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Abstract Chemical modification of lysine residues in

Candida rugosa lipase (CRL) was carried out using five

different functional ionic liquids, and about 15.4–25.0 % of

the primary amino groups of lysine were modified. Enzy-

matic properties of the native and modified CRLs were

investigated in olive oil hydrolysis reaction. Improved

thermal stability, catalytic activity in organic solvents, and

adaptability to temperature and pH changes were achieved

compared with the native enzyme. CRL modified by

[choline][H2PO4] showed the best results, bearing a max-

imum improvement of 16.7 % in terms of relative activity,

5.2-fold increase in thermostability (after incubation at

45 �C for 5 h), and 2.3-fold increase in activity in strong

polar organic solvent (80 % dimethyl sulfoxide) compared

with the native enzyme. The results of ultraviolet, circular

dichroism and fluorescence spectroscopy suggested that the

change of the secondary and tertiary structures of CRL

caused by the chemical modification resulted in the

enhancement of enzymatic performance. The modification

of CRL with functional ionic liquids was proved to be a

novel and efficient method for improving the enzymatic

properties of CRL.
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Introduction

Lipases are a series of versatile biocatalyst with excellent

selectivity and activity under mild reaction conditions and

play an important role in the development of chemical

industries, such as pharmaceuticals, food, energy and fine

chemicals [1–4]. However, the industrial application of

lipase is often hampered by its high cost and easy inacti-

vation in organic solvent, high temperature and other

extreme conditions. Thus, most of the strategies for

enzyme engineering are focused on microbiology [5],

protein engineering [6], medium engineering [7], immo-

bilization on novel supports, etc. [8]. The traditional

technique of chemical modification is a very powerful tool

for improving the enzymatic properties [9], leading to the

introduction of functional and specificity-determining

groups that are inaccessible by conventional mutagenesis

techniques, and improvements in enzyme activity and/or

stability, which can be achieved at a low cost using a rel-

atively straightforward method. The modifiers usually used

for chemical modification of enzymes are aldehydes,

anhydrides, amines, fatty acids, halohydrocarbons, poly-

ethylene glycol, dextrans, and so on [9–11].

Room temperature ionic liquids have been widely used

as solvents or co-solvents in biocatalytic reactions and have

been processed over a decade [12, 13]. In our previous

work, we synthesized and grafted different functionalized

ionic liquids onto the surface of mesoporous silica SBA-15

(IL-SBA). Lipase was successfully incorporated into IL-

SBA by various methods, and the enzymatic properties

were improved remarkably [14–17]. Recently, we also

showed that various functional ILs with different cations

and anions could chemically modify porcine pancreatic

lipase (PPL) to increase enzyme activity and thermosta-

bility in aqueous solution [18].
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Herein, Candida rugosa lipase (CRL), a typical and

widely used lipase, was modified with different function-

alized ionic liquids (Scheme 1). The structures of native

and modified CRLs were studied by ultraviolet, circular

dichroism (CD), and fluorescence spectra. The effects of

temperature and pH on the enzymatic activity were studied.

Moreover, the thermal stability, catalytic activity in organic

solvent and kinetic parameters were investigated. This

work aims to develop an efficient modification system for

improving the enzymatic performance of lipase.

Materials and methods

Materials

CRL (Type VII) and trinitrobenzenesulfonic acid solution

(5 % w/v in H2O) were purchased from Sigma-Aldrich

China Inc. Carbonyldiimidazole (97 %) was purchased

from Aladdin Chemistry Co., Ltd. Ionic liquids (99 %,

HPLC) used in this work were purchased from Shanghai

Chengjie Chemical Co. Ltd. Hydrochloric acid, acetone,

ethanol, methanol, isooctane, anhydrous dimethyl sulfox-

ide and other reagents were of analytical grade and pur-

chased from SCRC, China. All the solutions were prepared

with distilled water.

Chemical modification of CRL

The CRL powder was dissolved in distilled water and

magnetic stirred for 30 min at 4 �C. The obtained CRL

solution was then concentrated with ammonium sulfate

precipitation and transferred into a 10 kDa dialysis mem-

brane to remove excess salt. The ionic liquid and carbon-

yldiimidazole were dissolved in anhydrous dimethyl

sulfoxide (DMSO) for a final concentration of 1.36 M,

respectively. The mixture was reacted for 4 h at room

temperature to activate the ionic liquid. The activated ionic

liquid (0.4 ml) was added dropwise into 15 ml of CRL

solution (15 mg/ml) under vigorous stirring. The reaction

was allowed to proceed for 24 h at 0 �C. The modified

CRL was dialyzed exhaustively against distilled water at

4 �C for 48 h to remove the unreacted modifier molecules.

The resulting lipases were denoted as [HOOCMMIm]-

CRL-[PF6], [HOOCMMIm]-CRL-[Cl], [HOOCBMIm]-

CRL-[Cl], [Choline]-CRL-[H2PO4] and [Choline]-CRL-

[NO3], respectively. Protein concentration was determined

via the BCA method using bovine serum albumin (BSA) as

standard [19].

Determination of the degree of modification

The number of free amino groups presented in CRL before

and after chemical modification was estimated using tri-

nitrobenzenesulfonic acid (TNBS) assay procedure [20].

CRL solution (0.5 ml, 100 lg/ml) and 0.01 % TNBS

(0.5 ml) were first incubated in 0.25 ml phosphate buffer

(0.025 M, pH 8.2) at 37 �C for 2 h. Sodium dodecyl sulfate

solution (0.5 ml, 10 % w/v) and hydrochloric acid solution

(0.25 ml, 1 M) were added, absorbance was measured at

335 nm in a UV-1200. The degree of modification was

calculated by the following equation:

DM %ð Þ ¼ 1� absorbanceA=absorbanceB

absorbanceA and absorbanceB mean the absorbance of

modified and native enzyme, respectively.

Activity assay

The enzymatic activity of CRL was assayed by the olive oil

emulsion method according to the process proposed by

Monier et al. [21]. The emulsification solution was

Scheme 1 Structures of ionic

liquids used to chemically

modify the CRL
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prepared by mixing 50 ml of olive oil with 50 ml of gum

arabic solution (7 %, w/v). Olive oil emulsification solu-

tion (5 ml) and phosphate buffer (5 ml, 0.025 M, pH 7.0)

were mixed and incubated in a water bath at 30 �C for

5 min. CRL solution (1 ml, 100 lg/mL) was then added to

initiate the reaction under a moderate stirring speed for

3 min. The reaction was stopped by an addition of 15 ml

acetone/ethanol (1/1, v/v). The activity of CRL was

determined by titration with 0.05 M sodium hydroxide

solution. One unit of CRL activity was defined as the

amount of enzyme required to release 1 lmol of acid per

minute.

Enzymatic properties

Effect of temperature on activity

The activity of CRL was assayed at a temperature ranging

from 20 to 50 �C at pH 7 through the activity assay pro-

cedure described above.

Effect of pH on activity

The effect of pH (phosphate buffer) on the activity of CRL

was determined by conducting the CRL activity assay

within the pH ranging from 6.0 to 8.0 at suitable

temperatures.

Thermal stability

Thermal stability of CRL was assayed by incubating it in a

water bath at 45 �C for 1, 2, 3, 4 and 5 h, respectively. A

certain amount of CRL solution was periodically with-

drawn for activity assay.

Catalytic activity in organic solvents

Activity of CRL sample in organic solvent was carried out

at suitable temperature and pH. The organic solvents used

were DMSO, methanol and isooctane. Reaction mixture

was set up with increasing percent volume of organic

solvents in phosphate buffer (0.025 M) with 10 or 20 %

increment.

Determination of kinetic parameters

Experiments for the determination of kinetic parameters,

the maximum rate (Vmax) and the Michaelis constant (KM)

were performed at suitable temperature and pH using dif-

ferent concentrations of oil emulsification solution from 40

to 240 mg/ml. The values of KM and Vmax were calculated

from a double reciprocal plot. In all cases, the activity of

CRL was determined at 3 min to avoid the possible

inhibition that may take place because of the appearance of

reaction products.

Characterization of native and modified CRLs

Ultraviolet spectroscopy

Ultraviolet spectrum of CRL was recorded at 25 �C on

PerkinElmer-Lambda 25 from 200 to 500 nm. The con-

centration of enzyme was 25 lg/ml.

Circular dichroism (CD) spectroscopy

The measurement was carried out using a circular cell with

1 mm light path length at 25 �C on JASCO-J810 spectro-

polarimeter (Jasco Co., Japan) with dilute enzyme solution

(14.25 lg/ml). All the CD spectra were averaged by three

scans taken under the identical condition and corrected for

the solvent background.

Fluorescence spectroscopy

Fluorescence spectrum of CRL (100 lg/ml) was monitored

on a spectrofluorometer (PerkinElmer LS55, USA) at

25 �C using a slit width of 5 nm for both excitation and

emission. The emission was recorded from 300 to 400 nm,

using an excitation wavelength of 270 nm. Three spectra

were accumulated and averaged for each sample.

Results and discussion

Determination of modification degree and catalytic

activity in aqueous environment

Table 1 summarized the results of the modification degree

of CRL. In general, 15.4–25.0 % of the primary amino

groups of lysine reacted with the functionalized ionic

liquid, and the modification degrees at the same conditions

followed the decreasing order [HOOCBMIm]–CRL–

[Cl] [ [Choline]–CRL–[H2PO4] [ [Choline]–CRL–[NO3]

[ [HOOCMMIm]–CRL–[Cl] [ [HOOCMMIm]–CRL–

[PF6]. For the same cation (anion), the more kosmotropic

the anion (cation), the higher the modification degree was

obtained. The kosmotrope was reported to have stronger

interactions with water molecules, thus breaking the

hydrated shell of the enzyme and allowing the activated

cation to graft easily onto the enzyme. The kosmotropicity

for the cations was following the order: cho-

line? \ MMIm? \ BMIm?, and for the anion was

PF6
- \ NO3

- \ Cl- \ H2PO4
- [22–25].

Generally, chemical modification of CRL will cause a

decreased hydrolytic activity. Sánchez-Montero reported that
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CRL lost more than 80 % hydrolysis activity after modifica-

tion with polyethylene glycol [26], and over 20 % decrease of

activity using dextrans modification [27]. Also, Park showed

that copolymer of polyethylene and maleic acid anhydride

modification onto CRL caused nearly 20 % decrease of

activity in the suitable conditions [28]. By contrast, the

modified CRLs obtained in our study maintained a relative

higher level of enzyme activity (Table 1). It was found that the

activity of the modified CRLs followed the nature of ionic

liquids: higher activity was achieved using ionic liquid with

chaotrope (cation)–kosmotrope (anion) combination. Com-

pared with the native CRL, the relative activity of CRL was

improved by modifying it with a chaotrope–kosmotrope

combination of [choline][H2PO4]. Previous study has reported

similar activation of the PPL by chaotropic cations and kos-

motropic anions in an aqueous environment [18]. It was worth

to note that the modification degrees in this study have no

association with hydrolysis activities, which was different

from the previous research result [18].

Enzymatic properties

Effect of temperature on enzyme activity

Temperature has a profound influence on the enzyme

activity. The variations of the relative activities of native

and modified CRLs at different temperatures were shown

in Fig. 1. As expected, the activities of all the lipases

increased gradually with increasing temperature, and the

maximum activity was obtained at 30 �C for CRL and

35 �C for modified CRLs. At temperature beyond 35 �C,

the relative activity of the modified CRLs exhibited a slow

decrease, while it still maintained almost 80 % of its

activity from 35 to 50 �C. By contrast, the activity of

native CRL declined rapidly, indicating that the modified

CRLs had good heat resistance, and the modification pos-

sibly altered the conformation of the enzyme.

Effect of pH on enzyme activity

The pH dependence of the CRL hydrolysis reaction was

studied within the range of 6.0–8.0, and the maximum

activities of the native and modified CRLs were defined as

Table 1 Modification degrees and activities of native and modified

CRLs

Sample Specific

activity

(U/mg

protein)a

Relative

activity

(%)b

Degree of

amino groups

modified

(%)c

CRL 214.6 ± 7.2 100 –

[HOOCMMIm]-CRL-

[PF6]

179.3 ± 5.8 83.6 15.4 % ± 1.6

[HOOCMMIm]-CRL-

[Cl]

183.4 ± 6.6 85.5 16.2 % ± 2.8

[HOOCBMIm]-CRL-

[Cl]

89.8 ± 7.1 41.8 25.0 % ± 3.9

[Choline]-CRL-[H2PO4] 250. 4 ± 6.3 116.7 22.7 % ± 0.8

[Choline]-CRL-[NO3] 191.7 ± 7.9 89.3 21.5 % ± 2.0

All data in the table were the averages of the triplicate of experiments.

Error bars represent deviation from the mean for three separate

experiments
a Reaction conditions: activity was determined at suitable tempera-

ture and pH in phosphate buffer (0.025 M) for 3 min, respectively
b Relative activity of unmodified CRL (214.6 U/mg protein) was

defined as 100 %
c CRL (0.5 ml, 100 lg/mL) and 0.01 % TNBS (0.5 ml) were incu-

bated in 0.25 ml phosphate buffer (0.025 M, pH 8.2) at 37 �C for 2 h,

then sodium dodecyl sulfate solution (0.5 ml, 10 % w/v) and hydro-

chloric acid solution (0.25 ml, 1 M) were added, absorbance was

measured at 335 nm in a UV-1200

Fig. 1 Effect of temperature on the activity of CRLs. Enzyme

activity was determined in phosphate buffer (0.025 M, pH 7.0) at

different temperatures for 3 min. The maximum activity was defined

as 100 % and all data in the figure were the averages of the triplicate

of experiments
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100 %. As shown in Fig. 2, the suitable pH was 6.5 for all

CRLs, the relative activity increased from pH 6.0 to pH 6.5,

and then decreased at higher pH levels, especially for native

CRL and [HOOCBMIm]-CRL-[Cl]. The broad pH adapt-

ability of the modified CRLs may be attributed to chemical

modification. As shown in Fig. 2, the lipases modified by

imidazolium-based cations showed better pH adaptability,

which may be attributed to the ionic liquid possessing an

imidazole ring and a carboxyl functional group. Both have

the ability to release H?, resulting in better interaction of

the charged group with the lipase molecule, thus reduced

the sensitivity of the enzyme to high pH levels [29].

Thermal stability of CRL

The thermal stability of native and modified CRLs was

evaluated by incubating them in a water bath at 45 �C. As

presented in Fig. 3, the native lipase lost its initial activity

within approximately 2 h (58.0 %), whereas the modified

forms retained their initial activity by about 97.8 % for

[HOOCMMIm]-CRL-[Cl] and 84.4 % for [choline]-CRL-

[H2PO4] under the same conditions. These results indicated

that the thermal stability of the modified lipases was much

better than that of the native CRL due to the chemical mod-

ification with ionic liquids. Our modification method showed

better thermal stability than that the modification using ci-

traconic anhydride and maleic anhydride as modifier [30]. In

comparison to our previous study for PPL modification [18],

the kosmotropic cation modification did not cause a higher

stability of CRL, as showed by ionic liquid modification of

different lipases which yielded different results.

Catalytic activity in organic solvents

The catalytic activities of the native and modified CRLs in

organic solvents were investigated in DMSO, methanol and

Fig. 2 Effect of pH on the activity of CRLs. Enzyme activity was

determined at suitable temperature within the pH ranging from 6.0 to

8.0 for 3 min. The maximum activity was defined as 100 % and all

data in the figure were the averages of the triplicate of experiments

Fig. 3 Thermal stability of CRLs. Enzyme activity was determined

under suitable temperature and pH in a water bath at 45 �C for 1, 2, 3,

4 and 5 h, respectively. The initial activity was defined as 100 % and

all data in the figure were the averages of the triplicate of experiments
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isooctane at their own suitable temperature and pH. As

shown in Figs. 4, 5, 6, the modified CRLs showed better

catalytic activity in organic solvents compared with the

native one. In strong polar organic solvent (80 % dimethyl

sulfoxide), enzymes with choline ionic liquids modification

owned more than twofold activity compared with the

native enzyme (Fig. 4). And in aqueous methanol, the

activities of the lipases decreased, especially the native

CRL, whereas the various modified forms showed better

catalytic activity (Fig. 5). In aqueous isooctane (Fig. 6),

the activity of the lipases all increased to some degree. In

80 % isooctane, the activities of the modified forms ranged

from 98.8 to 122.7 %, whereas that of the native CRL

retained 96.6 % of the initial activity under the same

conditions. The difference in activity may have been a

consequence of the altered conformation of the modified

enzyme [30, 31].

Kinetic parameters

The kinetic constants (KM and Vmax) of the native and

modified CRLs were determined. The values for all the

lipases were calculated by using Lineweaver–Burk plots.

The KM value of the native CRL was 150.2 mg/ml,

whereas the apparent KM values of the modified CRLs

ranged from 142.8 to 208.3 mg/ml, as was shown in

Table 2. The Vmax value of [choline]-CRL-[H2PO4] was

295.0 (lmol/min mg protein), which is noticeably higher

than that of the native CRL. These results may be inter-

preted as follows: the modification changed the confor-

Fig. 4 Effect of DMSO on the activity of CRLs. Enzyme activity was

determined in phosphate buffer (0.025 M) containing different

amount of DMSO at suitable temperature and pH. The initial activity

was defined as 100 % and all data in the figure were the averages of

the triplicate of experiments

Fig. 5 Effect of methanol on the activity of CRLs. Enzyme activity

was determined in phosphate buffer (0.025 M) containing different

amount of methanol at suitable temperature and pH. The initial

activity was defined as 100 % and all data in the figure were the

averages of the triplicate of experiments
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mation of CRL, resulting in a greater probability for sub-

strate-enzyme complex formation or higher accessibility

for the substrate to the CRL active site.

Characterization of native and modified CRLs

Ultraviolet spectroscopy

Protein ultraviolet absorption is mainly due to the elec-

tronic excitation of aromatic amino acids such as trypto-

phan and tyrosine. The absorption spectra of these

chromophores could be changed with varying conditions.

To explore the mechanism of the improvement of the

enzymatic properties of CRL upon modification, the

ultraviolet spectra of the native and modified CRLs were

determined. As shown in Fig. 7, the absorption peak of

CRL was approximately 260 nm, with an absorption

intensity of 0.45. Compared with the native CRL, the

modified forms showed a slight red shift in their ultraviolet

peaks and their absorbance values decreased. Changes in

the ultraviolet spectra of proteins in the 230 to 270 nm

regions are related to transformations in conformation and

a decrease in aromatic amino acid exposure [32]. The

Fig. 6 Effect of isooctane on the activity of CRLs. Enzyme activity

was determined in phosphate buffer (0.025 M) containing different

amount of isooctane at suitable temperature and pH. The initial

activity was defined as 100 % and all data in the figure were the

averages of the triplicate of experiments

Table 2 Kinetic constants of native and modified CRLs

Samples Vmax (lmol/min

mg protein)

KM (mg/ml)

CRL 248.1 ± 8.5 150.2 ± 13.2

[HOOCMMIm]-CRL-[PF6] 172.4 ± 9.1 166.8 ± 9.2

[HOOCMMIm]-CRL-[Cl] 178.9 ± 4.6 153.8 ± 7.3

[HOOCBMIm]-CRL-[Cl] 124.8 ± 7.3 208.3 ± 10.5

[Choline]-CRL-[H2PO4] 295.0 ± 5.4 142.8 ± 8.4

[Choline]-CRL-[NO3] 211.4 ± 6.9 168.2 ± 6.8

Experiments were performed at different concentrations of oil

emulsification solution from 40 to 240 mg/ml for 3 min. All data in

the table were the averages of the triplicate of experiments. Error bars

represent deviation from the mean for three separate experiments

Fig. 7 The ultraviolet absorption spectra of native and modified

CRLs
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present results indicated that the ionic liquid modification

caused microenvironmental changes in the enzymes.

CD spectroscopy

CD measurements were performed to elucidate the sec-

ondary and tertiary structures of the native and modified

CRLs in phosphate buffer (pH 7.0). As shown in Fig. 8, the

native CRL had negative bands at 208 to 220 nm, which

agreed with previous reports [30, 33]. However, a change

was observed in the CD spectra of the modified lipases

with respect to that of the native CRL, as could be attrib-

uted to transformations in both secondary and tertiary

structures [34]. The percentages of the secondary structure

elements were analyzed using Jwsse32 software (Table 3),

the ratios of a-helical, b-sheet, and b-turn structures were

altered after modification. The differences in secondary

structures of the modified lipases in aqueous buffer may be

a result from the changes in the enzymatic properties of the

modified CRLs [35].

Fluorescence spectroscopy

A fluorescence emission from a 270 nm excitation was

attributed to tryptophan residues. Thus, tryptophan fluo-

rescence was used to probe structural changes of the

modified enzyme compared with the native one. As shown

in Fig. 9, the emission maximum at 310 nm of the native

CRL did not change upon modification, but an increase was

observed in the relative fluorescence intensity as the

Fig. 8 CD spectra of native and modified CRLs

Table 3 The percentage of secondary structure elements of native

and modified CRLs

Sample a-Helix

(%)

b-Sheet

(%)

b-Turn

(%)

Random

(%)

CRL 20.4 37.4 11.0 31.2

[HOOCMMIm]-CRL-[PF6] 18.3 38.9 7.1 35.7

[HOOCMMIm]-CRL-[Cl] 28.5 5.4 17.3 48.8

[HOOCBMIm]-CRL-[Cl] 17.2 26.5 6.6 49.7

[Choline]-CRL-[H2PO4] 20.2 32.1 3.9 43.8

[Choline]-CRL-[NO3] 15.4 36.3 5.0 43.3

Fig. 9 Fluorescence spectra of native and modified CRLs
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modification progressed. A previous study reported that the

modified CRLs showed a more compact conformation [34].

Combining results from ultraviolet and CD spectroscopy

studies, we believe that ionic liquid modification of CRL

occurred, and the conformation of CRL was altered to

some degree.

Conclusions

In this study, various functional ionic liquids with different

cations and anions were grafted onto CRL through lysine

coupling, resulting in different degrees of modification.

The chemically modified CRLs exhibited improved ther-

mal stability, catalytic activity in organic solvents and

adaptability to temperature and pH changes. Modification

with ionic liquid [choline][H2PO4] resulted in maximum

improvement of CRL in terms of activity, as well as better

thermal stability. Furthermore, the ultraviolet, CD, and

fluorescence measurements demonstrated that the chemical

modification caused change of enzyme conformation to

different extent. In addition, in comparison to the previous

modification of PPL, the results showed that different kinds

of enzymes require different modifiers. Now we are trying

to evaluate the mechanism of various catalytic performance

improvements caused by different ionic liquids modifica-

tion using the molecular simulation and new spectroscopy

characterization technology.
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