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Abstract The optimal design and operation of dynamic

bioprocesses gives in practice often rise to optimisation

problems with multiple and conflicting objectives. As a

result typically not a single optimal solution but a set of

Pareto optimal solutions exist. From this set of Pareto

optimal solutions, one has to be chosen by the decision

maker. Hence, efficient approaches are required for a fast

and accurate generation of the Pareto set such that the

decision maker can easily and systematically evaluate

optimal alternatives. In the current paper the multi-objec-

tive optimisation of several dynamic bioprocess examples

is performed using the freely available ACADO Multi-

Objective Toolkit (http://www.acadotoolkit.org). This

toolkit integrates efficient multiple objective scalarisa-

tion strategies (e.g., Normal Boundary Intersection and

(Enhanced) Normalised Normal Constraint) with fast

deterministic approaches for dynamic optimisation (e.g.,

single and multiple shooting). It has been found that the

toolkit is able to efficiently and accurately produce the

Pareto sets for all bioprocess examples. The resulting

Pareto sets are added as supplementary material to this

paper.

Keywords Multi-objective optimisation �
Dynamic optimisation � Bioprocess

Introduction

Multiple and conflicting objectives appear often in the

design and optimisation of dynamic bioprocesses (e.g.,

[12, 23, 24, 33, 39]). The resulting multi-objective opti-

misation problems yield a set of so-called Pareto optimal

solutions instead of one single optimal solution in single-

objective optimisation problems [29]. Once this Pareto set

is generated, the decision maker (e.g., the process or design

engineer) can select one of the solutions according to his/

her own preferences. Hence, the fast and accurate deter-

mination of these Pareto sets is of high importance for

enhancing real-time decision making in practice.

Broadly speaking two classes of methods for generating

the Pareto set exist: vectorisation and scalarisation meth-

ods. Vectorisation methods often involve stochastic evo-

lutionary algorithms [7] and tackle the multi-objective

optimisation problem directly. Most often a population of

candidate solutions is updated based on repeated cost

evaluations to evolve gradually to the Pareto frontier.

These methods are often successfully used (see, e.g., [33]

for bioreactor case studies). However, these approaches

(1) may become time consuming due to the repeated model
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simulations required, (2) are less suited to incorporate

constraints exactly, and (3) are limited to rather low-

dimensional search spaces. In contrast, scalarisation

methods convert the multi-objective optimisation problem

into a parametric single-objective optimisation problem

[9]. The most popular scalarisation approach is the

weighted sum (WS) of the individual objectives. Mini-

mising this WS for different weight values with fast

deterministic derivative-based optimisation routines yields

an approximation of the Pareto set. However, well-known

drawbacks for the WS are that an equal distribution of

weights does not necessarily lead to an even spread along

the Pareto front, and that points in a non-convex part of the

Pareto front cannot be obtained [5]. Recent scalarisation

based multiple objective optimisation techniques as normal

boundary intersection (NBI) [6] and (enhanced) normalised

normal constraint ((E)NNC) [27, 30] are able to mitigate

these disadvantages of the WS and still allow the use of fast

gradient-based solvers.

Therefore, the rationale is to use NBI and (E)NNC in

deterministic direct dynamic optimisation approaches to

efficiently solve dynamic bioprocess optimisation problems

with multiple objectives. All approaches are implemented

in the ACADO Multi-Objective Toolkit [19], which is an

extension of the Automatic Control and Dynamic Optimi-

sation Toolkit ACADO [14]. Both are freely available at

http://www.acadotoolkit.org.

The paper is structured as follows. ‘‘Mathematical for-

mulation’’ introduces the general mathematical formulation

and concepts. ‘‘ACADO multi-objective toolkit’’ describes

the ACADO Multi-Objective Toolkit and its features.

Results for four bioprocess test examples are presented

in ‘‘Results’’. ‘‘Conclusion’’ summarises the concluding

remarks.

Mathematical formulation

In general, dynamic optimisation problems with multiple

objectives can be formulated as follows.

min
xðtÞ;uðtÞ;p;tf

fJ1; . . .; Jmg ð1Þ

subject to:
dx

dt
¼ fðxðtÞ; uðtÞ;p; tÞ t 2 ½0; tf � ð2Þ

0 ¼ bcðxð0Þ; xðtfÞ; pÞ ð3Þ
0� cpðxðtÞ; uðtÞ; p; tÞ ð4Þ

0� ctðxðtfÞ; uðtfÞ; p; tfÞ ð5Þ

Here, x is the state variable, while u and p denote the

time varying and time constant control variables,

respectively. The vector f represents the dynamic system

equations (on the interval t 2 ½0; tf �) with boundary

conditions given by the vector bc: The vectors cp and ct

indicate respectively path and terminal inequality constraints

on the states and controls. Each individual objective

function can consist of both Mayer and Lagrange terms.

Ji ¼ hiðxðtfÞ; p; tfÞ þ
Ztf

0

giðxðtÞ; uðtÞ; p; tÞ dt ð6Þ

Whenever needed, the maximisation of a specified objec-

tive J0i is achieved using instead Ji = -J0i as objective

function in the minimisation frame. The admissible set S is

defined as the set of feasible points y ¼ ðxð�Þ; uð�Þ; p; tÞ that

satisfy the dynamic equation as well as the boundary, path

and terminal constraints.

In multi-objective (MO) optimisation, typically a set of

Pareto optimal solutions must be found.

A point ya 2 S is Pareto optimal if and only if there

is no other point yb 2 S with JiðybÞ� JiðyaÞ for all i 2
f1; . . .;mg and JjðybÞ\JjðyaÞ for at least one

j 2 f1; . . .;mg.
In general terms, a solution is said to be Pareto optimal

if there exists no other feasible solution that improves one

objective function without worsening another.

ACADO Multi-Objective Toolkit

The ACADO Toolkit is a freely available C?? tool for

automatic control and dynamic optimisation [14]. Due to

its self-contained nature it does not require third-party

software. However, it can also easily be extended or cou-

pled with external packages based on the flexible object-

oriented implementation. The syntax which is close to the

mathematical problem formulation enhances the user-

friendliness. ACADO Multi-Objective Toolkit [19] extends

the original ACADO Toolkit with several multi-objective

optimisation approaches.

The idea behind ACADO Multi-Objective Toolkit is the

efficient combination of scalarisation techniques for multi-

objective optimisation with fast deterministic derivative-

based direct optimal control methods. In scalarisation

methods the original multi-objective optimisation problem

is converted into a series of single-objective optimisation

problems. Each solution yields one point of the Pareto set.

By consistently varying the scalarisation parameter(s)

(which are often referred to as weight(s)) an approximation

of the Pareto set is obtained. In direct optimal control

approaches the original infinite dimensional optimal con-

trol problem is transformed via discretisation into a finite

dimensional non-linear program (NLP). Sequential strate-

gies (e.g., single shooting [31]) discretise only the controls

leading to small but dense NLPs, while simultaneous

approaches (e.g., multiple shooting [3] and orthogonal
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collocation [2]) discretise both the controls and states,

resulting in large but structured NLPs. Typically the

resulting NLPs are solved by fast deterministic optimisa-

tion routines.

Several software packages for the solution of optimal con-

trol problems exist. Commercial software is, e.g., gPROMS

[25] and PROPT [26]. Non-commercial codes involve, e.g.,

DynoPC [16], MUSCOD-II [17, 18], DyOS [34] and DOT-

cvpSB [13]). However, to the best of the authors’ knowledge,

none of them offers systematic multi-objective features.

Figure 1 displays the structure of ACADO Multi-

Objective Toolkit. The following features have been

implemented in the toolkit.

– Multi-objective optimisation methods: The implemen-

tation exploits scalarisation approaches as WS, NBI,

NNC, and ENNC. The ideas behind the methods are the

following. NBI first builds a plane in the objective

space which contains all convex combinations of the

individual minima, i.e., the convex hull of individual

minima (CHIM), and then constructs (quasi-)normal

lines to this plane. The rationale is that the intersection

between the (quasi-)normal from any point on the

CHIM, and the boundary of the feasible objective space

closest to the utopia point (i.e., the point which contains

the minima of the individual objectives) is expected to

be Pareto optimal. Hereto, the multi-objective optimi-

sation problem is reformulated as to maximise the

distance from a point on the CHIM along the quasi-

normal through this point, without violating the original

constraints. As a result additional equality constraints

are added. (E)NNC exploits similiar ideas but adds

inequality constraints representing halfplanes while

minimising a selected single objective. As a result

m - 1 halfplanes are added which are orthogonal to the

plane containing all individual minima, now called the

utopia plane. The difference between NNC and ENNC

is due to a different scaling in the normalisation step.

The weights in these methods are typically used to

move the points on the CHIM/utopia hyperplane which

determines the position of the quasi-normal lines or

halfplanes in the criterion space. Hence, a uniform

vector results in an even spread of these points on the

CHIM/utopia hyperplane and as such it can be under-

stood that a more even spread on the Pareto set can be

obtained. The weights in the WS only influence the

position in the criterion space in a highly non-linear

way [5] and, hence, it can be understood that a uniform

spread of weights often does not result in an even

spread along the Pareto set. For more info, the

interested reader is referred to, e.g., [19].

– Weight generation: When a step size for the scalarisa-

tion parameter or weight between two of the objectives

is specified, a uniformly distributed grid for all the

scalarisation parameters or weights wi is computed

automatically. Here, convex weight combinations are

generated which satisfy
P

i=1
m wi = 1 and wi C 0.

However, alternative generation schemes that do not

require the positivity constraints [28], can be imple-

mented too.

– Scalability: In principle any number of objectives can

be treated. However, the number of single-objective

optimisation problems increases rapidly for increasing

number of objectives. When using equally spaced,

convex weights (i.e., wi C 0,
P

i=1
m wi = 1 and n the

number of equally spaced points between two individ-

ual minima), (n ? m - 2)!/((m - 1)!(n - 1)!) single-

objective optimisation problems have to be solved. For

instance, with three objectives and a stepsize of 0.1,

m equals 3 and n equals 11 (i.e. going from 0 to 1 on

steps 0.1 yields 11 points). As a result 66 single-

objective optimisation problems have to be solved.

Hence, for high numbers of objectives, interactive

multi-objective methods [29], which interact with the

decision maker to explore a preferred region of the

objective space, become appealing.

– Single-objective optimisation problem initialisation:

Different initialisation strategies for the series of

single-objective optimisation problems can be selected.

All single-objective optimisation problems can be

initialised using the same fixed values provided by

the user. Alternatively, a hot-start strategy, which

exploits the result of the previous single-objective

optimisation problem to initialise the next one, allows a

significant decrease in computation time. In single

shooting only the optimal values for the discretised

controls are re-used, while in multiple shooting also the

discretised state variabels are re-used. Hence only

information about the primal variables is exploited and

no information about the dual variables (Lagrange

multipliers) is employed.

– Direct optimal control methods: ACADO Multi-Objec-

tive Toolkit uses the Single and Multiple Shooting

methods from the original ACADO Toolkit.

– Integration routines: Various integrators are available

for ordinary differential equation (ODE) systems. Explicit

Runge-Kutta type integrators are RK12 (adaptive Euler),

RK23 (second order), RK45 (Dormand-Prince) or RK78

(Dormand-Prince). The BDF integrator is an implicit

integrator, which can also tackle systems of (index 1)

differential and algebraic equations (DAEs). Integrator

settings involve, e.g., the absolute and relative integration

tolerances.

– Sensitivity computation: The optimal control problem

formulation in ACADO Toolkit uses a symbolic syntax

which allows storing the functions in the form of
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evaluation trees [14]. This enables the use of state of

the art automatic differentiation algorithms [10, 11]. In

addition as all integrators are equipped with these

automatic differentiation features exact first and

second-order forward or backward sensitivities of the

objective, constraints, and differential equations can be

computed with respect to control inputs, parameters,

and initial values.

– Optimisation routines. Deterministic gradient-based

sequential quadratic programming methods (SQP)

enable a fast solution of the possibly large-scale NLPs.

Although the SQP optimiser can only guarantee local

optimality, it has been observed by the authors that

chances to get stuck in a local minimum are signif-

icantly decreased by exploiting an appropriate initial

guess for states and controls in simultaneous

approaches such as multiple shooting. Settings to be

specified relate to, e.g., the Karush–Kuhn–Tucker

optimisation tolerance and the choice between exact

and approximate Hessians.

– Pareto filter: As NBI and (E)NNC may produce non-

Pareto optimal points, the solution set can be filtered

using a Pareto filter algorithm [27]. An a posteriori

filter simply compares a generated point with every

other generated point, and if a point is not Pareto

optimal (also called dominated), it is eliminated. In

addition, the a priori filter described in Ref. [21] is able

to partially remove non-Pareto optimal points without

the need for generating a set first. Consequently, a time-

saving approach can be to use the a priori filter first and

the a posteriori filter afterwards. The first step reduces

the number of possible points and, hence, also the

number of pairwise comparisons in the second step.

– Visualisation and output: The resulting Pareto sets can

be directly plotted for cases with up to three objectives.

The Pareto optimal cost values and the corresponding

optimal profiles for states and controls can be exported

in various formats. For higher numbers of objectives

the resulting Pareto sets can still be exported but the

visualisation becomes more difficult. Bar plots allow a

representation but are less clear to interpret. These

kinds of plots are not implemented in the toolkit. As

mentioned above, the computational complexity

becomes large for cases with many objectives, such

that interactive methods become interesting.

Remark It has to be noted that NBI and (E)NNC are able

to approximate disconneted Pareto sets, as long as the

individual minima are accurately found. (See example 1 in

Ref. [21].) However, these methods may return non-Pareto

optimal points. As mentioned above, these points can be

removed by a Pareto filter algorithm.

Case studies

The approaches are illustrated on four bioprocess case

studies, which are detailed in the current section.

Case 1

Case 1 involves the fermentation of glucose to gluconic

acid by Pseudomonas ovalis in a batch stirred tank reactor

as described in Refs. [1, 37, 38].

dX

dt
¼ lm

SC

ksC þ k0Sþ SC
X ð7Þ

dp

dt
¼ kpl ð8Þ

dl

dt
¼ vl

S

kl þ S
X � 0:91kpl ð9Þ

dS

dt
¼ � 1

Ys
lm

SC

ksC þ k0Sþ SC
X

� 1:011vl
S

kl þ S
X ð10Þ

dC

dt
¼ KLaðC� � CÞ � 1

Y0

lm

SC

ksC þ k0Sþ SC
X

� 0:09vl
S

kl þ S
X ð11Þ

Fig. 1 Scheme of the ACADO Multi-Objective Toolkit
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The model consists of the following state variables: X

denotes the concentration of cells (UOD/mL), p, the

concentration of gluconic acid (g/L), l, the concentration

of gluconolactone (g/L), S, the concentration of glucose

substrate (g/L) and C, the dissolved oxygen (g/L). The

decision variables are the duration of the batch fermen-

tation, TB 2 ½5; 15h�; the initial substrate concentration,

S0 2 ½20; 50g/L�; the overall oxygen mass transfer

coefficient, KLa 2 ½50; 3001/h� and the initial biomass

concentration, X0 2 ½0:05; 1:0UOD/mL�. The system’s

initial conditions are given by [X0 0 0 S0 C*]T. Hence,

note that only scalar variables have to be optimised.

However, two of them are initial conditions. The two

objectives are the maximisation of the productivity J1 ¼
pðTBÞ

TB
and the final gluconic acid concentration, J2 = p(TB).

The parameter values are given in Table 1.

Case 2

The second problem considers the optimal control of a fed-

batch reactor for induced foreign protein production by

recombinant bacteria as studied by Refs. [1, 32, 38]. The

objective is to maximise the profitability of the process

using the nutrient and the inducer feeding rates as the

control variables. Although this problem was originally

solved as a weighted sum between the protein and the

inducer cost, Sarkar and Modak [33] have tackled this

problem within a systematic multi-objective frame. The

dynamic model is the following:

dx1

dt
¼ u1 þ u2 ð12Þ

dx2

dt
¼ lx2 � ðu1 þ u2Þ

x2

x1

ð13Þ

dx3

dt
¼ Cs;in

u1

x1

� ðu1 þ u2Þ
x3

x1

� l
x2

0:51
ð14Þ

dx4

dt
¼ px2 � ðu1 þ u2Þ

x4

x1

ð15Þ

dx5

dt
¼ Ci;inu2

x1

� ðu1 þ u2Þ
x5

x1

ð16Þ

dx6

dt
¼ �k1x6 ð17Þ

dx7

dt
¼ k2ð1� x7Þ ð18Þ

l ¼ x3

14:35þ x3 þ
x2

3

111:5

x6 þ x7

0:22

0:22þ x5

� �
ð19Þ

p ¼ 0:233x3

14:35þ x3 þ
x2

3

111:5

0:0005þ x5

0:022þ x5

ð20Þ

k1 ¼
0:09x5

0:034þ x5

ð21Þ

k2 ¼
0:09x5

0:034þ x5

ð22Þ

The states are x1, the reactor volume (L), x2, the cell

density (g/L), x3, the nutrient concentration (g/L), x4, the

foreign protein concentration (g/L), x5, the inducer

concentration (g/L), x6 the inducer shock factor on cell

growth rate (-) and x7, the inducer recovery factor on cell

growth rate (-). The algebraic states are l, the specific

growth rate; p, the specific foreign protein production rate; k1,

the inducer shock factor; and k2, the inducer recovery factor.

The decision variables are the volumetric rates of the glucose

u1 (L/h) and of the inducer u2 (L/h). These are bounded

between 0 and 1 L/h. The concentrations of inducer and

glucose in the feed streams are Ci,in = 4.0 g/L and

Cs,in = 100.0 g/L, respectively. The initial conditions are

[1 0.1 40 0 0 1 0]T and the final time is fixed at Tf = 10 h. As

stated above, the objectives are maximising the final amount

of foreign protein, J1 = x1(Tf)x4(Tf) and minimising the

amount of inducer added, J2ðTf Þ ¼ Ci;in

R Tf

0
u2ðtÞdt.

Case 3

The third case considers a free terminal time fed-batch

fermentation process in which ethanol is produced by

Saccharomyces cerevisiae [4, 22].

dx

dt
¼ lx� u

x

V
ð23Þ

ds

dt
¼ �x

l
0:1
þ u

150� s

V
ð24Þ

dp

dt
¼ gx� u

p

V
ð25Þ

dV

dt
¼ u ð26Þ

l ¼ l0

1þ p
Kp

s

Ks þ s
ð27Þ

Table 1 Case 1: values of the parameters

Parameter Value Unit

lm 0.39 1/h

ks 2.50 g/L

k0 0.00055 g/L

kp 0.645 1/h

vl 8.30 mg/UOD h

kl 12.80 g/L

Ys 0.375 UOD/mg

Y0 0.890 UOD/mg

C* 0.00685 g/L
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g ¼ g0

1þ p
K 0p

s

K 0s þ s
ð28Þ

The model consists of the following states: x denotes the

biomass concentration (g/L), s, the substrate concentration

(g/L), p, the product concentration (g/L) and V, the broth

volume (L). l is the specific growth rate (1/h) and g the

specific production rate (1/h). The decision variable is the

duration of the batch fermentation, Tf 2 ½20; 100h� and

the time varying feed rate, uðtÞ 2 ½0; 12L/h�: An additional

constraint implies that the maximal volume is limited to 200 L

(10 B V(t) B 200). The initial conditions of the system are

specified as [1 150 0 10]T. Here, three different objectives are

used. The first objective is maximising productivity J1 ¼
pðTf ÞVðTf Þ

Tf
; the second objective is maximising the production,

J2 = p(Tf)V(Tf) and the third is minimising the substrate cost

J3ðTf Þ ¼
R Tf

0
uðtÞ dt: However, it has to be ensured that at

least 30 L of feed are added, i.e.,
R Tf

0
uðtÞdt� 30: This

constraint can be reformulated as a terminal constraint

xa(Tf) C 30 on an additional state variable: dxa

dt ¼ u with

xað0Þ ¼ 0;which measures the amount added. The parameter

values are given in Table 2.

Case 4

The fourth and final case involves a fed-batch bioreactor

for the production of penicillin G. The model is described

in [35, 36]. The difference in model structure with respect

to Case 3 is the presence of a biomass constraint and a

different inhibition term.

dx

dt
¼ lx� x

u

V
ð29Þ

ds

dt
¼ �x

l
Yx
� m

Yp
xþ u

sin � s

V
ð30Þ

dp

dt
¼ mx� p

u

V
ð31Þ

dV

dt
¼ u ð32Þ

l ¼ lms

Km þ sþ ðs2

Ki
Þ

ð33Þ

As in the previous example the model has four states: x

denotes the biomass concentration (g/L), s, the substrate

concentration (g/L), p, the product concentration (g/L), and

V the broth volume (L). l is again the specific growth rate

(1/h). The batch time Tf is fixed to 150 h. The biomass

concentration is limited to 3.7 g/L (x(t) B 3.7). The

decision variable is the time varying feed rate, uðtÞ 2
½0; 1L/h�: The initial conditions are given as [1 0.5 0 150]T.

The objectives are to maximise the production,

J1 = p(Tf)V(Tf) and to maximise the concentration of the

product or the purity, J2 = p(Tf) in order to reduce post-

processing costs. However to ensure a minimum

production, a lower bound of 265 g has been imposed:

J1 C 265 g. The parameter values are described in Table 3.

Results

This section applies the techniques implemented in the

ACADO Multi-Objective Toolkit, i.e., WS, (E)NNC and

NBI, to the four dynamic bioprocess optimisation case

studies. Each time the Pareto set is displayed as well as

several optimal control and state profiles along the Pareto

set. The corresponding weight vectors w ¼ ½w1; . . .;wm�T
where the index i runs from 1 to m, are each time indicated.

Here wi relates to the optimisation of objective Ji. Algo-

rithmic settings and the resulting computational expenses

in terms of SQP iterations and CPU times are summarised

in Table 4. It has to be noted that the model descriptions of

cases 2, 3 and 4 include algebraic equations for the sake of

clarity. However, the algebraic equations can easily be

eliminated by directly substituting them into the differen-

tial equations, yielding a system of ordinary differential

equations. The objective values in the resulting Pareto sets

are added as supplementary material to this paper.

Case 1

As case 1 only involves scalar parameters to be optimised,

it is regarded as the simplest of the four cases. The

resulting trade-off between maximising productivity and

Table 2 Case 3: values of the parameters

Parameter Value Unit

l0 0.408 1/h

Kp 16 g/L

Ks 0.22 g/L

g0 1.0 1/h

K0p 71.5 g/L

K0s 0.44 g/L

Table 3 Case 4: values of the parameters

Parameter Value Unit

lm 0.02 1/h

Km 0.05 g/L

Kl 5 g/L

Yx 0.5 (–)

Yp 1.2 (–)

m 0.004 1/h

Sin 200 g/L
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production is depicted in Fig. 2. Clearly, there is trade-off

between maximising production and productivity. It is also

seen that the weighted sum does not give an even spread of

the Pareto points. In contrast, NBI and (E)NNC return

identical results but the distribution of points along the

Pareto set is more uniform. The resulting optimal state

trajectories obtained with NBI are depicted in Fig. 3.

Comparison with results obtained using a global optimi-

sation heuristic in Ref. [37] hardly reveals any differences.

With respect to the scalar optimisation variables, the

optimal values for S0
* and X0

* are identical to their upper

limits. This observation is easily explained as the more

biomass and substrate (glucose) is initially present, the

faster and higher the production will be. When productivity

is focussed on, the highest KLa values and the shortest

batch times are encountered. The explanation is that high

oxygen transfer rates stimulate biomass growth and early

stops avoid a decrease in production rate. However, when

Table 4 Overview of algorithmic settings for ACADO Multi-Objective Toolkit and computational expense

Case 1 Case 2

WS NBI NNC ENNC WS NBI NNC ENNC

# States 5 5 5 4 7 7 7 7

# Controls 0 0 0 0 2 2 2 2

# Dicretisation intervals 25 25 25 25 10 10 10 10

# Pareto points 21 21 21 21 21 21 21 21

Integrator RK78 RK78 RK78 RK78 BDF BDF BDF BDF

Integrator tolerance 1E-6 1E-6 1E-6 1E-6 1E-6 1E-6 1E-6 1E-6

Hessian Exact Exact Exact Exact Exact Exact Exact Exact

Optimality tolerance 1E-6 1E-6 1E-6 1E-6 2E-3 2E-3 2E-3 2E-3

Re-initialisation Hot-start Hot-start Hot-start Hot-start Hot-start Hot-start Hot-start Hot-start

SQP iterations 193 290 202 260 139 80 54 76

Total CPU [s] (entire front) 132.4 161.7 118.0 123.0 29.7 19.2 14.1 14.8

Average CPU [s] (1 point) 6.30 7.70 5.62 5.85 1.40 0.92 0.67 0.70

Case 3 Case 4

WS NBI NNC ENNC WS NBI NNC ENNC

# States 4 4 4 4 4 4 4 4

# Controls 1 1 1 1 1 1 1 1

# Dicretisation intervals 25 25 25 25 20 20 20 20

# Pareto points 66 66 66 66 21 21 21 21

Integrator BDF BDF BDF BDF RK78 RK78 RK78 RK78

Integrator tolerance 1E-6 1E-6 1E-6 1E-6 1E-6 1E-6 1E-6 1E-6

Hessian Exact Exact Exact Exact Exact Exact Exact Exact

Optimality tolerance 1E-3 1E-3 1E-3 1E-3 1E-4 1E-4 1E-4 1E-4

Re-initialisation Hot-start Hot-start Hot-start Hot-start Hot-start Hot-start Hot-start Hot-start

SQP iterations 569 577 421 436 24 56 89 103

Total CPU [s] (entire front) 202.8 140.7 139.1 110.7 1.1 3.0 4.5 5.9

Average CPU [s] (1 point) 3.07 2.13 2.11 1.97 0.052 0.14 0.21 0.28
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the total amount of product made in one batch becomes

more and more important, longer batch durations and lower

KLa values appear to be optimal. In this case, substrate and

oxygen are utilised more for the production of gluconic

acid, resulting in a slower biomass growth and lower final

cell concentrations. Hence, the trade-off depends on how

the glucose is used. When focussing on productivity, short

batches are preferred and consequently, a fast biomass

increase is required. On the other hand, when aiming for

production, less substrate is attributed to biomass growth.

This results in a slower growth and lower cell numbers, but

the glucose is now more directed towards production of

gluconic acid.

Case 2

Figure 4 presents the Pareto frontier. As can be seen, the

Pareto front exhibits very steep rises towards the individual

minima. Hence, most of the trade-off is located in the so-

called knee of the Pareto curve. Consequently, the Pareto

points generated by the WS cluster in this region. On the

other hand, NBI and (E)NNC are able to reproduce the

Pareto set with a much more uniform spread.

Case 2 is the first case in which optimal time varying

controls have to be found. For the current case, a control

discretisation of 10 piecewise constant pieces is used for

both controls. The optimal profiles for the substrate u1 and

inducer u2 feed rate obtained with NBI are given in Fig. 5.

As can be seen, in both optimal controls large singular arcs

are present. Arcs are typically called singular or sensitivity

seeking when they appear in an interval where no con-

straint on the control and/or states is active. Hence, the

sensitivity of the objective with respect to the controls can

be expected to be rather limited. Nevertheless, despite this

limited sensitivity and a coarse control discretisation the

same optimal cost values as mentioned in Ref. [33] can be

obtained. However, the price to be paid is an increased

number of SQP iterations. In general, the values for

both controls remain quite low, especially when the mini-

misation of the inducer is concentrated on. When the
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Fig. 3 Case 1: optimal states along the Pareto set obtained with NNC
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maximisation of the foreign protein production gets more

and more priority, the inducer feed rates increase, in par-

ticular towards the end of the batch.

In view of brevity, only a selection of state profiles is

depicted in Fig. 6, i.e., the amount of biomass x1ðtÞ � x2ðtÞ
(g), the amount of foreign protein x1ðtÞ � x4ðtÞ (g) and the

amount of inducer added J2. Clearly, the biomass evolution

does not differ much along the Pareto set. Typically an

exponential evolution from the initially present 0.1 g to

values between 26 and 31 g at the end is observed.

Implications are that towards the end of the batch signifi-

cantly more substrate has to be added to feed the micro-

organisms and to counteract the dilution effect. Hence, in

the beginning mainly biomass growth is important. How-

ever, when protein production is focussed on, inducer

addition starts slowly around half of the batch time and

increases significantly towards the end. This increase

stimulates the available micro-organisms to produce the

foreign protein and causes a boost in the total amount

produced. The maximum amount of product is slightly

higher than 6 g and requires about 5.1 g of inducer.

Alternatively, inducer addition can be completely avoided

(i.e., 0 g of inducer) but then the protein production is

limited to only 0.2 g.

Case 3

Case 3 is the first one to tackle more than two objectives. In

Fig. 7 the Pareto front is displayed for three objectives

obtained with ENNC. The three individual minima as well

as three intermediate Pareto optimal solutions are marked.

Similar results can be obtained with NBI, but the results

obtained with NNC slightly differ due to the different

normalisation scheme (see Ref. [21] for more details).

Results for the WS have been omitted as a highly non-

uniform spread on the Pareto set was observed. To obtain a

better understanding of the trade-off between the different

objectives, three pairwise Pareto fronts depict each of the

three possible pairwise objective combinations. Based on

these plots, it is seen that trade-offs between the substrate

added (i.e., J3) on the one hand and productivity (i.e., J1)

and production (i.e., J2) on the other hand, are rather linear.

However, the trade-off between these last two appears to be

more curved. Case 3 was posed as to maximise production

in Ref. [4, 22] without looking at other objectives. How-

ever, identical values as in Ref. [22] for optimal production

have been obtained (i.e., 20,841.2 g), which outperform the

values mentioned in Ref. [4].

The optimal controls and a selection of the optimal

states corresponding to the marked points are displayed in

Figs. 8, 9. To maximise productivity, again short batches

are preferred with high feeding rates in the beginning

followed by a short batch phase at the end. This strategy

typically boosts the biomass growth and the production

rate but results in rather low production amounts and does

not care about the amount of substrate required. To

maximise the production the available amount of sub-

strate is added more carefully and the batch time
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increases. In particular, a large singular feeding phase

which increases towards the end is present. The increase

is due to the biomass increase and the dilution effect.

When concentrating on the economic use of substrate,

only the minimum amount of 30 L is fed in an interme-

diate batch time. This yields a rather small amount of

product and a low productivity. It is seen that the inter-

mediate Pareto optimal points exhibit an intermediate

behaviour for the control and states.

Case 4

The Pareto front for maximising both the production and

the purity is shown in Fig. 10. The WS does not succeed in

presenting a nice approximation of the Pareto set as points

tend to cluster around the maximum production point.

Hence, these results have been omitted. It can also be seen

that the trade-offs are not large. The production ranges

between 267 and 287 g, while the purity varies only
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between 1.44 and 1.48 g/L. Whether or not these differ-

ences are significant in practice has to be decided by the

decision maker. When the minimum production constraint

is removed, a comparison with the maximum purity results

from Ref. [35] can be made. In that case, the reported value

of 1.68 g/L is found. However, the production is then

260.71 g.

The resulting controls are displayed in Fig. 11. They

exhibit most often a singular-maximum-minimum structure.

When focussing on purity, the singular arc and the maxi-

mum arc are the shortest, while the minimum arc is the

largest. When shifting towards production, mainly the

minimum arc decreases, while the singular and the maxi-

mum arc gradually increase. When the entire emphasis is

put on production, the last minimum part vanishes and a

constrained control appears, which keeps the biomass

constant at its upper limit.

A selection of the states is displayed in Fig. 12. When

production is focussed on, the biomass constraint is active

from 90 h and remains active until the end of the batch,

while for the other cases this constraint is only active at the

batch end. The differences along the batch duration are

small for both the amount of product made and the product

concentration. A zoom near the batch end elucidates these

small differences.

Discussion and computational expense

Table 4 gives an overview of (1) the features of the dif-

ferent multiple objective optimal control problems, (2) the

algorithmic settings used as well as (3) the computational

expense (number of SQP iterations, CPU times and average

CPU time per Pareto point). All computations have been

performed on a PC with a 1.86 GHz processor and 2 GB

RAM memory. Tight integration tolerances have been

selected to ensure an accurate computation of the profiles

and their sensitivities with respect to the degrees of free-

dom to be determined. These sensitivities can be low on,

e.g., a singular arc. Optimality tolerances were chosen such

that tightening the tolerances did not improve the Pareto

sets or the optimal control profiles. NBI and (E)NNC

induce a similar computational burden, which is higher

than the one for WS, due to the additional equality and

inequality constraints. However, the Pareto sets generated

by WS in general do not achieve the same accuracy. Pareto

points are missed due to bad objective scaling and low

sensitivity. The average computation times per Pareto point

vary between 0.2 and 7 s. Cases 2, 3 and 4 exhibit singular

arcs in the solutions, which maybe difficult to optimise

accurately due to the low sensitivity. The hot-starting

0 10 20 30 40 50 60

0

5

10

F
ee

d 
ra

te
 u

 (
L/

h)

 

 

w = [1 0 0]T

w = [0 1 0]T

w = [0 0 1]T

0 10 20 30 40 50 60

0

5

10

Time (h)

F
ee

d 
ra

te
 u

 (
L/

h)

 

 

w = [0.2 0.4 0.4]T

w = [0.4 0.4 0.2]T

w = [0.4 0.2 0.4]T

Fig. 8 Case 3: optimal controls along the Pareto set obtained with

ENNC

0 10 20 30 40 50 60 70
0

50

100

150

Time (h)

P
ro

du
ct

 c
on

ce
nt

ra
tio

n 
p 

(g
/L

)

 

 

w = [1 0 0]T

w = [0 1 0]T

w = [0 0 1]T

0 5 10 15 20 25 30 35 40 45
0

20

40

60

80

100

Time (h)

P
ro

du
ct

 c
on

ce
nt

ra
tio

n 
p 

(g
/L

)

 

 

w = [0.2 0.4 0.4]T

w = [0.4 0.4 0.2]T

w = [0.4 0.2 0.4]T

0 10 20 30 40 50 60 70
0

50

100

150

200

250

Time (h)

V
ol

um
e 

V
 (

L)

0 5 10 15 20 25 30 35 40 45
0

50

100

150

200

Time (h)

V
ol

um
e 

V
 (

L)

Fig. 9 Case 3: optimal states along the Pareto set obtained with

ENNC

Bioprocess Biosyst Eng (2013) 36:151–164 161

123



strategy has been found to speed up computations by a

factor around 2. Possible extensions involve the incorpo-

ration of methods for of integer controls [20].

In summary, the multiple objective optimal control

problems considered exhibit features as non-linear

dynamics, fixed/free initial conditions, path and terminal

constraints, singular/constrained control arcs, fixed/free

end times. Hence, it has been shown that the ACADO

Multi-Objective Toolkit is able to efficiently produce

accurate Pareto sets for general multi-objective dynamic

optimisation problems in bioprocess engineering.

As requested by one of the reviewers, an illustration of

an algorithm from a different class is provided. The cases 1

and 4 have also been solved with the multi-objective

evolutionary algorithm NSGA-II [8]. The C source code

has been obtained from the Kanpur Genetic Algorithms

Laboratory website [15]. The selected implementation

allows for both real and binary variables implementation

and is able to include constraints. This algorithm has been

coupled to the ACADO integrators, which are exploited to

simulate the process behaviour each time. Recommended

and default settings have been adopted (e.g., the muation

frequency equals 1 over the number of decision variables).

The algorithmic settings and the computational burden are

summarised in Table 5. The resulting Pareto sets are

depicted together with the ACADO Multi-objective results

in Fig. 13. Computation times mentioned involve only the

time for integrating the model equations, as the time for the

NSGA-II algorithm itself is considered to be significantly

lower than the time for the integrations. For case 1 an

almost identical Pareto set has been obtained with a nice

spread. Since only four decision variables have to be found

and only simple bounds are specified for these decision

variables, the optimisation runs efficiently resulting in a

lower computation time than ACADO Multi-objective. It

has to be mentioned that although ACADO Multi-objective

only uses local optimisation routines, no problems with

local minima have been experienced. ACADO Multi-

objective is able to get to the same extreme points as

obtained with the genetic algorithm, which is generally

regarded as a global optimisation routine. For case 4, the

results are different. Clearly 10,000 instead of 1,000 gen-

erations are needed to converge to the Pareto front. As the

control is discretised with 20 piecewise constant of equal

length, 20 degrees of freedom have to optimised. Also a

state constraint is present. In this case NSGA-II requires

significantly more computation time per Pareto point. Also

the areas near the individual minima are not well covered.

The singular arcs are as accurately determined as before,

due to the low sensitivity of the cost with respect to

changes in these arcs.

In summary, the NSGA-II is easily and flexibly coupled

to an existing process simulator, while in ACADO Multi-
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objective a model has to be re-coded. NSGA-II has more

difficulties to deal with (1) larger numbers of decision

variables (e.g., due to fine uniform control discretisations)

and (2) other constraints than simple bounds on the deci-

sion variables (e.g., due to state constraints). Finally, it has

to be emphasised that these experiments with the NSGA-II

algorithm have been performed by the authors from a non-

experienced user perspective. Experienced NSGA-II users

will be able to tune the algorithm allowing for performance

improvements.

Conclusion

This paper deals with the fast and efficient solution of

biochemical optimal control problems with multiple

objectives. To this end, several scalarisation techniques for

multi-objective optimisation, e.g., WS, NBI and (E)NNC

have been integrated with fast deterministic direct optimal

control approaches (e.g., multiple shooting). All techniques

have been implemented in the ACADO Multi-Objective

Toolkit, which is available at http://www.acadotoolkit.org.

The toolkit has been succesfully evaluated on four biore-

actor cases from literature. The objective values in the

resulting Pareto sets are added as supplementary material

to this paper.
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