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Abstract Rapamycin is a high-value product finding

immense use as a drug, in organ transplantation, and as a

potential immunosuppressant. Optimization of fermenta-

tion parameters of rapamycin production by Streptomyces

hygroscopicus NRRL 5491 has been carried out. The low

titer value of rapamycin in the original producer strain

limits its applicability at industrial level. This study aims at

improving the production of rapamycin by optimizing the

nutrient requirements. Addition of L-lysine increased the

production of rapamycin up to a significant level which

supports the fact that it acts as precursor for rapamycin

production, as found in previous studies. Effect of opti-

mized medium on the Streptomyces growth rate as well as

rapamycin production has been studied. The optimization

study incorporates one at a time parameter optimization

studies followed by tool-based hybrid methodology. This

methodology includes the Plackett–Burman design (PBD)

method, artificial neural networks (ANN), and genetic

algorithms (GA). PBD screened mannose, soyabean meal,

and L-lysine concentrations as significant factors for rapa-

mycin production. ANN was used to construct rapamycin

production model. This strategy has led to a significant

increase of rapamycin production up to 320.89 mg/L at GA

optimized concentrations of 25.47, 15.39, and 17.48 g/L

for mannose, soyabean meal, and L-lysine, respectively.

The present study must find its application in scale-up

study for industrial level production of rapamycin.

Keywords Rapamycin � Streptomyces

hygroscopicus � Artificial neural network � Genetic

algorithm

Introduction

Rapamycin (also called sirolimus), an immunosuppressant,

is a peptide that was isolated from actinomycetes strain

Streptomyces hygroscopicus [1, 2]. Rapamycin showed a

good activity against mammary, colon, and brain tumor

model systems [3]. Rapamycin acts via a mechanism that is

completely different from that of cyclosporine A, and it has

an extraordinary advantage of having greater activity

which is 150 times as that of cyclosporine A with lower

toxicity [4]. Rapamycin has shown inhibitory effect on

vascular smooth muscle for the treatment of coronary

artery disease [5]. Nephrotoxicity has long been the vul-

nerable point of treatment with calcineurin inhibitors

(CNIs). It has been reported that switching to rapamycin is

a feasible method of treating patients with calcineurin

inhibitor toxicity [6]. Up to 40 % of renal allografts have

showed delayed graft function due to slowly recovering

acute tubular necrosis [7].

Rapamycin binds to the same cytosolic receptor as ta-

crolimus, namely the immunophilin, FK-binding protein-

12 [8]. This complex then binds to the mammalian target of

rapamycin (mTOR)—a key regulatory kinase. Disruption

of mTOR interferes with cytokine signaling, which results

in the inhibition of T-cell growth and differentiation.

Natural products such as isoprenoids, flavonoids or

polyketides represent structurally complex compounds

which are made in nature, but require long and elaborate

synthesis routes when classical chemical methods are

employed. As the structural complexity makes the
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chemical synthesis of natural products quite difficult, fer-

mentation is considered to be an economically feasible

alternative to produce pharmaceutically useful compounds

for commercial purposes [9]. Streptomyces sp. and the

related filamentous bacteria produce macrocyclic polyke-

tides, by the action of so-called type I modular polyketide

synthases. It is multienzyme in which different sets

(modules) of enzymatic activities catalyze each successive

round of elongation [10, 11].

Rapamycin is an atypical triene macrolide containing

nitrogen, and the immediate precursor of the nitrogen-

containing ring has been shown to be pipecolic acid [12].

L-Pipecolate is a cyclization product of L-lysine so addition

of L-lysine had shown to increase the production of rapa-

mycin [13].

Different strains of S. hygroscopicus have different

abilities for rapamycin production, which are compared in

Table 1. The composition of the culture medium, closely

connected with the metabolic capacities of the producing

organism, greatly influences the biosynthesis of antibiotics

[22, 23]. The fermentation process needs to be optimized to

obtain maximum production of rapamycin. Parameter

selections are based on early studies [15]. The production

parameters are first optimized by varying one factor at a

time, while keeping the other constituents of the medium

constant. The parameters include carbon sources, nitrogen

sources, agitation rate, and precursor concentration. This

one factor at a time does not consider the effect due to

interactive behavior of all the significant factors since other

factors are maintained arbitrarily at a constant level.

Therefore, the development of a multivariate non-linear

process model for optimization has been considered as a

superior alternative. For this approach, a hybrid of Plack-

ett–Burman (PB) design, artificial neural networks (ANN),

and genetic algorithms (GA) methodologies has been used.

The PB design is used to select the significant parameters

for the process [24]. For each parameter, two levels are

considered, namely, ‘‘high’’ and ‘‘low’’. Dummy variables

are incorporated which give the idea of experimental error

of an effect. In the PB design, various combinations of high

and low values of the process parameters are used for

performing the experiments and the results of these

experiments are analyzed to determine the significance of

process parameters [25].

The ANN tool is used to construct process model using

significant parameters as inputs and rapamycin concentra-

tion as output. The ANN paradigm is the multi-layered

perceptron (MLP) that approximates non-linear relation-

ships existing between the input and the output of the

model [26].

Finally to maximize the rapamycin production, the input

space of ANN model has been optimized using GA tool.

Multivariable non-linear problems can be solved using GA

paradigm [27]. Specifically, GAs are based on the princi-

ples of ‘‘survival-of-the-fittest’’ and ‘‘random exchange of

memory during genetic propagation’’, which are followed

by the biologically evolving species [28]. Thus, in the

present study, rapamycin production process optimization

has been done using ANN–GA hybrid methodology. The

results obtained through computational techniques were

experimentally verified.

Materials and methods

Chemicals

The media ingredients were from HiMedia (Mumbai,

India). HPLC grade solvents were from Merck (Mumbai,

India). Rapamycin (EmTOR) from Emcure Pharmaceuti-

cals (Pune, India) was used as HPLC standard reference.

Strain

The strain S. hygroscopicus ATCC 29253 was obtained

from National Centre for Agricultural Utilization Research

(NRRL), USA.

Culture conditions

Streptomyces hygroscopicus was routinely cultivated at

28 �C and 200 rpm in culture broth medium containing (g/

L): malt extract 3, glucose 10, and peptone 3 at pH 6.4–6.8.

Fermentation was carried out in triplicate in 250-mL un-

baffled Erlenmeyer flasks, each containing 50 mL pro-

duction medium containing (g/L): soyabean meal 20, D(?)

mannose 20, potassium dihydrogen phosphate 5, and pH

6.5 and incubated at 25 �C ± 2 for 4 days at 200 rpm [15].

Phosphate is a major factor in the synthesis of a wide range

of antibiotics [29]. The data obtained throughout the

present investigation were the average mean of triplicate

observation.

Optimization of carbon sources for rapamycin

production

Carbon source optimization studies were done using dif-

ferent carbon sources in the production medium. S. hyg-

roscopicus growth was carried out in 250-mL unbaffled

shake flask culture containing 50 mL of fermentation

medium, using the different carbon sources which included

fructose, glucose, maltose, mannose, and soluble starch,

one at a time and keeping the other contents of the medium

constant, at 200 rpm, pH 6.5, and temperature 28 �C. The

carbon sources at a concentration of 20 g/L were sterilized

and added separately to the production medium. The
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experiment was performed in triplicates and mean value

was taken. Samples were withdrawn on the fourth day of

fermentation and analyzed for production of rapamycin.

Optimization of nitrogen sources for rapamycin

production

To the production medium containing D(?) mannose, dif-

ferent nitrogen equivalent sources were added, one at a

time, as replacement of soyabean meal. The growth of S.

hygroscopicus was carried out in 250-mL shake flask tak-

ing different nitrogen sources such as soyabean meal,

casein, beef extract, and peptone at a concentration of

20 g/L, one at a time keeping other contents of medium

constant. The experiment was carried out in triplicate to

minimize the error. The batch study was performed to

determine the effect of different nitrogen sources on rap-

amycin production at 28 �C and shaking speed of 200 rpm.

Samples were collected after 96 h of fermentation and the

production of rapamycin was calculated.

Detection of rapamycin

At the end of fermentation, aliquots of 3 mL were taken

where microbial growth was separated by centrifuging at

2,0009g for 5 min and extracted twice by shaking with

3 mL methanol for 30 min. Then the two extracts were

pooled to be assayed for rapamycin concentration. Samples

were analyzed by high-performance liquid chromatography

(HPLC).

The chromatographic system includes HITACHI

D-6500 model gradient pump (Japan), a stainless steel

injector (5 lL loop), a UV VIS detector (Jasco, Tokyo,

Japan). A chromolith RP18 column (Intersil 7 ODS—

346 mm i.d., 250 mm, Merck) was used as an analytical

column.

Qualitative and quantitative determination was done by

HPLC apparatus having C18 column at 272-nm UV

detector and 10-lL sample loop injector. A mixture of

acetonitrile and methanol (20:80 v/v) was used as mobile

phase. The flow rate was maintained at 1.0 mL/min.

Dry cell weight measurement

For the determination of microbial dry cell weight, 5 mL

sample of whole fermentation medium was placed into a

pre-weighed centrifuge tube and then centrifuged at

5,0009g for 10 min. The microbial residue which

remained after decantation was dried at 50 �C for 12 h.

The tubes were reweighed to determine the growth yield

expressed as gram dry weight per liter fermentation

medium.

Computational techniques

Plackett–Burman design was performed using commercial

software Minitab 15.1.0.0, USA. ANN-based GA study

was done with the help of MATLAB [version

7.6.0.324 (R2008a) Mathworks Inc., MA, USA] program

was used.

Screening of significant parameters using Plackett–

Burman design

The PB experimental design was applied to screen the

significant medium components to maximize the produc-

tion of rapamycin. A total of four parameters, viz., man-

nose concentration, soyabean meal concentration, L-lysine

concentration, and pH have been considered for the

screening experiment. Each variable is represented at two

levels, i.e., high (?1) and low (-1). A set of 12 experi-

ments was performed according to PB design to determine

the critically important parameters for the production of

rapamycin.

If the numbers of runs is higher than the numbers of

variables (at this stage, there are 4 variables and 12 trials)

Table 1 Comparison of

rapamycin production by

various strains of S.

hygroscopicus

Producer strain Rapamycin

production (mg/L)

References

S. hygroscopicus AY-B1206 40 [4]

S. hygroscopicus NRRL 5491 57 [14]

S. hygroscopicus NRRL 5491 134 [15]

S. hygroscopicus C9 97–186 [16]

S. hygroscopicus NBS-9746 110 [17]

S. hygroscopicus N5632 420.0 [18]

S. hygroscopicus GS-1437 445.0 [19]

S. hygroscopicus R060107 500.0 [20]

S. hygroscopicus HD-04-S 450.0 [21]

Bioprocess Biosyst Eng (2014) 37:829–840 831

123



the resolution is better than with a saturated design [30].

Four assigned variables and seven unassigned variables

(commonly referred as dummy variables) were screened in

PB design of 12 experiments. The more dummy factors

there are, the better the estimate of such errors, so it is not

uncommon for experimenters to use a larger PB design

than is strictly necessary, thus getting higher quality

information on the significance of each ‘‘real’’ factor [31].

Dummy variable are used to estimate experimental errors

in data analysis [32]. Seven dummy variables, whose levels

do not change in the design, were introduced to estimate

the population standard deviation. Analysis for the PB

design was carried out as follows. First, the effect of all

variables including dummies was calculated as follows

[33]:

EA ¼
�YðþÞ

4
�

�Yð�Þ
4

where EA is the effect of the variable, and �Y is the average

value of the repeatedly measured responses for each

experiment. The experimental error was determined as

the average square of the dummy effects (Ed):

VE ¼
P

Edð Þ2

n

where VE is the variance of the effects and n is the total

number of dummy variables. The standard error of the

effects (SE) was determined as the square root of the

variance [33]:

SE ¼
ffiffiffiffiffiffi
VE

p
:

Finally, the significance (p value) of the effect of each

variable on rapamycin production was measured by

Student’s t test [34]:

t value ¼ EA

SE
:

The variable which has no effect will give a t value of 0.

The larger the absolute value of the t value, the more

significant is the variable. The regression model was

applied to screen the significant medium components. On

the analysis of the regression coefficients of the medium

components, mannose concentration, soyabean meal

concentration, lysine concentration, and pH have shown

positive effect values. The components were screened

based on their absolute value of effects (either positive or

negative) and p value below 0.05.

The random error variability and test for the statistical

significance of the parameter estimates can be determined

using the design. The regression coefficient, p value, and

confidence level were determined and the variables with

confidence level greater than 95 % were considered to be

more significant for rapamycin production.

Study of interactive effect of parameters with central

composite design (CCD)

The effects of three independent process parameters

(mannose, soyabean meal, L-lysine) on rapamycin pro-

duction were analyzed using a central composite design

(CCD). It was performed at five experimental levels: -a,

-1, 0, ?1, ?a. For a three-factor design, consisting of 6

central points, a total of 20 experiments are to be per-

formed (Table 2). The various combinations used in these

20 experiments were used as input data set for training

using ANN code written in MATLAB.

Of these 20 experimental data, we have taken 12 as

training set, 4 as validation set to validate that the network

is generalizing and to stop training before overfitting and

the remaining 4 as completely independent test of network

generalization. This was done using default function for

random data division.

Each experiment was performed in triplicate and the

mean value reported. The regression analysis was done

using software (Minitab 15) with the numerical data

obtained after performing the experiments. The individual

as well as the interactive effect of each parameter was

determined and the process was modeled using the analysis

of variance (ANOVA).

Artificial neural network (ANN)

The neural networks are adjusted, or trained, so that a

particular input leads to a specific target output. The ANN

works on error-back-propagation method in which input

vectors and the corresponding target vectors are used to

train a network until it can approximate a function. The

basic ANN architecture has three layers, input layer, hid-

den layer, and output layer. Each of these layers consists of

a number of nodes which are linked to subsequent nodes of

subsequent layers with weighted connections. Before

training the weights are initialized to random values. The

reason to initialize weights with small values is to prevent

saturation. The newff command automatically initializes

the weights. This function takes a network object as input

and returns a network object with all weights and biases

initialized.

The normalization process for the raw inputs has great

effect on preparing the data to be suitable for the training.

Without this normalization, training the neural networks

would have been very slow. In general, the normalization

step is applied to both the input vectors and the target

vectors in the data set. In this way, the network output

always falls into a normalized range. The network output

can then be reverse transformed back into the units of the

original target data when the network is put to use in the
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field. The ‘mapminmax’ function maps the range of input

values to the range [0 1], or normalizes the input values.

Training is often faster when values are normalized.

The application randomly divides the input vectors and

target vectors into three sets. One set for training, second to

validate that the network is generalizing and to stop

training before over fitting and last as a completely inde-

pendent test of network generalization. This involves ran-

domly extracting test set, developing a neural network

model based on validation set and test set. This is followed

by repeating the process with several random divisions of

data. The reported results are based on the average per-

formance of all randomly extracted test sets [35]. After

training, ANN can predict the output when any input

similar to the pattern that it has learnt is fed. ANN tends to

inherently match the input vector (i.e., medium composi-

tion) to the output vector (rapamycin production).

For training of experimental data generated by CCD

with ANN, we used feed forward neural network and, for

training the network back propagation, Levenberg–Mar-

quardt algorithm was applied. Tansig and purelin transfer

functions have been used for hidden and output layer,

respectively, as shown below:For hidden layer [36]:

a1 ¼ tansig IW1;1 þ b1

� �

For output layer [36]:

a2 ¼ purelin LW2;1 þ b2

� �

where a1 and a2 are the output of the hidden layer and

output layer, respectively. IW1,1 and LW2,1 are the input

weight matrix and output weight matrix, whereas b1 and b2

are the bias of hidden layer and output layer.

Three input variables were used, which are mannose

(14.95–25.04 g/L), soyabean meal (11.59–28.408 g/L), and

lysine concentration (1.59–18.40 g/L). The input data were

previously normalized and then fed into ANN for training.

After training, these data were fed to the fitness evaluation

function to get the best solution of all three input variables

through GA.

Genetic algorithm

The genetic algorithm is a method for solving both con-

strained and unconstrained optimization problems that is

based on natural selection, the process that drives biolog-

ical evolution. Once a generation of ANN-based process

model with good prediction accuracy is developed, a

genetic algorithm can be used to optimize its input space

representing process variables, with a view of maximizing

the process performance. The genetic algorithm repeatedly

modifies a population of individual solutions. At each step,

the genetic algorithm selects individuals at random from

the current population to be parents and uses them to

produce children for the next generation. This is performed

Table 2 Central composite

design in coded units and real

values (in parenthesis) to study

interactive effects of the

significant parameters

Run Mannose

concentration

(X1) (g/L)

Soyabean meal

concentration

(X2) (g/L)

L-lysine

concentration

(X3) (g/L)

Experimental

rapamycin

concentration (mg/L)

1 0 (20) 0 (20) ?a (18.40896) 230.78 ± 4.41

2 0 (20) 0 (20) 0 (10) 268.67 ± 3.52

3 -1 (17) 1 (25) 1 (15) 206.27 ± 5.25

4 0 (20) 0 (20) 0 (10) 271.23 ± 5.21

5 0 (20) ?a (28.40896) 0 (10) 230.65 ± 4.98

6 -1 (17) -1 (15) -1 (5) 187.56 ± 5.21

7 -1 (17) -1 (15) 1 (15) 215.86 ± 4.56

8 0 (20) 0 (20) 0 (10) 265.89 ± 6.73

9 0 (20) 0 (20) 0 (10) 267.23 ± 6.41

10 1 (23) -1 (15) -1 (5) 208.65 ± 5.71

11 -1 (17) 1 (25) -1 (5) 218.67 ± 5.41

12 ?a (25.04538) 0 (20) 0 (10) 247.78 ± 6.69

13 1 (23) 1 (25) -1 (5) 224.67 ± 4.78

14 1 (23) -1 (15) 1 (15) 248.76 ± 5.91

15 0 (20) 0 (20) 0 (10) 269.76 ± 6.31

16 0 (20) 0 (20) 0 (10) 271.73 ± 5.33

17 1 (23) 1 (25) 1 (15) 235.73 ± 4.44

18 -a (14.95462) 0 (20) 0 (10) 209.56 ± 3.98

19 0 (20) 0 (20) -a (1.591036) 198.74 ± 5.11

20 0 (20) -a (11.59104) 0 (10) 212.73 ± 4.31
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by a main loop of operations consisting of: (1) selection of

better (fitter) parent chromosomes to create a mating pool,

(2) crossover, i.e., the production of offspring solutions by

pair-wise crossing-over of the contents between pairs of

fitter parent chromosomes, and (3) mutating elements of

the offspring strings [37]. Over successive generations, the

population ‘‘evolves’’ toward an optimal solution. Solu-

tions are then evaluated to measure their fitness in fulfilling

the optimization target [37].

Results and discussions

Optimization using one-factor-at-a-time method

Parameters were first optimized by varying single param-

eter and keeping the other constituents of medium constant,

i.e., using one-factor-at-a-time method. The full fermen-

tative process was carried out for 6 days and it was found

that maximum production of rapamycin took place on the

fourth day of the fermentation. Hence, for further studies,

samples were collected on the fourth day of the production

to determine the effect of various factors on the production.

Effect of carbon sources on rapamycin production

Figure 1 shows the effect of various carbon sources on

rapamycin production with initial substrate concentration

of 20.0 g/L. The production of rapamycin was found to be

maximum using D(?) mannose as a carbon source which

was 248.7 mg/L. Fructose, as carbon source, was found to

produce lower concentration of rapamycin compared to

mannose.

Effect of nitrogen sources on rapamycin production

Organic nitrogen is a complex nitrogen source composed

of spectrum of peptides, free amino acids, and trace

elements. Among all the organic nitrogen sources, soya-

bean meal, which was present in the medium used for

carbon source optimization [15], showed the highest pro-

duction of 248.71 mg/L (Fig. 2). This may be possibly due

to high L-lysine content of soyabean meal which possibly

acts as a precursor for biosynthesis of rapamycin [38].

Effect of L-lysine as precursor on rapamycin production

Streptomyces hygroscopicus was grown in 250-mL shake

flask containing production medium supplemented with

varying concentration of L-lysine as 0, 3, 5, 7, 10, 12, 15 g/L,

keeping the other contents of the medium constant. The

experiment was performed in triplicates and the batch

study was performed at 28 �C, 200 rpm for 4 days. Sam-

ples were collected on fourth day to calculate the produc-

tion of rapamycin. It was observed that addition of L-lysine

at concentration of 10 g/L showed considerable increase in

the production of rapamycin of 268.87 mg/L. Further

increase in L-lysine concentration showed no significant

increase in rapamycin production. Thus, 10 g/L was found

to yield maximum production of rapamycin. (Table 3) The

results are similar to the earlier studies of Cheng et al. [8].

L-lysine stimulation is probably due to its role as precursor

of pipecolic acid, which is incorporated into the nitrogen-

containing ring of rapamycin [39].

Optimization using statistical techniques

Plackett–Burman experimental design for rapamycin

production

The design includes various concentrations of mannose,

soyabean meal, L-lysine parameters, and pH. Design of

experiments was done to find out the significant factors

along with the measured response (rapamycin production).

The Pareto chart (Fig. 3) which shows the ranking of

variables according to the absolute values of standardized

effect, is important in the design of the experiment for

Fig. 1 Effect of various carbon sources (at a concentration of 20 g/L)

on rapamycin production at 200 rpm, pH 6.5 and temperature 28 �C

Fig. 2 Effect of different nitrogen sources (at a concentration of

20 g/L) on production of rapamycin at 200 rpm, pH 6.5 and

temperature 28 �C
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optimization, and is a convenient way to view the results of

a PB experimental design. It consists of bars with a length

proportional to the absolute value of the estimated effects,

divided by the standard error. The effects of variables,

which extend past the line, were known to be significant at

a particular a.

In this study, the chart includes a vertical line at the

critical t value (2.365) for a of 0.50, and the effect (positive

or negative) of its bar smaller than the critical t value is

considered as not significant and not affecting the response

variable. Based on the value of coefficient for significance

(p \ 0.05), three of the four factors, viz., mannose, soya-

bean meal, L-lysine concentration, were observed to influ-

ence the production of rapamycin very significantly. Based

on the results obtained of p value for pH (0.985;

p � 0.05), it was found insignificant. Though pH has been

found to enhance the biomass, negligible impact of initial

pH on rapamycin production has been reported [40]. Fur-

ther experiments of rapamycin production were carried out

by taking the pH value constant at its mid-value (i.e., 6).

The regression model was applied to screen the signif-

icant medium components. Using ANOVA, the following

first-order regression equation was obtained showing the

effect of significant factors on production of rapamycin.

Y ¼ 159:342þ 18:207 X1 þ 22:618 X2 þ 15:965 X3

where X1 is mannose, X2 soyabean meal, X3 L-lysine, and

Y is the concentration of rapamycin produced (response

activity).

The statistical analysis consisting of main effects, value of

coefficients, standard error of coefficient, t and p values of the

experimental design, generated by the software is shown in

Table 4. From the table, it can be concluded that soyabean

meal concentration shows the highest confidence level of

99.9 %. The coefficient of determination (R2) was calculated

as 94.72 %, which indicates good agreement between the

experimental and the predicted values. R2 value is corrected

by the adjusted coefficient of determination (adj R2) for the

sample size and the number of terms in the model. The pre-

dicted coefficient of determination (pred-R2) of 83.78 % was

in reasonable agreement with adj-R2 of 91.84 %.

The main effect of each factor can be calculated as

difference between both the averages of measurement

made at higher and lower levels of corresponding factor.

The appropriateness of the model was determined using

correlation coefficient and statistically significant effects

were screened via Student’s t test for ANOVA.

The levels of significant factors were optimized using

central composite experimental design to obtain increased

production of rapamycin [41]. By applying the multiple

regression analysis (Table 5) on the experimental data, the

following second-order polynomial equation was found.

The equation explains the effect of screened medium

components and their interactions on the production of

rapamycin from S. hygroscopicus NRRL 5491:

Table 3 Variation of rapamycin production with variation in the

lysine concentration keeping the other constituents of the medium

constant at 200 rpm, pH 6.5 and temperature 28 �C at the fourth day

of fermentation

L-Lysine

concentration (g/L)

Rapamycin

concentration (mg/L)

0 249.18 ± 5.67

3 255.98 ± 3.56

5 259.43 ± 5.31

7 263.56 ± 3.56

10 268.87 ± 5.51

12 267.93 ± 3.12

15 265.15 ± 5.36

Fig. 3 Pareto chart of

standardized effects on the

rapamycin production by

Streptomyces hygroscopicus

NRRL 5491
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Y ¼ �250:33þ 31:213 X1 þ 11:786 X2 þ 9:619 X3

� 4:431 X2
1 � 1:765 X2

2 � 10:206 X2
3 � 10:235 X1X2

þ 7:315 X1X3 � 1:522 X2X3

where X1 is mannose, X2 soyabean meal, X3 L-lysine, and

Y is the concentration of rapamycin produced (response

activity).

Coefficients having larger magnitude of the t value and a

smaller p value can be associated with more significance.

Also, p value\0.05 exhibits the significance of coefficient

at 5 % confidence level. The results were analyzed using

the ANOVA as appropriate to the experimental design

used. The statistical analysis shows that the interaction of

mannose with soyabean meal (p = 0) and mannose with

L-lysine (p = 0.04) was found to be very significant.

The appropriateness of the model was checked by coeffi-

cient of determination, R2, which implies that the sample

variation of 98.41 % for rapamycin production is attributed to

the medium components and also only 1.59 % of the total

variation is not explained by the model. This explains the

significance of the model optimization process.

Optimization of rapamycin production by ANN–GA

method

The MLP network has three input nodes (L = 3) for rep-

resenting the three influential process variables (mannose

concentration, soyabean meal concentration, L-lysine con-

centration) and one output node (N = 1) representing the

rapamycin concentration (mg/L) at the end of a batch. The

process data for MLP-based modeling was generated by

carrying out a number of fermentation runs by varying the

Table 4 Statistical analysis of Plackett–Burman design for each variable

Parameters Main effect Coefficient SE coefficient t value p value Confidence level (%)

Constant 159.342 4.240 37.58 0.000 100

Mannose 36.413 18.207 4.240 4.29 0.004 98.6

Soyabean meal 45.237 22.618 4.240 5.33 0.001 99.9

L-Lysine 31.930 15.965 4.240 3.77 0.007 98.3

pH 0.160 0.080 4.240 0.02 0.985 1.5

R2 = 94.72 %, R2 (pred) = 83.78 %, R2 (adj) = 91.84 %

Table 5 Model coefficient

estimated by multiple linear

regressions

Model term Parameter estimate Standard error t value p value

Intercept 250.330 2.287 109.446 0.000

Mannose 31.213 1.518 20.568 0.000

Soyabean meal 11.786 1.518 7.767 0.000

Lysine 9.619 1.518 6.339 0.000

Mannose*mannose -4.431 1.477 -3.000 0.013

Soyabean meal*soyabean meal -1.765 1.477 -1.195 0.260

Lysine*lysine -10.206 1.477 -6.909 0.000

Mannose*soyabean meal -10.235 1.983 -5.162 0.000

Mannose*lysine 7.315 1.983 3.689 0.004

Soyabean meal*lysine -1.522 1.983 -0.768 0.460

Fig. 4 Result of training of data set with 619 epoch using ANN
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input conditions. ANN model provided accurate predic-

tions. The data were trained in 1077 epoch with R value of

0.99984 (shown in Fig. 4) and mean square error value of

0.305 (shown in Fig. 5). The results depict that ANN-based

training shows better correlation with the experimental

rapamycin level compared to that using only RSM

regression model.

This trained data’s fitness was evaluated by fitness

evaluation function using the GA tool. The parameters

taken for the GA optimization were population size of

10, mutation rate of 0.1, and uniform cross overrate

of 0.8.

In order to validate the optimization results, five

experiments were performed under the predicted optimal

conditions. Results of GA-based optimization and their

experimental outcomes are shown in Table 6. From these

five experiments, the observed experimental production is

320.89 mg/L, very close to the software predicted result of

323.39 mg/L as shown in Fig. 6. We obtained higher

concentration of rapamycin produced by S. hygroscopicus

NRRL 5491 compared to previous study (Table 1). Thus,

the optimal concentrations for the three components

obtained from the model are 25.47, 15.39, and 17.48 g/L

for mannose, soyabean meal, and L-lysine concentration,

respectively. The optimization using ANN model linked

with GA is found to be more effective for rapamycin

production with a high degree of accuracy.

Batch kinetic studies for rapamycin production using

optimized medium

Shake flask studies were conducted in triplicate to evaluate

the growth kinetics studies of S. hygroscopicus in the

optimized medium. Batch fermentation was performed in

flask at temperature 28 �C, pH 6.0, 200 rpm for 6 days.

Samples were collected at regular intervals and analyzed

for cell mass, product and substrate concentration, and the

mean value was observed.

It was observed (Fig. 7) that during the growth of

microorganism in production medium, the lag phase con-

tinued for 24 h, which was significantly reduced by

repetitive subculturing of the organism. There was an

exponential increase in the growth rate until 72 h. It was

also observed that pH decreases up to third day after which

it increased. Increase in pH may be due to the lysis of cells

in stationary phase. Maximum specific growth rate (lmax)

was observed to be 0.048 h-1.

The substrate consumption profile was evaluated for

mannose using di-nitrosalicylic acid (DNS) test which was

used to estimate the amount of reducing sugars in the

medium [42]. Mannose utilization was rapid in the early

growth stage and was completely exhausted after 144 h

(Fig. 7).

With an increasing biomass, up to 70 h of fermentation,

90 % substrate was utilized. Biomass yield with respect to

substrate utilized (Yx/s) was obtained as 0.410 g cells/g

substrate utilized and the specific rate of substrate utiliza-

tion (qs) was observed to be 0.117 h-1.

It was also observed that product formation in early

stage is growth associated and starts with the growth phase

and extends to the stationary phase. Hence, the maximum

production occurs on the fourth day when cells have

entered stationary phase (Fig. 7). The production of rapa-

mycin in growth phase may be due to the lack of some of

Fig. 5 Graph showing training epoch cycles vs. calculated mean

square error of the supervised training for the designed ANN

Table 6 Comparison of

predicted and experimentally

obtained GA result for

concentration of rapamycin

produced

Mannose

concentration

(g/L)

Soyabean Meal

concentration

(g/L)

L-Lysine

concentration

(g/L)

Predicted

concentration

(mg/L)

Experimental

concentration

(mg/L)

Run 1 25.4707 15.3964 17.4837 323.39 320.89 ± 1.45

Run 2 25.3961 13.1726 16.7709 339.48 317.96 ± 1.13

Run 3 25.3403 12.1420 16.1184 346.93 319.32 ± 1.23

Run 4 25.3616 13.5815 15.7472 335.32 315.94 ± 1.23

Run 5 25.0659 12.3552 16.3694 338.25 317.62 ± 1.10
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the nutrients in the medium. A similar result of antibiotic

production has been found by Gesheva et al. [43], where

maximum production of antibiotic took place at 96 h, but

was also produced in the growth phase. This result is also

supported by the optimization studies of Sujatha et al. [44],

where the variation in the nutrients affected the growth as

well as the production of antibiotics by Streptomyces sp. in

a proportional manner. The specific rate of product for-

mation (qp) was observed to be 0.1155 h-1. The rapamycin

production kinetics may be termed as mixed type where the

production of the metabolite continues till the late sta-

tionary phase.

Fig. 6 GA predicted result for

optimized concentration of

mannose, soyabean meal and

L-lysine

Fig. 7 Graph showing variation

of growth obtained under

optimized conditions,

rapamycin concentration and

mannose consumption profile
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Conclusion

Rapamycin, an important immunosuppressant, production

was evaluated using process optimization techniques.

Efforts were made to increase the microbial production of

rapamycin by optimizing one parameter at a time. Pro-

duction of rapamycin was found to be higher when

D-mannose and soyabean meal were taken as carbon and

nitrogen sources, respectively, as compared to other carbon

and nitrogen sources. Production of rapamycin was found

to be 248.71 mg/L on the fourth day of production by

S. hygroscopicus NRRL 5491.

L-lysine acts as a precursor for rapamycin production by

adding pipecolate moiety to rapamycin ring. It was

observed further that L-lysine, at a concentration of 10 g/L,

showed an increased production of rapamycin up to

268.87 mg/L, using the one-factor-at-a-time method of

process optimization. The production medium was further

optimized using computational tools. The significant fac-

tors were determined using PB design which was mannose,

soyabean meal and L-lysine concentrations. After PB

designing, ANN tool was used to optimize further. The

input space of ANN model was optimized to obtain max-

imum production of rapamycin using GA and it was finally

observed that 25.47, 15.39, and 17.48 g/L of mannose,

soyabean meal, and L-lysine concentration, respectively,

were the best suited medium composition as they increased

the production up to 320.89 mg/L. Rapamycin concentra-

tion obtained by this process optimization method gave a

better result, as compared to other studies.

After optimization of production parameters, the growth

kinetics, substrate utilization and product formation studies

were done with reference to rapamycin production. Maxi-

mum specific growth rate was found to be 0.048 h-1. The

specific rate of substrate utilization (qs) and specific rate of

product formation (qp) were found to be 0.117 and

0.115 h-1, respectively.
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