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Abstract In this work, a mechanistic model for predicting

the dynamic behavior of extracellular and intracellular

nutrients, biomass production, and the main metabolites

involved in the central carbon metabolism in plant cell

cultures of Thevetia peruviana is presented. The proposed

model is the first mechanistic model implemented for plant

cell cultures of this species, and includes 28 metabolites, 33

metabolic reactions, and 61 parameters. Given the over-

parametrization of the model, its nonlinear nature and the

strong correlation among the effects of the parameters, a

parameter estimation routine based on identifiability anal-

ysis was implemented. This routine reduces the parame-

ter’s search space by selecting the most sensitive and

linearly independent parameters. Results have shown that

only 19 parameters are identifiable. Finally, the model was

used for analyzing the fluxes distribution in plant cell

cultures of T. peruviana. This analysis shows high uptake

of phosphates and parallel uptake of glucose and fructose.

Furthermore, it has pointed out the main central carbon

metabolism routes for promoting biomass production in

this cell culture.

Keywords Thevetia peruviana � Plant cell cultures �
Modelling � Parameter estimation � Identifiability analysis

Introduction

Thevetia peruviana is a very promising plant for in vitro

cultures, because it produces several compounds with

applications in pharmaceutical industries [1, 2]. Among the

compounds produced from this culture, the cardiac glyco-

sides are particularly important given their applications in

the treatment of cardiac diseases. Several studies have

obtained cardiac glycosides from this plant. Kohls et al. [3]

and Tian et al. [4] isolated several types of cardiac gly-

cosides from seeds of T. peruviana. On the other hand,

Arias et al. [1] and Amaringo et al. [5] have reported the

production of Peruvoside and Thevetin B, respectively, in

plant cell suspensions of this species. Despite of the

important metabolites that can be produced from T. peru-

viana, only very few works reported in the open literature

have addressed the in vitro production of these plant cells

[1, 2, 5, 6]. Furthermore, to the authors’ knowledge, this

work is the first one developing a mechanistic model to

describe the cell growth, nutrients uptake, and dynamic

behavior of the main metabolites on the central carbon

metabolism in plant cell cultures of T. peruviana. The

strategy followed for obtaining the model includes the

following steps: (a) gathering of experimental data

(b) proposal of the kinetic model, (c) parameter estimation,

and (d) model validation. In the first step, cultivation of

cells was performed under batch operation in shake flask to

determine dynamics of cell growth, extracellular sugars
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and nitrates uptake, and intracellular sugars, nitrates, and

phosphates uptake. Second, a mechanistic model for plant

cell cultures of T. peruviana, based on the previous works

by Cloutier et al. [7] and Leduc et al. [8], is proposed. This

model is divided in three compartments: extracellular,

intracellular, and central primary metabolism. The model

considers the reactions for cell growth and includes a term

to describe the initial accumulation of extracellular nitrates

in this species. The proposed model includes 28 metabolic

species and comprises 33 metabolic reactions, and 61

parameters. Given the issues associated with the over-

parametrization of the model, its nonlinear nature and the

strong correlation among the effects of the parameters, the

parameter estimation routine includes a step of identifia-

bility analysis. In practical identifiability analysis, a subset

of parameters for estimation (Subset Selection) is deter-

mined considering the influence of the selected parameters

on the model and the correlations among the effects of the

parameters. Therefore, an ill posed problem is transformed

into a well-posed one [9–18]. In this work, the algorithm

for subset selection proposed by Yao et al. [18] to deter-

mine the most sensitive and linearly independent parame-

ters is implemented. The proposed model is validated using

a new set of experimental data and calculating the confi-

dence intervals for the subset of identifiable parameters.

Finally, the validated model is used to determine the dis-

tribution of fluxes in plant cell cultures of T. peruviana.

Model development

Many biological processes, such as metabolism of a cell

culture and cellular stress responses, are nonstationary in

their nature [19]. Therefore, dynamic models are preferred

to describe the changes in the main state variables for these

processes. In general terms, two types of dynamic struc-

tured models can be differentiated in the literature, simple

structured models and mechanistic models. In the case of

plant cell cultures, some simple structured models have

been reported by Bramble et al. [20], Hooker and Lee [21],

Van Gulik et al. [22], Takeda et al. [23], Choi et al.

[24, 25], Schlatmann et al. [26], Pires Cabral et al. [27],

Zhang and Su [28], Li et al. [29], and Cloutier et al. [7]

These models are organized in pools that include general

information about the activity and functions of the nutrients

inside the cells. However, they do not use information

about the kinetic reactions for biomass growth and

metabolite production, since the cellular reactions are

normally empirical and they do not represent the true

conversion between components [30, 31]. Mechanistic

models give a good representation of the intracellular

processes by including balances of intracellular compounds

and stoichiometric steps [30]. The metabolic networks are

described by ordinary differential equations that represent

mass balances of the substrate, biomass, products, and

intracellular metabolites, as well as numerous reactions

rates corresponding to the pathways [32, 33]. With the

solution of this dynamic system, it is possible to obtain

information about concentration profiles of each species

and flux distribution over time. This information can be

useful to evaluate the changes needed to optimize the

production of biomass and metabolites of interest based on

quantities, such as the flux of different compounds.

Some mechanistic models have been proposed in the

literature for plant cell cultures and hairy roots. Leduc et al.

[8] presents a model to describe the cell growth and

intracellular transport and accumulation of nutrients in

Catharanthus roseus hairy roots. The metabolic network

includes glycolysis, pentose-phosphate pathway, TCA

cycle, energy shuttles, and cofactors. The secondary

metabolism is included in the model considering the

metabolisms derived from tryptamine and secologanin. The

metabolic network is divided into two interlinked subnet-

works as the stationary primary metabolism (including

glycolysis, TCA cycle, and cell building blocks, such as

amino acids, lipids, and organic acids among others) and

transient metabolism (including cell growth nutrient

transport between medium and intracellular volumes).

Cloutier et al. [34] present a dynamic model for the pri-

mary metabolism of plant cells and hairy roots based on the

modelling approach presented in Leduc et al. [8] but

without the steady-state assumption on the primary meta-

bolism. Sigmoid switch functions are multiplied by the

reaction rates to reduce discontinuities around the threshold

values. Cloutier et al. [35] used the model proposed by

Cloutier et al. [34] for the identification and control of

intracellular phosphate dynamics in plant cell cultures of

Eschscholtiza californica. Cloutier et al. [36] used the

model of Cloutier et al. [35] for developing the optimiza-

tion of the production of alkaloid production from cell

cultures of Eschscholtiza californica.

The mechanistic model proposed in this work for plant

cell cultures of T. peruviana is based on the works by

Cloutier et al. [34] and Leduc et al. [8]. The model is

described by the first principles-based model derived from

the mass balances, as follows:

dX

dt
¼ f X; t; hð Þ X t0ð Þ ¼ X0 ð1Þ

Y ¼ g X; t; hð Þ ð2Þ

where X ¼ ½x1; x2; . . .; xr� indicates the state variable vec-

tor, t is the time, h ¼ ½h1; h2; . . .; hm� is the vector of model

parameters, X0 is the vector of initial conditions, and Y ¼
½y1; y2; . . .; yn� correspond to the model output vector, with

n� r. The nomenclature used for the state and output
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variables is presented in Tables 1 and 2, respectively. The

initial conditions for the state variables were taken from

literature [7, 8, 34, 37] and their values are reported in

Table 1.

Figure 1 shows the pathway for biomass production,

while the reactions considered at each step are presented in

Table 3. For this culture, only the reactions of the central

carbon metabolism for biomass production were consid-

ered. Other considerations considered when formulating

the model include

• Different to case of Leduc et al. [8], and following the

proposal of Cloutier et al. [34], this model does not

consider the steady-state hypothesis on the primary

metabolism.

• The extracellular compartment is formed by the main

nutrients for cell growth in plant cells: ESUC, ENO3,

and EPi. The ESUC is hydrolyzed into EGLUC and

EFRUC in reaction (1). According to the experimental

results, this hydrolysis is carried out mainly at extra-

cellular level, different to the case reported by Cloutier

et al. [35] in which the analysis of the intracellular

hydrolysis of sucrose into glucose and fructose for cell

cultures of Eschscholtiza californica was included. The

extracellular hydrolysis of sucrose into glucose and

fructose in plant cell cultures can be due to the presence

of the invertase enzyme [38]. Such extracellular

hydrolysis has been reported by Choi et al. [39] for

cell suspensions of Glycyrrhiza inflate, Shibasaki et al.

[24] for cell suspensions of Thalictrum rugosum,

Westgate et al. [40] for cell suspensions of Nicotiana

tabacum, and Li et al. [41] for cell suspensions of

Cephalotaxus harringtonia.

• In the intracellular compartment, all fructose has turned

into glucose, according to reaction (3). All NO3 is

formed from ENO3 in reaction (17), and then it is

transformed into NH4 in reaction (18). The total Pi is

obtained from EPi in reaction (20) and from all

intermediate reactions of the central metabolism

involving the formation and consumption of this

species.

• Central primary metabolism compartment details the

reactions of the precursors for the biomass formation.

STH,OP,LIP,ORA, and AA are considered the biomass

precursors according to reaction (31) [7, 8]. The STH

Table 1 State variables X
Symbol Name Initial Conditions Units

G6P Glucose-6-phosphate 0.0122 mmolg DW-1

R5P Ribulose-6-phosphate 1.26 9 10-4 mmolg DW-1

F6P Fructose-6-phosphate 0.0012 mmolg DW-1

G3P Glyceraldehido-3-phosphate 0.5000 mmolg DW-1

PEP Phosphoenolpyruvate 7.25 9 10-6 mmolg DW-1

PYR Pyruvate 1.30 9 10-6 mmolg DW-1

ACOA Acetyl-Co-A 1.24 9 10-6 mmolg DW-1

OXO Oxoglutarate 1.21 9 10-6 mmolg DW-1

OAA Oxaloacetate 1.26 9 10-6 mmolg DW-1

NH4 Ammonium 0.0530 mmolg DW-1

O2 Oxygen 700.3000 mmolg DW-1

STA Starch 0.00505 mmolg DW-1

STH Structural hexoses 0.001 mmolg DW-1

OP Organic phosphates 6.5 9 10-4 mmolg DW-1

LIP Lipids 0.1000 mmolg DW-1

ORA Organic acids 0.0807 mmolg DW-1

AA Amino acids 0.1260 mmolg DW-1

CO2 Carbon dioxide 30.5000 mmolg DW-1

EPi Extracellular phosphate 4.1200 mM

PPi Pyrophosphate 0.00035 mmolg DW-1

Table 2 Output variables Y

Symbol Name Units

x Biomass g/L

ESUC Extracellular sucrose mM

EGLUC Extracellular glucose mM

EFRUC Extracellular fructose mM

GLUC Intracellular glucose mmolg DW-1

ENO3 Extracellular nitrates mM

NO3 Intracellular nitrates mmolg DW-1

Pi Intracellular phosphate mmolg DW-1
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and OP are formed through the species GLUC, G6P in

reactions (4) and (27), and GLUC, G6P, and R5P in

reactions (4), (5), and (26), respectively. The LIP and

ORA are formed from reversible reactions from

ACOA. The ACOA is formed from the PYR, in

reaction (14), which is obtained from glycolysis

pathway, in reactions (4), (6), (8), (9), (10), (11),

(12), and (13). Finally, the AA are formed from fixation

of NH4, and OXO which is formed from TCA cycle,

reactions (15) and (16), including the reaction (30), in

which the OAA is formed from PEP. In this model, the

intracellular STA is considered as a storage carbon

source [42]. The AA is only used to form biomass (the

endogenous behavior is not considered in the model).

Finally, the energy shuttles ADP and ATP, cofactors

NADH and NSDPH, and their oxidized forms NAD and

NADP are considered in steady state.

Each pathway regulation (reaction rate) is described by

multiplicative Michaelis–Menten equation as shown in

Eq. (3), indicating the effect of the substrates involved,

where each flux has a maximum reaction rate vmax jð Þ and an

affinity constant Kmi
. The expressions for the fluxes are

presented in Table 4. Reaction rate v(17) presents an

additional inhibition term expression with a constant of

inhibition KIENO3 to include the effect of accumulation of

extracellular nitrates. The reaction rates for extracellular

nitrates and phosphates use simple Michaelis–Menten

expressions, different to the reactions rates presented by

Cloutier et al. [34] that include double Michaelis–Menten-

type expressions. The reaction rates in this work are not

multiplied by sigmoid switch functions, since the discon-

tinuities around the threshold are evaluated by the use of

sensitivity matrix. Therefore, the kinetic expressions are

significantly different to the previous works by Leduc et al.

[8] and Cloutier et al. [34]:

v jð Þ ¼ vmax jð Þ
Y

i

xi

Kmi
þ xi

: ð3Þ

The dynamic model proposed consists of the mass bal-

ance equations for extracellular and intracellular nutrients,

as presented in the following equation:

dX

dt
¼

X

j

rijvj � lxi ð4Þ

where l is the specific growth rate presented in Eq. (5) and

rij is the stoichiometric coefficient for each metabolite in

the reaction j

l ¼ vmax 31ð Þ �
AA

KmAA + AA
� STH

KmSTH + STH

� LIP

KmLIP + LIP
� ORA

KmORA + ORA
� OP

KmOP + OP
:

ð5Þ

Parameter estimation and model validation

The objective function used for solving the parameter

estimation problem is expressed as the sum of squared

errors (MSEY) [Eq. (6)]

minJðhÞ ¼
Xn

i¼1

MSEY: ð6Þ

Fig. 1 Pathway for biomass

production in plant cell cultures

of Thevetia peruviana adapted

from Cloutier et al. [34] and

Leduc et al. [8]
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The MSEY for each variable is defined by the following

equation:

MSEY ¼ 1

n

Xn

i¼1

Yexp;i � Yi
� �2 ð7Þ

where Yexp;i corresponds to the experimental points. The

initial parameter values h0 to solve the optimization

problem were taken from other similar works in plant cell

cultures [7, 35, 37]. Two sets of experimental data were

used for parameter identification, whereas one different

data set was used for model validation. Each experimental

data set was obtained at different initial sucrose and

inoculum concentrations. Simulated Annealing

optimization algorithm was used for solving the parameter

estimation problem until obtaining an initial pseudo-opti-

mal set of parameter values h�. This set of parameters is

presented in Table 5.

To solve the issues associated with the over-

parametrization of the model, its nonlinear nature, and the

strong correlation among the effects of the parameters,

identifiability analysis was carried out for establishing a

new subset of identifiable parameters hk � h� that presents
a high effect in the objective function, and low linear

dependency. The remaining parameters (i.e., those non-

identifiable) are fixed at their initial values, forming the

subset hFixed. A new optimization routine is performed

Table 3 Reactions of metabolic network considered in the model proposed for plant cell cultures of Thevetia peruviana

No. Reactions References

1 ESUC ? EGLUC ? EFRUC [34]

2 EGLUC ? ATP ? GLUC ? ADP ? Pi [34, 43]

3 EFRUC ? ATP ? FRUC ? ADP ? Pi [34, 43]

FRUC ? GLUC [8]

4 GLUC ? ATP ? G6P ? ADP [34]

5 G6P ? 2NADP ? R5P ? 2NADPH [34]

6 G6P ? F6P [34]

7 R5P ? 2F6P ? G3P [34]

8 F6P ? ATP ? 2G3P ? ADP [34]

9 F6P ? PPi ? 2G3P ? Pi [34]

10 G3P ? Pi ? ADP ? NAD ? PEP ? ATP ? NADH [34]

11 G3P ? NADP ? PEP ? NADPH [34]

12 PEP ? PYR ? Pi [34]

13 PEP ? ADP ? PYR ? ATP [34]

14 PYR ? NAD ? NADH ? ACOA [34]

15 ACOA ? OAA ? NAD ? OXO ? NADH [34]

16 OXO ? 2NAD ? ADP ? Pi ? OAA ? 2NADH ? ATP [34]

17 ENO3 ? ATP ? NO3 ? ADP ? Pi [34]

18 NO3 ? NADH ? 3NADPH ? NH4 ? NAD ? 3NADP [34]

19 2.5ADP ? 2.5Pi ? NADH ? O2 ? 2.5ATP ? NAD [34]

20 EPi ? 2ATP ? 3Pi ? 2ADP [34]

21 OXO ? NH4 ? 3NADPH ? 3ATP ? AA ? 3NADP ? 3ADP ? 3Pi [34]

22 ORA ? ACOA [34]

23 ACOA ? ORA [34]

24 LIP ? 2ATP ? NAD ? ACOA ? 2ADP ? PPi ? NADH [34]

25 ACOA ? ATP ? 2NADPH ? LIP ? ADP ? Pi ? 2NADP [34]

26 R5P ? 3.75AA ? ATP ? 0.25NAD ? 7ADP ? 3.5Pi ? 1.75PPi ? 0.25NADH ? OP [34]

27 G6P ? 2ATP ? NADPH ? STH ? 2ADP ? NADP ? Pi ? PPi [34]

28 STA ? Pi ? G6P [34, 42]

29 G6P ? ATP ? STA ? ADP ? PPi [34, 42]

30 PEP ? CO2 ? OAA ? Pi [34]

31 AA ? LIP ? ORA ? STH ? OP ? x [34]

32 PPi ? 2Pi [34]

33 OP ? Pi [34]
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where the decision variables are the parameters in the

subset hk, until a new optimal subset of parameters h�k is

obtained. The new set of optimal parameters is

~h ¼ h�k [ hFixed

n o
. If this set of parameters presents a

good fit, it will be taken as the final set of optimal

parameters, in the opposite case, it will be necessary to re-

start the estimation process taking h0 ¼ ~h.
To determine the subset of identifiable parameters, a

local sensitivity analysis was performed based on the

sensitivity matrix. This matrix denotes the relationship

between the derivatives of the state variables of the model

xi with respect to the parameters hj as it is presented in the

following equation [44]:

Z ¼ oX

oh
¼

ox1

oh1
ox2

oh1

ox1

oh2
ox2

oh2
� � �

� � � ox1

ohm
ox2

ohm
..
. ..

. ..
.

oxn

oh1

oxn

oh2
� � � oxn

ohm

2

666666664

3

777777775

: ð8Þ

Sensitivity functions were derived by integrating the

original model along with the sensitivity equations

Table 4 Kinetic equations proposed in the case of plant cell cultures of Thevetia peruviana

No. Kinetic equations

1 v(1) = vmax(1) 9 ESUC/(KmESUC ? ESUC)

2 v(2) = vmax(2) 9 EGLUC/(KmEGLUC ? EGLUC)

3 v(3) = vmax(3) 9 EFRUC/(KmEFRUC ? EFRUC)

4 v(4) = vmax(4) 9 GLUC/(KmGLUC ? EGLUC)

5 v(5) = vmax(5) 9 G6P/(KmG6P ? G6P)

6 v(6) = vmax(6) 9 G6P/(KmG6P ? G6P)

7 v(7) = vmax(7) 9 R5P/(KmR5P ? R5P)

8 v(8) = vmax(8) 9 F6P/(KmF6P ? F6P)

9 v 9ð Þ¼vmax 9ð Þ � F6P

KmF6P + F6P
� PPi

KmPPi + PPi

10 v 10ð Þ ¼ vmax 10ð Þ � G3P

KmG3P + G3P
� Pi

KmPi + Pi

11 v(11) = vmax(11) 9 G3P/(KmG3P ? G3P)

12 v(12) = vmax(12) 9 PEP/(KmPEP ? PEP)

13 v(13) = vmax(13) 9 PEP/(KmPEP ? PEP)

14 v(14) = vmax(14) 9 PYR/(KmPYR ? PYR)

15 v 15ð Þ ¼ vmax 15ð Þ � ACOA

KmACOA + ACOA
� OAA

KmOAA + OAA

16 v 16ð Þ ¼ vmax 16ð Þ � OXO

KmOXO + OXO
� Pi

KmPi + pI

17 v 17ð Þ ¼ vmax 17ð Þ � ENO3

KmENO3 + ENO3
� KIENO3

KIENO3 + ENO3

18 v(18) = vmax(18) 9 NO3/(KmNO3 ? NO3)

19 v 19ð Þ ¼ vmax 19ð Þ � Pi

KmPi + Pi
� O2

KmO2 + O2

20 v(20) = vmax(20) 9 EPi/(KmEPi ? EPi)

21 v 21ð Þ ¼ vmax 21ð Þ � OXO

KmOXO + OXO
� NH4

KmNH4 + NH4

22 v(22) = vmax(22) 9 ORA/(KmORA ? ORA)

23 v(23) = vmax(23) 9 ACOA/(KmACOA ? ACOA)

24 v(24) = vmax(24) 9 LIP/(KmLIP ? LIP)

25 v(25) = vmax(25) 9 ACOA/(KmACOA ? ACOA)

26 v 26ð Þ ¼ vmax 26ð Þ � R5P

KmR5P + R5P
� AA

KmAA + AA

27 v(27) = vmax(27) 9 G6P/(KmG6P ? G6P)

28 v(28) = vmax(28) 9 STA/(KmSTA ? STA)

29 v(29) = vmax(29) 9 G6P/(KmG6P ? G6P)

30 v 30ð Þ ¼ vmax 30ð Þ � PEP

KmPEP + PEP
� CO2

KmCO2 + CO2

31 v 31ð Þ ¼ vmax 31ð Þ � AA

KmAA + AA
� STH

KmSTH + STH
� LIP

KmLIP + LIP
� ORA

KmORA + ORA
� OP

KmOP + OP
� x

32 v(32) = vmax(32) 9 PPi/(KmOP ? PPi)

33 v(31) = vmax(33) 9 OP/(KmOP ? OP)
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Table 5 Initial and pseudo-optimal parameter values for affinity constants KM and maximum reaction rates vmax in the proposed model

Parameter number Symbols Units Initial parameters value h0 Pseudo-optimal initial set h�

1 KmESUC mM 36.4400 24.8394

2 KmEGLUC mM 73.4100 34.7882

3 KmEFRUC mM 46.9200 76.2353

4 KmGLUC mmolg DW-1 0.8454 0.3625

5 KmG6P mmolg DW-1 0.7708 0.6912

6 KmR5P mmolg DW-1 0.9130 0.3631

7 KmF6P mmolg DW-1 0.6094 0.2498

8 KmG3P mmolg DW-1 0.4495 0.4845

9 KmPEP mmolg DW-1 0.9806 0.7138

10 KmPYR mmolg DW-1 0.9995 0.3911

11 KmACOA mmolg DW-1 0.2992 0.3968

12 KmOXO mmolg DW-1 0.6259 0.8660

13 KmOAA mmolg DW-1 0.3103 0.6911

14 KmENO3 mM 31.0300 37.7649

15 KmNO3 mmolg DW-1 0.2644 0.8806

16 KmNH4 mmolg DW-1 0.2971 0.6995

17 KmO2 mmolg DW-1 3.97 9 10-8 4 9 10-8

18 KmEPi mM 3.2000 16.6949

19 KmPi mmolg DW-1 0.0385 0.7573

20 KmSTA mmolg DW-1 0.0290 0.0538

21 KmOP mmolg DW-1 0.3393 0.2321

22 KmLIP mmolg DW-1 0.7445 0.7066

23 KmORA mmolg DW-1 0.0089 0.0575

24 KmAA mmolg DW-1 0.0574 0.0871

25 KmCO2 mmolg DW-1 0.0083 0.0017

26 KmPPi mmolg DW-1 0.0043 0.0054

27 KmSTH mmolg DW-1 0.0142 0.0798

59 KIENO3 mmolg DW-1 5.1140 8.2748

28 vmax(1) mmolg DW-1 day-1 14.2400 15.1748

29 vmax(2) mmolg DW-1 day-1 55.1700 44.0409

30 vmax(3) mmolg DW-1 day-1 38.0900 67.8724

31 vmax(4) mmolg DW-1 day-1 162.3800 63.6234

32 vmax(5) mmolg DW-1 day-1 8.3611 8.8845

33 vmax(6) mmolg DW-1 day-1 2.1774 6.3287

34 vmax(7) mmolg DW-1 day-1 3.7152 3.0724

35 vmax(8) mmolg DW-1 day-1 8.1320 3.3733

36 vmax(9) mmolg DW-1 day-1 0.0087 0.0026

37 vmax(10) mmolg DW-1 day-1 46.3235 54.6006

38 vmax(11) mmolg DW-1 day-1 1.39 9 10-5 1.04 9 10-5

39 vmax(12) mmolg DW-1 day-1 0.0036 0.0089

40 vmax(13) mmolg DW-1 day-1 7.0601 19.9574

41 vmax(14) mmolg DW-1 day-1 37.8124 40.2709

42 vmax(15) mmolg DW-1 day-1 82.9691 61.5521

43 vmax(16) mmolg DW-1 day-1 26.8950 12.2276

44 vmax(17) mmolg DW-1 day-1 53.7900 28.5408

45 vmax(18) mmolg DW-1 day-1 25.0320 62.1056

46 vmax(19) mmolg DW-1 day-1 25.0207 117.3366

47 vmax(20) mmolg DW-1 day-1 20.8500 83.4577
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[45, 46]. This matrix was scaled to ensure dimensional

consistency using the following equation [11]:

sij ¼ zij
Dhj
SCi

ð9Þ

where zij was evaluated at h�, the point in the parameter

space where the sensitivity analysis was carried out, Dhj is
a scaling factor that reflects uncertainty in the initial guess

for parameter hj, and SCi is a scaling factor that reflects the

uncertainty associated with the measurements. The sensi-

tivity matrix was scaled using Dhj ¼ 0:5 according to Brun

et al. [11], given that the values obtained in this work are

the first ones reported for cell cultures of this specie. The

value of SCi was defined as the mean value for the output

variables. The scaling of the sensitivity matrix is a central

matter for the sensitivity analysis; therefore, in this work,

the scaled sensitivity matrix was standardized, subtracting

off the mean for each column and dividing it by the stan-

dard deviation [47].

The orthogonal method proposed by Yao et al. [18] was

used in this work as the routine to determine identifiable

parameters. This method sequentially applies orthogonal

projections of the sensitivity vectors columns of the stan-

dardized sensitivity matrix to select one identifiable

parameter at a time. The maximum number of parameters

that can be identified was determined from the singularity

of fisher information matrix (FIM), because this value

indicates when the estimation problem becomes ill posed.

The sensitivity matrix is related to the FIM using the fol-

lowing equation [44]:

FIM ¼ STh�QSh� ð10Þ

where Q corresponds to the inverse measurement error

covariance matrix and Sh� is the standardized sensitivity

matrix for the pseudo-optimal set of parameters obtained

after optimization. This work assumes that the measure-

ment of noise is uncorrelated and constant with the time;

therefore, the covariance matrix results in an identity

matrix and the FIM becomes the product of the transpose

of sensitivity matrix itself [48].

Materials and methods

Cell suspensions

Cell suspensions were obtained from friable callus which

were transferred to the shake flask with 80 ml of liquid SH

medium. The cultures were maintained in an orbital shaker

(IK KS501 digital) at 110 rpm and ambient temperature

under natural photoperiod and subcultured every

12–15 days. Experiments were performed in liquid med-

ium supplemented with sucrose [1].

Analytical methods

The samples were initially homogenized. Three milliliters

of each sample were taken and filtered in vacuum for

biomass determination using the dry weight method. The

rest of the sample was centrifuged at 5000 rpm for 10 min

in a centrifuge SIGMA 2–16 kPa at 25 �C. The supernatant
was separated and used to determine extracellular nutrients.

The rest of the sample was rinsed and homogenized three

times. Then, this material was again centrifuged at

5000 rpm for 10 min, the supernatant was discarded, and

the rest of the material was used for the cellular lysis.

These samples were sonicated during 4 h at 37 �C. Then, a
solution of NaOH 2 N was added and the mixture was

heated to 100 �C for 20 min. The solution was cooled

Table 5 continued

Parameter number Symbols Units Initial parameters value h0 Pseudo-optimal initial set h�

48 vmax(21) mmolg DW-1 day-1 0.0030 0.0038

49 vmax(22) mmolg DW-1 day-1 0.0636 0.0290

50 vmax(23) mmolg DW-1 day-1 8.9713 8.4899

51 vmax(24) mmolg DW-1 day-1 0.8218 0.8327

52 vmax(25) mmolg DW-1 day-1 5.7975 1.3005

53 vmax(26) mmolg DW-1 day-1 3.4360 1.3605

54 vmax(27) mmolg DW-1 day-1 0.0306 0.0715

55 vmax(28) mmolg DW-1 day-1 0.7564 0.4617

56 vmax(29) mmolg DW-1 day-1 7.3666 5.0514

57 vmax(30) mmolg DW-1 day-1 0.0601 0.0860

58 vmax(31) day-1 0.5114 0.6003

60 vmax(32) mmolg DW-1 day-1 3 9 10-5 5 9 10-6

61 vmax(33) mmolg DW-1 day-1 1 9 10-5 4 9 10-6
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down at ambient temperature and centrifuged at 5000 rpm.

Finally, the pH of the supernatant was adjusted between 6.5

and 7.5 to determine the intracellular nutrients.

The extracellular sugars were determined by an HPLC

(Agilent), coupled to refractive index detector using a

coregel 87P column and water as mobile phase, the testing

time was 16 min. The column operates at 80 �C and the

RID (infrared) and detector operate at 55 �C. The intra-

cellular glucose was determined using anthrone reagent

according to the proposed method by De Bruyn et al. [49].

Nitrates were determined using a method based on salicylic

acid [50], and phosphates were determined using the

ascorbic acid method [51].

Results and discussion

Results of the final identifiability analysis are presented in

Table 6. These results indicate that the subset with the

most sensitive and linearly independent parameters corre-

sponds to the subset of size 19. The remaining parameters

will conform the subset of fixed parameters ½hFixed�. The re-
optimization of each subset (from the least identifiable to

the most identifiable) leads to a decrease in the error

function reaching a better fit of the predicted values to

experimental data, as can be seen in Table 6.

The confidence intervals for the identifiable parameters

were obtained using the covariance matrix. FIM is the

inverse of the parameter estimation error covariance matrix

COV and provides the Cramer–Rao lower bound on the

parameter estimation errors [52] which can be used to

assess the estimation uncertainty of h�K [53] as presented in

the following equation:

COV 	FIM�1ðh�K:Þ: ð11Þ

Then, approximate standard errors r h�K
� �

for the esti-

mated parameters can be calculated as the square root of

the diagonal elements of the inverse of FIM, see the fol-

lowing equation:

r h�K
� �

¼ ffiffiffiffiffiffiffiffiffiffiffi
cov11

p
;

ffiffiffiffiffiffiffiffiffiffiffi
cov22

p
; . . .;

ffiffiffiffiffiffiffiffiffiffiffiffi
covmm

p½ �: ð12Þ

In Table 7, the results of the optimal set of parameters

~h ¼ h�k [ hFixed

n o
and the confidence intervals for identi-

fiable parameters are reported. The values of the confidence

intervals were obtained using the standard deviation cal-

culated by Eq. (12). Most of the identifiable parameters

have acceptable values of confidence intervals. However,

parameters 22, 24, 49, and 59 have unacceptable confi-

dence intervals, which could indicate that these parameters

are insensitive towards the experiments performed.

Therefore, it is recommendable to apply strategies of

model-based optimal experimental design as a future work

for this culture.

The results of the model adjustment using the optimal

parameters ~h
h i

are presented in Fig. 2a and b). These

results show a good fit for biomass (x), extracellular

Table 6 Subsets of identifiable parameters according to the orthogonal method

Size Subsets of identifiable parameters hk DET MSEY

2 49 55 20.972 23.064

3 49 55 58 21.427 23.064

4 49 55 58 24 20.673 23.064

5 49 55 58 24 15 21.745 23.059

6 49 55 58 24 15 59 20.946 23.064

7 49 55 58 24 15 59 27 18.249 23.108

8 49 55 58 24 15 59 27 10 19.120 23.108

9 49 55 58 24 15 59 27 10 19 19.817 23.108

10 49 55 58 24 15 59 27 10 19 9 20.390 23.108

11 49 55 58 24 15 59 27 10 19 9 4 20.859 23.108

12 49 55 58 24 15 59 27 10 19 9 4 6 20.872 23.108

13 49 55 58 24 15 59 27 10 19 9 4 6 11 21.228 23.108

14 49 55 58 24 15 59 27 10 19 9 4 6 11 13 20.351 23.108

15 49 55 58 24 15 59 27 10 19 9 4 6 11 13 5 20.641 23.108

16 49 55 58 24 15 59 27 10 19 9 4 6 11 13 5 22 20.093 23.108

17 49 55 58 24 15 59 27 10 19 9 4 6 11 13 5 22 57 20.339 23.277

18 49 55 58 24 15 59 27 10 19 9 4 6 11 13 5 22 57 35 20.161 23.593

19 49 55 58 24 15 59 27 10 19 9 4 6 11 13 5 22 57 35 8 20.364 23.593

Numbers at each column correspond to the parameter’s number given in Table 5
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Table 7 Optimal parameters for plant cell cultures of T. peruviana and confidence intervals (±) for identifiable parameters

Number Parameters Parameters

value subset h�K

Parameters value

subset hFixed

Parameters value. Final set ~h.
Confidence intervals

1 KmESUC 24.8394 24.8394

2 KmEGLUC 34.7882 34.7882

3 KmEFRUC 76.2353 76.2353

4 KmGLUC 0.8919 0.8919 ± 4.45 9 10-3

5 KmG6P 0.5379 0.5379 ± 8.61 9 10-3

6 KmR5P 0.9643 0.9643 ± 2.89 9 10-3

7 KmF6P 0.2498 0.2498

8 KmG3P 0.2512 0.2512 ± 2.89 9 10-2

9 KmPEP 0.4567 0.4567 ± 8.64 9 10-3

10 KmPYR 0.9600 0.9600 ± 3.49 9 10-3

11 KmACOA 0.6452 0.6452 ± 5.49 9 10-3

12 KmOXO 0.8660 0.8660

13 KmOAA 0.1091 0.1091 ± 1.68 9 10-2

14 KmENO3 37.7649 37.7649

15 KmNO3 0.5103 0.5103 ± 3.24 9 10-3

16 KmNH4 0.6995 0.6995

17 KmO2 3.97 9 10-8 4 9 10-8

18 KmEPi 16.6949 16.6949

19 KmPi 0.9186 0.9186 ± 4.61 9 10-3

20 KmSTA 0.0538 0.0538

21 KmOP 0.2321 0.2321

22 KmLIP 0.0074 0.0074 ± 1.39 9 10-2

23 KmORA 0.0575 0.0575

24 KmAA 0.0017 0.0017 ± 6.27 9 10-3

25 KmCO2 0.0017 0.0017

26 KmPPi 0.0054 0.0054

27 KmSTH 0.0435 0.0435 ± 6.08 9 10-3

59 KIENO3 8.1297 8.1297 ± 6.96 9 10-3

28 vmax(1) 15.1748 15.1748

29 vmax(2) 44.0409 44.0409

30 vmax(3) 67.8724 67.8724

31 vmax(4) 63.6234 63.6234

32 vmax(5) 8.8845 8.8845

33 vmax(6) 6.3287 6.3287

34 vmax(7) 3.0724 3.0724

35 vmax(8) 0.4345 0.4345 ± 7.78 9 10-2

36 vmax(9) 0.0026 0.0026

37 vmax(10) 54.6006 54.6006

38 vmax(11) 1.39 9 10-5 1.04 9 10-5

39 vmax(12) 0.0089 0.0089

40 vmax(13) 19.9574 19.9574

41 vmax(14) 40.2709 40.2709

42 vmax(15) 61.5521 61.5521

43 vmax(16) 12.2276 12.2276

44 vmax(17) 28.5408 28.5408

45 vmax(18) 62.1056 62.1056

46 vmax(19) 117.3366 117.3366

47 vmax(20) 83.4577 83.4577
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sucrose (ESUC), intracellular glucose (GLU), and phos-

phates (Pi). In addition, the model presents a good pre-

diction of the extracellular hydrolysis of sucrose (ESUC)

into extracellular glucose (EGLUC) and fructose

(EFRUC). However, to get a better fit of nitrates, it is

necessary to perform additional studies to determine the

effects of accumulation of these nutrients in the plant cell

cultures of T. peruviana. The intracellular components

reached the steady state by the 16th day approximately.

As expected, nutrients as G6P, R5P, PEP, PYR, ACOA,

OXO, and OAA increased their concentrations approxi-

mately until the 5th day corresponding to lag phase. This

behavior is normal given that the cells adapt during this

phase with low demands of the nutrients. Then, these

nutrients presented a notable decrease in the slope

approximately at the 10th day, which corresponds to the

start of the exponential phase. This phase implies high

requirements of nutrients. Finally, around the 16th day,

these nutrients reached steady state close to the time

corresponding to the stationary phase. For F6P, an

increase was observed until the 10th day where a steady

state was reached. G3P then begins to increase from that

day. The biomass precursors, STH, OP, ORA, LIP, and

AA, follow a similar trend to the cell growth, they are

increasing their concentration and reaching the steady

state close to the 16th day. This corresponds to the sta-

tionary phase for cell growth. The upper and lower

bounds in the extracellular components are quite similar

to the reported by Cloutier et al. [34]. In the case of

intracellular components, similar bounds were found for

PEP, PYR, ACOA, and OXO. The reactions for metabo-

lite production presented by Cloutier et al. [34] could

generate the differences in the bounds of the other intra-

cellular components with respect to this work, since this

research only includes the reactions for biomass produc-

tion. In Fig. 2c, the results of the model predictions using

validation data (i.e. a complete different set from the two

used above for identifying the parameters) are presented.

Validation results indicate that the model presents good

predictive capability in the range of the initial conditions

used for the model construction.

Although the model proposed in this study for plant

cell cultures of T. peruviana is based on similar mech-

anistic models as the presented in Cloutier et al. [34] for

cultures of C. roseus hairy root, and Cloutier et al. [35]

for plant cell cultures of E. californica, each cellular

species present a different set of parameter values. Such

differences in the parameter values reflect differences in

the cellular physiology among the plant cell cultures

studied. For instance, in this work, the value of affinity

constant for ACOA correspond to 0.6452 mmolg DW-1,

this value is higher than the reported to C. roseus hairy

root corresponding to 0.0125 mmolg DW-1, and the

reported to E. californica corresponding to

0.0024 mmolg DW-1. The obtained value in the case of

T. peruviana indicates its low affinity for this substrate

in comparison with the others plant cell cultures ana-

lyzed. In the case of biomass precursors, it is possible to

conclude that the plant cell cultures of T. peruviana

present a high tendency to accumulate nutrients, given

its low value of the affinity constant to STA corre-

sponding to 0.0538 mmolg DW-11, which is lower than

the reported to C. roseus hairy root which corresponds to

1 mmolg DW-1 and the reported to E. californica cor-

responds to 0.94 mmolg DW-1.

Table 7 continued

Number Parameters Parameters

value subset h�K

Parameters value

subset hFixed

Parameters value. Final set ~h.
Confidence intervals

48 vmax(21) 0.0038 0.0038

49 vmax(22) 3.9 9 10-6 3.9 9 10-6 ± 1.44 9 10-4

50 vmax(23) 8.4899 8.4899

51 vmax(24) 0.8327 0.8327

52 vmax(25) 1.3005 1.3005

53 vmax(26) 1.3605 1.3605

54 vmax(27) 0.0715 0.0715

55 vmax(28) 0.9709 0.9709 ± 1.07 9 10-3

56 vmax(29) 5.0514 5.0514

57 vmax(30) 0.0290 0.0290 ± 0.32

58 vmax(31) 0.4566 0.4566 ± 7.97 9 10-4

60 vmax(32) 3 9 10-5 5 9 10-6

61 vmax(33) 1 9 10-5 4 9 10-6

The confidence intervals are based on the 95% significance level
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Fluxes distribution in plant cell cultures

of T. peruviana

Figure 3 shows the fluxes distribution for plant cell cultures

of T. peruviana for the stationary phase, between the 10th

day, when the exponential phase is ending, and 16th day

when the stationary phase is ending (before cells dead).

The fluxes were evaluated using the results of the kinetics

corresponding to an initial inoculum concentration of

2.41 g/L, and an initial sucrose concentration of 22.64 g/L.

It can be seen that the flux of the reaction representing

the hydrolysis of sucrose into glucose and fructose v(1)

decreases in 96.46% between the 10th day and the 16th

day. This decrease suggests that the hydrolysis of sucrose

for this plant cell culture is mainly performed at extracel-

lular level. The change in flux v(2) (reaction in which

glucose becomes intracellular glucose) shows a decrease of

95.58% between the 10th day and the 16th day. This value

is higher than the change experienced in flux v(3) (reaction

in which fructose becomes intracellular glucose), for which

Fig. 2 Parameter estimation

results at the initial inoculum

concentration and initial sucrose

concentration of

a 2.41–22.64 g/L and b 2.41

and 28.21 g/L. c Model results

with validation data, at the

initial inoculum and initial

sucrose concentrations of

3.26–17.50 g/L, respectively.

Axis units are (mmolg DW-1),

except for x (g/L) and

extracellular nutrients (mM)
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a decrease of 94.33% was observed. This behavior indi-

cates that the cells consume preferably glucose as source of

energy. However, the closeness of the values indicates that

the cell is carrying out a parallel uptake of both nutrients,

but with preference on glucose. This differentiated uptake

of sugars was reported by Krook et al. [54] for cell sus-

pension of Daucus Carota, and could be due to the fact that

the glucose is a better substrate in cellular respiration

processes than the fructose.

It is observed that the variation in the flux v(20) (ex-

tracellular phosphates) is higher than the flux v(17) (ex-

tracellular nitrates) with changes the 96.68 and of 32.40%,

respectively. This indicates a high demand of phosphates

and an initial accumulation of nitrates, which is in agree-

ment with the experimental results obtained in this work.

The main route for the glycolysis pathway is determined

through the fluxes: v(8), v(10), v(11), v(13), and v(14).

Although in the formation of Glyceraldehido-3-phosphate

from Fructose-6-phosphate, the fluxes v(8) and v(9) practi-

cally reach the steady state, the change on flux v(8) is slightly

higher than the flux v(9). The glyceraldehido-3-phosphate is

transformed in phosphoenolpyruvate through the flux v(10)

with a change of 76.99%, which is higher than the flux v(11)

with a change of 52.41%. In addition, finally, the transfor-

mation of phosphoenolpyruvate to pyruvate is preferably

carried out through of the flux v(12) with a change of the

77.77%higher than the flux v(13)with a variation of 77.02%.

Analyzing the biomass precursors, it is observed that the

fluxes v(26) (organic phosphates), v(27) (structural hexoses),

v(21) (amino acids), v(23) (organic acids), and the v(25)

(lipids) experienced variations of 95.14, 94.71, 80.55, 77.58,

and 55.37%, respectively. The high demand of organic

phosphates as precursors of biomass formation could explain

the significant changes in the flux of phosphates v(20). The

high demand of amino acids is understandable given its

important role in protein formation. Between the 10th and the

16th day, the demand of lipids is low in comparison with the

other precursors, since the cells could preferably accumulate

them, as can be observed in its flux value.

The changes of the flux values found for the flux v(29)

corresponding to the reserves of starch were 94.84%,

indicating the importance of these reserves for the main-

tenance of the cells at the end of the growth.

Conclusions

In this work, a new mechanistic model for plant cell cul-

tures of T. peruviana was developed. The identifiability

analysis indicated that only 19 parameters of the model are

Fig. 3 Flux distribution for plant cell cultures of Thevetia peruviana. Values in bold correspond to the 10th day of culture
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identifiable parameters, suggesting high correlations

among parameters effects for this type of models. The

analysis of fluxes distributions indicates the behavior and

tendencies in the nutrients uptake for this culture. This

work is the base for the development of future works in the

determination of routes for metabolite production from

plant cell cultures of T. peruviana. The information about

parameters value for the proposed mechanistic model

contributes to the pool of available parameters for the

modelling of plant cell cultures. Nonetheless, future work

in the application and development of methodologies for

identification and strategies for model-based optimal

experimental design are required to improve the predictive

capabilities of plant cell culture models.

Acknowledgements The authors would like to thank the Universidad

de Antioquia for the financial support provided to this work through

the CODI Grant MDC11-1-08. Furthermore, the support provided by

the Universidad Nacional de Colombia, Medellin campus, and the

Bioprocesses Research Group of Universidad de Antioquia during the

experimental part developed in this work is gratefully acknowledged.

Adriana Villegas is grateful to the Universidad Cooperativa de

Colombia for the Sustainability Strategy Grant 1336, Universidad de

Antioquia, and the LSU Agricultural Center for funding her internship

at the Audubon Sugar Institute.

Compliance with ethical standards

Conflict of interest The authors declare that they have no competing

interest

References

1. Arias M, Angarita MJ, Restrepo JM et al (2009) Elicitation with

methyl-jasmonate stimulates peruvoside production in cell sus-

pension cultures of Thevetia peruviana. Vitr Cell Dev Biol Plant

46:233–238. doi:10.1007/s11627-009-9249-z

2. Siwach P, Grover K, Gill AR (2011) The influence of plant

growth regulators, explant nature and sucrose concentration on

in vitro callus growth of Thevetia peruviana schum. Asian J

Biotechnol 3:280–292
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