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Abstract Several recent studies demonstrated significant

charge storage in electrochemical biofilms. Aiming to

evaluate the impact of charge storage on microbial fuel cell

(MFC) performance, this work presents a combined bio-

electrochemical–electrical (CBE) model of an MFC. In

addition to charge storage, the CBE model is able to

describe fast (ms) and slow (days) nonlinear dynamics of

MFCs by merging mass and electron balances with equa-

tions describing an equivalent electrical circuit. Parameter

estimation was performed using results of MFC operation

with intermittent (pulse-width modulated) connection of

the external resistance. The model was used to compare

different methods of selecting external resistance during

MFC operation under varying operating conditions. Owing

to the relatively simple structure and fast numerical solu-

tion of the model, its application for both reactor design

and real-time model-based process control applications are

envisioned.

Keywords Microbial fuel cell � Dynamic model � Charge
storage � Equivalent circuit � Multi-population �
Intermittent connection

Introduction

Microbial fuel cells (MFCs) are bioelectrochemical devices

designed for direct electricity production from organic

matter. The main difference with respect to a conventional

fuel cell is that the MFC anode benefits from the biocat-

alytic activity of exoelectricigenic bacteria, which transfer

electrons derived from the oxidation of organic matter to

the anode. Similar to fuel cells, the released electrons flow

through the external electrical circuit while protons migrate

to the cathode to reduce oxygen and form water [1].

Owing to the broad selectivity of microbial enzymes and

mixed microbial communities capable of oxidizing a wide

range of organic molecules, MFCs can be used for energy

recovery from diluted organic wastes such as wastewater

[2–4]. Such novel technology perfectly fits future scenarios

of renewable energy production, where a significant part of

the energy comes from renewable sources to sustain

increased energy demands [2]. Recent advances in the

understanding of MFC microbiology and improved reactor

design have led to orders-of-magnitude increase in MFC

volumetric power density. Yet, volumetric performance

should be further improved to enable commercial appli-

cations of microbial electrochemical technologies (METs).

Model-based reactor design as well as advanced monitor-

ing and control strategies play an important role in these

efforts with mathematical models representing an impor-

tant tool for portraying process dynamics, understanding

fundamental properties of MFCs, and developing software

sensors for advanced process control strategies [5].

Several existing MFC dynamic models are able to

adequately describe relatively slow dynamics of biomass

growth and carbon source consumption. Some models

consider a single microbial population [6–9], while others

were expanded to describe mixed microbial populations
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required for degrading complex carbon sources such as

wastewater [10, 11] and to enable calculation of pH gra-

dients in anodophilic biofilms [12]. In another approach,

electrochemical biofilms were described as a one-dimen-

sional conductive matrix [13]. More complex models are

able to describe the evolution in time and space of several

key variables, such as current, charge, voltage, power

output and consumption of substrates (carbon sources) for

several microbial populations [14]. However, the high

complexity of some models makes them unsuitable for

developing software sensors or model-based control ori-

ented strategies for the MFCs.

Recent experiments demonstrated significant charge

storage capacity of bioelectrochemical biofilms [15]. Fur-

thermore, MFC operation with pulse-width modulated or

intermittent connection of the external resistance [16–18]

demonstrated that internal capacitance of anodic biofilms

leads to complex non-linear behavior, which combines fast,

i.e., with time constants in the order of milliseconds,

charge/discharge dynamics with much slower dynamics of

microbial biofilm growth and decay, with time constants in

the order of hours to days. While an electrical equivalent

circuit (EC) model is able to describe fast electrical

dynamics of the anodic biofilm [17], this simplified

approach does not allow for describing biomass growth and

substrate consumption dynamics resulting in a very limited

predictive capacity of the EC model. On the other hand,

such biomass-related dynamics can be well described by a

bioelectrochemical model. Taking that into account, this

study presents a combined bioelectrochemical–electrical

(CBE) model of an MFC obtained by merging fundamental

equations based on mass and electron balances with

equations describing an equivalent electrical circuit.

Accordingly, the CBE model describes both fast (ms) and

slow (h and days) MFC dynamics.

Materials and methods

MFC design and operation

Experiments were conducted in a membrane-less air–cath-

ode MFC with an anodic compartment volume of 50 mL.

The MFC housed two 10 cm 9 5 cm carbon felt anodes

with a total thickness of 10 mm (SGL Canada, Kitchener,

ON, Canada) and two cathodes (one on each side) made of a

10 cm 9 5 cm manganese-based catalyzed carbon E4

cathode (Electric Fuel Ltd, Bet Shemesh, Israel). The elec-

trodes were separated by a nylon cloth. Liquid mixing was

provided by an external recirculation loop. Temperature was

kept constant at 25 �C by a flow-through heater in the

external recirculation loop. Acetate was used as the sole

source of carbon. The desired input acetate concentration

was obtained by changing the infusion rate of an acetate

stock solution. Hydraulic retention time was kept at 6–7 h

and the influent acetate concentration was varied from 900 to

1800 mg L-1. A more detailed description of the experi-

mental setup can be found elsewhere [16].

Throughout the tests, the MFC was operated using

pulse-width modulated connection of the external resistor

(R-PWM mode). Such operation involved connecting the

external resistor (Rext) to MFC terminals with an electronic

switch (IRF540, International Rectifier, El Sequndo, CA,

USA). The switch was computer-controlled using a Lab-

jack U3-LV data acquisition board (LabJack Corp., Lake-

wood, CO, USA). The data acquisition board was also used

to record MFC voltage at a maximum rate of 22,500 scans/

s. More details are provided elsewhere [16].

Analytical methods, inoculum and media

composition

Acetate concentration in the anodic liquid was analyzed on

an Agilent 6890 gas chromatograph (Wilmington, DE,

USA) equipped with a flame ionization detector. Method

details are provided in Tartakovsky et al. [19].

The MFC was inoculated with 5 mL of anaerobic sludge

with a volatile suspended solids (VSS) content of approx-

imately 40–50 g L-1 (Lassonde Inc, Rougemont, QC,

Canada) and 20 mL of effluent from an operating MFC.

The nutrients solution was composed of (in g L-1):

yeast extract (0.8), NH4Cl (18.7), KCl (148.1), K2HPO4

(64.0), and KH2PO4 (40.7) and sodium acetate. The con-

centration of sodium acetate in the nutrients solution varied

between 10 and 40 g L-1 (as CH3COO
-) in order to obtain

the desired organic load. 1 mL of a trace elements stock

solution was added to 1 L of deionized water, which was

fed to the MFC. The stock solution composition is provided

in Pinto et al. [20]. The anodic liquid solution conductivity

was 16–18 mS cm-1.

Numerical methods and calculations

Matlab R2012a (Mathworks, Natick, MA, USA) was used

for all ‘‘off-line’’ calculations. Parameter estimation was

performed using the fminsearch subroutine of the Matlab

Optimization Toolbox and the model equations were

solved using a variable order integration method for stiff

differential equations (ode15s). ‘‘On-line’’ estimations of

the equivalent circuit model parameters were carried out

according to the algorithm described by Coronado et al.

[17]. A brief description of this algorithm is provided in the

‘‘Appendix’’.

For the purpose of sensitivity analysis, a general form of

a dynamic model was considered. This model was defined

by its state equation
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dx

dt
¼ f t; x; u; hð Þ; ð1Þ

and its output equation

yðtÞ ¼ g t; x; u; hð Þ; ð2Þ

where t is the time, x is the vector of state variables, u is the

input vector, y is the output vector and h is the parameter

vector. In order to find parameters with the highest influ-

ence on the model outputs, normalized sensitivity functions

of the outputs with respect to each parameter (�s) were

calculated as described in Kravaris et al. [21]:

d

dt

ox

o�h

� �
¼ of

ox

ox

o�h

� �
þ of

o�h
; ð3Þ

o�y

o�h
¼ d�y

dy

og

ox

ox

o�h

� �
þ og

o�h

� �
: ð4Þ

The correlation between the sensitivity functions calculated

for the selected parameters was evaluated with the Pear-

son’s linear correlation coefficient obtained with the corr

function in Matlab’s Statistics Toolbox. The magnitude of

the effect of any parameter on a given output was calcu-

lated as the norm of its normalized sensitivity function �sk k,
where �s ¼ o�y

�
o�h. The ellipses of confidence and the cor-

responding confidence intervals were calculated by means

of the covariance matrix obtained as the inverse of the

Fisher information matrix F and expressed as:

F ¼ �STR�S; ð5Þ

where �S ¼ �s1; . . .; �sp
� �

is the sensitivity matrix for each

output and R is the matrix containing the scaling factors

1
�
r2 for each output. Here, r2 is the mean squared error

(MSE) of each model output.

The objective function used for the model parameter

estimation was formed by summing the MSE of each

output as follows:

Fobj ¼
X
i

1

Ni

XN
j¼1

�yexpi;j � �ysimi;j

	 
2

" #
; ð6Þ

where �yexpi;j and �ysimi;j are the normalized experimental and

model (simulated) outputs at the jth sampling time; i is the

model output index, and N is the number of measurements.

Results and discussion

Model formulation

As previously mentioned, the CBE model was obtained by

merging equations describing microbial, carbon source and

electron balances of the bioelectrochemical model devel-

oped by Pinto et al. [11] with equations describing the

equivalent electrical circuit of an MFC [16]. Because the

CBE model is largely based on the bioelectrochemical

model of Pinto et al. [11], it inherits its features and

assumptions. Consequently, the model accounts for elec-

tricigenic (Xe, attached) and methanogenic (Xm, attached or

suspended) microbial communities, which are modeled by

a two-phase growth-washout model [22] with multiplica-

tive Monod growth kinetics. Acetate (S) is considered as

the sole carbon source. Other assumptions are the follow-

ing: (1) the CBE material balances only describe the anodic

compartment assuming a non-limiting cathode reaction

rate; (2) the extracellular electron transfer mechanism from

the carbon source to the anode is assumed via nanowires or

direct contact with the anode; (3) the intracellular charge

transfer mechanism is assumed to involve the oxidized

(Mox) and reduced (Mred) forms of an intracellular mediator

(e.g. NADH/NAD?) with a constant mediator pool (Mtot)

per microorganism. Furthermore, reactor material balances

are simplified by assuming: (4) ideal carbon source mixing

within the anode compartment; (5) absence of carbon

source and microbial gradients within the anodic biofilm;

(6) negligible gas transport through the cathode; and, (7)

constant temperature and pH.

The concept of the CBE model is presented in Fig. 1.

Similar to the EC model, internal resistance (R1) represents

the electrolyte ohmic resistance, while a resistor/capacitor

circuit is included to describe the internal capacitance (C)

and the activation losses (R2). Accordingly, MFC internal

resistance (Rint) is defined as

Rint ¼ R1 þ R2: ð7Þ

Based on the assumptions described above, MFC mass

balances are given by the following equations:

dS

dt
¼ �qeXe � qmXm þ Fin

V
ðSin � SÞ; ð8Þ

dXe

dt
¼ leXe � KdeXe � a

Fin

V
Xe; ð9Þ

dXm

dt
¼ lmXm � KdmXm � a

Fin

V
Xm; ð10Þ

dMox

dt
¼ �Yqe þ c

Icell

mF

1

VXe

; ð11Þ

where Fin is the flow rate to MFC (L day-1), V is the

anodic compartment volume (L), Sin is the influent carbon

source concentration (mg L-1), Icell is the MFC current

(A), a is the biomass retention parameter. Other notations

are provided in Table 1.

The kinetic dependencies are defined as follows:

le ¼ lmax;e

S

KS;e þ S

� �
Mox

KM þMox

� �
; ð12Þ
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qe ¼ qmax;e
S

KS;e þ S

� �
Mox

KM þMox

� �
; ð13Þ

lm ¼ lmax;m

S

KS;m þ S

� �
; ð14Þ

qm ¼ qmax;m
S

KS;m þ S

� �
; ð15Þ

where the biomass retention parameter is defined as

a ¼ 1

2
1þ tanh Kx Xe þ Xm � Xmaxð Þ½ �½ � ð16Þ

Also, the mediator balance is given by

Mtot ¼ Mox þ Mred ð17Þ

Also, the following dynamic equation can be used to

describe the voltage (Vc) at the internal capacitor C:

dVc

dt
¼ Icell � Vc=R2

C
: ð18Þ

The electrochemical balance is given by

Icell ¼
Eoc � gconc � Vc

Rext þ Rint1

Mred

ei þMred

� �
; ð19Þ

where concentration losses are defined as

gconc ¼
RT

mF
log

Mtot

Mred

� �
ð20Þ

The following empirical expressions were derived based

on previously obtained experimental results [11, 16, 18]

and are used to describe the dependence of the internal

resistances (R1 and R2), the internal capacitance (C), and

the open circuit voltage (Eoc) on the anodic biofilm density:

R1 ¼ Rmin1 þ Rmax � Rmin1ð Þe�KrXe ; ð21Þ

R2 ¼ Rmin2 þ Rmax � Rmin2ð Þe�KrXe ; ð22Þ

C ¼ Cmin þ Cmax � Cminð Þe� 1
KrXe ; ð23Þ

Eoc ¼ Emin þ Emax � Eminð Þe� 1
KrXe ð24Þ

Output electrical voltage (Vcell) and power (Pcell) are

given by the following expressions:

Vcell ¼ Icell Rext; ð25Þ

Pcell ¼ V2
cell =Rext: ð26Þ

Finally, the rate of methane production (Q) by metha-

nogenic microorganisms is assumed to be proportional to

the substrate consumption rate by this trophic group:

Q ¼ YCH4
qm Xm V : ð27Þ

The proposed CBE model is capable of describing both

fast and slow MFC dynamics. Notably, the model can be

used for two distinctly different types of simulations. A

conventional, ‘‘off-line’’ modeling approach is described by

Eqs. (7–27). This approach can be used to predict MFC

output voltage, carbon source effluent concentration, and the

distribution of microbial populations under various operat-

ing conditions. This application of the model requires prior

knowledge of model parameters listed in Table 1. Since the

CBE model shares the microbial kinetics and material bal-

ances with the bioelectrochemical model of Pinto et al. [11],

the two models predict the same long-term dynamics in the

absence of fast external resistance variations.

In addition to off-line predictions the ‘‘on-line’’ version

of the model could be used, where the simulations are

carried out concurrently with the experiment and empirical

Eqs. (21–24) are replaced by Rint, C, and Eocv estimations

obtained in real time, e.g. using an estimation procedure

proposed by Coronado et al. [17] as described in ‘‘Ap-

pendix’’. This procedure can be applied to the existing

measurements or in real-time. The two approaches to uti-

lizing the model are illustrated in Fig. 2.

Sensitivity analysis

The sensitivity analysis was carried out to reduce the

number of model parameters requiring identification. First,

Fig. 1 Schematic diagram of the CBE model
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the norm of the sensitivity profiles (Eq. 4) for all param-

eters was computed and arranged from highest to the

lowest values. The highest norm indicates the highest

impact of the parameter on the selected output. Second,

because of the limited number of measurable state vari-

ables, the confidence intervals obtained from the Fisher

information matrix (Eq. 5), were used to select parameters

that can be estimated with an acceptable accuracy.

The influence of all model parameters on the model

outputs was evaluated (results not shown) and four

parameters (Y, lmax,e, Kr and Kx) with the highest impact

were selected for parameter identification. The magnitude

of the effect of Y, lmax,e, Kr, and Kx on the model outputs

(expressed as the norm of the sensitivity function in Eq. 4)

was, respectively, 2.7, 11.5, 0.27 and 1.7 for the output

substrate concentration profile and 40.9, 72.1, 597.9 and

11.8 for the output voltage profile. Accordingly, lmax,e

showed the highest effect on the output substrate concen-

tration while Kr had the greatest impact on voltage output.

Figure 3 shows the sensitivity profiles corresponding to

these four parameters (Y, lmax,e, Kr and Kx). The profiles

were obtained using the same inputs (influent acetate

concentration and flow rate profiles) as those used in the

experimental data for parameter estimation. Thus, the input

flow rate (Fin) was maintained so that the hydraulic

retention time within the MFC was about 7.5 h and the

input substrate concentration was subjected to step-wise

changes as depicted in Fig. 3. Also, the external resistance

(Rext) was set to 12 X and controlled using the R-PWM

mode of operation.

It should also be mentioned that in all simulations the

profile for the methanogenic microorganisms (Xm) remained

negligible, probably due to the operational conditions

favoring growth of the electricigenic bacteria [23].

Table 1 CBE model

parameters
Parameter Symbol Units Notes Value

Faraday constant F A s mol-e-1 Universal 96,485

Ideal gas constant R J K-1 mol-1 Universal 8.3145

Anode temperature T K Constant 298.15

Anode volume V L Constant 0.05

Yield for Mox mass balance Y mg-M mg-S-1 Estimated 41.25

Substrate consumption rates qmax,e mg-S mg-X-1 day-1 Assumed 8.48

qmax,m mg-S mg-X-1 day-1 Assumed 8.20

Microbial growth rates lmax,e day-1 Estimated 1.87

lmax,m day-1 Assumed 0.1

Steepness KX L mg-X-1 Estimated 0.00077

Kr L mg-X-1 Estimated 0.031

Methane yield YCH4 mL-CH4 mg-S-1 Assumed 0.3

Monod half rates KS,e mg-S L-1 Assumed 20

KS,m mg-S L-1 Assumed 80

KM mg-M L-1 Assumed 0.2 MTotal

ei mg-S L-1 Assumed 0.0001 MTotal

Electrons transferred m mol-e-1 mol-M-1 Assumed 2

Molar mass c mg-M mol-M-1 Assumed 663,400

Mediator fraction MTot mg-M mg-X-1 Assumed 0.05

Microbial decay rate Kd,a day-1 Assumed 0.02 lmax,a

Kd,m day-1 Assumed 0.02 lmax,m

Attainable concentration Xmax,a mg-X L-1 Assumed 512.5

Xmax,m mg-X L-1 Assumed 525

Open circuit voltage Emin V Measured 0.01

Emax V Measured 0.40

Internal resistance Rmin,1 X Measured 1.17

Rmin,2 X Measured 5.13

Rmax X Measured 2000

Capacitance Cmin F Measured 0.01

Cmax F Measured 0.95

The ‘‘assumed’’ parameters were taken from Pinto et al. [11]. Experimental results described in Coronado

et al. [16] were used for the parameter estimation procedure

Bioprocess Biosyst Eng (2016) 39:267–276 271

123



Accordingly, all the parameters related to the methanogenic

population showed little effect on the outputs. Their values

were taken from previous experiments where methane pro-

duction was measurable [11]. Any other parameters

remainingwere not considered because either they presented

negligible effects on the outputs or their values could be

assumed (e.g. physical constants) or experimentally mea-

sured and did not need to be re-estimated.

Parameter estimation

To estimate model parameters, the difference between

model outputs and the corresponding experimentally

measured values (acetate concentrations and MFC volt-

age) was minimized according to Eq. (6). First, parame-

ters of the ‘‘off-line’’ model described in Fig. 2 were

estimated. Only four parameters, suggested by the sensi-

tivity analysis shown in ‘‘Sensitivity analysis’’ were

estimated.

The estimated values of Y, lmax,e, Kr and Kx were 41.25,

1.87, 0.031 and 0.00077, respectively (units are indicated

in Table 1). To visualize the estimation accuracy and the

correlations between the estimated parameters, the 95 %

confidence ellipses were calculated. All the parameters had

low correlations as it can be observed by the ellipses being

parallel to the axis, except for the set of parameters

lmax,e - Kx (Fig. 4). The lowest Pearson’s correlation

coefficient was -0.06 for Y - Kr and the highest correla-

tion corresponds to lmax,e - Kx, at 0.86. The highest cor-

relation can be observed by the ellipse being at a certain

angle with respect to the axis. The Fisher information

matrix (Eq. 5) was invertible with the lowest and highest

eigenvalues being 100 and 2.5 9 10-6, respectively.

With a 95 % confidence level, the intervals of confi-

dence were 4.3, 4.1, 0.2 and 25.7 % for Y, lmax,e, Kr and

Kx, respectively, i.e., the accuracy of Kx estimation was the

lowest. Also, the sensitivity analysis shows that Kx has low

impact on the effluent acetate concentration (Fig. 3b) and

the MFC voltage (Fig. 3c). Therefore, such large confi-

dence interval is acceptable considering the low impact of

Kx on the model outputs and the complex microbial

dynamics. The intervals of confidence estimated for Y,

lmax,e were similar to 0.9 and 3.0 % values estimated by

Pinto et al. [11] using voltage measurements obtained

during first 20 days of operation (MFC startup).

Fig. 2 Structure for the ‘‘off-

line’’ and ‘‘on-line’’ CBE model

implementations. The inputs are

Fin (flow rate), Sin (influent

substrate concentration), and

Rext, (external resistance). The

outputs are Sout (effluent carbon

source concentration) and Vcell

(voltage). The ‘‘on-line’’ model

uses instant estimations of the

electrical variables such as open

circuit voltage (Eocv),

capacitance (C), and internal

resistance (Rint)

Fig. 3 a - The influent substrate concentration, Sin, profile and

sensitivity profiles corresponding to b - the effluent carbon source

concentration, Sout, and c - the output voltage, Vcell, for the parameters

Y, lmax,e, Kr and Kx
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Parameters included in the empirical Eqs. (21–24) were

selected based on the results of the on-line parameter

estimation procedure described in ‘‘Appendix’’. Notably,

the on-line estimations of Eoc were significantly lower than

the values estimated during polarization tests (results not

shown). This difference can be attributed to higher acetate

concentrations in polarization tests, in which Eoc values

were acquired after 30 min of MFC operation in the open

circuit mode. The absence of microbial electricigenic

activity during this period led to acetate accumulation and,

accordingly, in carbon source non-limiting conditions

resulting in higher Eoc estimations. Consequently, param-

eters Emax and Emin in Eq. (24) were set to 0.4 and 0.01 V,

respectively. Parameters Rmax, Rmin1 and Rmin2 in Eqs. (21)

and (22) were set to 2000, 1.17 and 5.13 X, respectively.
Finally, parameters Cmax and Cmin in Eq. (23) were set to

0.95 and 0.01 F, respectively, based on the estimated

capacitance values obtained during MFC startup and

operation [24]. All other parameters were adapted from

Pinto et al. [11], as indicated in Table 1.

Figure 5 compares model outputs with the corresponding

measurements. Effluent acetate concentrations were accu-

rately described by the model at all influent concentrations

(Fig. 5a). MFC output voltage was observed to depend on

the influent acetate concentration (organic load) with voltage

drops during low load operation (days 30–35 and 57–59,

Fig. 5b). The model slightly underestimated the output

voltage at the highest influent concentration (days 43–50)

and overestimated voltage recovery after the second period

of MFC operation at low organic load (days 59–63, Fig. 5b).

Nevertheless, effluent acetate and voltage trends were cor-

rectly described with MSE values of 0.035 and 0.14 for the

effluent acetate concentration and the output voltage

experimental profiles, respectively. Concerning the

microbial population, the profile of the concentration for the

electricigenic bacteria (dotted line in Fig. 5B) showed a

population decrease during the low influent concentration

while attaining a plateau during substrate replete conditions.

The profile for the methanogenic microorganisms remained

negligible during the duration of the simulation, probably

due to operational conditions favoring growth of the elec-

tricigenic bacteria [23]. Additionally, the model provided an

adequate description of the short-term output voltage during

pulse-width modulated connection of Rext, as shown in

Fig. 5c. The concentration of oxidized mediator increased

during the short-term closed circuit period and decreased

otherwise. This behavior is understandable since during

open circuit operation the concentration change of the oxi-

dized form of the intracellular mediator indicates an accu-

mulation of charge within the electricigenic bacteria

(biofilm) in the anodic compartment.

In addition to estimating parameters of the ‘‘off-line’’

model, two parameters (Y and lmax,e) were estimated to

demonstrate the ‘‘on-line’’ mode of CBE model applica-

tion, as described in Fig. 2. The ‘‘on-line’’ model requires

values of Rint, Eocv, and C to be estimated based on the

output voltage measurements, e.g. during R-PWM opera-

tion. Following the estimation procedure described above,

Y and lmax,e values were estimated to be 41.18 mg M mg

S-1 and 3.59 day-1, respectively. Figure 4 shows the

Fig. 4 95 % ellipses of confidence for the CBE ‘‘off-line’’ model

(a) and for the ‘‘on-line’’ model (b)

Fig. 5 A comparison of acetate (a) and MFC voltage (b) experimen-

tal values with the calculated profiles obtained using the ‘‘off-line’’

model. Fast-changing concentration of Mox (dotted line) and the

corresponding Vcell profile are shown for day 48.0 (c)
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corresponding 95 % confidence ellipse for these two

parameters. In this case the two parameters were non-

correlated with the Pearson’s correlation coefficient being

close to zero, thus the ellipse of confidence was almost

parallel to the horizontal axis. Also, with a 95 % confi-

dence level, the intervals of confidence for Y and lmax,e

were 10.8 and 0.43 %, respectively.

Figure 6 compares the measured values of voltage and

acetate concentration with the corresponding outputs of the

‘‘on-line’’ model. As expected, the ‘‘on-line’’ model pro-

vided a better fit of the experimental data points, with MSE

values of 0.008 and 0.005 for acetate and voltage estima-

tions, respectively (Fig. 6a, b). As compared to the ‘‘off-

line’’ model, the output voltage estimations were particu-

larly improved (Figs. 5b, 6b), while the acetate estimations

were comparable between the two models. Overall, the

‘‘on-line’’ model proved to be more accurate, in particular,

at high values of the influent acetate concentration.

Anode capacitance impact on MFC performance

In several recent studies, internal MFC capacitance was

exploited to develop novel power management methods [25,

26]. In one approach, by periodically disconnecting theMFC

from an electrical load, energywas internally stored and then

released to enable a power output burst [16, 18]. This

approach can be used to resolve the problem of mismatch

between the external and internal resistances. Significant

power losses occur when the internal and external electrical

resistances do not match [27]. Furthermore, MFC operation

at external resistances below the internal resistancemay lead

to near permanent loss of performance, including voltage

reversal [28]. Amore traditional approach to overcome these

power losses uses a real-time optimization method which

seeks an external resistance that maximizes the power output

[29]. On the other hand, recent efforts in on-line power

output optimization demonstrated that the stability issue can

be addressed by MFC operation with periodic connection/

disconnection of the external resistance, Rext, [16]. In one

study, stable power output was observed at various organic

loads during MFC operation with pulse-width modulated

Rext connection [16]. Thus, this approach overcomes sig-

nificant power losses during perturbations in the input sub-

strate concentration.

Figure 7 uses the CBE ‘‘off-line’’ model to compare

different power management approaches. In this simula-

tion, MFC is assumed to be initially operated at a constant

influent carbon source concentration followed by a con-

centration decrease of 50 %. The three approaches for the

operation of the external resistance include using: (1) the

perturbation-observation (P/O) algorithm that searches for

the optimal Rext
* resulting in maximum power output; (2) a

fixed external resistance, and (3) an R-PWM operation with

a duty cycle of 95 % (the average power output per cycle is

shown). The value of the duty cycle was manually selected

such that the power produced with a frequency of operation

of 100 Hz was as high as possible. The P/O algorithm was

simulated following the same operational conditions as in

[29] with a perturbation of 2 X every 1 min.

Fig. 6 A comparison of acetate (a) and MFC voltage (b) experimen-

tal values with the calculated profiles obtained using the ‘‘on-line’’

model. Fast dynamics of MFC voltage during R-PWM operation is

given for day 48.0 (c)

Fig. 7 MFC power output estimated for three modes of operation

(optimal Rext
* calculated using perturbation/observation algorithm,

fixed Rext, and R-PWM operation at a duty cycle of 95 %). A 50 %

decrease in the influent concentration was imposed at t = 2 h
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Clearly, keeping a constant external resistance results in a

severe drop in the power produced once the influent carbon

source concentration decreases. The P/O algorithm closely

follows changes in Rint by adjusting the external resistance

thus avoiding such a sharp drop in the MFC power output.

Notice that while during the R-PWMoperation theRext value

remains unchanged at all organic loads, the R-PWM opera-

tion with a duty cycle of 95 % shows a performance closer to

the power output obtained by the P/O algorithm.Meanwhile,

Rext value is the same as in the simulation with the fixed

resistor value (Fig. 7). These simulation results agree with

the experimental comparison of R-PWM and fixed resistor

MFC operation described in [18].

Conclusion

This work presents a combined bioelectrochemical–electri-

cal (CBE) model that takes into consideration the internal

capacitance and the nonlinear dynamics of MFCs populated

with electricigenic and methanogenic populations. Two

approaches for model application were considered. In one

approach, model-based simulations required all parameters

of the model to be known apriori (e.g. estimated based on the

existing experimental results). This ‘‘off-line’’ approach

enables a variety of applications such as reactor design,

optimization of operating conditions, etc. An alternative

approach requires MFC output voltage to be known or

measured in real time thus enabling on-line estimation of

certain electrical parameters of the model (EOC, C and Rint).

While in this approach the model can be only applied to the

existing data set or used to accompany an actual process, it

provides a better fit, while predicting process variables not

measurable in real time, such as effluent carbon source

concentration. Both approaches showed acceptable accuracy

when describing both fast and slow dynamic behavior, while

also being able to adequately predict the output substrate

concentration. Since on-line measurements of the output

substrate concentration are typically unavailable, the CBE

model presents a step forward in developing software sensors

for on-lineMFCmonitoring aswell as for developingmodel-

based process control strategies.
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Appendix: On-line parameter estimation
procedure

The voltage dynamics at the capacitor (Vc) of the equiva-

lent circuit shown in Fig. 1 can be described by the fol-

lowing first order differential equation:

dVc

dt
¼ Eoc

C R1 þ Rextð Þ �
R1 þ R2 þ Rext

R2C R1 þ Rextð ÞVc: ð28Þ

By applying Kirchhoff’s law and solving Eq. (28), the

analytical solution of MFC output voltage (Vcell) is

obtained in the following form:

Vcell ¼ Eoc

� Uc;final þ Uc;initial � Uc;final

� �
e�t=s

� � Rext

Rint1 þ Rext

;

ð29Þ

where Uc,initial and Uc,final are the initial and final voltage

values shown in Fig. 8.

First, R1 estimation is obtained during MFC operation at

a high frequency (e.g. 100 Hz) from the following

equation:

R1 ¼ Rext

Uhigh � Ulow

Ulow

ð30Þ

where Uhigh and Ulow are the high and low output voltage

levels measured in the experiment (Fig. 8).

Subsequently, Eoc estimation is obtained by operating

the MFC at a low frequency (e.g. 1.0 Hz) and low duty

cycle. It is assumed that Uoc is equal to the voltage at the

end of the open circuit part of the cycle:

Uoc ¼ max UMFCð Þ ð31Þ

Finally, R2 and C estimations are obtained using voltage

measurements at a low operating frequency. It is assumed

that Vcell reaches a steady-state value at the end of the

closed circuit part of each cycle. In Fig. 8 this value is

denoted as Ufinal.

The value of R2 is estimated as:

R2 ¼ Ufinal

R1 þ Rext

Uoc � Ufinal

ð32Þ

The value of C is calculated as

C ¼ s
R2

R1 þ R2 þ Rext

R1 þ Rext

ð33Þ

where s is the time constant shown in Fig. 8.

Fig. 8 UMFC profiles at low and high operating frequencies used for

on-line parameter estimation. Operating modes used to estimate R1,

EOC, R2 and C, are shown as steps 1, 2 and 3, respectively
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