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Abstract The chemically treated Labeo rohita scale is

used for synthesizing hydroxyapatite (HAp) biomaterials.

Thermogravimetric and differential thermal analyses of

fish scale materials reveal the different phase changes with

temperature and find out the suitable calcination tempera-

tures. The composition and structures of wet ball-milled

calcined HAp powders are characterized by Fourier trans-

form infrared spectroscopy, X-ray diffraction, field emis-

sion scanning electron microscopy, transmission electron

microscopy, energy dispersive X-ray analysis (EDX). The

EDX as well as chemical analysis of fish scale-derived

apatite materials confirms that the Ca/P ratio is 1.71. The

compressive stress, hardness and porosity have been eval-

uated on sintered HAp biomaterials. The cell attachment on

HAp surfaces, cytotoxicity evaluation and MTT assay,

which are carried out in RAW macrophage-like cell line

media demonstrate good biocompatibility. The histological

analysis also supports the bioaffinity of processed HAp

biomaterials in Wistar rat model for investigating the

contact reaction and stability at the artificial or natural

prosthesis interface.

Keywords Labeo rohita scale � Hydroxyapatite �
Biocompatibility � Cytotoxicity � In vivo

Introduction

Fish as a diet has several nutritional and therapeutic ben-

efits for health. The most important constituents of fish as

food are protein, fat, carbohydrates, sodium, potassium,

calcium, magnesium, vitamin B6 and vitamin B12, which

help in maintaining good health as well as the central

nervous system of a body [1]. Apart from its nutritional

values, fish waste like scale, fin and bone is an important

source of hydroxyapatite (HAp) and collagen biomaterials.

Each scale consists of two distinct regions: an external

(osseous) layer and an internal fibrillary plate. In the upper

external layer, collagen fibers are randomly arranged and

embedded in a proteoglycan matrix. The collagen fibers are

produced within the fibrillary layer by scleroblasts located

at the base of the scales. Mineralization of the scales occurs

continuously throughout the life of the organism. The

external layer is initially mineralized with matrix vesicles

and calcium phosphate-based materials are deposited bio-

logically on the layer matrix. HAp is the most stable cal-

cium phosphate salt at normal temperatures with a pH

between 4 and 12 [2]. It is an important material of great

interest in protein chromatography applications, waste

water treatment processes and suitable scaffold materials

[3, 4]. HAp is also considered as a model compound to

study biomineralization phenomena [5, 6]. There is an

intensive attempt for the development of well-defined HAp

crystals toward physicochemical behavior in vitro and
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in vivo studies for reconstructive bone replacement and

other medical applications [7, 8]. In literature, several

methods of preparation of HAp crystals from bio-wastes

have been reported, including solid-state reactions, crystal

growth under hydrothermal reaction, layer hydrolysis of

other calcium phosphate salts, sol–gel crystallization [9–

15]. Due to low production cost and worldwide availabil-

ity, the researchers [16] are concentrated on the use of fish

scale bio-waste for the processing of HAp crystal [17].

Many processing technologies have been employed to

obtain porous ceramics for bone tissue engineering from

different bio-wastes. In tissue repair application, the mac-

ropores and highly interconnected networks are required

for the growth of surrounding host tissues. The porosity of

filler scaffold is about 30–33 % which is also similar to the

results reported by Gross et al. [18]. The optimal scaffold

design and fabrication techniques must be able to create

porous structures adequate for attaining the desired

mechanical function and mass transport properties [18, 19].

In this paper, an attempt has been made to synthesize HAp

powder from Labeo rohita scale. The powder is charac-

terized through thermogravimetric analysis, X-ray diffrac-

tion (XRD) and Fourier transform infrared spectroscopy

(FTIR), etc. The mechanical properties of the sintered HAp

have been evaluated for development of porous scaffold.

The cell attachment on HAp surfaces, cytotoxicity evalu-

ation and MTT assay on RAW macrophage cell line media

are carried out to demonstrate good biocompatibility.

Methods and materials

Synthesis and characterization of hydroxyapatite

powder from fish scale

Labeo rohita scales are used as raw material for HAp pro-

cessing. Scales are initially washed thoroughly with water to

discard impurities and then deproteinized by solvent system.

The cleaned de-protienated scale is calcined at 700–800 �C

to synthesis HAp ceramics after differential thermal analysis

of scale from room temperature to 1,200 �C by NETZSCH

Jupiter STA 491 at a heating rate of 10 �C/min. XRD Ana-

lysis of HAp powder is performed at the scanning range of

2h = 20�–80� with CuKa target by Shimadzu, XRD-6000

instrument. The crystallographic phases of HAp with dif-

ferent temperatures are recorded and confirmed the HAp

using standard JCPDS files. FTIR analysis is carried out at

the scanning range of 4,000–400 cm-1 (Shimadzu IR Pres-

tige—21, Japan) to determine functional groups present in

HAp powder. FESEM and EDX (Model No: SUPRA 40,

CARLZEISSSMT, Oxford) analyses reveal the composi-

tional and morphological structure of green as well as sin-

tered powder of HAp. Quantitative energy dispersive X-ray

is also performed to confirm the Ca/P ratio of the sample

apart from chemical method. Ultrasonic instruments are

employed for dispersing and homogeneously distribute the

particles into liquids to prepare samples for TEM analysis

(TEM, Jeol Gem Microscope). ‘‘Image J’’ software is used to

evaluate the typical images of HAp particles.

Preparation of fillers and scaffold

The calcined powder is wet ball-milled for 48 h in plane-

tary mill. The particle size of dried milled powder is

measured in Malvern particle size analyzer. The average

size of the particle is *0.5 lm. Triton–X surfactant is

added drop wise to the dried ball-milled powders to make a

paste for injection molding. The sample is prepared as

small rod-shaped fillers with 2 mm diameter and 4 mm

long. The fillers are then dried at 80 �C for several hours.

Finally, the dried samples are sintered at 1,200 �C for 2 h.

Alternatively, hydroxyapatite samples are mixed well with

requisite amount of starch porogen and compacted with

unidirectional pressure at 200–250 MPa to make 12 mm

dia. The sample was sintered at 1,200 �C for crystallo-

graphic phase determination as well as physico-mechanical

property evaluation. The process flow of fish scale-derived

HAp scaffold development and in vivo bio-implantation is

shown in Fig. 1.

Results and discussion

Differential thermogravimetric analysis

The DTA/TG analysis reveals the phase transformation and

determines the weight loss with respect to temperatures.

Two major and one minor mass losses are distinctly

observed as depicted in Fig. 2. The first major weight loss

is observed in the range of 100–400 �C, on the heating

process from room temperature to 1,200 �C. This mass loss

is reported as near about 4.56 % of the sample taken for

experimentation. The first mass loss process may be due to

the removal of adsorbed water from the surface and inter-

particle spaces [17]. Other exothermic peaks at *407 and

709 �C correspond to weight losses about 0.86 and 0.17 %,

respectively. The weight loss at the range of 400–500 �C is

due to the combustion of organic materials. However, there

is a minor weight loss observed on heating up beyond 710�
to 1,200 �C, which indicates better thermal stability of the

sample in this range.

X-ray diffraction analysis

The crystalline phase analysis of the HAp powder from fish

scale is carried out by XRD studies. The XRD of HAp
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indicates the visible crystalline nature of typical apatite

crystal structures. It is also noticed that crystallographic

behavior of HAp resembles to that of XRD pattern of

biological apatite [20] which is shown in Fig. 3. However,

the pattern of the fish scale-derived HAp powder peaks

corresponds to the JCPDS card No. 72-1243 of pure HAp.

The highest intensity peak of synthesized powder is in the

plane of 211 and it resembles to the pure HAp crystal XRD

characteristics. The two minor b-TCP peaks are observed

at 31� and 34� after sintering at 1,200 �C.

Fourier transform infrared spectroscopy analysis

FTIR spectroscopy is employed to characterize the differ-

ent functional groups of HAp [Ca10 (PO4)6(OH)2]. FTIR

spectrum of HAp powder calcined at 700 �C is recorded in

the range of 4,000–400 cm-1 as shown in Fig. 4. The

characteristics of FTIR peaks in the wave range

570–632 cm-1 resemble asymmetric bending vibration of

P–O band of HAp materials, whereas the peak at

960–965 cm-1 is due to symmetric stretching vibration of

P–O band of PO4
3- ion. The spectral data at the wave

number values of 876, 1,412 and 1,451 cm-1 suggest the

presence of carbonate ion [21] in the prepared HAp

materials calcined at 700 �C. The strong peaks at 1,053 and

1,095 cm-1 are ascribed to asymmetric stretching mode of

vibration of P–O bands of PO4 tetrahedra [22, 23]. The

characteristic frequencies derived from PO4
3- modes are

better resolved with increasing temperature. The existence

of O–H and C–O bands disappears beyond calcinations

temperature of the powder (1,200 �C). But the structural

O–H peaks at 1,655 and 3,370 cm-1 are predominant with

increasing temperature, whereas the existence of C–O

bands is reduced significantly. Therefore, sintered HAp

Fig. 1 Pictorial representation of a fish Labeo rohita, b chemically

treated dried fish scale, c scanning electron microscopy of treated fish

scale, d synthesized HAp powder, e fabrication of small fillers by

injection press molding, f sintered fillers, g SEM images of porous

fillers, h schematic representation of fillers in rat model

Fig. 2 TG/DT analysis of HAp powder

Fig. 3 XRD analysis of HAp powder
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ceramics synthesized from fish scale beyond 1,200 �C is

established.

FE-SEM and EDX analyses

The FE-SEM micrograph of fish scale-derived HAp dried

powder and fillers scaffolds is depicted in Fig. 5. The

morphology of calcined wet ball-milled dried HAp powder

shows soft agglomerated ultrafine particles. The biocom-

patible powder consists of a uniform porous structure upon

compacting at 200–250 MPa with porogen (starch granules

Merck). The compacted HAp-sintering surface shows dis-

tinct grain boundary with uniform porous structure. EDX

analysis of the synthesized HAp powder shows that the

ratio of Ca/P is 1.71 as depicted in Fig. 6.

Chemical analysis of Ca/P ratio in fish scale HAp

To perform the chemical analysis, a weighed quantity of

hydroxyapatite powder is dissolved in dilute (1:1) nitric

acid (HNO3). Calcium content is determined from an ali-

quot part of the solution by reverse complexometric titra-

tion, i.e., by titration of the excess of complexone III

(disodium salt of ethylenediamine tetra-acetic acid) with

the use of a solution of nickel(II) chloride in ammonia.

Murexide (ammonium purpurate) is used as the indicator

for titration.

Phosphorus was determined colorimetrically as the

phosphovanadomolybdate complex with a UV–VIS Shi-

madzu Model spectrophotometer using a wavelength of

420 nm. Phosphorus content is determined by the photo-

metric method on the basis of the formation of yellow

phosphomolybdic acid and its subsequent reduction to a

blue complex compound in a hydrochloric acid solution of

thiocarbamide in the presence of copper (II) sulfate. The

error of the analysis is 0.5 % Ca and 0.1 % P [24]. The

experiment is repeated thrice to ascertain the Ca/P ratio.

The ratio of Ca/P is in the range of 1.70–1.73, whereas the

EDX experiment shows 1.71 as depicted in Fig. 6.

Fig. 4 FTIR analysis of HAp powder

Fig. 5 SEM images of porous HAp scaffold and HAp particles

synthesized from fish scale

Fig. 6 EDX analysis of HAp particles
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TEM analysis

Actual particle shape analysis is a complex process in

powder technology and till now there is no shape factor

available which will clearly differentiate all possible kinds

of shape [25]. In spite of these complexity till date, TEM

and SEM both instrumentation are highly efficient to

determine particle shape and size. In this study, HAp par-

ticle size, shape and morphology are observed by TEM

images. According to TEM images, small rice-shaped

particles are observed in plenty and some spherical large

particles are also observed. The fringe pattern of HAp

interatomic space is about 0.35 nm as shown in Fig. 7.

Mechanical characterization

The compacted samples are optically polished to measure the

micro hardness with 100 g load. The average Vickers hard-

ness (HV) of HAp sample is observed about 115 HV. The

average porosity is observed about 30–35 %. Compressive

stress of the hydroxyapatite samples is tested by UTM

(Make: Tinius Olsen, U.K). Sample’s L/D ratios are between

4 and 6. Loads are applied with extension and compression

rate of 0.2 mm/s. The ultimate compressive stress of the

developed HAp scaffold has reached up to *0.8 GPa which

is better than cortical human bone [26]. Different human

skeletal parts and their comparative features of mechanical

characterization are shown in Table 1.

Biocompatibility study

In vitro cytotoxicity study of the developed HAp is carried

out by culturing RAW macrophage-like cells in a contact

mode. RAW cells are cultured in RPMI media and seeded on

the six well culture plates at their exponential phase of

growth at a density of 105 cells/200 ll. The cells are allowed

to attach to the films surface for 6 h in 5 % CO2 incubator at

37 �C. HAp powder samples as well as fillers/plates are

utilized for in vitro testing. The samples of different weights

(100, 200, 400 lg) are placed into RPMI culture media.

RPMI supplemented with 10 % fetal calf serum (FCS) is

added to each well to keep the cell-containing samples

submerged. The culture plates are incubated for 24 h at

37 �C in a humidified atmosphere of 5 % CO2 in air. Two set

of experiments are performed for this cell viability assay.

One set of experimental plates is further incubated for more

than 48 h in the same atmospheric condition with equal-

interval fresh media incorporation in the culture plates. After

72 h incubation in cell culture media samples are stained

with trypan blue and observed under inverted microscope as

depicted in Fig. 8. In Fig. 8a red trigonal symbol shows

living healthy RAW cell lines attached on culture vessels

where as yellow arrow indicates the hydroxyapatite particles

synthesized from fish scales. Software analysis of

images 8(b) distinctly defines the attached cells (blue arrow)

and the hydroxyapatite particles (indigo trigonal) as shown

in Fig. 8b. Attached living healthy cells prominently show

Fig. 7 TEM images of HAp

particles and atomic distribution

in fringe pattern

Table 1 Mechanical properties of different bone tissues and related

materials with references

Tissues Compressive

strength (GPa)

Hardness

(GPa)

References

Human tooth

(enamel)

*0.25–0.55 *3.3 Orlovskii et al.

[26]

Human bone

(cortical)

*0.088–0.230 – Sarsilmaz et al.

[27]

Hydroxyapatite *0.3–0.9 *5.88 Sarsilmaz et al.

[27]

Zirconia *1.7–2 *10.78–11.76 Sarsilmaz et al.

[27]

Fish scale HAp *0.8 *1.08 Experimental
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their protoplasm in Fig. 8b. The experimental result reveals

the non-immunogenic effect of hydroxyapatite particles

toward cell lines (Table 2).

On the other hand, second set of experimental plate is

utilized for MTT assay. After 24 h incubation, MTT

(10 ll) is added to each well at a strength of 10 % (v/v) and

incubated for further 4 h at 37 �C. Subsequently, the media

containing MTT is removed, and 100 ll of DMSO

(dimethylsulfoxide) is added to dissolve the formazan

crystals. The plates are agitated for 5 min and read at

550 nm on a scanning multi-well spectrophotometer plate

reader (Biorad, USA). t test is performed for statistical

significance analysis and a P value of\0.05 is determined

to represent a significant difference. The percentage of cell

viable is expressed as

Absorbance of treated cells

Absorbance of controlled cells
� 100 %:

Cell attachment study

HAp blocks are used for in vitro cell attachment studies.

HAp blocks are sterilized and then RAW cell lines are used

in RPMI cell culture media for this study. After 72 h

incubation samples cell culture media is decanted and

washed thoroughly with phosphate buffer solution (PBS).

After washing 2 % paraformaldehyde solution is utilized

for cellular fixation. Figure 8c shows SEM image attached

cells on to the HAp surface. This study reveals that cells

can be attached on the HAp surface which would be uti-

lized as scaffold material for tissue engineering applica-

tion. Software analysis of Fig. 8c shows the exact attached

location of cell lines on hydroxyapatite surface as shown in

Fig. 8d. This experimental result shows the bioaffinity of

synthesized hydroxyapatite particles toward cell line.

Histological analysis

In the present pilot study, histological analysis [27, 28] is

performed in Wistar rats. Wistar rats are easy to handle and

their femur is brittle but not fragile during drilling. Skel-

etally mature 3-months-old female Wistar rats of body

weight 150–200 g from the animal house are used for the

experiment. The animals are maintained at standard envi-

ronmental conditions (temperature 22–25 �C, humidity

40–70 % with 12:12 dark/light photoperiod) approved by

the Committee for the Purpose of Control and Supervision

of Experiment on Animals (CPCSEA) whereas all the

experimental protocols are approved by IAEC, CCMB.

Animals were anesthetized with ketamine and xylazine

with a dose of 40 mg and 5 mg/kg body weight, respec-

tively. Lateral and median aspect of the femur is cleaned.

An incision is made to cut open the skin on the dorsal

aspect above the femur. A careful incision is then made to

Fig. 8 Cytotoxicity evaluation

in RAW cell line media and

attachment of cells on HAp

surface

Table 2 Results of MTT assay: percentage of cell viable

HAp concentration (lgm/ml) Viable cell (%)

100 131

200 125

400 128

1238 Bioprocess Biosyst Eng (2014) 37:1233–1240

123



cut open the biceps femoris muscles to expose femur bone.

A Pediatric bone driller is used to make a hole of 5 mm in

the dorsal surface of femur without touching the bone

marrow thus preventing any hemorrhage. The drilled femur

of control animal is left unfilled, whereas in experimental

group the HAp rods are fixed to fill up the gaps. The

muscle layer is stitched with simple interrupted suture

using absorbable materials and skin is closed using non-

absorbable suture materials. Povidone, iodine ointment is

applied externally for 3 days. At the end of the experiment

after 3 months, the animals are sacrificed by overdose of

CO2. Detail necropsy is done and femur bone is collected

and fixed in 10 % formalin [29]. Fixed bone is decalcified

with EDTA before embedding in paraffin wax. Fixed and

paraffin embedded bones are cut at 5 lm thickness, stained

with Hematoxylin and Eosin following standard procedure

and examined under light microscope as shown in Fig. 9a.

The response of tissues and the implanted material is

assessed. Trauma regions are being recovered by healing

new cells as cell infiltration on materials is observed.

Deeply stained region may conclude the presence of pre-

osteoblast cells because this type of cells consists of mono

nucleus with prominent nucleoli. In some regions, new cell

linings are appeared which may be the result of osteo-

conduction as shown in blue arrow in Fig. 9b.

Conclusion

• Labeo rohita scale-derived HAp is almost similar to the

structure of pure HAp.

• The porous HAp scaffold with *30 % porosity shows

considerable improvement in compressive strength

*0.8 GPa which may be suitable for nutrient and

biological fluid transportation for in vivo system.

• Cytotoxicity analysis of HAp particles and MTT assay

indicates no cytotoxic effects on macrophage-like

RAW cell line media.

• The histological analysis concludes cell infiltration and

integration in HAp fillers which is a good result of

bioactivity.

• Cellular attachment on HAp surface reveals that

hydroxyapatite microsphere is able to support cell lines

to adhere and proliferate.
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