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Abstract

Candicidin is one of the most effective antimonilial agents. In order to enhance candicidin productivity, medium optimization
and pH stepwise control strategy in process optimization were conducted by Streptomyces ZYJ-6. With the aid of Design
Expert software and N/C/P-sources regulation, chemically defined medium fit for cell growth and candicidin biosynthesis
was developed. Moreover, pH effects on cell growth and metabolism were investigated. The results indicated that the optimal
pH for cell growth and candicidin biosynthesis were 6.8 and 7.8, respectively. The metabolomics analysis revealed that the
pH stepwise control strategy (pH 6.8—7.8) combined the advantages of pH 6.8 and pH 7.8 and avoided precursor limitation
in pH 6.8 and 7.8. Consequently, the pH stepwise control strategy played positive performance on cell growth and candi-
cidin biosynthesis with the maximum titer of 5161 pg/mL. The titer of 5161 ug/mL was the highest level ever reported for
candicidin production, which laid a solid foundation for industrial application. Additionally, pH stepwise control strategy

was important reference for process optimization.
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Introduction

In 1965, about 50 polyenic antifungal antibiotics, which
are the most effective antimonilial agents so far known,
had been isolated and described [1]. This group includes
four subgroups: tetraenes (pimaricin), pentaenes (lienomy-
cin), hexaenes (dermostatin A) and heptaenes (candicidin).
Among these, the most important polyenic antifungal anti-
biotics from actinomycetes belongs to the heptaenes which
were also the most frequently produced polyenes [1]. The
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polyenic antifungal antibiotics, with a characteristic of three
to eight conjugated double bonds, usually form transmem-
brane channels by interacting with sterols or ergosterol in the
eukaryotic cell membrane, and then cause small molecules
and ions leakage for cell death [2]. Because of sterols also
existing in the cell membrane of human beings, candicidin
is not used in clinical medicine at the present time in case.
The heptaenes candicidin-producing strain Streptomyces gri-
seus IMRU3570 was first isolated in 1948 from cow manure.
Because of its high activity on Candida albicans, the anti-
biotic was named candicidin which was highly active upon
yeasts and yeast-like fungi, but not upon filamentous fungi
and bacteria [3].

Chen et al. [4] verified the candicidin and FR-008 are
identical compounds in Streptomyces griseus IMRU3570
and Streptomyces FR-008, respectively. Streptomyces
FR-008 was discovered in 1987 by Liang and Zhou [5].
They described the intraspecific protoplast fusion of two
auxotrophic strains from Streptomyces hygroscopicus and
found that different from their parental strains, FR-008 as
well as other two fusants could produce novel antibiotics
to kill Saccharomyces cerevisiae. FR-008 is a complex
mixture of six components (FR-008-I to-VI) principally
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differing from each other at C-3 and C-9. Combined inac-
tivation of KR21 and DH18 from Streptomyces FR-008, a
mutant (Streptomyces ZYJ-6) producing FR-008-III only
was created. It has been reported that the antifungal activ-
ity of FR-008-III is superior to other components [6]. In
this study, Streptomyces ZYJ-6 was selected as a potential
host for FR-008-III/candicidin D production.

The synthesis of antibiotics by actinomycetes, specifi-
cally polyenic antifungal antibiotics, is of great scientific
and economic importance. The onset (control and regula-
tion) of antibiotics formation is still intriguing scientists
both in academia and industry. Attempts had been made
to improve the FR-008/candicidin production by Strepto-
myces FR-008 or Streptomyces griseus IMRU3570. Acker
and Lechevalier [7] had explored nutritional require-
ments for the cell growth and candicidin production by
Streptomyces griseus IMRU3570. They revealed that
L-histidine and L-asparagine served best as single nitro-
gen sources, whereas mannose and glucose were superior
carbon sources. Besides, the macroelements K, Mg, P, S
and microelements Fe, Zn were also essential for the cell
growth and candicidin production. The development of
chemically defined medium has great significance in chas-
sis microorganism culture [8], synthetic biology, rational
production, separation and purification.

Unfortunately, there were few studies focusing on the pro-
cess optimization of candicidin fermentation and its titer is
still low. pH is one of the most important process parameters
affecting cell growth and product formation [9]. In general,
pH can affect nutrients availability and enzyme activity as a
result of the charge change of cell membrane [10]. Accord-
ing to the previous reports, different pH conditions were
adopted for the candicidin fermentation. With a soya peptone
(SP)-glucose medium, the maximum candicidin production
rate could be maintained and extended to a considerable
time length by controlling the culture pH at 8.0 with a final
yield up to 4 g/L [11]. Moreover, the candicidin yield was
up to about 1.3 g/L under the condition of initial pH 7.2, and
then pH was spontaneously kept at a constant level of 8.0
and greater than 8.0 at late phase in complex medium [12].
Additionally, properties of p-Aminobenzoic acid (PABA)
synthase, the first enzyme for candicidin biosynthesis, were
examined and the optimal pH in vitro were 9.0 [13].

Due to the important role of pH, pH shift and pH dual-
stage strategies have been developed for enhancing second-
ary metabolites formation. Compared to pH-uncontrolled,
pH-controlled, and two-stage pH-controlled conditions, the
pH shift strategy effectively increased the CS103 (FR-008
derivative) yield and shortened the fermentation time from
120 to 96 h [2]. Additionally, Fei et al. [14] enhanced by
85.7% on acarbose production of Streptomyces M37 using
a two-stage pH control strategy, compared to traditional
batch fermentation without pH control. It was found that
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the alkaline pH shock could increase Val-A production by
27.43% in Streptomyces hygroscopicus [15].

This study has aimed to establish an efficient fermenta-
tion process technology to further enhance the efficiency
of Streptomyces ZYJ-6 in producing FR-008-I1I/candici-
din D (hereinafter referred as candicidin). First, the effects
of medium components on the cell growth and candicidin
production were investigated through statistical analysis.
Second, based on the optimal medium in shake flask, the
optimization of N/C/P-sources and pH control strategy was
studied in 5 L bioreactor for further improvement of candici-
din production. Simultaneously, the metabolomics profiling
under different pH conditions was analyzed and discussed
to elucidate the mechanism of pH affecting on candicidin
biosynthesis. Finally, an efficient fermentation process with
an integrated medium optimization and pH control strategy
was developed.

Methods and materials
Microorganism and growth conditions

The Streptomyces ZYJ-6 was kindly donated by professor
Delin You in Shanghai Jiao Tong University.

Aerobic cultivations of Streptomyces ZYJ-6 were started
with glycerol stocks. 100 puL spores from glycerol stocks
were incubated on the slant medium (2% agar, 2% mannitol,
2% soybean powder, pH 7.2) for 4-day cultivation at 30 °C.
Spore suspension was harvested by washing the slant with
30 mL 0.9% NaCl solution. Subsequently, 107 spores per
100 mL was inoculated into the 100 mL medium (3% tryp-
tone, 1% yeast extract, 10.3% sucrose, pH 7.2) in the 500 mL
Erlenmeyer flask and grown 30 h at 30 °C and 220 rpm.
Mycelia suspension of 1 mL was inoculated into 100 mL
medium for shake flask fermentation in 500 mL Erlenmeyer
flask and mycelia suspension of 300 mL was inoculated in
5 L bioreactor for further fermentation.

For shake flask fermentation, the primary medium
was referenced to Ochi [16] (L") and with some minor
modifications: glucose 20 g, KH,PO, 0.5 g, glycine 5 g,
EDTANa, 1.8 g, MgSO,-7H,0 20 g, ZnSO,-7H,0 35.7 mg,
CaCl, 50 mg, FeSO,-7H,0 28.7 mg, CuSO,-5H,0 16 mg,
MnSO,-H,0 9.1 mg, antifoam 0.3%, NaCl 5.0 g as an
osmotic pressure regulator. Initial pH was adjusted to 7.2
by 4 M NaOH.

The 5-L bioreactor (Shanghai Guoqgiang Bioengineering
Equipment Co., Ltd. Shanghai, China) fermentation culture
was carried out in 3 L working volume. The process param-
eters were as follows: the temperature was kept at 30 °C, the
agitation was set at a constant speed rate of 400 rpm and the
sterile airflow was kept at 1 vvm through a bottom sparger
to keep overpressure of 0.05 MPa. The chemically defined
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medium contained (L™'): glucose 55 g, KH,PO, 1.5 g,
(NH,),SO, 1.8 g, EDTANa, 1.8 g, MgS0O,-7H,0 8.6 g,
ZnS0O,-7H,0 35.7 mg, CaCl, 50 mg, FeSO,-7H,0 28.7 mg,
CuSO,-5H,0 42 mg, MnSO,-H,0 9.1 mg, antifoam 0.3%,
NaCl 9.0 g as an osmotic pressure regulator. The process
pH was controlled by adding 10% ammonium hydroxide.
The glucose concentration in feeding solution was 0.75 g
(glucose)/g (deionized water). The feeding was started once
the initial glucose was exhausted and then the residual glu-
cose concentration was kept below 5 g/L. The glucose solu-
tion was sterilized separately at 110 °C for 40 min and the
bioreactor with medium together was sterilized at 121 °C
for 60 min.

Medium optimization in shake flask

Plackett—-Burman (PB) design from Design Expert 10 was
used for screening medium components with respect to
their main effects but not to their interaction effects [17].
Each nutrient was tested at two concentrations (high and
low) and these variables were screened with a 12-runs PB
design shown in Table Al. The principle and steps were
documented by Chen et al. [18].

Central composite design (CCD) from Design Expert 10
for three independent variables was used to obtain the com-
bination of values and their interaction effects, which allows
one to minimize the number of experiments required. The
medium components selected for CCD were NaCl, CuSO,
and MgSO,.

N/C/P-sources regulation in bioreactor

N-source regulation was based on fixed C/N with shake flask
but glycine was replaced by (NH,),SO,. P- and C-source
were increased from 0.5 to 1.5 g/L and 20 to 55 g/L, respec-
tively. pH was kept at 7.2 during the whole process.

Optimal pH in fermentation process

In 5 L bioreactor, all parameters were same but different pH
values (6.8, 7.2, 7.5, 7.8 and 6.8-7.8) were set in fermenta-
tion processes. Since an immediate increase in pH might
bring pH shock to cells, the pH was allowed to increase
gradually from 44 to 48 h. In detail (Fig. 3e), pH 6.8 from 0
to 44 h, pH 7.0 from 44 to 45 h, pH 7.2 from 45 to 46 h, pH
7.4 from 46 to 47 h, pH 7.6 from 47 to 48 h, pH 7.8 from
48 h to the late phase (z>48 h), respectively.

Sampling and pretreatment
Regular sampling (per 12 h) contained: 1 mL broth was

centrifuged and the supernatant was determined for the
residual glucose; 1 mL broth was taken out into 2 mL

dimethylsulfoxide (DMSO) directly for the candicidin
extraction; 3 mL X 3 were used for the dry cell weight
(DCW).

Rapid sampling was set at 36 h, 46 h, 96 h and 156 h. 36 h
was the time point in logarithmic phase; 46 h was in upcom-
ing candicidin synthesis phase; 96 h was in plateau period
and 156 h was in late stage. 1 mL broth was withdrawn into
8 mL isoamylol: base solution=5:1 (v/v) and base solu-
tion was acetone: ethanol=1:1 (mol/mol) by rapid sampling
device within 0.2 s. The solution was centrifuged for 1 min
at — 13 °C and 7500 rpm and the supernatant was discarded.
The residual cell pellets with internal standard (IS) were
extracted by 50% (v/v) methanol and then subjected to three
cycles of freezing on liquid nitrogen for 3 min and thawing
at — 30 °C on cryostat. The extracted solution was concen-
trated to 0.5 g for the detection of metabolites.

Analytical methods

The concentration of glucose was determined by a biosensor
(SBA-40B, Shandong Science Academy, China). The candi-
cidin was measured according to the procedures as described
by Mao et al. [19]. Biomass accumulation was estimated by
DCW analysis. Briefly, 3 mL of culture was deposited on
pre-weighed filter paper and washed thrice with distilled
water. The filter paper covered with the cells were dried
to constant weight in a 70 °C oven for 36 h and allowed to
cool in a desiccator. The filter paper was weighed and the
biomass calculated.

Quantitative analysis of intracellular metabolites was
performed by gas chromatograph mass spectrometer (GC-
MS) with a 7890A GC coupling to a 5975C MSD single
quadrupole mass spectrometer (Agilent, Santa Clara, CA,
USA). The determination conditions of the metabolites were
referred to de Jonge et al. [20] with slight modification.
Briefly, different column, HP5-5% Phenyl Methicone col-
umn (30 m X250 pm internal diameter, 0.25 um film thick-
ness), was used. Sample of 1 uLL was injected in splitless
mode at 250 °C. During the analysis process, the flow rate
of helium was kept at 1 mL/min. The GC column tempera-
ture gradient for organic acids (OA), phosphate sugars (PS)
and sugar alcohols (SA): the initial temperature was set as
70 °C for 1 min and then increased with the speed of 10°C/
min up to 300 °C and kept for 10 min. While for amino acids
(AA) analysis was initially set as 100 °C for 1 min and then
raised by a same speed of 10°C/min up to 300 °C and held
at 300 °C for 10 min for cleaning. Electron ionization was
operated with 70 eV and MS was operated in selected ion
monitoring (SIM) mode as usually described. The tempera-
ture of transfer line, MS source and quadrupole were kept
at 280 °C, 230 °C and 150 °C, respectively. Quantification
of the metabolites was conducted by isotope dilution mass
spectrometry (IDMS) [21].
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The coenzymes and others were analyzed by ultra-high
performance liquid chromatography-mass spectrometry tan-
dem mass spectrometry (UHPLC-MS/MS) as described by
Hong et al. [22].

Results and discussion
Medium optimization in shake flask

PB design was applied to screen the most significant medium
components in candicidin production. The limits of variables
and response of candicidin from different experimental trials
were shown in Table A1. The analysis of variance (ANOVA)
of PB model was described in Table A2. The p value was
used as a tool to check the significance of each constituent. A
low p value indicated a significant effect. The p value analy-
sis shown that, among the tested variables, NaCl, CuSO,
and MgSO, played significant roles in candicidin produc-
tion (p <0.05). Therefore, NaCl, CuSO, and MgSO, were
selected for further optimization by CCD.

To examine the interaction effect of three significant com-
ponents on candicidin production, a total of 20 experiments
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Fig. 1 Comparison of candicidin fermentation performances between
before (solid circles) and after (solid square) the optimization of
medium by Streptomyces ZYJ-6 in the shake flask culture. a Accu-
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were performed (Table A3). The p values were also used to
understand the significance of interaction pattern between
the tested variables (Table A4). The F value of 4.06 and p
value of 0.0164 implied the model was significant. Accord-
ing to these rules, NaCl and MgSO, were significant model
terms; however, no interaction between them was found
(p>0.1). Through the CCD prediction and verification
experiments, the optimal concentration of NaCl, CuSO,
and MgSO, were 9.0 g/L, 42 mg/L and 8.6 g/L, respectively.

After optimization, the new medium recipe was more
suitable for the candicidin production (Fig. 1). The glucose
consumption and cell growth also displayed satisfactory
performance, while broth pH would spontaneously increase
from 7.2 to 8.0 and keep around 8.0 in the late period. In
the following experiments, the optimized medium was
adopted in 5 L bioreactor for further fermentation process
optimization.

N/C/P-sources regulation in bioreactor

On the basis of the medium optimization in shake flask, the
candicidin fermentation was scaled up to 5 L bioreactor.
Nevertheless, the optimal medium in shake flask was not
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mulation of candicidin with time; b consumption of glucose; ¢ cell
growth and d change of pH in the process. Each value represents the
mean of three separate determinations with standard deviation
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suitable for cultivation on the bioreactor scale, resulting in
extremely low candicidin concentration in 5 L bioreactor
(Fig. Al). Therefore, some process regulations were con-
ducted to improve the fermentation performance on 5 L
fermenter.

As mentioned above, pH would spontaneously increase
from 7.2 to 8.0 and keep around 8.0 in shake flask. It was
speculated that the glycine as an easily metabolic N and
C source might be used primarily or utilized with glucose
at same time, which led to pH increase in the whole shake
flask fermentation process. In 5 L bioreactor, pH would be
kept at constant 7.2; therefore, the glycine was replaced by
(NH,),SO, with fixed C/N ratio and the results are shown in
Fig. 2. (NH,),S0, was a physiological acid salt and its utili-
zation would result in pH decrease so that pH could be kept
in 7.2 by adding ammonium hydroxide. After the N-source
regulation, candicidin production, glucose consumption, cell
growth and oxygen uptake rate (OUR) level had a slight
improvement compared with the initial fermentation, but
still at relatively low level (Fig. 2). OUR is one of the funda-
mental physiological parameters of cell metabolism, which
has close connection with the biosynthesis of products [23].
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Fig.2 Comparison of fermentation performances among initial
medium (I, solid black circles), N-source regulation (N, hollow hexa-
gon) and C/P-sources regulation (P, solid red square) by Streptomyces
ZYJ-6 in 5 L bioreactor. a Accumulation of candicidin with time; b

It is well known that the primary metabolism provides pre-
cursors for the secondary metabolism and thus enhances the
primary metabolism is the pre-requisite for the improvement
of secondary metabolism. However, the biomass was only
around 5-6 g/kg in this case (Fig. 2c). The candicidin bio-
synthesis belongs to the secondary metabolism whereas the
indispensable precursors PABA, malonyl-CoA and meth-
ylmalonyl-CoA are from the primary metabolism. Hence,
in order to enhance the primary metabolism suitably and
then improve the candicidin production, P-source regulation
would be carried out afterwards.

The depletion of P-source appeared to trigger the onset
of candicidin synthesis after a drastic reduction of the
RNA synthesis rate [24]. Many literatures cast a veil over
P-source in the candicidin biosynthesis and researchers
always gave a conservative level of P-source. Martin and
Demain [25] found phosphate concentrations above 1 mM
decreased the incorporation rate of ['4C] propionate and
['*C] p-aminobenzoic acid into candicidin. Despite the
above facts, sufficient supply of P-source was highly effec-
tive in enhancing the primary metabolism. Therefore, in
medium components, level of KH,PO, was aggrandized
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from 0.5 g/L (3.67 mM) to 1.5 g/L (11.02 mM) and with
the overall consideration of nutrients balance, the glucose
level was increased from 20 to 55 g/L with almost the
same C/P ratio. Undoubtedly, pH was controlled by ammo-
nium hydroxide so that the N-source was unlimited.

It was reported in Fig. 2 that P-source regulation dis-
played prominent performance. As expected, the maxi-
mum biomass concentration increased 3 times, compared
to that in the initial fermentation and attained 12 gDCW/
kg (Fig. 2¢). The candicidin level had a qualitative leap
and attained 1403 pg/mL (Fig. 2a), which was 3 times of
450 pg/mL cultured in shake flask with complex medium
by Streptomyces ZYJ-6 and even higher than other mutants
reported by Wang et al. [26]. The candicidin synthesis
rate, gp (7.08 mg/gh), was 3.5 times of N-source regula-
tion (2.01 mg/gh) and 15.4 times of the initial fermentation
(0.46 mg/gh, Table 1). Simultaneously, the process OUR
profile also, to some extent, confirmed the P-source regu-
lation results and its highest value attained 30.9 mmol/
kg/h (Fig. 2d).

After the N-source regulation, controllable pH condi-
tions were realized, which could enhance the cell growth
and candicidin biosynthesis to some degree. Surpris-
ingly, the candicidin synthesis rate and titer were further
improved 3.5 and 8.2 times, respectively, with the C/P-
sources regulation, compared to N-source regulation.
Consequently, the titer of 1403 pg/mL was achieved, the
highest level ever reported in Streptomyces ZYJ-6.

Table 1 Streptomyces ZYJ-6 fed-batch parameters at different condi-
tions

Terms (-) iy /0 g5 (g/gh) gp(mg/  Yxp Ysp (mg/g)
gh) (mg/g)

I(pH7.2) 0012  0.086 0.46 38.33 535

N(pH 0020 0.2 2.01 10050 1675
7.2)

P(pH72) 0052 027 7.08 13615 2622

pH68 0065 0.19 4.63 7123 2437

pH75 0056 031 5.54 9893  17.87

pH7.8 0051 028 11.64 22824 4157

pH 0064 031 22.48 35125 72.52
6.8-7.8

I initial medium from the optimization in shake flask, N N-source
regulation, P P-source regulation, ,,, maximum specific growth
rate, gg glucose consumption rate and the unit is g glucose per g bio-
mass per hour, gp candicidin synthesis rate and the unit is mg candici-
din per g biomass per hour, Yxp yield of candicidin based on biomass
and calculated by gp/u and the unit is mg candicidin per g biomass,
Ysp yield of candicidin base on glucose and calculated by gp/gg and
the unit is mg candicidin per g glucose
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Optimal pH in fermentation process

In N/C/P-sources regulation experiments, pH was kept at
7.2 by feeding 10% ammonium hydroxide as mentioned in
literatures [8, 26]. It is well known that the optimal pH of
Streptomyces is 6.5-8.0 and in the previous work, the pH
range that could support candicidin production was 7.0-8.0
[3,7, 11, 26]. To demonstrate the pH effect on the candicidin
production, process pHs were maintained at 6.8, 7.2, 7.5 and
7.8, respectively (Fig. 3e) without changing of other opera-
tion parameters.

The time courses of candicidin production, residual glu-
cose concentration, cell growth and OUR levels in the fed-
batch culture of Streptomyces ZYJ-6 were shown in Fig. 3.
When cells entered into the stationary phase, the candicidin
began to be synthesized. As observed in Fig. 3, pH 7.8 was
the most appropriate condition for the candicidin biosyn-
thesis (Fig. 3a), but seemed to be not sutiable for the cell
growth (Fig. 3c). In this study, glucose was used as a sole
carbon source for the cell growth and candicidin production.
Glucose concentration decreased sharply with the rapid cell
growth at pH 6.8 (Fig. 3b). As observed in Fig. 3d, before
the turning point (cell gorwth phase), OUR level at pH 6.8
performed the highest value, while after the turning point
(cell stationary phase), pH 7.8 could maintian the relatively
higher OUR than that under other conditions. The g of can-
dicidin production for pHs at 6.8, 7.2, 7.5 and 7.8 were 4.63,
7.08, 5.54 and 11.64 mg/gh, respectively (Table 1). The u,,,,
for pHs at 6.8, 7.2, 7.5 and 7.8 were 0.065, 0.052, 0.056 and
0.051/h, respectively (Table 1). These results indicated that
the optimal pH value for the cell growth was around 6.8,
while the optimal pH value for the candicidin formation was
around 7.8 by Streptomyces ZYI-6.

On the basis of the above analyses, a stepwise pH control
strategy (pH 6.8-7.8, Fig. 3e) was proposed for the further
enhancement of candicidin production. As the OUR level
at pH 6.8 had a downward tendency, the culture pH was
increased gradually from 6.8 to 7.0 at44 h, 7.0to 7.2 at45 h
until 7.6 to 7.8 at 48 h (Fig. 3e). Phase I was defined as the
condition to increase the cell growth by maintaining the pH
at 6.8 from 0 to 44 h. Phase II was defined as the condition
to accelerate the candicidin production by maintaining the
pH at 7.8 from 48 h to the end of fermentation.

The results were summaried in Fig. 4. Under the pH 7.8,
the candicidin concentration entered into plateau in the late
phase (¢> 116 h), whereas under pH 6.8—7.8 condition, the
candicidin concentration exhibited a continuous increase.
The maximum biomass reached eariler (=72 h) and fol-
lowed by the significant decrease which was supposed to
ascribe to the candicidin concentration entering into pla-
teau at pH 7.8. As shown in Table 1, the candicidin titer
and productivity increased up to 5161 ug/mL (Fig. 4a) and
22.48 mg/g h, respectively. The titer 5161 ug/mL was even
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Fig.3 Comparison of fermentation performances under different pH
conditions, pH 6.8 (solid black circles), pH 7.2 (solid red square), pH
7.5 (solid pink triangle) and pH 7.8 (solid blue triangle) by Strepto-
myces ZYJ-6 in 5 L bioreactor. a Accumulation of candicidin with

higher than 4 g/L, the highest candicidin level ever reported
in the reference with Streptomyces griseus IMRU 3570 [11].
Regarding Streptomyces ZYJ-6, the candicidin concentra-
tion obtained in this study was even more than 10 times of
450 pg/mL in complex medium [26]. Productivity (gp) is one
of the key parameters to evaluate a bioprocess performance,
its scale-up potential and commercial large-scale feasibility
[27]. The gp (22.48 mg/gh) under pH 6.8—7.8 was almost 2
times than pH 7.8 (11.64 mg/gh). Simultaneously the Yxp
(yield based on biomass) and Ysp (yield based on glucose)
were 1.5 and 1.7 times, respectively (Table 1).

All these results further confirmed that the optimal pH for
Streptomyces ZYJ-6 growth was different from that for the
candicidin production. On the other hand, through comparing

time; b consumption of glucose; ¢: cell growth and d change of OUR
levels in the process. Each value represents the mean of three separate
determinations with standard deviation. e Different pH conditions, pH
6.8-7.8 (hollow circles)

the OUR levels, similar conclusions could be drawn that pH
6.8—7.8 control strategy was more sustainable than constant pH
7.8 strategy, and as in the pH 6.8-7.8 condition, OUR could
keep at contant level during the whole late phase (> 60 h),
while it declined evidently under the constant pH 7.8 cond-
tion. It was concluded that the stepwise pH control strategy
improved the cell growth and candicidin productivities sig-
nificantly comparing with the cultivations conducted at a fixed
pH of 6.8 or 7.8.
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Fig.4 Comparison of fermentation performances between pH 7.8
(solid blue triangle) and pH 6.8-7.8 (hollow circles) by Streptomyces
ZYJ-6 in 5 L bioreactor. a Accumulation of candicidin with time; b

Metabolomics analysis under different pH
conditions

Compared to fixed pHs, the stepwise pH control strat-
egy could vastly improve the candicidin production. It is
assumed that the expression of candicidin polyketide syn-
thase genes is constant in all of these growth conditions.
Thus, it was reasonable to speculate that different pH strate-
gies caused changes on intracellular metabolite levels, which
further led to significant difference on final candicidin titers.
To confirm this hypothesis, intracellular metabolites from
pH 6.8, pH 7.8 and pH 6.8-7.8 at 4 cultivation time points
(36, 46, 96 and 156 h) were obtained and analyzed by a
combination of GC-IDMS and UHPLC-MS/IDMS. Almost
40 metabolites were identified and quantified, including pre-
cursors of candicidin, amino acids, intermediates of center
carbon metabolism and others (Table 2).

First, the data structure and quality were assessed by
principal component analysis (PCA, Fig. 5a). The four time
points from pH 6.8 (red) were separated clearly from other
conditions. While although time points from pH 7.8 (green)
and pH 6.8-7.8 (blue) possessed a little intersection, most
parts were separated clearly as well. It was indicated that
intracellular metabolites data were suitable to monitor the
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culture processes. Second, to further identify which metabo-
lites were closely associated with the candicidin production,
the variable importance of the projection (VIP) was gener-
ated by partial least squares (PLS) analysis. A higher VIP
score suggested that the metabolites contributed more sig-
nificantly to candicidin biosynthesis. A total of 16 identified
metabolites were selected (VIP score > 1) for further investi-
gation (Fig. 5b). They were malonyl-CoA, PABA, propionyl-
CoA, citrate, alanine, asparagine, glycine, threonine, proline,
fumarate, malate, ADP, a-ketoglutarate, arabitol, serine and
methylmalonyl-CoA. Most of them belong to precursors,
amino acids and tricarboxylic acid cycle (TCA) intermedi-
ates, which would be discussed in detail. Third, heatmap
combined with the cluster analysis reconfirmed the above
conclusion (Fig. 5¢). Most precursors were assigned to one
subgroup with candicidin. Subsequently, metabolites highly
correlated with candicidin biosynthesis were classified into
different categories and were mapped onto metabolic path-
ways (Fig. 6).

Among precursors, malonyl-CoA gained the highest VIP
score of 2.15 in the detected metabolites, which implied the
most important role in candicidin biosynthesis. PABA and
propionyl-CoA were ranked second and third, respectively.
Methylmalonyl-CoA had the lowest VIP score of 1.02, but in
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Fig.5 PCA, PLS and Cluster analysis of intracellular metabolites
from pH 6.8, pH 7.8 and pH 6.8-7.8. The samples were withdrawn
from the cultivations at 36, 46, 96, and 156 h. a PCA-derived score
plots. b PLS-derived the variable importance of the projection (VIP)
histogram. ¢ Cluster-derived heatmap. pH x.y: x was pH condition
and 6 means pH 6.8; 7 means pH 7.8; S denotes pH 6.8-7.8, y was
the sampling time point and 1-4 means first (36 h) to forth (156 h)
sampling points. e.g. pH 6.1 was the first sampling point (36 h) in

(VIP score =1.74), fumarate (VIP score =1.39), malate
(VIP score=1.23) and a-ketoglutarate (VIP score =1.19)
(Fig. 5b) implied a close association with candicidin biosyn-
thesis. As described in Table 2, no significant difference was
found in above metabolite concentration among different pH
conditions. The facts revealed that although the TCA was

|'SHd

¢'SHd
¥'SHd
L"/Hd
" LHd

pH 6.8, pH 7.2 was the second sampling point (46 h) in pH 7.8 and
pH S.3 was the third sampling point (96 h) in pH 6.8-7.8. MalCoA,
malonyl-CoA; PABA, para aminobenzoic acid; ProCoA, propio-
nyl-CoA; Cit, citrate; Ala, alanine; Asn, asparagine; Gly, glycine;
Thr, threonine; Pro, proline; Fum, fumarate; Mal, malate; oKG,
a-ketoglutarate; Aral, arabitol; Ser, serine; MethCoA, methylmalmo-
nyl-CoA; Pyr, pyruvate

important in supplement of precursors and energy, it was
not the bottleneck of candicidin biosynthesis under different
pH conditions.

These results proved that the concentration of TCA
metabolites had little differences; nevertheless, the dif-
ferentiation would appear in amino acids metabolism and

@ Springer



1754

Bioprocess and Biosystems Engineering (2018) 41:1743-1755

Glucose

G6P—>»6PG—>Ru5P
FoP X5P RSP
KEMP l
S7P G3P *PPP
G3P.
E4P  F6P
3PG T
Methylmalonyl-CoA PE Sk CHOR { PABA
Ala l Y Shikimate
Propionyl-CoA <€— Val Pyr PHE Phe  metabolism
Leu
Tyr
FAmino acid AceCoA—> Malonyl-CoA
metabolism
lle «——Thr<— Asp«—O0xa Cit
P PABA Malonyl-CoA Methylmalonyl-CoA
*TCA | ‘
Suc aKG ¢

dicidi
SUCCOA Candicidin

Methylmalonyl-CoA

Fig.6 Schematic representation of the proposed metabolic path-
ways closely associated with the candicidin biosynthesis in Strep-
tomyces ZYJ-6. The key pathways are marked by red pentacles.
EMP, Embden-Meyerhof-Parnas pathway; PPP, pentose phosphate
pathway; TCA, tricarboxylic acid cycle. G6P, glucose 6-phosphate;
F6P, fructose 6-phosphate; G3P, glyceraldehyde 3-phosphate; 3PG,
3-phospho-glycerate; PEP, phosphoenolpyruvate; Pyr, pyruvate;
AceCoA, acetyl-CoA; Cit, citrate; aKG, o-ketoglutarate; SucCoA,
succinyl-CoA; Suc, succinate; Oxa, oxaloacetate; Asp, aspartate;
Thr, threonine; Ile, isoleucine; Ala, alanine; Val, valine; Leu, leu-
cine; 6PG, 6-phospho-gluconate; RuSP, ribulose 5-phosphate; X5P,
xylulose 5-phosphate; R5P, ribose 5-phosphate; S7P, sedoheptulose
7-phosphate; E4P, erythrose 4-phosphate; Ska, shikimic acid; CHOR,
chorismate; Trp, tryptophan; PABA, para aminobenzoic acid; PHEN,
prephenic acid; Phe, phenylalanine; Tyr, tyrosine

precursors supplement, which led to different candicidin
titers. Specifically, at pH 6.8, low levels of amino acids were
insufficient to PABA, malonyl-CoA and methylmalonyl-CoA
in whole candicidin biosynthesis process; at pH 7.8, amino
acid concentration started to drop from 96 to 156 h resulting
in the deficiency of malonyl-CoA and methylmalonyl-CoA
in late phase of candicidin biosynthesis and causing candici-
din biosynthesis into a plateau; at pH 6.8-7.8, due to amino
acids increased continually after 96 h, abundant precursors
PABA, malonyl-CoA and methylmalonyl-CoA were guaran-
teed to the rapid and continuous candicidin biosynthesis. To
sum up, the stepwise pH control strategy (pH 6.8—7.8) was
favorable to supply abundant precursors for the candicidin
biosynthesis.

Conclusion
Based on the medium optimization in shake flask, chemi-

cally defined medium was developed for the cell growth and
candicidin production. However, the medium could not be

@ Springer

applied to bioreactor directly. By the N/C/P-sources regula-
tion, the candicidin titer reached to 1403 ug/mL; through
the optimization of cultivation pH, the titer attained to
2839 pg/mL in pH 7.8; benefit from the optimization of pH,
pH stepwise strategy was proposed and unprecedented titer
5161 pg/mL was achieved, which was the highest level ever
reported for candicidin production and availability for fur-
ther industrial application. Metabolomics analysis revealed
the pH stepwise control strategy could supply more abun-
dant precursors than fixed pHs and this strategy provides
important clue for process optimization of other secondary
metabolites.
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