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Abstract
In this work, we expanded and updated a genome-scale metabolic model of Streptomyces clavuligerus. The model includes 
1021 genes and 1494 biochemical reactions; genome-reaction information was curated and new features related to clavam 
metabolism and to the biomass synthesis equation were incorporated. The model was validated using experimental data 
from the literature and simulations were performed to predict cellular growth and clavulanic acid biosynthesis. Flux balance 
analysis (FBA) showed that limiting concentrations of phosphate and an excess of ammonia accumulation are unfavorable 
for growth and clavulanic acid biosynthesis. The evaluation of different objective functions for FBA showed that maximiza-
tion of ATP yields the best predictions for cellular behavior in continuous cultures, while the maximization of growth rate 
provides better predictions for batch cultures. Through gene essentiality analysis, 130 essential genes were found using a 
limited in silico media, while 100 essential genes were identified in amino acid-supplemented media. Finally, a strain design 
was carried out to identify candidate genes to be overexpressed or knocked out so as to maximize antibiotic biosynthesis. 
Interestingly, potential metabolic engineering targets, identified in this study, have not been tested experimentally.

Keywords  Genome-scale metabolic reconstruction · Flux balance analysis · Streptomyces clavuligerus · Strain 
improvement · Clavulanic acid

Introduction

Streptomyces clavuligerus is a gram-positive bacterium, 
widely used in the production of clavulanic acid (CA), 
cephamycin C (CephC) and 5S clavam compounds with anti-
fungal and antitumor activities. CA is a β-lactamase inhibi-
tor clinically used in combination with β-lactam antibiotics 

to treat infections caused by β-lactamase-producing bacteria 
[1].

The biosynthetic pathway leading to CA starts with the 
condensation of the C3 precursor glyceraldehyde-3-phos-
phate and the C5 amino precursor l-arginine, to form 
N2-(2-carboxyethyl) arginine, a reaction catalyzed by car-
boxyethylarginine synthase (CeaS2). Further cyclization, 
hydroxylation and hydrolysis reactions produce clavaminic 
acid [2, 3]; these so-called early steps end by the action of 
clavaminate synthase (Cas): first, proclavaminic acid under-
goes cyclization to produce dihydroclavaminic acid, which is 
subsequently desaturated to yield clavaminic acid [3]. In S. 
clavuligerus, the biosynthetic pathway leading to CA and 5S 
clavams is partially shared up to the clavaminic acid inter-
mediate; the early steps are well characterized, but little is 
known about the reactions beyond clavaminic acid leading 
to CA or 5S clavams. In these late steps, N-glycyl-clavaminic 
acid synthetase (gcas) converts clavaminic acid into N-gly-
cyl-clavaminic acid, but details of the reactions involved are 
still unknown. Finally, clavaldehyde dehydrogenase (cad) 
reduces clavaldehyde to form CA; both clavaldehyde and 
CA share the 3R, 5R stereochemistry associated with its 
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inhibitory activity [4]. The genes involved in CA and 5S 
clavam biosynthesis are located in three separated locations 
within the S. clavuligerus chromosome (secondary biosyn-
thetic clusters). The CA cluster is located next to the CephC 
gene cluster; the CA-CephC-supercluster and clavam cluster 
both lie on the chromosome, whereas the paralog gene clus-
ter is located in the plasmid pSCL4 [5].

In view of the clinical and industrial importance of CA, 
the biosynthetic pathway, the associated gene cluster(s) and 
related regulatory mechanisms that control its production, 
have been topics of continuous research. S. clavuligerus also 
has a particular response system to nutrient-limiting condi-
tions, linked to morphological differentiation and the onset 
of secondary metabolism [2]. These unclear aspects of S. 
clavuligerus metabolism reveal the need of using systemic 
methodologies that enable a holistic view of CA biosyn-
thesis and accumulation under diverse environmental per-
turbations, so as to capture and eventually understand the 
genotype–phenotype relationship.

To improve the overall understanding of the metabolic 
capabilities of microorganisms, a systems biology approach, 
combining experimental and mathematical tools, has been 
established. Genome scale metabolic models (GSMMs) have 
been developed so as to bridge the gap between genome-
derived biochemical information and metabolic phenotypes 
in a suitable manner, thus providing a solid interpreta-
tive framework for experimental data related to metabolic 
states, and enabling simple in silico experiments considering 
whole-cell metabolism. The basis of a GSMM lies in the 
functional annotation of the genes, including biosynthetic 
gene clusters of secondary metabolites that, when con-
nected to the biochemical reactions catalyzed by the cor-
responding enzymes, provide a complete summary of the 
metabolic capabilities of the organism. Since parts of these 
biosynthetic gene clusters have not been fully characterized, 
GSMM-based simulations, along with bioinformatics tools 
and experimental data, might contribute to further identify 
their biological function.

Moreover, GSMMs simulate the operation of the metabo-
lism in response to diverse perturbations, thus contributing 
to decipher potential interactions among metabolic, regula-
tory and signaling networks in a holistic manner. Investigat-
ing different in silico metabolic scenarios might facilitate the 
identification of better nutrient and environmental culture 
conditions for enhanced secondary metabolite production. 
Several actinomycete GSMMs are currently available for 
S. coelicolor [6], and S. lividans [7]; for S. clavuligerus, 
Medema et al. [8] presented a GSMM describing secondary 
metabolite production [8].

In this work, a reconstructed and updated GSMM was 
built and used to represent the S. clavuligerus metabolic 
activity. The resulting model was improved by curation of 
the genome-reaction information, and by adding reactions 

related with clavam metabolism and an updated biomass 
equation. By simulating different metabolic scenarios, the 
model allowed us to identify potential metabolic targets that 
might be modified by genetic engineering techniques so as 
to obtain overproducer strains.

Materials and methods

Genome‑scale metabolic model reconstruction 
and refinement

The genome-scale stoichiometric model of S. clavuligerus 
[8] (kindly provided by Prof Marnix Medema, Wageningen 
University, The Netherlands) and a model for the phylo-
genetically close organism S. coelicolor A (3), for which 
genome scale reconstruction information is available [6], 
were utilized as base models to generate the so called 
iLT1021 model. Besides, a genome scale reconstruction 
was performed as a parallel model to search for functions 
that might not be included in the base models; for this, the 
genome of S. clavuligerus ATCC 27064 (accession num-
ber CM000913.1–CM000914.1) [9], and the Model SEED 
genome-scale metabolic reconstruction pipeline [10], were 
used. The parallel draft reconstruction had false and miss-
ing reactions due to wrong or incomplete annotations [11]; 
hence, it was compared step by step with genome annota-
tions deposited in databases such as StrepDB (http://strep​
db.strep​tomyc​es.org.uk), BioCyc [12], PATRIC [13], and 
Kyoto encyclopedia of genes and genomes (KEGG) [14]; 
this enabled us to build a complete list of reactions and 
the corresponding Gene–Protein–Reaction (GPR) associa-
tions, a very important step for further in silico gene deletion 
studies.

The iLT1021 model was converted to SBML format to 
be fully compatible with COBRA Toolbox [11] and other 
FBA tools like SurreyFBA [15]. The COBRA Toolbox was 
used to run and refine the model; gaps in the model were 
then identified using the steady-state model and constraint 
consistency checker (MC3) for biochemical networks to 
detect connectivity and topological issues in the stoichio-
metric matrix and flagging issues that might arise during 
constraint-based optimization [16].

To perform the in silico simulations and to predict the 
metabolic flux distribution under different conditions in S. 
clavuligerus cultures, flux balance analysis (FBA) was car-
ried out, as described elsewhere [17].

Biomass composition

The biomass composition of S. clavuligerus consisted of 
protein, DNA, RNA, lipids (phospholipids and triacylglyc-
erol), cell wall constituents (peptidoglycan, carbohydrates, 

http://strepdb.streptomyces.org.uk
http://strepdb.streptomyces.org.uk


659Bioprocess and Biosystems Engineering (2018) 41:657–669	

1 3

teichoic acid and trehalose), and small molecules. Defining 
the biomass equation is a crucial step to obtain high-quality 
models [18]; yet, there is no detailed information about bio-
mass constituents of S. clavuligerus. The first GSMM for 
streptomycetes species was the iLB711 model for S. coeli-
color [6]; since then, biomass composition and equations for 
this species have been used for the related emerging models 
as for S. clavuligerus.

Robustness analysis (RA)

The effect of different substrate concentrations (C-, N-, P- 
and O sources) on biomass and antibiotic production (CA) 
was studied; the maximum consumption rate for each sub-
strate was set to 1 mmol gDW− 1 h− 1 and, for the prediction 
of different effects on the antibiotic biosynthesis rate, the 
growth rate was constrained to 90% of the maximum value 
so as to avoid the unrealistic case of CA production with-
out biomass growth. The flux towards CA biosynthesis was 
maximized as the objective function. RA was performed to 
evaluate the phenotypic response (growth rate and CA pro-
duction) to perturbations on the different substrates generally 
used in S. clavuligerus cultures. For this, an in silico mini-
mal medium was used, GAPI, containing glycerol, ammonia 
and phosphate; all other exchange reactions were constrained 
to zero, except for oxygen, ions, water and hydrogen, which 
were left unconstrained.

Validation of the iLT1021 model and evaluation 
of alternative objective functions

In this work, we used experimental data reported by Bushell 
et al. [19] for a continuous culture, as constraints to inves-
tigate the validity of the iLT1021 model. Different studies 
[20–23] consider growth rate maximization as the most 
appropriate objective function; however, this may not be 
the case for experimental instances such as the production 
of secondary metabolites, e.g., antibiotics [24]. Therefore, 
additional experimental datasets, including batch cultures, 
were proposed as scenarios for the evaluation of different 
linear and non-linear objective functions (obfuncs). The 
obfuncs used in this study were: max biomass, max ATP, 
max ATP/flux and max biomass/flux (maximization of ATP 
and biomass yield per unit flux, respectively); these obfuncs 
have been reported for other microbial growth simulations 
[22]. Using all the experimental constraints, the prediction 
of every objective function was observed by the correlation 
of scatter plots of separated flux-by-flux comparisons, to see 
how each experimental flux distribution matches the cor-
responding predictions. To quantify the overall agreement, 
we used the similarity between the multiple computational 
and experimental results by means of the Euclidean distance 
criteria, as described elsewhere [21].

Essential gene analysis

We analysed the essentiality of individual genes of S. cla-
vuligerus under minimal (GAPI) and complex medium 
condition (CPX); the amino acid exchange reactions were 
set to 0.1 mmol gDW− 1 h− 1 and genes were sequentially 
deleted one at a time. The genes were categorized in three 
classes: (1) essential—genes required for cellular growth; (2) 
conditionally essential—considerable reduction of growth 
rate; and (3) non-essential—genes not required for cellu-
lar growth. Simulations using FBA as well as the ‘grRatio’ 
function (relative growth rate ratio) computed the growth 
rate ratio between the one obtained from the model with 
a deleted gene and the original model without deletions. 
‘grRateWT’ represents the cell growth rate calculated using 
the original model (1/h) and the cell growth considering 
each knockout strain ‘grRateKO’ [cell growth rate calcu-
lated from the model with a reaction deletion/gene (1/h)]. 
The essential gene analysis was conducted using the “sin-
gleGeneDeletion” function of the COBRA toolbox [11]: if 
the grRatio was lower than 10− 6, the gene was defined as 
essential. The biomass growth rate was set as the objective 
function for the different simulations.

Metabolic targets for increasing clavulanic acid 
production (strain design)

The use of genome scale models has been widely adopted, 
not only to simulate cell growth but also to predict beneficial 
gene knockout/overexpression to improve the production of 
metabolites of interest [22]. One of the most recent approach 
for the in silico strain design, RoBoKoD (Robust, Overex-
pression, Knockout and Dampening), is able to optimize 
the target product considering simultaneously the cellular 
growth using a multi-objective problem [23]. The RoBoKoD 
method uses flux variability analysis (FVA) to profile each 
reaction under differing production percentages of target 
compound and biomass synthesis [23]. Using these pro-
files, reactions were identified as potential knockouts, over-
expression or dampening targets; the last targets correspond 
to those less intuitive alternatives that were not considered, 
according to the RoBoKoD method [23]. RoBoKoD was 
implemented for strain design using the iLT1021 model to 
identify the group of candidate genes to be altered (over-
expressed/knocked-out), keeping those essential for cell 
growth and maintenance; as selection criteria, the rank of 
the reactions, overexpression (OER) or Knockout Ranking 
(KOR) > 0 were used.

All calculations were made in MATLAB R2014a 
8.3.0.5.32 (Mathworks Inc.; Natick, MA, USA) utilizing the 
SMBL Toolbox [25], and the COBRA Toolbox [11]. LP and 
MILP problems were solved using the Gurobi Solver [26].
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Results and discussion

Reconstruction and properties of the model iLT1021

The most remarkable feature of modelling S. clavuligerus 
is the large size of its genome, 8,556,892 bps (6.760 Mb 
chromosome and 1.796 Mb plasmid), compared to typi-
cal bacterial genomes [8]. Regarding the annotation, 7281 
protein-coding genes were predicted as open-reading 
frames (ORFs), including at least 1838 hypothetical pro-
teins, 1367 putative proteins, 6 rRNAs operons, 73 tRNAs 
and 48 sary metabolite clusters. Only 1175 ORFs have an 
enzyme commission (E.C.) number assigned.

For the purposes of metabolic model reconstruction, 
we considered all the metabolic pathways that have been 
reported as active/operative in S. clavuligerus, and also 
for which most of the pathway-specific enzymes were pre-
sent. The model included the biosynthesis of the β-lactam 
antibiotics CA and CephC. The biosynthetic route of cla-
vams 5S and the last steps of the CA pathway are not yet 
completely elucidated [27]. Figure 1 presents the overall 
metabolic pathway content in terms of the percentage of 
total genes assigned to each pathway.

The updated genome scale model for S. clavuligerus 
was named iLT1021; it contains 1494 metabolic reactions 
(1295 metabolic conversions and 199 transport reactions), 
1360 metabolites and 1021 genes that account for 14% 

of the total ORFs (see Table 1). Using the model SEED 
pipeline [10], a reconstructed/parallel draft model was 
obtained; it comprised 1358 reactions, 1470 metabolites 
and 1039 genes to obtain reaction–protein association 
automatically and include missing information in the final 
reconstruction project. The correct annotation was guided 
by checking correspondence to the PATRIC annotation 
[13] for the S. clavuligerus strain (prj:47867) and StrepDB 
database (http://strep​db.strep​tomyc​es.org.uk/). Finally, it 
was used as template to model GPR association.

We revised and expanded the published model [8] to 
generate the iLT1021 model, integrating new features that 
represent the metabolic capabilities of S. clavuligerus. Ini-
tially, 16 exchange reactions without associated metabolites 
in the core (cytoplasm) were identified. The model rendered 
ten dead ends; two genes not registered in databases were 
missing in the original model and corrected. Notwithstand-
ing the clavam biosynthetic pathway is not completely 
elucidated, hypothetical reactions and the associated 
genes (SCLAV_2922, SCLAV_2923, SCLAV_2928 and 
SCLAV_2803) were added to the model to enable simula-
tion of 5S clavam biosynthesis [27]. The lack of information 
about cofactors and precursors and the absence of experi-
mental data reported for the clavam pathway undoubtedly 
restricts the work on simulation for this part of secondary 
metabolism. However, the integration of available infor-
mation constitutes an important input for CA biosynthesis 
studies; hence it is possible to infer carbon flux at the CA 

Fig. 1   Distribution of genes in 
the different metabolic pathways 
in the iLT1021 model

http://strepdb.streptomyces.org.uk/
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bifurcation point, wherein flux splits to yield either CA or 
5S clavams, as well as to establish stoichiometric ratios that 
might explain the metabolic fate of carbon.

Further modifications included reactions for trehalose 
metabolism (SCLAV_0623, SCLAV_4349, SCLAV_1446 
and SCLAV_3253) and most importantly, an updated bio-
mass equation [28]. These changes in reactions/genes will 
become constraints for simulating S. clavuligerus metabo-
lism, especially when integrating omics data e.g., transcrip-
tomics or proteomics, to the model. The set of reactions, 
metabolites, and genes included in the model are provided 
in Supplementary material 1 and 2.

A summary of the features of the constructed model is 
shown in Table 1, along with a comparison with the most 
recent high-quality GSMMs for S. clavuligerus [8], and for 
S. coelicolor [24]. The addition of 157 genes to the iLT1021 
(most of them located in the chromosome) results in a con-
siderable increase of ORF coverage, an important factor in 
the analysis of gene essentiality and strain design. The iden-
tified missing links were filled either by the introduction 
of sink reactions to allow for material exchange between 
the cell and its surrounding environment, or by including 
reactions from other phylogenetically related organisms. The 
MC3 software [16] was used to detect gaps and dead-end 
metabolites. MC3 statistics did render a final model with 334 
dead-end metabolites and 476 zero flux reactions (Supple-
mentary material 1), showing that 70% of the reactions were 
active under the tested conditions; this might be explained by 
the inactivity of those transport reactions with no exchange 
of products or reactants, thus causing dead ends. Dead ends 
detected were involved neither in the biomass synthesis nor 
in the cellular metabolism.

Biomass equation

The biomass equation for S. clavuligerus was updated in the 
iLT1021 model; we used the macromolecular and mono-
meric composition of S clavuligerus [28]. Trehalose was 
included in the macromolecular composition in the updated 
iLT1021 model, as trehalose and glycogen are the two major 
forms of carbohydrate storage in actinomycetes [5]. The 
monomeric composition of biomass was calculated using 
S. avermitilis as a reference; this strain is genetically closer 
to S. clavuligerus than S. coelicolor (see Fig. 2). The amino 
acid content was calculated from codon usage. The content 
of glycine (Gly), leucine (Leu), aspartate (Asp), threonine 
(Thr) and proline (Pro) was very different compared with 
the protein composition generally used for the S. coelicolor 
models. Finally, while the composition of most macromol-
ecules was identical to that of model iIB711, protein, RNA, 
DNA and carbohydrate composition were quite different (see 
Supplementary material 1).Ta
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Determination of energetic parameters

For the calculation of energetic parameters for S. cla-
vuligerus (i.e., the growth and non-growth-associated ATP 
maintenance values, GAM and NGAM, respectively), we 
used available chemostat data obtained at four dilution rates 
[19]. As for microbial systems, the P/O ratio (the number of 
ATP molecules formed per oxygen consumed during respira-
tion) does not exceed 2.0 [24], the P/O ratio in our simula-
tions was constrained to 1.75. Lastly, the NADH dehydro-
genase complex flux ratio was constrained to 1:3 (reactions 
Rxn0631 and Rxn0633), as it was suggested for the iIB711 
model.

Using chemostat culture data from dilution rates in the 
range 0.02–0.07 h− 1, we calculated the intercept and slope 
by linear regression (from a plot of the specific growth 
rate as a function of the specific glycerol uptake rate). The 
intercept for the specific glycerol uptake rate (x-axis) was 
0.025 mmol glycerol gDW− 1 h− 1. Using this value, a NGAM 
value of 3.03 mmol ATP gDW− 1 h− 1 was obtained by FBA, 
while maximizing ATP consumption rate. A GAM value of 
48.5 mmol ATP gDW− 1 was obtained by FBA with maxi-
mization of ATP as the objective function. These GAM and 

NGAM values are in good agreement to those reported for 
the S. coelicolor A3(2) models. For iMK1208, NGAM and 
GAM were 2.65 mmol ATP gDW− 1·h− 1 and 75.7 mmol ATP 
gDW− 1, respectively, while for iIB711, these values were 
3.8 and 47.0, respectively [6, 24]. The values calculated for 
GAM and NGAM were used to adjust the biomass and the 
ATP maintenance requirement reactions, respectively.

In silico prediction of carbon and nitrogen 
utilization

The S. clavuligerus capability of utilizing different carbon 
and nitrogen sources for growth was predicted by FBA. Each 
substrate carbon source was used as a sole carbon source 
in the in silico minimal medium, assuming uptake rates of 
1.0 mmol gDW− 1 h− 1. The simulation results were com-
pared to experimental data, as shown in Table 2. A 93.5% 
match was obtained, which indicates that the S. clavuligerus 
model predicts the activity of the diverse pathways for catab-
olism of the different carbon and nitrogen sources. These 
results are in good agreement with experimental reports 
[29–31].

Fig. 2   Proposed protein 
composition for Streptomyces 
clavuligerus iLT1021 (green) 
and comparison with related 
Streptomyces coelicolor models: 
A(3) iB711 model [8], (blue) 
and iMK1208 model [24], 
(orange). (Color figure online)



663Bioprocess and Biosystems Engineering (2018) 41:657–669	

1 3

Since the model included a transport reaction for glucose 
as a sole carbon source, it did predict cellular growth. How-
ever, S. clavuligerus cannot grow on glucose due to a defi-
cient expression of glucose permease (glcP) [33]. Clearly, 
despite the predictive power of GSMM, they possess inher-
ent limitations related to the absence of regulatory issues in 
stoichiometric models. Furthermore, this linear-modelling 
approach does not consider the topological and flux con-
nectivity features, which are indeed non-linear.

Robustness analysis

We performed a RA to evaluate the response of growth and 
CA production towards perturbations on substrate uptake 
and antibiotic production rates. Figure 3 shows the RA 
results for growth rate (Fig. 3a, b) and CA (Fig. 3c), as 
objective functions. The effect of phosphate uptake on cell 
growth shows a maximum growth rate µ of 0.07 h− 1 for a 
P flux of 0.15 mmol gDW− 1 h− 1. An increase in the flux of 
P promotes a decrease in growth rate down to zero at a P 
uptake rate of 1.0 mmol gDW− 1 h− 1. Varying the oxygen 
uptake rate, maximum growth rate was achieved at an oxy-
gen uptake rate of 0.01 mmol gDW− 1 h− 1. The growth rate 
remained constant at higher uptake rates. This is consistent 
with the obligate aerobic metabolism of S. clavuligerus for 
CA production.

In the case of glycerol, simulations showed a linear 
behavior for growth rate as a function of the C-source uptake 
rate over the range of uptake rates tested; no inflexion point 
was observed. Changes in the N-source uptake rate showed 

that maximal growth rate is observed at an optimal uptake 
rate of 0.58 mmol gDW− 1 h− 1. Higher uptake rates (> 0.6) 
caused a decrease in growth rate.

Regarding secondary metabolism (Fig. 3b), both CA 
and CephC biosynthesis showed similar results. Metabolic 
simulations allow for the study of extreme scenarios. Cell 
growth and no antibiotic production provide a feasible sce-
nario, while maximum antibiotic biosynthesis rates with no 
cell growth becomes biologically unfeasible. Between those 
extreme scenarios, the phenotypic space shows all feasible 
biomass and product pair combinations in steady state flux 
vectors, where low growth rates favor antibiotic production 
[3].

With the purpose of determining the influence of the 
different substrates on CA biosynthesis (Fig. 3c), the value 
of the growth rate was restricted to 90% of the optimum 
value to ensure a scenario of CA synthesis along with bio-
mass, and avoid the extreme non-feasible scenario, i.e., CA 
production without growth. The P-source shows a negative 
effect on CA production at high uptake rates and favorable at 
limiting conditions, coinciding with the well-known experi-
mental data for S. clavuligerus where the most favorable 
conditions for antibiotic biosynthesis are observed at sub-
optimal phosphate concentrations [34].

The C-source and oxygen had the same effect on 
antibiotic production as that observed for growth rate 
as objective function. Finally, the N-source showed a 
negative effect on CA production at uptake rates above 
0.655 mmol gDW− 1 h− 1, with maximum values observed for 
uptake rates in the range of 0.586–0.655 mmol gDW− 1 h− 1. 

Table 2   Simulation of growth 
for alternative carbon sources

(+) Growth; (−) no growth

Carbon source Nitrogen source

Substrate Growth References Substrate Growth References.

Acetate + [29] l-arginine + [29, 31]
Citrate + [29] l-alanine + [29]
Fumarate + [29] l-asparagine + [29]
Glycerol + [29] l-aspartate + [29]
d-ribose + [29] l-glutamate + [29, 31]
l-lactate + [29] l-glutamine + [29]
l-malate + [29] l-isoleucine + [29]
Maltose + [29] l-leucine + [29]
Pyruvate + [29] l-lysine + [29]
Succinate + [29] l-methionine − [29]
Sucrose + [32] l-phenylalanine + [29]
d-Glucose − (iLT1021: +) [29, 30] l-proline + [29]
Trehalose (iLT1021: +) This study l-valine + [29]
α-ketoglutarate + [29] l-threonine + [29]

l-ornithine + [31]
Ammonia + [32]
Urea + [32]
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The negative effect of ammonia on CA production has been 
previously reported for in vivo studies; ammonia must be 
removed from the cells to avoid toxic intracellular concentra-
tions that compromise growth [34]; the ammonia-free condi-
tions also have been reported as favorable due to inhibitory 
and/or repressive effect of this nitrogen source [35].

Simulation and validation of model iLT1021

Available chemostat data of a phosphate-limited chemically 
defined media was used to run simulations [19]. In their 
studies, Bushell et al. [19] carried out chemostat cultures 
at four dilution rates; measured rates included glycerol and 
oxygen consumption, and CO2 and CA excretion. The results 
revealed that antibiotic yields decreased with the increase 
of growth rate (Supplementary Figure S1). The complete 
dataset is shown in Table 3.

Using cell growth as objective function, the in silico 
growth rates were closed to experimental values at low dilu-
tion rates (differences were 4.0 and 17% from the 0.03 and 
0.05 h− 1, respectively). However, at high growth rates (0.07 
and 0.1 h− 1), the in silico values diverged from the in vivo 
values, while CO2 rate was low (see Table 3). This discrep-
ancy might be caused by a limited respiratory capacity rather 

than due to the biomass equation; a similar phenomenon was 
observed using the iMK1208 model for S. coelicolor [24]. In 
this regard, authors concluded that model prediction made 
by conventional FBA cannot capture a phenomenon in which 
carbon waste occurs due to low respiratory efficiency at high 
dilution rates [24].

Simulations using biomass growth as objective func-
tion resulted in no CA production, since, as a second-
ary metabolite, the CA biosynthesis is not essential for 
growth and will compete for biosynthetic precursors (e.g., 

Fig. 3   Robustness analysis for Sclav_iLT1021 using minimal medium 
GAPI (glycerol, ammonia, phosphate and ions). a Substrate uptake 
effect on growth rate as objective function; b antibiotic biosynthesis 

and its dependence on growth rate; c substrate uptake effect on cla-
vulanic acid biosynthesis as objective function and growth rate con-
strained to 90%

Table 3   Comparison of in silico and in vivo growth rates of S. cla-
vuligerus 

a Experimental results taken from Bushell et al. [19]
b Simulation results

Media condition 
(mmol gDW− 1 h− 1)

Growth rate (h− 1) CO2 
(mmol gDW− 1 h− 1)

Glycerol O2 In vivoa In silicob In vivo In silico

4.88 12.81 0.03 0.0313 6.41 8.86
6.51 15.56 0.05 0.0585 13.42 11.81
10.09 19.68 0.07 0.0836 14.86 13.63
23.67 53.43 0.1 0.188 66.52 37.04
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glyceraldehyde-3-phosphate) and energetic resources. This 
result agrees with those shown for actinorhodin (ACT) pro-
duction using the S. coelicolor iIB711 model [36].

Exploring different objective functions using 
the iLT1021 model to predict growth and antibiotic 
production

The validation results showed that, using biomass maximiza-
tion as a objective function, the model could not predict the 
experimentally observed CA production pattern in chemo-
stat cultures (Supplementary Figure S1). Therefore, addi-
tional experimental datasets were used for the evaluation of 
different linear and non-linear objective functions (obfuncs). 
Besides the P-limited chemostat data by Bushell et al. [19], 
we used data from P-limited continuous cultures at two dif-
ferent dilution rates [28], which included additional data for 
phosphate and ammonia uptake rates. We also used data 
from a batch culture using a defined media supplemented 
with glutamate and proline [32], which included the produc-
tion rate of cephamycin C. With these datasets, the suitabil-
ity of each objective function (Table 4) was tested.

Objective functions were linear obfuncs (maximization 
of biomass and ATP yields), and non-linear maximization 
of ATP (max ATP/flux) and biomass yield per unit flux 
(max Biomass/flux) [21]. Supplementary Figure S2 shows 
a scatter plot for individual flux predictions contrasting pre-
dicted and experimental fluxes for all the objective functions 
evaluated. The dotted line represents the linear regression 
for correlation coefficient calculations. FBA studies have 
been previously used as a valuable tool for process design 
in antibiotic production, using maximization of cell growth 
as obfuncs [5–7]. Sánchez et al. [37] used CA production 
and ATP yield as obfuncs, as alternative functions to cell 
growth maximization [37]. In these simulations, using the 
experimental dataset from Bushell et al. [19] as constraints, 
the maximization of ATP yield showed to be the best predic-
tor of cellular behavior [19].

The correlation between the experimental fluxes reported 
and those predicted by the iLT1021 model are presented in 
Fig S2.a. In these simulations, maximization of ATP yield 
renders the highest correlation coefficients (0.81–0.85), fol-
lowed by maximization of biomass per flux unit (0.74–0.79) 
and maximization of biomass yield (0.40–0.48). The same 
behavior was observed using a different continuous culture 
dataset [28] (Fig S2.b), though higher correlation coeffi-
cients were attained, R = 0.86 and R = 0.81–0.82 for max 
ATP and max biomass/flux, respectively; this is due to the 
cellular objective being strongly dependent on the input 
data, in this case a larger dataset. Finally, batch culture 
data (Fig S2.c) showed a very good correlation by maxi-
mizing biomass yield (R = 0.99) and maximization of ATP 
yield per flux unit (R = 0.99). Maximization of ATP yield 
and biomass per flux unit also showed a high R coefficient. 
These results agree with previous reports [20, 21, 36, 38], 
which supported the maximization of biomass as the objec-
tive function for FBA in batch cultures [21]; in contrast, 
chemostat cultures were better predicted by the ATP yield 
maximization. Overall, the two non-linear objective func-
tions seem to be reliable for the cases tested. Although some 
objective functions provided reasonable predictions under 
the conditions evaluated, there is no consensus about which 
one has to be used when studying secondary metabolism. 
Therefore, special care should be taken in the evaluation 
and analysis of objective functions, case by case for each 
particular condition.

Identification of essential genes

The gene essentiality analysis revealed that 12.73 and 
10.01% of total genes in iLT1021 are essential for cell 
growth in minimal (GAPI) and complex media (CPX), 
respectively (see Fig. 4). A total of 100 genes were essen-
tial in both conditions and an additional group of 30 genes 
were essential only in minimal media (see Fig. 4). Genes 
participating in central metabolism SCLAV_3951 (fructose-
1,6-bisphosphatase II), SCLAV_1142 (glucose-6-phosphate 
isomerase), SCLAV_2648 (fructose-bisphosphate aldo-
lase), SCLAV_3252 (trehalose-6-phosphate synthase) and 
SCLAV_3630, a gene coding for DNA-directed RNA poly-
merase subunit beta essential for growth (transcription pro-
cess), were essential in both the GAPI and the CPX medium 
conditions.

To identify genes essential for cell viability under each 
condition, a functional categorization was made. We 
identified the distribution of genes across different meta-
bolic processes. Aminoacyl-tRNA biosynthesis shows 
the most lethal genes (20%), since all genes involved are 
used for the synthesis of biomass precursors, mainly for 
protein macromolecules [39], for amino acid biosynthesis 
(16.90%) and purine metabolism (11.53%). For the CPX 

Table 4   Objective functions evaluated using the iLT1021 model

Most suitable obfuncs for aBatch and bChemostat scenarios, accord-
ing to simulations conducted in this study

Objective function Description Math-
ematical 
definition

max Biomassa Maximization of biomass yield maxvbiomass

vglycerol

max ATPb Maximization of ATP yield max vATP

vglycerol

max ATP/flux Maximization of ATP yield per 
flux unit

maxvATP
∑

v
2
i

max Biomass/flux Maximization of biomass per flux 
unit

maxvbiomass
∑

v
2
i
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medium, supplemented with amino acids, nutrients were 
directly up taken and metabolized, therefore, maintain-
ing various biosynthetic pathways inactive; genes associ-
ated with these pathways were classified as non-essential. 
However, certain amino acid pathways were identified 
as essential for cell maintenance and growth, such as the 
biosynthetic pathways of phenylalanine, tyrosine and 
tryptophan. The amino acid-associated gene argininosuc-
cinate synthase (SCLAV_0796) is involved in the arginine 
biosynthetic pathway [40], essential for both growth and 
secondary metabolism. Argininosuccinate synthase seems 
to be involved in the developmental changes observed in 
the bacterial life cycle, as its disruption prevents the for-
mation of aerial mycelium in several Streptomyces strains 
[41].

In a previous S. clavuligerus model [8], which used the 
same minimal media (GAPI) for validation purposes, a 
total of 100 essential genes were identified and the knock-
outs applied to the enzyme-coding genes located in the 
1.8 Mb pSL4 plasmid did not show any effect on growth. 
This suggests that the mega-plasmid does not encode 
any functions essential to primary metabolism. Interest-
ingly, gene essentiality analysis using the iLT1021 model 
reported, for the minimal media, 30 additional essential 
genes, which were added in the early reconstruction 
steps. Most of them belong to multi-copies in the chro-
mosome except SCLAV_p0971, which is located in the 
pSL4 plasmid, encoding for 3-dehydroquinate synthase 
[EC:4.2.3.4]. This reaction is part of the shikimate path-
way, involved in the biosynthesis of aromatic amino acids 
such as phenylalanine, tyrosine, and tryptophan.

Strain design for clavulanic acid overproduction

A total of 316 reactions were identified as potential targets 
for overexpression, with an overexpression ranking (OER) 
greater than zero, suggesting that 35.4% of the total genes 
would be worthy of being explored so as to acquire cla-
vulanic acid overproduction. The higher OER value was 
1.182 for the N-glycyl-clavaminic acid synthetase (gcas) 
and clavaldehyde dehydrogenase (cad); these reactions are 
involved in the CA biosynthetic pathway (see Table 5 and 
Supplementary material 1). The gene gcas represents the 
first identified biosynthetic intermediate of the pathway that 
is specific only for clavulanic acid and not for 5S clavams; 
meanwhile, cad reduces the clavaldehyde intermediate to 
clavulanic acid (last step) [42]. A second group of the CA 
biosynthetic genes, involved in the early steps, ceas1/2, 
bls1/2 and pah1/2 had an OER of 0.9733. The overexpres-
sion of the structural biosynthetic genes ceas2, bls2, cas2 
and pah2 resulted in an 8.7-fold increase in CA titers [43].

Moreover, pyruvate dehydrogenase and malonate-semial-
dehyde dehydrogenase (OER: 0.8621), isocitrate dehydroge-
nase (IDH) NADP+ (OER: 0.8414) and histidinol-phosphate 
aminotransferase (OER: 0.8492) seem to be targets for fur-
ther genetic engineering studies, since its overexpression 
results in higher pools of acetyl-coA and/or alpha-ketogluta-
rate, the latter a co-substrate in clavaminic acid biosynthesis. 
IDH (NADP+) is an important target of the TCA pathway as 
it increases NADPH availability, a cofactor in the conversion 
of clavaminic acid to CA. In addition, the selected reactions 
favor the biosynthesis of ornithine from glutamate, an essen-
tial amino acid precursor of CA via arginine [5].

Fig. 4   Gene essentiality in the 
S. clavuligerus metabolic net-
work. GAPI minimal medium 
(glycerol, ammonia, phos-
phate and ions), CPX complex 
medium
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Glycerol can be metabolized through glycerol dehydro-
genase, aldehyde dehydrogenase and glycerate kinase to 
form 2-phosphoglycerate and subsequently pyruvate [28]. 
The knock-out analysis suggested that glycerate-kinase, with 
a knockout ranking (KOR) of 0.7001, might be modified 
so as to favor the anaplerotic pathway towards the glycer-
aldehyde-3-phosphate pool, thus reducing amino acid bio-
synthesis via oxaloacetate and pyruvate, allowing glycerol 
dehydrogenase and aldehyde dehydrogenase to increase the 
C3 precursor pool for clavulanic acid biosynthesis. Concern-
ing amino acid metabolism, SCLAV_2394 gene codes for 
l-aspartate oxidase; its knockout might avoid the formation 
of iminoaspartate thus allowing aspartate to be used as pre-
cursor in the synthesis of arginine, the C5 CA precursor. 
Likewise, by knocking out glycolate oxidase (KOR: 1.058) 
and isocitrate lyase (KOR: 0.6930), we could infer that 
blocking the respective reactions, the flux through the gly-
oxylate shunt decreases, allowing the synthesis of aspartate 
and alpha-ketoglutarate, key precursors in CA biosynthesis, 
since malate and isocitrate are not compromised in alterna-
tive routes.

Finally, although the reactions concerning the synthesis 
of clavams were included in the model, the lack of informa-
tion about cofactors and even reactants within the clavam 
pathway prevented the use of RoBoKoD [23]; accordingly, 
the analysis did not render such reactions as potential tar-
gets. Even though RoBoKoD has not been validated beyond 
E. coli for butanol [23] and tryptophan [44] production, it 
proved to be a useful tool for strain design through accurate 

prediction of favorable genetic interventions; therefore, it 
would be of great interest to validate the predictions pre-
sented here for S. clavuligerus. To our knowledge, in silico 
tools for the metabolic design of S. clavuligerus strains have 
not been explored in depth, beyond the approach presented 
here.

Conclusions

In this work, an expanded genome-scale metabolic model 
of S. clavuligerus, iLT1021, was reconstructed and updated 
with an amended biomass equation and the introduction of 
clavam biosynthesis and trehalose metabolism. The devel-
oped model was validated by growth capabilities and robust-
ness analysis; model predictions were in agreement with 
reported experimental data.

In constraint-based analysis of secondary metabolism in 
Streptomyces, the choice of an appropriate objective func-
tion is a key step to describe the metabolic shift from expo-
nential to stationary growth phase. This study also reports 
on the analysis of different objective functions to predict 
the biomass growth along with CA biosynthesis using the 
iLT1021 model. Our results revealed that ATP yield is the 
best objective function to maximize to obtain a reliable 
model.

RoBoKoD was used along with the iLT1021 model to 
perform a strain design to overproduce clavulanic acid; 
this analysis identified a group of genes that have not been 

Table 5   Reactions selected as potential targets for overexpression/knockout so as to increase CA biosynthesis

Reaction ID Reaction name Gene association Ranking References

Overexpression
 Rxn0967 N-glycyl-clavaminic acid synthetase (gcas) SCLAV_4181 1.1825 This study
 Rxn0968 Clavaldehyde dehydrogenase (cad) [EC: 1.1.1.100] SCLAV_4190
 Rxn0961 N2-(2-carboxyethyl) arginine synthase (ceas) [EC:2.5.1.66] SCLAV_4197 SCLAV_p1074 0.9733 [43]
 Rxn0962 Carboxyethyl-arginine beta-lactam-synthase (bls) [EC:6.3.3.4] SCLAV_4196
 Rxn0963
 Rxn0965
 Rxn0966

Clavaminate synthase 1 or 2 (cas) [EC:1.14.11.21] SCLAV_2925 SCLAV_4194

 Rxn0964 Proclavaminate amidinohydrolase (pah) [EC:3.5.3.11] SCLAV_4195
 Rxn0675 Pyruvate dehydrogenase [EC: 1.2.4.1] SCLAV_1613 0.8621 [5]
 Rxn0097 Isocitrate dehydrogenase (NADP+) [EC: 1.1.1.42] SCLAV_0808 0.8414 This study
 Rxn0849 Malonate-semialdehyde dehydrogenase [EC: 1.2.1.18] SCLAV_1899 SCLAV_p0939 0.8621
 Rxn0207 Histidinol-phosphate aminotransferase [EC: 2.6.1.9] SCLAV_1261 0.8492

Knock-out
 Rxn0138 Glycolate oxidase [EC:1.1.3.15] SCLAV_2040 1.058824 This study
 Rxn0324 NAD + synthase (glutamine-hydrolysing) [EC:6.3.5.1] SCLAV_1480 0.857143
 Rxn0320 l-aspartate oxidase [EC:1.4.3.16] SCLAV_2394 0.857143
 Rxn0001 Glycerate kinase [EC:2.7.1.31] SCLAV_0632 SCLAV_0878 0.70010
 Rxn0135 Isocitrate lyase [EC:4.1.3.1] SCLAV_p0927 0.693038
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explored experimentally in overexpression/knockout analy-
sis, especially genes located in the CA gene cluster. Moreo-
ver, this study also advises about new potential targets for 
metabolic engineering; among others, the IDH, glyK and 
NAD+ synthase (glutamine-hydrolysing) genes were identi-
fied. These results encourage the continuous development 
of GSMM as potential tools for bioprocess optimization.
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