industrial flue gases must have 
specific traits, for example, (1) tolerance to high  CO2 con-
centrations and other toxic components that are typically 
found in flue gases; (2) tolerance to environmental condi-
tions that are present in cultivation systems; and (3) high 
commercial or calorific value. Although microalgal  CO2 
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fixation can be improved by genetic engineering [4, 13], the 
use of genetically modified microalgae is limited by safety 
regulations to prevent environmental contamination and 
human consumption [2, 11, 14, 15]. In this context, several 
studies have focused on isolating and identifying wild-type 
microalgae from local habitats with this novel physiologic 
and biotechnological performance [11, 12, 14, 15]. Since 
native microalgae are already adapted to the environmen-
tal conditions prevailing in a specific geographical loca-
tion, they are preferred for bio-refinery and bio-remediation 
purposes rather than microalgae of collection banks [14] or 
genetically modified [15]. Specifically, the microalgae of the 
genus Chlorella and Scenedesmus have been widely used 
to produce biomass from biogas [3, 5–8] because of their 
ability to tolerate high  CO2 concentrations [16]. However, 
microalgae are a very diverse group, and strains from the 
same genus can have different optimal  CO2 concentrations 
for maximizing their bio-refinery capacity, as well as their 
ability to tolerate high  CO2 and  CH4 concentrations from 
industrial effluents [2, 11, 14]. In this context, Chlorella sp. 
and Scenedesmus sp. were isolated from Lago de Chapala, 
Jalisco, the largest lake of Mexico and well known for high 
phytoplankton diversity [17] to integrate the anaerobic 
digestion process of agro-industrial waste and microalgal 
biomass production. To our knowledge, no assessment has 
been performed on these native microalgal strains for their 
bio-refinery capacity from  CO2 content from biogas and 
biotechnological potential to endure stressful composition 
of this effluent.

Considering the above, the aims of this study were to 
assess both microalgae Chlorella sp. and Scenedesmus sp., 
on their bio-refinery capacity from biogas, as well as the 
effect of high  CO2 and  CH4 concentrations from biogas on 
their biochemical composition and physiological capacity 
to grow and capture  CO2 cultured under different biogas 
compositions.

Materials and methods

Microorganisms and culture conditions

Chlorella sp. and Scenedesmus sp. (Fig. 1) were isolated 
from Lago de Chapala (Jalisco, Mexico; 20°15′27″N, 
103°02′33″W) according to the methodology described 
by Smith et  al. [18]. Both microalgae were maintained 
in C30 + M medium [9] at 27 ± 2  °C, 200  µmol  pho-
tons m−2 s−1, and stirred at 120 rpm for 14 days.

Experimental growth conditions

The experiment was set up by adding 50  mL of each 
microalga previously pre-cultured in 450 mL of C30 + M 
medium, using a 1-L flask with 500 mL of working volume. 
Both microalgae were maintained at 27 °C, 200 µmol pho-
ton m−2 s−1 and stirred at 120 rpm in an incubator shaker 
(Innova 43, New Brunswick Scientific, Nürtingen, DE) 
for 8 days. During all incubation time, a gas mixture was 

Fig. 1  Photomicrographs 
illustrating the morphological 
features of Chlorella sp. (a) 
and Scenedesmus sp. (b) strains 
isolated from Lago de Chapala, 
Jalisco, Mexico. Images were 
obtained using a microscope 
Leica DM750 model with a 
camera ICC50 E (× 100) and 
software Leica LAS Interactive
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bubbled continuously at the bottom of each flask with a flow 
rate of 0.006 vvm. Five different gas mixtures were utilized 
in this study: (1) 75%  CH4–25%  CO2; (2) 50%  CH4–50% 
 CO2 (synthetic biogas; treatments); (3) 75% Argon–25% 
 CO2; (4) 50% Argon–50%  CO2; and (5) hydrocarbon-free air 
(as control). Argon (Ar) was used to avoid the  CH4 content 
from biogas and evaluate the effect of  CH4 concentration on 
each microalga. Each gas mixture was acquired from Praxair, 
Mexico and sterilized with acrodisc filters of 0.2 µm (Mil-
lipore, MA, USA) before feeding each microalgal culture.

Biomass production

Biomass production (g L−1) was quantified by cell dry 
weight. Briefly, 20 mL of microalgal culture were sampled 
each 48 h and centrifuged at 10,000 rpm for 10 min; the 
microalgal pellet was washed twice with distilled water and 
dried at 80 °C in Thermo Scientific Heratherm™ OGS100 
Lab oven (Waltman, MA, USA) for 12 h. Biomass produc-
tivity (P; g L−1 day−1) was calculated with Eq. 1 where Xf 
and Xi corresponded to biomass production (g L−1) at initial 
(ti) and final time (tf) [9]:

Specific growth rate (µ;  day−1) was calculated with Eq. 2 
where Xi and Xf were the biomass production (g L−1) at the 
initial (ti) and final time (tf) of the exponential growth phase:

Determination of  CO2 fixation from biogas

Dissolved inorganic carbon (DIC) was quantified at the end 
of experimental time (8 days) in culture media by a total 
organic carbon analyzer (Shimadzu-VCSN, Tokyo, JP); 
the pH in culture medium was determined with a pH meter 
(Thermo-Orion Model 720A, MA, USA);  CO2 fixation rate 
( RCO2

 ; g L−1 day−1) was determined with Eq. 3, according to 
Tang et al. [19] considering the typical molecular formula of 
microalgal biomass,  CO0.48  H1.83  N0.11  P0.01 [20]:

where P is biomass productivity; Cc is carbon content of the 
microalgal cell; Mc is carbon molecular weight; and MCO2

 is 
the  CO2 molecular weight.

Microalgal biomass characterization

Microalgal biomass was measured at the end of each 
experiment. Total carbohydrates were quantified by the 
phenol–sulfuric method [21], while protein content was 
determined by the Lowry method [22]. Total lipids were 

(1)P = (Xf − Xi)∕(tf − ti).

(2)� = ln

(

Xi

Xf

)

∕(tf − ti).

(3)RCO2
= CcP(MCO2

∕Mc),

extracted by the procedure established [23] and quantified 
in a Rotovapor IKA RV-10 (Staufen, DE).

Experimental designs

To determine biomass production,  CO2 fixation rate, bio-
chemical composition, as well as simultaneously evaluate 
the effect of high  CO2 and  CH4 concentrations from biogas 
on both microalgae, each experiment consisted of five gas 
mixtures: (1) 75%  CH4–25%  CO2; (2) 50%  CH4–50%  CO2 
(synthetic biogas; treatments); (3) 75% Ar–25%  CO2; (4) 
50% Ar–50%  CO2; and (5) hydrocarbon-free air (as control). 
Each experiment was performed in triplicate and repeated 
twice; the results obtained from each experiment were ana-
lyzed using ANOVA and then LSD post hoc analysis. Sig-
nificance was set at P < 0.05, using Statistica 6.0 software 
(StatSoft, Tulsa, OK).

Results

Carbon dioxide fixation rate by microalgae cultured 
under different biogas composition

Chlorella sp. recorded the highest  CO2 fixation rates 
at 8  days when it was supplied with 25%  CO2–75% 
 CH4 (0.28 ± 0.036 g L−1 day−1) and 25%  CO2–75% Ar 
(0.29 ± 0.018 g L−1 day−1), which was significantly similar 
when fed with these two gas mixtures (Fig. 2a, lowercase let-
ters). However, when it was provided with 50%  CO2, either 
balanced with 75%  CH4 or Ar, the  CO2 fixation rate of this 
microalga significantly decreased, recording 0.18 ± 0.023 
and 0.14 ± 0.022 g L−1 day−1, respectively, and it did not 
show significant differences between both gas mixtures 
(Fig. 2a, lowercase letters). This same pattern was found in 
Scenedesmus sp. at eight days, reaching 0.39 ± 0.015 and 
0.35 ± 0.037 g L−1 day−1 when it was supplied with 25% 
 CO2–75%  CH4 or 25%  CO2–75% Ar, respectively, show-
ing to be significantly similar when fed with these gas mix-
tures (Fig. 2b, lowercase letters). Similarly, at the end of 
experimental time (8 days),  CO2 fixation rate of Scenedes-
mus sp. also significantly decreased when it was supplied 
with 50%  CO2–50%  CH4 (0.28 ± 0.036 g L−1 day−1) and 
50%  CO2–50% Ar (0.28 ± 0.036 g L−1 day−1), although the 
results were similar between these two gas mixtures (Fig. 2b, 
lowercase letters).

On the contrary, the dissolved inorganic carbon concen-
tration (DIC) in culture media was significantly higher when 
both microalgae were supplied with 50%  CO2 balanced 
either with  CH4 or Ar. In contrast, pH in culture media was 
significantly higher in the two gas mixtures composed of 
25%  CO2 balanced either with  CH4 or Ar (Table 1).
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Biomass production by microalgae cultured 
under different biogas composition

Similarly, Chlorella sp. recorded the highest biomass pro-
duction at 8 days, attaining 1.77 ± 0.32 and 1.81 ± 0.17 g L−1 
when it was supplied with 25%  CO2–75%  CH4 and 25% 
 CO2–75% Ar, respectively; it did not show significant differ-
ences when supplied with both gas mixtures (Fig. 3a, low-
ercase letters). Likewise, Scenedesmus sp. also showed the 
highest biomass production at 8 days, recording 2.25 ± 0.20 
and 2.04 ± 0.13 g L−1, respectively, when it was provided 
with these two gas mixtures; the results were statistically 
similar (Fig. 3b, lowercase letters). Nonetheless, biomass 
production in each microalgae significantly decreased 
when supplied with 50%  CO2 either balanced with  CH4 or 
Ar (Fig. 3a, b, lowercase letters), while the two microalgae 
supplied with air showed the lowest biomass production 
(Fig. 3a, b, lowercase letters).

On the other hand, both microalgae also showed the high-
est specific growth rates and biomass productivities when 
they were supplied with 25%  CO2 rather than 50%  CO2 bal-
anced either with  CH4 or Ar (Table 2).

Biochemical composition of microalgae cultured 
under different biogas composition

Under our experimental conditions, the two microalgae 
evaluated accumulated mainly carbohydrates and proteins, 
while lipids were not detected. Both microalgae recorded 
the highest accumulation of both compounds supplied with 
25%  CO2 balanced with  CH4 or Ar (Fig. 4). In this condi-
tion, Chlorella sp. showed a biochemical composition of 
24.42 ± 1.10% and 29.10 ± 1.33% of carbohydrates when it 
was supplied with 25%  CO2 balanced with 75%  CH4 and 
Ar, respectively (Fig. 4a), while the protein content was 
33.36 ± 1.60% and 27.89 ± 0.74%, respectively (Fig. 4b). 
Similarly, Scenedesmus sp. recorded 33.41 ± 1.07% 
and 26.33 ± 1.39% of carbohydrates supplied with 25% 
 CO2–75%  CH4 and Ar, respectively (Fig. 4c), and a protein 
content of 32.96 ± 2.26% and 28.36 ± 1.55%, respectively 
(Fig. 4d). Likewise, cell composition of both microalgae 
showed significantly higher differences when supplied with 
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Fig. 2  CO2 fixation rate by Chlorella sp. (a) and Scenedesmus sp. 
(b) supplied with different gas mixtures. Points at each time inter-
val denoted by different lowercase letters differ significantly when 
each microalga grew supplied with different gas mixtures. Statistical 
analyses were performed using ANOVA and LSD post hoc analysis 
(P < 0.05). Bars represent standard error

Table 1  Dissolved inorganic carbon (DIC) and pH by Chlorella sp. 
and Scenedesmus sp. supplied with different gas mixtures

Values denoted by different lowercase letters differed significantly 
when each microalga grew supplied with different gas mixtures. Sta-
tistical analyses were performed using ANOVA and LSD post hoc 
analysis (P < 0.05); ± represents standard error

Microalga Gas mixture Dissolved 
inorganic carbon 
(DIC; mg L−1)

pH

Chlorella sp.
Air – 7.87 ± 0.50a
25%  CO2–75% 

Ar
57.89 ± 5.98b 6.34 ± 0.55b

25%  CO2–75% 
 CH4

65.10 ± 9.16b 5.88 ± 0.29b

50%  CO2–50% 
Ar

136.61 ± 8.55a 4.32 ± 0.65c

50%  CO2–50% 
 CH4

148.42 ± 5.87a 3.56 ± 0.35c

Scenedesmus sp.
Air – 8.67 ± 0.72a
25%  CO2–75% 

Ar
76.63 ± 7.49b 7.64 ± 0.15b

25%  CO2–75% 
 CH4

60.39 ± 13.09b 6.25 ± 0.47c

50%  CO2–50% 
Ar

141.75 ± 11.5a 4.62 ± 0.36d

50%  CO2–50% 
 CH4

124.67 ± 6.77a 4.16 ± 0.61d
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25%  CO2 rather than 50%  CO2 balanced either with Ar or 
 CH4 (Fig. 4, lowercase letters).

Discussion

Strains from the same group of microalgae can have different 
ability to tolerate high  CO2 and  CH4 concentrations, produce 
biomass, and accumulate cell compounds [2, 11, 14]. Thus, 
our study hypothesis was that Chlorella sp. and Scenedesmus 
sp., isolated from and native to Lago de Chapala, might have 
the biotechnological capacity to endure the stressful biogas 

composition, capture  CO2, produce biomass, and synthesize 
high-value cell compounds starting from biogas. Therefore, 
the aims of this study were to assess both Chlorella sp. and 
Scenedesmus sp., microalgae on their bio-refinery capacity, 
as well as the effect of high  CO2 and  CH4 concentrations of 
this effluent on their physiological capacity and biochemical 
composition to grow and capture  CO2 cultured under differ-
ent biogas compositions.

Our results demonstrated that Chlorella sp. and Scened-
esmus sp. have biotechnological potential to endure high 
 CO2 (25%) and  CH4 (75%) concentrations, as well as bio-
refinery capacity to produce biomass and high-value metab-
olites from this effluent. These results might be attributed 
to the ability of both endemic microalgae to tolerate acid 
pH induced by  CO2 solubility in culture media in the form 
of dissolved inorganic carbon (DIC:  HCO3

−, CO3
−2, and 

 H2CO3
−) [11], since the  CH4 concentrations evaluated in 

this study did not negatively affect their physiological per-
formance. According to Solovchenko and Khozin-Goldberg 
[16], the mechanisms that allow microalgae to tolerate high 
 CO2 concentrations are (1) ability to prevent acidification of 
the chloroplast stromal compartment and cytoplasm to main-
tain ribulose bisphosphate carboxylase–oxygenase activity 
(Rubisco; EC 4.1.1.39) and (2) ability to rapidly and revers-
ibly shutdown the  CO2 concentrating mechanism (CCM), 
operating under atmospheric  CO2 levels but facilitating the 
drop of pH in cells under elevated  CO2 concentrations. Par-
ticularly in microalgae, CCM plays a vital role during the 
carbon fixation process, because it can enhance  CO2 level at 
the Rubisco active site by transporting inorganic carbon into 
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Fig. 3  Biomass production by Chlorella sp. (a) and Scenedesmus sp. 
(b) supplied with different gas mixtures. Columns denoted by dif-
ferent lowercase letters differed significantly when each microalga 
grew supplied with different gas mixtures. Statistical analyses were 
performed using ANOVA and LSD post hoc analysis (P < 0.05). Bars 
represent standard error

Table 2  Biomass productivity and specific growth rate of Chlorella 
sp. and Scenedesmus sp. supplied with different gas mixtures

Values denoted by different lowercase letters differed significantly 
when each microalga grew supplied with five different gas mixtures. 
Statistical analyses were performed using ANOVA and LSD post hoc 
analysis (P < 0.05); ± represents standard error

Microalga Gas mixture Specific growth 
rate (µ;  day−1)

Biomass pro-
ductivity (P; 
g L−1 day−1)

Chlorella sp.
Air 0.06 ± 0.02c 0.04 ± 0.01c
25%  CO2–75% Ar 0.18 ± 0.05a 0.16 ± 0.02a
25%  CO2–75%  CH4 0.16 ± 0.03a 0.15 ± 0.04a
50%  CO2–50% Ar 0.10 ± 0.02b 0.08 ± 0.04b
50%  CO2–50%  CH4 0.12 ± 0.02b 0.10 ± 0.01b

Scenedesmus sp.
Air 0.09 ± 0.04c 0.05 ± 0.02c
25%  CO2–75% Ar 0.19 ± 0.03a 0.20 ± 0.03a
25%  CO2–75%  CH4 0.20 ± 0.02a 0.22 ± 0.01a
50%  CO2–50% Ar 0.15 ± 0.05b 0.13 ± 0.03b
50%  CO2–50%  CH4 0.13 ± 0.03b 0.11 ± 0.04b
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the cell and inducing an increase in photosynthetic rate [10, 
11, 16]. The previous information can explain the high  CO2 
fixation rates obtained by both microalgae evaluated when 
they were fed with biogas, since microalgae can perform the 
photosynthetic process under toxic  CO2, ammonia, cyanic 
acid, water vapor, and other toxic gases [24], although their 
tolerance level to  CO2 or  CH4 from biogas is dependent 
on the microalga strain [10, 14]. For instance, Kao et al. 
[4] claimed that Chlorella sp. MB-9 tolerated high  CO2 
(20%) and  CH4 (80%) concentrations from biogas, while 
Thiansathit et al. [25] stated that a biogas composition of 
40%  CO2–60%  CH4 was an optimum carbon source for S. 
obliquus TISTR 8522. Yan et al. [26] reported that the best 
 CH4 concentration during  CO2 fixation from biogas by Chlo-
rella sp. was 45–55% (v/v), while Kao et al. [13] stated that 
growth rate of Chlorella sp. MM-2 decreased proportionally 
increasing  CH4 concentration from 20 up to 80%. In this 
study,  CO2 capture and biomass production were not inhib-
ited when Chlorella sp. and Scenedesmus sp. were fed with 
biogas composed of 25%  CO2 balanced either with 75%  CH4 

or Ar, indicating that  CH4 did not affect them negatively. 
However, both microalgae decreased their physiologic activ-
ity when they were provided with biogas composed of 50% 
 CO2–50%  CH4 or Ar, which suggested that this  CO2 con-
centration was adverse for both. Nonetheless, both micro-
algae assessed can be considered as  CO2 tolerant according 
to the division of  CO2-tolerant microalgae as established by 
Solovchenko and Khozin-Goldberg [16].

The above can be supported by DIC culture media uptake, 
since its concentration was lower when each microalga was 
provided with biogas composed of 25%  CO2 rather than 
50%. It was happened, because the solubility of high  CO2 
concentration in culture medium decreased pH significantly 
and inhibited the Rubisco and Carbonic anhydrase (EC 
4.2.1.1) activities, vital during  CO2 capture by microalgae 
[19, 27]. For example, Meier et al. [6] demonstrated that 
the growth of Nannochloropsis gaditana CCMP-527 was 
completely inhibited with a pH less than 5.00 induced by 
the high  CO2 concentrations supplied. In this study, the pH 
of culture media decreased to 3.56 and 5.88 when supplied 

Fig. 4  Biochemical composi-
tion by Chlorella sp. (a, b) and 
Scenedesmus sp. (c, d) supplied 
with different gas mixtures. 
Columns denoted by different 
lowercase letters differed sig-
nificantly when each microalga 
grew supplied with different gas 
mixtures. Statistical analyses 
were performed using ANOVA 
and LSD post hoc analysis 
(P < 0.05). Bars represent stand-
ard error
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with biogas composed of 50% and 25%  CO2, respectively. 
According to Razzak et al. [27] and Tang et al. [19], a pH 
of 5–7 is an optimum range for freshwater microalgae and 
Rubisco and carbonic anhydrase enzymatic activities. This 
result explains the higher  CO2 fixation rates, biomass pro-
ductivities, and growth rates as recorded by both microalgae 
provided with 25%  CO2, since  CO2 capture by microalgae is 
directly correlated with parameter growth [27, 28], confirm-
ing that the 50%  CO2 provided in this study was detrimental 
for the physiological performance of both microalgae. The 
previous information highlights the importance of assessing 
and determining the optimal  CO2 and  CH4 concentrations 
for each microalga used.

On the other hand, both microalgae assessed in this study 
also showed the highest metabolite biosynthesis, mainly car-
bohydrates and proteins, supplied with biogas composed of 
25%  CO2 balanced either with 75%  CH4 or Ar, while lipid 
accumulation was not detected under the experimental con-
ditions of this study. Supplying the optimal  CO2 concen-
tration to the microalga culture increased Rubisco activity 
and  CO2 fixation rate, inducing greater biomass production 
and high-value compound biosynthesis. However, cell com-
pound biosynthesis is dependent on each microalga strain 
[29]. Previously, Choix et al. [30] demonstrated that Chlo-
rella sp. and Scenedesmus sp. assessed in this study have the 
ability to synthesize mainly carbohydrates and proteins but 
no lipids. Particularly, carbohydrate biosynthesis by micro-
algae starting from  CO2 fixation is more viable energetically 
than lipid synthesis [31]. Moreover, the 3-phosphoglycerate 
produced during photosynthesis is a signal for high carbon 
and energy content within the microalga cell, activating the 
ADP-glucose pyrophosphorylase enzyme, key in starch bio-
synthesis by microalgae [32]. In addition, Cheng et al. [33] 
demonstrated that protein content reflected high metabolic 
activity, and cells grew constantly; which confirms the bio-
refinery capacity of both microalgae assessed in this study 
starting from  CO2 content from biogas and their commercial 
value.

Conclusions

Overall, our results show that Chlorella sp. and Scenedes-
mus sp. microalgae, native of Lago de Chapala-Mexico, are 
 CO2-tolerant and both have the biotechnological potential 
to endure stressful biogas composition (25%  CO2 and 75% 
 CH4) without affecting their physiological capacity to cap-
ture  CO2, grow and biosynthesize high-value metabolites. 
Besides, these results exhibit the bio-refinery capacity and 
commercial value of both microalgae accumulating mainly 
carbohydrates and proteins, useful for obtaining biofuels as 
ethanol or biogas. Although this study was performed at lab-
oratory scale, it is important to highlight that both wild-type 

microalgae could be cultured to large scale to produce bio-
mass and biosynthesizing high-value metabolites from 
secondary effluents generated during anaerobic digestion 
process of agro-industrial wastes. Finally, this study shows 
the importance of isolating and identifying microalgae from 
local ecosystems to determine their physiological capacity 
for each biotechnological application.
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