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Abstract Carbon-to-nitrogen ratio (CNR) has shown to

be a relevant factor in microorganisms growth and

metabolites production. It is usual that this factor com-

promises the productivity yield of different microorgan-

isms. However, CNR has been rarely modeled and

therefore the nature of its specific influence on metabolites

production has not been understood clearly. This paper

describes a parametric characterization of the CNR effect

on the Escherichia coli metabolism. A set of parameters

was proposed to introduce a mathematical model that

considers the biomass, substrate and several byproducts

dynamical behavior under batch regimen and CNR influ-

ence. Identification algorithm used to calculate the

parameters considers a novel least mean square strategy

that formalizes the CNR influence in E. coli metabolism.

This scheme produced a step-by-step method that was

suitable for obtaining the set of parameters that describes

the model. This method was evaluated under two scenarios:

(a) using the data from a set of numerical simulations

where the model was tested under the presence of artificial

noises and (b) the information obtained from a set of

experiments under different CNR. In both cases, a leave-

one-experiment-out cross-validation study was considered

to evaluate the model prediction capabilities. Feasibility of

the parametric identification method was proven in both

considered scenarios.

Keywords Carbon-to-nitrogen ratio � Parametric

identification � Least mean square method � Escherichia
coli � Step-by-step identification

Introduction

Nitrogen is an essential element to all microorganisms. In

the case of Escherichia coli (E. coli), nitrogen is coupled

to the carbon metabolism by the Krebs cycle, where the

alpha-ketoglutarate is used to produce glutamate and glu-

tamine which are the fundamental compounds to synthe-

size all other amino acids and proteins [1, 2].

In several microorganisms with industrial applications,

nitrogen-limited batch or continuous microbiological cul-

tures allow the control of the cell growth by maintaining a

sub-optimal nitrogen level and prevent the cells from being

starved and to stop growing [3].

For example, nitrogen limitation has showed to be a

relevant condition to promote efficient neutral lipids

accumulation in microalgae or increase the hydrogen rate

production in photobacteria [4]. Other groups have also

demonstrated that Saccharomyces cerevisiae increases

ethanol yield under nitrogen limitation [5].

Despite the substrate concentration, feed flow rate and

carbon bioavailability are well-known relevant issues that

affect the microorganism metabolism. Carbon-to-nitrogen

ratio (CNR) in the microorganism’s culture media has

started to be considered also as a critical aspect that can

modify entirely the microorganism behavior [6].

In particular, aerobic and anaerobic cultures E. coliwhere

the nitrogen source is ammonia (NH4) are characterized by
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Mexico

2 Department of Bioprocesses, UPIBI, Instituto Politécnico
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the biomass growth with the corresponding carbon dioxide

(CO2) and formation of byproducts such as acetate, formate,

lactate, ethanol, among others. However, in aerobic cultures,

as soon as the nitrogen source is completely consumed, the

microorganism growth is stopped but the remainder cells

continue consuming glucose to produce CO2 and water. On

the other hand, in anaerobic conditions, the metabolism is

redirected to produce only byproducts such as acetate, for-

mate, lactate and ethanol.

Similar conditions (with a different distribution of

byproducts) have been observed in some other microor-

ganisms such as Salmonella typhimurium [7], Saccha-

romyces cerevisiae [8], etc.

The simplest model to describe growth of a microor-

ganism limited by nitrogen is the Droop model. This model

assumes that the growth rate depends on the intracellular

concentration of nitrogen. More accurate models have been

proposed to deal with the coupling between nitrogen and

carbon assimilation under several conditions of light radi-

ation [9–11].

However, the complete understanding of CNR effect on

microorganism metabolite and genetic response may con-

sume long periods of experimental procedures and

remarkable amounts of resources. In this sense, mathe-

matical modeling may play a key role on simplifying the

conceptual study on the CNR relevance for each particular

microorganism as well as on saving time and resources.

The model complexity must result from a trade-off

between realism, in order to accurately represent the key

variables of the process, and simplicity so that it can be

mathematically tractable and suitable for calibration and to

solve control and optimization problems [12].

Even more important is the concept that any mathe-

matical model can be considered useless if it is not well

characterized in regard of the particular microorganisms

analyzed. Therefore, a detailed kinetic study and the

associated parametric identification scheme are mandatory

to characterize and validate the model. If this set of tasks

can be successfully solved, then prediction of microor-

ganisms behavior and optimization analysis can be easily

proposed without important resource investments. There

are many examples where some application of well-char-

acterized models have been key elements on improving

metabolites productiveness, feeding strategies, scale-up

designs and control methods designs.

The main objective of this work is to obtain a parametric

characterizationof a simplifieddynamicalmodel able to predict

biomass and metabolites productivity under nitrogen stress.

The model was obtained considering the following facts:

• Biomass growth depends on both nitrogen and glucose.

• There is a proportional time-invariant relationship

between carbon and nitrogen consumption rates.

• Byproducts generation is closely related to the biomass

growth.

• Byproducts formation is related to the biomass

accumulation.

• Dilution rate is considered constant.

The model is developed on the basis of experiments carried

out under various nitrogen conditions (replete and starva-

tion) with the E. coli as testing microorganism under aer-

obic conditions. This article also presents a novel

parametric identification scheme to characterize the model

under the different conditions analyzed in this study. This

parametric identifier uses the sequential combination of

several least mean square parametric identifier.

Mathematical model of microorganisms culture
under nitrogen limitation

According to [1], nitrogen limitation condition in

microbiological reactors can be modeled with the

application of a modified specific growth rate. The

mathematical model proposed in this study was proposed

to support an optimization strategy and to guide the

trade-off between growth and nitrogen effects on

metabolites accumulation.

The proposed model must keep complexity at a minimal

level to be mathematically tractable. Therefore, the number

of variables was limited to the most important ones: bio-

mass growth, substrate consumption and main byproducts

accumulation. The model was designed to consider the

relationship between all the above-mentioned variables.

This study focuses on the growth of E. coli, whose

biomass, in terms of organic carbon, is denoted as Xðg=LÞ.
This growth was supported by the injection of substrate

denoted by Sðg=LÞ. Metabolites produced by E. coli were

represented as Pjðg=LÞ with j ¼ 1; . . .;N.

In this study, two different scenarios were considered,

the first one considers E. coli cells limited by a CNR source

and a second one where this limitation was not longer

considered with the corresponding increasing of CNR. In

line with [13], the assumption on organic carbon that can

be split into functional and storage pools is still holding.

Despite the scenario considered to analyze the CNR effect

on microorganism growth, compartmental method was the

theoretical basement to develop the model.

The functional compartment (f) includes the biosyn-

thetic apparatus (proteins and nucleic acids) and the

structural material (membranes mainly made of glycolipids

and phospholipids). In several microorganisms, nutrient

uptake and biomass growth are known to be uncoupled

processes for microalgae [14, 15] leading thus to variations

in the internal quota of nutrient. However, this is not the
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case for E. coli. Therefore, the biomass growth rate should

include both effects simultaneously.

The model was based on the usual continuous stirred

tank reactor model with a two-factor specific growth

reaction rate [16–18]. This function was constructed as

function of both carbon and nitrogen sources. In addi-

tion, the model considered the consumption of some

key byproducts once the nitrogen or the substrate was

completely consumed. This fact was modeled as a

hybrid system considering a reference value N� that can
be identified by experimental analysis. Also, the model

that considers the fact described above can be charac-

terized by the following set of ordinary differential

equations:

d

dt
CðtÞ ¼ FðCðtÞ; uðtÞÞ þ vðNðtÞÞFNðCðtÞÞ; ð1Þ

where C ¼ ½X; S;P1; . . .;PN �> and the vector field F

satisfies:

FðCðtÞ; uðtÞÞ ¼

lðX; SðtÞÞXðtÞ � DðtÞXðtÞ
DðtÞ uðtÞ � SðtÞð Þ � qðSÞXðtÞ

lP;1XðtÞ

..

.

lP;NXðtÞ

2
66666664

3
77777775

ð2Þ

with NðtÞ ¼ aSðtÞ. The time varying parameters q s tð Þð Þ
and l QN tð Þð Þ are:

q SðtÞð Þ ¼ qm
SðtÞ

SðtÞ þ KS

l SðtÞ;NðtÞð Þ ¼ �l
SðtÞ

KS þ SðtÞ

� �
NðtÞ

KN þ NðtÞ

� �

The biomass concentration is denoted as X g=Lð Þ, the

substrate concentration is denoted by S g=Lð Þ and the

variation of the different products concentration is denoted

by Pi g=Lð Þ. The substrate uptake rate is represented as

q 1=hð Þ, while l 1=hð Þ is the specific growth rate and

D 1=hð Þ is the constant dilution rate calculated as D ¼
Qin=V where Qin; ðL=hÞ and V, L are the input flow of

external substrate and volume in the reactor,

correspondingly.

The vector FNðCðtÞÞ presented in (2) characterizes the

effect of substrate (either glucose or nitrogen) on the

reaction dynamics. Indeed, this section models the uti-

lization of organic acids as carbon source to keep the

biomass growth continuing. Simultaneously, this part of the

model highlights the effect of nitrogen limitation condition.

In particular, this effect was evidenced in ethanol dynam-

ics. This condition has been observed in some studies, but

it has never been modeled before. The vector field

FNðCðtÞÞ satisfies

FNðCÞ ¼

lN;1P1 þ lN;2P2

0

��lP;1X

..

.

lP;NX

2
66666664

3
77777775

ð3Þ

This term has been introduced in the model (1) to justify

the evidence of byproducts consumption as a secondary

substrate. In [19], an initial substrate formed by glucose (50

g/L) and ammonia (1.0 g/L) evidenced the consumption of

organic acids produced by the fermentation process. This

fact was explained by the fastest complete consumption of

nitrogen source that reduces the microorganism growing.

Therefore, despite glucose being still consumed after

nitrogen source was entirely consumed, lactate and acetate

are used as substrate to satisfy the pyruvate and acetyl-

coenzyme A demands which serve as key intermediates in

many different metabolic mechanisms. The function v
serves to indicate when the alternative substrate sources

should be used depending on the nitrogen presence on the

medium. This term was used to introduce the hybrid nature

of metabolism when nitrogen was consumed. Then

vðNÞ ¼
�
1 if N �N�

0 if N\N� ; ð4Þ

where N� is the minimum nitrogen concentration needed to

keep glucose as the main substrate for the microorganism.

Parametric identification algorithm

Model generalization

The model presented in (1) is composed by a set of

equations formed by aggregations of rational functions

depending on its states. The equivalent and simplified

representation can be reorganized as a sum of two rational

functions. The first one depended on the uncertain

parameters included in the model and the second one did

not. Therefore, each equation introduced in the model (1)

can be generalized as follows:

dCiðtÞ
dt

¼ P1;i CðtÞð Þ>ai þ N1;i CðtÞð Þ
P2;i CðtÞð Þ>bi þ N2;i CðtÞð Þ

þ P3;i CðtÞð Þ; ð5Þ

where P1;i and P2;i are nonlinear vectors formed with

polynomials of variables involved in model (2). The

polynomial P3;i represents the parameter-independent

terms that usually appears in biotechnological models. The

variable Ci represents the ith state of (2). The vectors ai and

bi are formed by the uncertain parameters of the systems

presented in (2).
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Based on the representation (5), one can get an equiv-

alent representation such as

Z T

0

dCiðtÞ
dt

P2;i CðtÞð Þ>bidt þ
Z T

0

N2;i CðtÞð Þ dCiðtÞ
dt

dt

�
Z T

0

P3;i CðtÞð Þ½N2;i CðtÞð Þ þ P2;i CðtÞð Þ>bi�dt

¼
Z T

0

½P1;i CðtÞð Þ>ai þ N1;i CðtÞð Þ�dt ð6Þ

A straightforward integration-by-parts of the left-hand side

part of the previous equation leads to

P2;i CðTÞð Þ>CiðTÞbi �
Z T

0

dP2;i CðtÞð Þ>

dt
CiðtÞdtbi

þN2;i CðTÞð ÞCiðTÞ �
Z T

0

dN2;i CðtÞð Þ
dt

CiðtÞdt

�
Z T

0

P3;i CðtÞð Þ½N2;i CðtÞð Þ þ P2;i CðtÞð Þ>bi�dt

¼
Z T

0

P1;i CðtÞð Þ>dtai þ
Z T

0

N1;i CðtÞð Þdt;

ð7Þ

where the derivatives of P2;i and N2;i can be calculated as

follows:

dP2;i CðtÞð Þ
dt

¼ P
0

2;i Cð ÞFðCðtÞÞ

dN2;i CðtÞð Þ
dt

¼ N
0

2;i Cð ÞFðCðtÞÞ

P
0
2;iðCÞ ¼

dP2;i Cð Þ
dC

N
0
2;iðCÞ ¼

dN2;i Cð Þ
dC

ð8Þ

Certainly, the previous structure can be represented as

follows:

YiðTÞ ¼ UiðTÞ>Hi; ð9Þ

where

LMS step-by-step identification method

Based on the regular technique of the well-known least

mean square method (LMS), the parametric identifi-

cation problem presented in (9) can be solved as

follows:

H�
i ¼

XN
k¼0

Ui;kðTÞUi;kðTÞ>
" #�1 XN

k¼0

Yi;kðTÞUi;kðTÞ
" #

;

ð11Þ

where the index k is used to represent the number of

experiments considered in the study while N is the total

number of experiments.

This methodology was followed to recover the set of

parameters included in the model (2). The procedure used

in this study was the following:

1. The parameters qm and KS are calculated from the

second equation proposed in (2) with the following

selection of polynomials: N1;2 ¼ 0, N2;2 ¼ S,

P1;2 ¼ SX, P2;2 ¼ 1 and P3;2 ¼ D u� Sð Þ. The result

of this process yields the estimates of q̂m and K̂S.

2. The parameter K̂s obtained in the previous step is used to

estimate the parameters �lm and KN are calculated using

the first equation proposed in (2) with the following

selection of polynomials: N1;1 ¼ 0, N2;1 ¼ ðK̂S þ SÞN,
P1;1 ¼ SN, P2;1 ¼ ðK̂S þ SÞ and P3;1 ¼ DX. The result

of this process yields the estimates of q̂m and K̂S.

3. The set of parameters lP;i are calculated directly from

the equations fourth to Nth in (2) with the following

selection of polynomials: N1;3 ¼ 0, N2;3 ¼ 1, P1;3 ¼ X,

P2;3 ¼ 0 and P3;3 ¼ 0.

YiðTÞ ¼
Z T

0

N1;i CðtÞð Þdt � N2;i CðTÞð ÞCiðTÞ

þ
Z T

0

dN2;i CðtÞð Þ
dt

CiðtÞdt �
Z T

0

P3;i CðtÞð ÞN2;i CðtÞð Þdt

UiðTÞ ¼
�
Z T

0

P1;i CðtÞð Þdt

P2;i CðTÞð ÞCiðTÞ �
Z T

0

dP2;i CðtÞð Þ
dt

CiðtÞ � P3;i CðtÞð ÞP2;i CðtÞð Þ
� �

dt

2
6664

3
7775

Hi ¼ a>i b
>
i

� �>

ð10Þ
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Evaluation and identifications

A set of three different measures was computed from the

identification and validation experiments in order to eval-

uate the goodness of fit and model prediction ability,

respectively. Therefore, the information obtained in the

three experiments was used to validate the model. Three

sequences of validation process were done. In each one of

these validation tests, the experimental and simulated

information of two sets were averaged. This set of infor-

mation was injected to the parametric identification

method. After that, the remainder (the one left out) was

evaluated to validate the model. The error obtained in the

identified parameter within each analysis was averaged.

This final error was reported to characterize the quality of

the method proposed in this study.

Experimental strategy

A set of aerobic experiments was executed in triplicate.

These experiments were carried out with two different C/N

ratio. Under these conditions, biomass, substrate and some

metabolites were analyzed. These elements were used to

characterize the E. coli growth and its secondary metabolic

evolution.

These data were used to characterize the effect of C/N

ratio by parametric identification methods. Based on the

variations of the parameters involved within the model

presented in (2), the nitrogen limitation over the E. coli

growth was discussed.

Materials and methods

Biological and chemical materials

The bacterial strain used to perform all the experiments is

E. coli K-12. Microorganisms inoculation was prepared by

a preliminary culture of 12 h at 37 �C and 200 rpm in

controlled incubator.

This inoculum was cultured in several seed lab-scale

baffled reactors with a volume of 0.5 L. The fermentation

medium was based on M9 commercial solution (3.0 g/L of

KH2PO4, 6.0 g/L of Na2HPO4, 0.5 g/L of NaCl, 1.0 g/L of

NH4Cl, 0.49 g/L of MgSO47H2O and 0.11 g/L of CaCl2)

supplemented with glucose (2.0 g/L). Inoculation process

used 200.0 mL of two different seed reactors (100.0 mL

from each one).

All solvents and reagents were HPLC analytic grade.

Glucose, acetic acid, lactic acid and ethanol were

purchased from Sigma-Aldrich (Sigma-Aldrich, USA).

Concentrated sulfuric acid was purchased from Fermont

(Mexico). Standard solutions were used to determine the

variation of substrate and byproducts during the fermen-

tation. Primary stock solution of glucose, acetic acid, lactic

acid and ethanol (10 g/L) was prepared in distilled water,

and stored at 4 �C. Intermediate working solutions (0.01,

0.05, 0.1, 0.2, 0.5, 1 and 2 g/L) were obtained through

dilutions of this primary stock solution with distilled water

and filtered through a 0.22 lm filter before the injection

into the chromatographic column.

Fermentation process

All fermentation experiments were evaluated in 3.0-L

Bioflo reactors. Culture media for this part of the study

was M9 commercial solution supplemented with glucose

(10.0 and 50.0 g/L) and yeast extract (3.0 g/L). Initial pH

was adjusted to 7.0 using either NaOH 2.0 N or H2SO4

2.0 N when necessary. Reactor temperature was con-

trolled to the constant value of 37 �C by a water bath.

Dissolved oxygen was fixed (by an external controller) at

20 % above the air saturation level. Air inject velocity

was fixed to 0.5 vvm.

Samples were withdrawn from the reactor during 24.0 h

at fixed intervals of 2.0 h. The sample volume was 20.0

mL. These samples were centrifuged in 50.0-mL Falcon

tubes at 6000.0 rpm, 4.0 �C during 15.0 min. Cells sepa-

rated by this process were diluted in 20.0 mL of distilled

water. This process was used to obtain the dry weight of

samples.

The CNR effect on E. coli under aerobic conditions was

evaluated by running two different set of reactions where

the initial glucose concentration was 50.0 g/L, while

ammonia concentration was 1.0 g/L and in the second set,

the glucose concentration was 10.0 g/L with the same

concentration of the nitrogen source. Experiments were

executed in triplicate.

Experimental methods

Optical density analysis

Microorganisms growth was determined by the regular

optical density method measured at 600 nm by UV–Vis

spectrometer. A 3.0-mL sample was withdrawn from the

reactor to complete this analysis. The sample was diluted

until reaching the adequate absorbency value within the

0.1–1.0 range. Dilution ratios were 1:3, 1:5 and 1:10

depending on the fermentation time.
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Dry weight analysis

Extra 5.0-mL samples were dried in oven with fixed tem-

perature of 60 �C. This process was executed for a period of
48 h. This condition ensured a constant weight for the dried

sample.

HPLC analysis

HPLC (RI detector, Smartline, KNAUER, Germany)

analysis was proposed to characterize the metabolite time

evolution throughout the fermentation. A set of operation

conditions was proposed to obtain the alcohol and organic

acids variation, respectively. A 2.0-mL filtered (0.22 lm
membrane) sample was diluted 1:5 with distilled water

previous to HPLC analysis (Table 1). The mobile phase

was 0.005 N of H2SO4.

Ammonia detection method

Phenol-hypochlorite method was used to characterize the

ammonia ion. NH4Cl and ðNH4Þ2SO4 were used as stan-

dard compounds. The method was executed using the

supernatant of samples taken periodically from the biore-

actor. Each sample was diluted 1:10. A volume of 20lL
was mixed with 5 mL of solution A during 5 min of con-

tinuous agitation. Then 5 mL of solution B was added with

continuous agitation for 5 more minutes. The mixed sam-

ples were incubated for 30 min. The incubated samples

were measured by the spectrophotometer at 625 nm.

Solution A was prepared by 10 g/L of phenol and 50 mg/L

of sodium nitroprusside while solution B was prepared by 5

g/L of NaOH and 8.4 mL/L of sodium hypochlorite.

Evaluation of identification method

The method proposed here was evaluated under two dif-

ferent scenarios. The first one considers the identification

process based on a set of simulations of (2) while the

second one used the real information obtained by real

experiments. Next section describes the results obtained

when the model (2) was used as data generator.

Simulated system

In this part of the evaluation, the model (2) was simulated

with the parameters presented in the Table 2. These

parameters were estimated in different scientific results

regarding the estimation of parameters [1]. Their values

were adjusted to reproduce the general behavior of bio-

mass, substrate, lactate, acetate and ethanol collected at the

experimental period. Under the selected set of parameters,

the simulated microorganism growing was modulated by

the CNR.

The parameter identification method was simulated

under the following conditions: data generation was

obtained in Matlab using Simulink scheme with a Runge–

Kutta integration method with integration step of 0.001 s.

The set of parameters obtained by the application of the

identification method is shown in Table 3. In this case, the

relative error between the actual and estimated parameters

was less than 10 %. This condition can be considered

Table 1 HPLC conditions for

experiments
Condition Value

Column Rezex Roa Org Aci H? (8 %), Phenomenex, USA

Dimensions 300 9 7.8 mm

Oven temperature 60 �C

Flow 0.6 mL/min

Carrier phase 0.005 N H2SO4

Detector Refraction index

Injection volume 20lL

Analysis period 30 min

Table 2 Parameters used in the

simulation of the mathematical

model

Parameter Value Units

Qin 0.000 L/h

V 3.000 L

�l 3.000 1/h

qm 1.320 1/h

KS 2.500 g/L

KN 3.500 g/L

lP;1 0.050 1/h

lP;2 0.160 1/h

lP;3 0.009 1/h

lN;1 0.100 1/h

lN;2 0.150 1/h

�lP;1 0.250 1/h

�lP;2 0.210 1/h

�lP;3 0.010 1/h
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acceptable when the nature of the system is taken into

account.

The model was simulated in a second round using the

estimated parameters. The relative error between both

trajectories was evaluated by comparing the trajectories of

both sets of states.

Figure 1 shows the comparison between the states

obtained by simulating the model with the original

parameters as well as the estimated ones. In all cases, solid

and dashed lines were used to represent the original states.

Dotted lines were used to represent the simulated states

when the estimated parameters were used. The only rele-

vant difference was obtained when the ethanol concentra-

tions were compared. The subfigures placed at the left

(Fig. 1a–c) show the results of simulation when CNR was

low. On the other hand, the subfigures located at the right

contain the information of states obtained from the model

simulated under the conditions of high CNR (Fig. 1d–f).

One may notice the significant differences between tra-

jectories obtained when CNR was varied.

Figure 1a depicts the comparison of both biomass and

substrate concentrations with their respective variation

observed as solution of the modeling process when no nitro-

gen limitation was forced in the reactor. Figure 1d describes

the corresponding variation of biomass and substrate con-

centrations but this time the nitrogen limitationwas simulated.

In both cases, with and without nitrogen limitation the

approximation achieved by themodel developed in this study.

Figure 1b, e shows the variation of both ethanol and

lactic acid. This time the correspondence between the

estimated values by the model and the ethanol variations

was not so efficient. This fact is justified because the high

rate of ethanol consumption cannot be modeled without

making artificial assumptions on the metabolic response of

E. coli.

Figure 1c, f shows the acetate variation in both cases of

nitrogen availability considered in this study. The evident

variations between these two figures demonstrate how the

inability of E. coli to continue using glucose as substrate

forces acetate consumption. This can be confirmed in

simulation considering the times when the nitrogen is

completely consumed (7 and 6 s with and without nitrogen

limitation). The nitrogen consumption was modeled as

explained in Eq. (2).

Experimental results

Biomass growth as well as substrate consumption are

depicted in Fig. 2a, d. If no nitrogen limitation was the

condition in the reactor (CNR 5:1), glucose is used as main

carbon source (Fig. 2a). Indeed, substrate is eliminated

after 6.21 h of reaction. Nitrogen source remained in the

reactor with a final concentration of 0.2 g/L. Final biomass

concentration reached a 4.53 g/L measured as dried weight.

The biomass/substrate yield was 0.45.

In the case of the 1:1 CNR ratio (Fig. 2b), ammonia was

not detected in the reactor after 6.0 h. However, the bio-

mass concentration at that moment was 6.4 g/L (35%
higher than the case when nitrogen was not the limiting

reagent). Nevertheless, after nitrogen was eliminated

completely from the reactor, the biomass concentration

decreased continuously until reaching 5.1 g/L. Moreover,

the glucose consumption velocity changed from its

expected exponential form to an almost linear condition.

Figures 2, 3 and 4 show the trajectories of the model

simulated with the parameters presented in Table 3 that

corresponds to both CNR. These figures show the time

evolution of biomass, substrate, acetate, ethanol and lactate

when CNR ratio was 1:1 and 5:1. The parameter estimation

method was also executed when both CNR ratios were

considered in the reaction (data are shown when CNR was

5:1). In both cases, the simulated model using the param-

eters obtained in this study yields to a correct correspon-

dence between estimated and experimental concentrations

of all compounds. Once more, in all cases, solid and dashed

lines were used to represent the original states. Dotted lines

were used to represent the simulated states when the esti-

mated parameters were used.

When the 5:1 CNR was evaluated, acetate was also used

as carbon source after glucose disappeared (Fig. 4a) and

lactate was consumed during the first 1.5 h of the reaction

(Fig. 3a). Biomass concentration did not diminish because

acetate was also used as carbon source (Fig. 2a).

Table 3 Estimated parameters in the model and its relative error with

respect to the actual values

Parameter Value Units Error (%)

Qin 0.000 L/h 0.0

V 3.000 L 0.0

�l 3.190 1/h 6.7

qm 1.430 1/h 8.3

KS 2.673 g/L 6.8

KN 3.345 g/L 4.4

lP;1 0.047 1/h 6.0

lP;2 0.175 1/h 9.3

lP;3 0.009 1/h 0.0

lN;1 0.109 1/h 9.0

lN;2 0.156 1/h 4.0

�lP;1 0.264 1/h 5.6

�lP;2 0.224 1/h 6.7

�lP;3 0.011 1/h 10.0
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Fig. 1 Evolution of the states included in the Eq. (2) when simulated with the estimated parameters presented in Table 4
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When the 1:1 CNR was evaluated, biomass followed the

same pattern during the first 5 h of culture. After the

nitrogen was detected in the reactor (below the limiting

detection), the biomass concentration decreased because

the main substrate was not usable any longer (Fig. 2b).

Lactate was accumulated during the first 6 h (before the

nitrogen source was completely consumed). After that

moment, this byproduct was used as an alternative carbon
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CNR conditions was evaluated:

5 to 1 (a) and 1 to 1 (b).
Experimental results as well as

states of model presented in

Eq. (2) executed with estimated

parameters are also compared
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source because it was consumed during the next 6 h

(Fig. 3b). A similar condition was observed for the case of

acetate (Fig. 4b) that also was consumed since the moment

that nitrogen was no longer detected.

It is noticeable that in both CNR experiments, acetate was

preferably used as substituting carbon source of glucose. This

fact was confirmed indirectly by the velocity consumption

showed in both conditions (lower and higher CNR). Then,

acetate and lactate were also used as carbon sources consid-

ering that they both were consumed after the nitrogen source

was not detected. Nevertheless, glucose was also consumed

during that period of the reaction but less efficiently compared

to the case when nitrogen was still detected in the reactor. So,

the presence of nitrogen can be characterized as regulator of

the substrate consumption efficiency.

The final byproduct, ethanol, was accumulated in both

cases (lower and higher CNR) (Fig. 3). Nevertheless, when

nitrogen was not limited, ethanol decreased after glucose

was consumed (Fig. 3a). One feasible explanation regards

to the evaporation condition after it was not longer pro-

duced and considering the reactor temperature which is

slightly above the evaporation temperature of the alcohol.

When nitrogen was eliminated from the reactor in the case

of the smaller CNR, ethanol was accumulated slower after

the nitrogen was consumed, but still its concentration

continued accumulating (Fig. 3b).

This part of the section shows the estimated parameters

obtained when experimental studies were conducted under

predefined different CNR. The similarities between tra-

jectories obtained as result of the experimental information

as well as the simulated model with the estimated param-

eters represent a promising condition to validate the model.

However, there are several additional experiments where

some other experimental conditions must be changed in

order to verify the generalization capacity of the model

proposed in this study (Fig. 4).

The mean square error for the estimation process was cal-

culated for evidencing the exact convergence of the parameter

identification method proposed in this study. Even when the

values of this figure seem to be very high, comparing with the

values of the states presented in Fig. 4 are relatively low. The

similarities between experimental information and the tra-

jectories of the model obtained with the parameters recovered

by the algorithm proposed in this study, suggest that the

solution proposed here can be used to characterize the CNR

effect on E. coli. Eventually, this tool can be modified to

include the effect of some other substrates.

Conclusions

This paper introduces a parametric algorithm to charac-

terize the effect of CNR on the growth of E. coli. The

algorithm consisted of a novel strategy based on the least

mean square method applied over the characteristic model

of batch aerobic reaction. The identification method

showed significant differences between the parameter val-

ues associated to the biomass growth of E. coli. The

parameter identification method was tested using either

numerical or experimental information. In the case of

numerical information, the maximum relative error

between the actual and estimated parameters was less than

10.0 %. In both cases, the model was simulated with the

estimated parameters. The mean square error was analyzed

yielding to justify the inclusion of the parameter identifi-

cation algorithm to characterize the CNR using experi-

mental data. The identification maximum error of 5 % is

considered acceptable when they are compared with simi-

lar results obtained in similar studies regarding parameter

estimation of bioprocess systems. Finally, the parameters

estimated by the algorithm proposed in this study helped to

characterize the effect of CNR ratio on the growth of

E. coli. A natural further step on this investigation is to

evaluate the effectiveness of the method when the reaction

could be executed under anaerobic conditions. Addition-

ally, the CNR can be also used as a regulatory factor to

optimize (increasing the yields) the industrial production of

several E. coli’s secondary metabolites.
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