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Abstract Computer simulation is an important technique

to capture the dynamics of biochemical networks.

Numerical optimization is the key to estimate the values of

kinetic parameters so that the dynamic model reproduces

the behaviors of the existing experimental data. It is

required to develop general strategies for the optimization

of complex biochemical networks with a huge space of

search parameters, under the condition that kinetic and

quantitative data are hardly available. We propose an

integrative and practical strategy for optimizing a complex

dynamic model by using qualitative and incomplete

experimental data. The key technologies are the divide and

conquer method for reducing the search space, handling of

multiple objective functions representing different types of

biological behaviors, and design of rule-based objective

functions that are suitable for qualitative and error-prone

experimental data. This strategy is applied to optimizing a

dynamic model of the yeast cell cycle to demonstrate the

feasibility of it.

Keywords Dynamic simulation � Biochemical network �
Multi-objective optimization � Model fitting � Cell cycle

Introduction

Systems biology aims at constructing a large-scale,

dynamic model of complex biochemical networks in silico

and at understanding the mechanism of how such systems

generate a variety of cellular functions. Advances in

molecular biology and omics technology have extensively

revealed details of biochemical reactions and gene inter-

action networks, enabling drawing biochemical network

maps in various cellular systems such as apoptosis, cell

cycles, differentiation, metabolic networks, and stress

responses. A major problem for dynamic modeling is to

know the values of kinetic parameters in vivo, but it is very

hard to measure the exact values of them due to experi-

mental complexity [1–3]. As an alternative way, numerical

optimization is presented to estimate the values of kinetic

parameters so that they reproduce the behaviors of existing

biological data.

A general strategy for dynamic modeling has been

proposed that combines reverse engineering with forward

engineering [4–7]. Ideally, we would like to gain access to

the activities of all important molecular species including

complexes and modified molecule, while it is hard to know

the molecular details of all biochemical reactions. There is

a strong need for methods that can handle complicated

molecular systems at an abstract level without going all the

way down to biochemical reactions with exact kinetic

parameters [8]. Forward engineering builds the mathe-

matical models that directly reflecting the essential network

architecture; reverse engineering explores their associated

kinetic parameter values so that the models can reproduce

experimental data. From this viewpoint, the model would

focus on capturing the intrinsic architecture of molecular

networks rather than their detailed kinetics. In the reverse

engineering, it is a challenging task to find optimal

Electronic supplementary material The online version of this
article (doi:10.1007/s00449-010-0486-7) contains supplementary
material, which is available to authorized users.

K. Maeda � Y. Fukano � S. Yamamichi � D. Nitta �
H. Kurata (&)

Department of Bioscience and Bioinformatics,

Kyushu Institute of Technology, 680-4 Kawazu,

Iizuka, Fukuoka 820-8502, Japan

e-mail: kurata@bio.kyutech.ac.jp

123

Bioprocess Biosyst Eng (2011) 34:433–446

DOI 10.1007/s00449-010-0486-7

http://dx.doi.org/10.1007/s00449-010-0486-7


solutions out of a huge search space that can explain the

experimental data. The current deterministic methods for

global optimization of non-linear dynamic models are too

expensive in terms of computational cost. In contrast,

stochastic methods including evolutionary (genetic) algo-

rithms can provide high-quality solutions in less compu-

tational cost [2, 9, 10]. At present, evolutionary searches

are widely used to optimize a dynamic model of biological

systems.

The performance for optimization typically depends on

the cost or objective functions chosen. In many cases,

(weighted) least squares estimators or maximum likelihood

estimators are used with respect to time course data of

molecular components [1, 2, 11–14]. While most of the

proposed algorithms pursue numerically or theoretically

rigorous ways to find a global solution, a serious question

raises if such rigorous approaches are really achieved or

effective in biology, because experimental data have

uncertainty and considerable errors due to the inherent

properties of molecular components and immature mea-

surement techniques [15, 16]. In general, the time course

data for each molecular concentration are used as a refer-

ence or experimental model to estimate the kinetic

parameter values, but few kinetic data and few quantitative

values are measured in vivo. Furthermore most of experi-

mental observations and biological information are quali-

tative and fragmental, because they are measured under

different experimental and genetic conditions. The typical

status of the experimental data is exemplified by a cell

cycle network: Growth is delayed when a specific gene is

removed, while DNA replication stops when another gene

is removed. Under such data quality it does not seem a

serious issue to find a global solution. The important thing

is to explore the plausible values of kinetic parameters that

can explain the dynamic behaviors derived form biological

information and experimental data, but there are few

reports that challenge such an intrinsic and real problem.

Since the dynamics of cultured cells are described or

featured at different abstract levels from molecular kinetics

to physiological behaviors under a variety of environmental

or genetic conditions, the cells can have multiple objective

functions to satisfy those features. In engineering fields,

multiple objective optimization techniques have extensively

been presented [17–19]. The weighted-sum method is one of

the most widely used solutions, which converts a multi-

objective optimization problem into a set of single objective

problems and defines a weighted sum of them as the unique

objective. On the other hand, the set of all Pareto solutions,

known as the Pareto frontier, is effective in finding globally

optimal solutions [18, 20]. Recently, in biology, multi-

objective optimization has shown some benefits compared

to single objective approaches [21].

In addition to the above problems, the size of networks

is a serious obstacle for optimization. An increase in net-

work size explosively increases the search space of kinetic

parameters, thereby making optimization hard. Divide and

conquer algorithms have been proposed to be effective in

solving this problem in various fields [22]. Decomposition

of molecular networks into subsystems is one of the

promising solutions for optimizing a dynamic model

[23–27].

The objective of this paper is to develop a practical,

comprehensive, versatile framework to simultaneously

solve the above problems, how to optimize a dynamic

model with multi-objective functions by using error-prone,

fragmental, qualitative data. The proposed algorithm con-

sists of a module decomposition and integration method,

evolutionary optimization with respect to a multi-objective

function, and design of the scoring rules to evaluate the

dynamic model, named Integrative and Practical Evolu-

tionary Search (IPES). IPES presents a new strategy to

challenge the intrinsic and real problems accompanied by

the sparsity and uncertainty of biological data, and can be

distinguished from the widely used methods that definitely

require the reference or nominal time course to pursue a

global solution. To demonstrate the feasibility of IPES, it is

applied to a cell cycle network whose dynamics are char-

acterized by a variety of experimental data for wild-type

and genetic mutants.

Methods

Dynamic model

Generally a dynamic model for biochemical networks is

formulated by differential–algebraic equations (DAEs):

dy

dt
¼ Fðt; x; y;PÞ ð1Þ

0 ¼ Gðx; y;PÞ ð2Þ

where t is time, and P is the kinetic parameter vector. The

differential equation (1) shows the conversion, degradation

and synthesis of molecules, while the algebraic equation

(2) indicates the binding reaction for complex formation. In

Eq. 1, x is the independent variable vector that indicates

the binding complex concentrations solved by Eq. 2, y is

the time-dependent variable vector that consists of the total

concentration vector of elementary and modified mole-

cules. In Eq. 2, x is the dependent variable vector, while

y is the independent concentration given by Eq. 1. This

type of DAEs is generated by the two-phase partition (TPP)

method that applies the quasi steady-state approximation

to the differential equations describing complex formation
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[5, 28]. TPP divides the differential equations into fast and

slow reaction. Fast reactions such as complex formation are

converted into algebraic equations.

Integrative and practical evolutionary search

for optimization of a dynamic model

Since it is difficult to optimize a large-scale model because

of a huge space of search parameters, a full model is

divided into subsystems with a relatively small number of

search parameters. After roughly optimizing each module,

all the modules are assembled together to provide the full

models. Next, Distributed Cooperation model of Multi-

Objective Genetic Algorithm (DCMOGA) is presented to

simultaneously optimize different types of experimental

data [29]. The scoring rules are designed to numerically

evaluate the simulated dynamics in comparison with the

reference behaviors built based on biological knowledge

and experimental data. These scoring rules enable one to

construct a dynamic model based on qualitative and frag-

mental experimental data.

The integrative and practical evolutionary optimization

(IPES) consists of the two major processes: module

decomposition and integration, and optimization for multi-

objective functions, as shown in Fig. 1. The scoring rules

are designed as an if–then rule to define the objective

functions. Note that module decomposition is not used in

the process of DCMOGA. Details of the procedure are

given as follows:

1. Module decomposition and coarse optimization for

each module.

1.1. Decomposition of a full mathematical model

into subnetworks (modules) in terms of biolog-

ical functions and temporal orders.

1.2. Coarse optimization of each module by Genetic

Algorithms (GAs).

1.3. Module integration: All suboptimal modules are

merged into full model candidates, where the

overlapped parameters among modules are

averaged.

2. Optimization of the full model with respect to multi-

objective functions.

Distributed Cooperation model of Multi-Objective

Genetic Algorithm is applied to optimization of the

dynamic model. The full model candidates provided by the

module integration are employed to make the initial

populations.

Module decomposition and integration

Choosing modules is a non-trivial task. A number of

strategies can be adapted to ease this task, but we do not

address them here [23–26]. In this article, module

decomposition can be performed in terms of biological

functions and temporal orders, as exemplified in Fig. 2.

Ideally, the network may be divided so that each module

has fewer external molecules and the size of each module is

small enough to optimize. All the molecules within a net-

work can conveniently be separated into M modules, while

the interactions from the neighboring modules are not

neglected. The mathematical equations within a module

can be affected by the molecular components in its

neighboring modules.

Mathematical equations are decomposed into M inter-

acting modules (subnetworks): Sk (k = 1, 2,…M):

dySk

dt
¼ FSk

ðt; xSk
; ySk

; ySj
;PÞ ðj 6¼ kÞ

0 ¼ GSk
ðxSk

; ySk
; ySj

;PÞ ð3Þ

ySk
is the concentration vector for the molecules that

belong to module Sk and ySj
is the concentration vector for

the molecules that belong to the external modules

Sjðj 6¼ kÞ. The time course of ySj
is independently given as

specific time functions: ySj
¼ hðtÞ assumed based on

experimental data and biological knowledge. The external

ones are regarded as the input signal to the module, which

is the same idea as ‘‘dependent input’’ [3, 26]. In the dif-

ferential equations xSk
is the independent variable vector

given by the algebraic equations and ySk
is the time-

dependent variable vector. In the algebraic equations, xSk
is

the variable vector to be solved, where ySk
is given by the

differential equations.

The kinetic parameters of each module can be optimized

with respect to an objective or fitness function, assuming

the time courses of the external molecular concentrations,

as exemplified in Fig. 3. The important thing at this stage is

not to obtain a highest fitness value for each module, but to
Fig. 1 A procedure for an integrative and practical evolutionary

search for optimizing a dynamic model with multi-objective functions
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provide the initial population used for the subsequent

optimization of the full model.

Several suboptimal solutions for each module are

combinatorially merged as full model candidates to avoid

local minima as much as possible, where the values of

overlapped parameters among modules are averaged.

These candidates are used as the initial population for the

subsequent DCMOGA.

Optimization for multi-objective functions

Pareto solution for multi-objective functions

Optimization of the mathematical model that reproduces

different types of dynamic features can be a multi-objective

problem. Generally it can be transformed into a single

objective problem by linearly combining multiple objective

Fig. 2 Modular architecture of a budding yeast cell cycle network map. Five modules are named S phase (budding) module, S phase (DNA

synthesis) module, G1 phase module, G2-M phase module, and M phase checkpoint module

Fig. 3 Method of optimization

for each module. Each module

is optimized under the condition

that the time courses of the

external components are

provided. In this figure, the S

phase (budding) module is

optimized, assuming the time

course of the Clb2 (external

component or dependent input)

concentration
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functions with different weight coefficients. However,

since tradeoff can be obtained among objective functions,

it is not satisfactory to optimize such a transformed single

objective function. Instead, the Pareto optimality is pre-

sented to consider a tradeoff relationship among N objec-

tive functions: fðpÞ ¼ ðf1ðpÞ; . . .; fNðpÞÞ. Here, we define a

dominance relation between two solutions. p1 dominates p2

when the following condition is satisfied:

fiðp1Þ� fiðp2Þ 8i 2 1; . . .;N and

fjðp1Þ[ fjðp2Þ 9j 2 1; . . .;N:

The Pareto optimal solutions p� are defined as the

solutions that are not dominated by any other solutions.

Among the Pareto optimal solutions, there can be a tradeoff

relation in which if one objective function is going to

improve, another one deteriorates.

DCMOGA

DCMOGA is employed for handling multiple objective

functions: fðpÞ ¼ ðf1ðpÞ; . . .; fNðpÞÞ, as shown in Fig. 4

[29]. DCMOGA searches for the Pareto-optimum solutions

p�, where the advancement of the Pareto front is done at

every generation [20] (Fig. 4a). In DCMOGA, N ? 1 sub-

populations (islands) are created with respect to N objec-

tive functions (objects) (Fig. 4b). One of these islands is

the population for evaluating all objective functions called

a MOGA group. The other N groups are the population for

finding an optimum of each objective function, called SGA

groups.

DCMOGA finds the Pareto solutions while maintaining

variations in solutions, as follows:

1. Initial population setting

Since the combinatorially possible number of the full

model candidates is large, the kinetic parameter vectors

that provide higher fitness values are selected from each

module and are combined to make the initial population.

2. Optimization in the MOGA and SGA islands

The individuals in the MOGA group are optimized with

respect to multiple objective functions by using GAs. On

the other hand, each SGA group is independently opti-

mized just for one objective function (fiðpÞ) during the

intervals of the migration time.

3. Migration among the islands

The Pareto-front solutions in the MOGA group are

exchanged for the parameter sets with a highest fitness

value in each SGA group. The solution with the highest

fitness in each SGA is immigrated to MOGA and is

substituted for the solution with the lowest rank there.

Simultaneously, the solution with the highest rank in

MOGA is immigrated to each SGA and is substituted for

the solution with the lowest fitness there. The parameter set

with the highest fitness in each SGA group is sent to the

MOGA group, while the Pareto-front in the MOGA group

is sent to all the SGA groups.

4. Repetition of optimization and migration

Return to (2) until the number of termination or the

desired solutions are obtained.

Normal MOGA

As a control method, the normal multi-objective genetic

algorithm (MOGA) method is used. The MOGA method

has just one MOGA island without any SGA islands, where

the Pareto-optimum solutions are searched with respect to

multiple objective functions.

Genetic algorithms

Instead of the conventional binary- or Gray-expression, the

real-coded GA uses the real numerical value expression as

Fig. 4 Illustrations of Pareto solutions and the islands in DCMOGA.

a Advancement of the Pareto front. Circles indicate individuals and

dotted lines indicate the Pareto fronts. i is the number of generation.

b Each SGA island has its own objective function. In the MOGA

island, the individuals are ranked according to the Pareto ranking

method for all the objective functions. At a regular interval some

individuals are exchanged between MOGA and SGAs
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a gene. One individual with the search kinetic parameters

expresses one model. Genetic algorithms are performed as

follows.

1. Initialization

Generate initial population and assign uniform random

numbers within the search space to each parameter of all

individuals.

2. Evaluation and selection

The fitness value for each individual is calculated. The

individuals with the higher fitness (the elite individuals) are

kept without any evolutionary operation, while the

remaining ones are sent to evolutionary operation (3).

Optimization is completed when the number of generations

reaches the upper limit.

3. Evolutionary operation: crossover

Unimodal normal distribution crossover (UNDX) is

used as the crossover method to make the offspring indi-

viduals from the parent individuals [30, 31]. In this study,

mutations are not used.

4. Back to (2).

Pareto ranking

Selection in the MOGA group is based on the dominance

relation. If p dominates N solutions, the rank of p is given

as rðpÞ ¼ 1þ N. The high-ranking solutions are kept as the

elite individuals.

Scoring rules for calculating a fitness value

Since experimental data can be obtained under different

conditions by a variety of experimental techniques

involving molecular biology or omics technology, they are

often qualitative, fragmental and heterogeneous. Thus, it is

hard to present the exact time course of molecular con-

centrations or to define mathematically rigorous objective

functions, e.g., a sum of the square of the difference

between the simulated time course and the associated ref-

erence or experimental curve. The important thing is to

capture typical features of dynamics, not to simulate the

exact behavior of the reference model.

To effectively use such biological data, the score func-

tions are proposed to consist of if–then rules that evaluate

the simulated time course of specific molecular compo-

nents and events. For example, a scoring rule for the ith

component is determined as follows:

1 2

0

FOR to DO

IF THEN

IF ( ) THEN

ENDIF

ENDIF

ENDFOR

i

start final

i i

i i

s

t t t

t t t

c t

s s a

θ

=
=

=

< <

>

+

where t is the time, hi is the threshold, ci is the concen-

tration for the ith component, si is the score for the ith

component, and a is the points that are empirically deter-

mined based on experimental data. Such empirical scoring

rules calculate objective (fitness) functions. Details of how

to design an objective function according to the scoring

rules are illustrated in the following section (Supplemen-

tary Table S3). The objective (fitness) function for a

dynamic model is defined as the sum of all the scores:

ObjectiveðFitnessÞ function ¼
X

i

si

Application to a yeast cell cycle model

A biochemical network map

A network map of the budding yeast cell cycle is shown in

Fig. 2, using the CADLIVE notation [32, 33]. This map is

one of the most sophisticated images of the whole system

of an yeast cell cycle, which is consistent with the previous

work [34]. Details of the reactions are summarized else-

where [33, 34]. In the map, at Start, a series of events is

initiated in rapid succession: SBF turns on Cln2 and Clb5

levels, Sic1 disappears, Hct1 turns off, and DNA synthesis

and bud emergence commence. Shortly thereafter, Clb2

level rises, and a spindle starts to form. At Finish, active

Cdc20 turns on Hct1 by overwhelming the inhibition

exerted on Hct1 by Clb2. When Hct1 turns on, Clb2 is

degraded and the control system switches to the G1 state,

in which the enemies of Clbs (Hct1 and Sic1) are active.

Rule-based dynamic model

When the exact values of kinetic parameters are not mea-

sured in vivo and details of reaction networks are hard to

fully identify, the dynamic model is built mainly based on

qualitative features and experimental observations. Most of
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the kinetic parameters are provided nominal values so that

the model reproduces most of experimental observations.

Thus, the model would be constructed at the coarse-grained

level using the formalism of rules, rather than at the level

of the exact and full kinetics. It uses temporal logic or rules

to specify qualitative and quantitative system behaviors.

Assuming that binding reactions are much faster than

gene expression, the TPP method is employed to make the

dynamic model, resulting in differential–algebraic equa-

tions (Supplementary Table S1). The binding reactions

are described by algebraic equations and the others are

represented by ordinary differential equations. Details of

the conversion method are described elsewhere [5]. The

generated dynamic model has 116 differential–algebraic

equations with 138 kinetic parameters. The reactions

employed in our dynamic model are almost the same as

those employed in Chen’s model, while the mathematical

equations are not consistent with their model, because TPP

is used for mathematical modeling. The reason for use of

TPP is that it can automatically convert reaction networks

into mathematical equations [5], leading to our final goal of

automatic modeling of biochemical networks.

Logical rules that express a change in biological events

are described by the Hill type equation instead of if–then

rules, as shown Supplementary Table S1D. A high number

of the Hill coefficient provides the switch-like behavior as

well as if–then rules.

Thirty-four search parameters are listed in Supplemen-

tary Table S2 and the other kinetic parameters are assumed

or estimated, as shown in Supplementary Table S1. Note

that there are few kinetic data and few quantitative data in

vivo due to experimental complexity, while a series of the

cell cycle reactions and events have intensively been

investigated. Thus, nominal values are assigned to kinetic

parameters. For example, they are set so that transcription

and translation occur on the minute order, and binding

among proteins and DNAs occurs on the second order. The

concentrations of proteins within a cell are given as the

nano-order molar concentration.

Module decomposition

As shown in Fig. 2, the dynamic model is decomposed into

three temporal modules: the G1, S, and M phases, since the

cell cycle networks look cascade reactions. Furthermore,

the S phase was divided into the budding and DNA syn-

thesis modules, and the M phase into the spindle formation

and spindle checkpoints. Finally, the network consists of

these five modules. In each module, the search parameters

are optimized by GAs (population number: 100, maximum

generation: 50), while the time courses of the external

molecules that act on the intra-modular molecules are

provided/assumed (Fig. 3). The fitness function, consisting

of a sum of score functions, is set to each module, which

are designed by assuming the dynamics of major compo-

nents of wild type (Cln2, Clb2, Clb5, and Sic1, and three

events of Cln3 activity, spindle formation, and origin

replication).

Module integration

Before performing DCMOGA, the initial population is

generated by merging the independently suboptimized

modules into a full model. Out of the coarsely suboptimal

solutions for each module, four solutions are picked up.

The four solutions are exhaustively combined among all

the five modules, resulting in 45 = 1,024 kinetic parameter

sets. The objective (fitness) function for wild-type is sim-

ulated for 1,024 parameter sets and 50 sets showing a high

fitness value are selected as the initial population of

DCMOGA.

Full model optimization for multi-objective functions

DCMOGA starts for the five objective functions assigned

to wild type and four mutants. The objective function for

each mutant is built based on its biological behaviors, as

shown in Supplementary Table S3. Each objective function

is assigned to the SGA island, while the Pareto solutions

for all the five objective functions are explored in the

MOGA island. Maximum generation is set to 50 and the

population number of each island is set to 50. The 50

parameter solutions with higher fitness, obtained by mod-

ule integration, are set as the initial population for the

MOGA island. The search parameters are the same as

employed by the module decomposition and integration

method. GAs are employed, where UNDX is used without

mutation and the migration interval is set to 4.

Score evaluation

The scoring rules provide the score for the simulated time

course. They check whether the simulated data correspond

to the reference behaviors at the regular time steps, and add

or subtract a score according to the if–then rules. If the

simulated results agree the reference model, the score is

added, otherwise it is subtracted. For wild-type, the simu-

lated time course of Cln2, Clb5, Clb2, and Sic1, and three

events of Cln3 activity, origin replication, and spindle for-

mation are evaluated. The progress in each event is repre-

sented as the numerical index. The size of time step is fixed

to 100 steps per minute in the simulation. In every step, the

differential–algebraic equations (Table S1A), event func-

tions (Table S1D) and the scoring functions (Table S3) are

evaluated. The fitness function is calculated over two cycles,

because it is necessary to judge whether the cycle restarts
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after M phase. Details of the scoring rules are described in

Supplementary Table S3. The fitness values, the values of

the objective function, are normalized by 100 of the maxi-

mum score where the simulated behaviors are completely

consistent with the reference behaviors. A time course curve

that presents a score of 100 is shown in Fig. 5.

Implementation

The optimization programs are written in C language.

Calculation is carried out on Dell-Optiplex 755 (Intel

Core2 Duo 2.33 GHz with 2.00 GB RAM).

Results and discussion

Module decomposition and integration

In terms of biological functions and temporal order of

reactions, the wild-type network of the budding yeast cell

cycle is divided into five modules, as shown in Fig. 2. The

search parameters (Supplementary Table S2) are optimized

by GAs for the objective (fitness) function for wild-type

(Supplementary Table S3A). The fitness values for all the

modules are simulated as shown in Fig. 6. The fitness

values are normalized by setting the highest fitness that

satisfies all the scoring rules to 100. The fitness value

increases toward 100 for all the modules. At a generation

of 50, four parameter solutions with high fitness values are

picked up out of each module, and merged combinatorially

to form the kinetic parameter vectors for the full model,

resulting in 1,024 sets of kinetic parameter vectors. The

fitness values of 1,024 models are distributed from 80 to 92

(data not shown). As a control, the non-decomposed or full

model is ten times optimized over a generation number of

1,000, where the search parameters and their search space

are set to the same as those employed in the decomposition

and integration method. The fitness values for all the

optimization trials are \60. The decomposition and inte-

gration method is shown to greatly increase the fitness

value compared with the non-decomposition method.

Full model optimization for multiple objectives

Next, the generated full model is further optimized with

respect to various genetic mutants (multi-objective func-

tions) by using DCMOGA. An objective function is assigned

to each knockout mutant (Sic1, Cln2, Clb2, Clb5) and wild

type. Fifty parameter solutions showing higher fitness values

out of the resultant 1024 simulations are set as the initial

population for the MOGA island. The time evolution of the

fitness values on the Pareto front are plotted with respect to

each objective function during 50 generations, as shown in

Fig. 7. The highest fitness score was picked up from the

Pareto front for each generation. As a control method, the

fitness values on the Pareto front are simulated by the normal

MOGA method, which explores the solutions just within the

MOGA island without any SGA islands. Note that the cal-

culation cost of DCMOGA is approximately twice as high as

that of the normal MOGA method. DCMOGA uses one

MOGA and four SGA islands to be calculated for each

generation. In the MOGA island, five batch simulations are

carried out with respect to wild type and four genetic

mutants. In each SGA, one batch simulation is performed for

each mutant. On the other hand, the normal MOGA method

utilizes just one MOGA island. Thus, two generations for the

normal MOGA method is corrected so as to correspond to

one generation in Fig. 7. DCMOGA increases the fitness

value for all the objective functions compared with the

normal MOGA, indicating that DCMOGA is effective in

optimization of multiple-objective functions. The fitness

values move up and down. It indicates a tradeoff among the

objective functions, where an increase in the fitness value for

one objective function causes the decrease for another

function. Each module optimization needs 10 h and DCM-

OGA requires 50 h. The total time required for optimization

is approximately 100 h (10 9 5 ? 50).

Validation of an optimized model

To demonstrate the validity of the dynamic model opti-

mized by the IPES method, the models of wild-type and

mutants are simulated, as shown in Fig. 8. The optimized

model well reproduces the qualitative behaviors of key

molecules as follows. In a Sic1 knockout mutant, cell cycle

events are slightly advanced [35]. In a Cln2 knockout

mutant, an increase in Sic1 is observed during G1 phase,

while an increase in Cln2 and Clb5 does not occur, indi-

cating that cell cycle stops in S phase [36]. In the process

of DCMOGA, the fitness value for Cln2 knockout mutant

Fig. 5 Reference curves of the cell cycle model. The reference

curves are drawn so that it provides the maximum score calculated

from the scoring rules
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would decrease as the tradeoff of the fact that other fitness

values increase (Fig. 7c). Although the fitness is low, the

simulated behavior that the cycle halts at S phase is con-

sistent with experimental data. In a Clb2 knockout mutant,

Cln2 and Clb5 increase during S phase, while an increase

in Clb2 is not observed during G2 phase, indicating that

cell cycle stops at G2 phase [37]. In a Clb5 knockout

mutant, an increase in Clb2 is delayed at 300 min, indi-

cating that the initiation of M phase [38].

Furthermore, to evaluate the validity of the estimated

model, we examined if the model can predict the behaviors

of the mutants that were not used in the optimization: Cln3/

Bck2, Cdc14, Swi5, and Hct1 knockout mutants, as shown in

Fig. 9. In a Cln3/Bck2 double knockout mutant, cell cycle

stops in G1 phase [39]. In a Cdc14 knockout mutant, cell

cycle does not exit from M phase [40]. In a Swi5 knockout

mutant, the period of the cell cycle is slightly shortened

compared with wild type (Fig. 8a) [41]. In a Hct1 knockout

mutant, the exit from M phase is very delayed [42]. These

simulated results capture experimentally observed behav-

iors, demonstrating the feasibility of the optimized model.

Robustness of optimized models to perturbations

to scoring rules

It is important to know how robust the optimized models

are with respect to some perturbations to the scoring rules.

As additional experiments, we changed the threshold

Fig. 6 Evolution of the fitness

values of each module. Five

modules are optimized: S phase

(budding) module (a), S phase

(DNA synthesis) module (b),

G1 phase module (c), G2-M

phase module (d), and M phase

checkpoint module (e). The

thick lines are the mean of the

ten trials of simulations (dotted
lines)
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values and the values of the score points up to 50%, and

then optimized the full model for wild type (the original

scoring rules are shown in Supplementary Table S3A). As

expected, the optimized models presented different values

for numerical time course (Supplementary Figure S1).

However, the qualitative behaviors, i.e., the tendency of an

increase or decrease in the molecular concentrations of

interest, are the same. This suggests that the results of

optimization are robust with respect to a change in the

scoring rules as far as the qualitative behaviors are

concerned.

Conclusions

Practically useful optimization

Advances in molecular biology and omics technology pro-

duce a variety of biological data to construct biochemical

network maps. Many biochemical reactions and gene reg-

ulations have rapidly been revealed, while kinetic data in

vivo are extremely shortage due to experimental complex-

ity. Therefore, a dynamic model is required to be optimized

under the constraint that there are few quantitative data.
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Fig. 7 Evolution of the fitness

values for the full models of wild

type and four mutants. Five objective

functions for wild type (a), Sic1

knockout mutant (b), Cln2 knockout

mutant (c), Clb2 knockout mutant

(d), and Clb5 knockout mutant

(e) are simultaneously optimized by

using DCMOGA. The thick solid
lines are the means of the simulated

time courses by DCMOGA (thin
dotted lines). The thick dotted lines
are those by the normal MOGA

(control method)
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Many elegant algorithms have been proposed for

exploring a global solution for dynamic models that well

reproduce biological behaviors [1, 2, 11–14]. They inten-

sively develop a numerically or theoretically rigorous

method by simplifying the optimization problem, e.g., by

minimizing the square means of the difference between

experimental data and the simulated time course data.

However, the real problem is much more complicated,

where we must handle qualitative and error-prone data for

dynamic modeling [15, 16]. The important thing is not to

pursue the global solution for the mathematically rigorous

objective functions, but to build a dynamic model that

qualitatively explains various experimental data and bio-

logical knowledge. This model can have many plausible

solutions, but it is quite reasonable, considering the quality

of given experimental data. This study would focus on

providing such a qualitative or plausible dynamic model

rather than on constructing the unique model with exact

kinetic parameter values, allowing for a broader modeling

paradigm [43, 44].

The proposed algorithm

An IPES is proposed to estimate the kinetic parameter

values of a complex dynamic model by using qualitative

and error-prone biological data. The key technologies are

the divide and conquer method for reducing the search

space, handling of multiple objective functions represent-

ing different types of biological behaviors, and design of

the rule-based evaluation of fitness or objective functions.

To demonstrate the feasibility of IPES, it is applied to an

optimization problem of a yeast cell cycle model.

Fig. 8 Validation of the

dynamic behaviors of wild type

and gene knockout mutants. The

time course of the major

molecular components and

events are plotted for wild type

(a), Sic1 knockout mutant (b),

Cln2 knockout mutant (c), Clb2

knockout mutant (d), and Clb5

knockout mutant (e)
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First, to transform a network into a set of independent

modules, the module decomposition and integration

method is performed in terms of the temporal order of

reactions and biological functions. To deal with the com-

ponents being interacted from the external components

belonging to the neighboring modules, specific time func-

tions are assumed and assigned to the external ones so that

the time functions well represent their biological behaviors.

Then, coarsely optimized solutions are obtained for each

module, and the resultant ones are merged to provide the

solution candidates for the full model. These candidates are

used as the initial population of the subsequent optimiza-

tion for multiple objective functions.

Second, DCMOGA is employed to simultaneously

optimize multiple dynamic behaviors of the cells cultured

under different genetic an environmental conditions [29].

DCMOGA implements the Pareto front search, because the

objective functions show a tradeoff relationship, i.e., an

increase in the fitness value for an objective function

causes a decrease in that for another function. An SGA

island is assigned to a specific objective function and the

MOGA island explores the Pareto-optimum solutions.

DCMOGA is effective in finding the Pareto solutions while

maintaining variations in solutions.

Third, the scoring rules are created for evaluating the

degree of how the simulation time course of molecular and

event components reflect biological knowledge and exper-

imental data. ‘‘Trial and errors’’ are needed to determine

appropriate points with respect to the evaluation of each

dynamic feature of biological models. Thus, they are basi-

cally empirical, but practically useful for an intelligible

description of the dynamic behaviors with few quantitative

data. Further investigations are now performed to automat-

ically or readily design the scoring rules from a variety of

experimental data and biological knowledge.

Note that the IPES strategy can generate many plausible

or local solutions, because the given constraints are evi-

dently loose compared with the model size. To narrow the

space of plausible solutions, more biological data or sys-

tem-based criteria such robustness and stability may be

added to objective functions.

Toward one click modeling

Dynamic modeling leads to an understanding of the

mechanism of how biochemical networks generate partic-

ular cellular functions, but it is hard for ordinary biologists

to construct complex dynamic models, because the mod-

eling requires expert knowledge and mathematical tech-

niques. A final goal for our study is to develop one-click

modeling that enables any biologists to conveniently sim-

ulate dynamic models. If modeling is done by one-click,

dynamic simulation for biochemical networks will be very

popular. The one-click modeling requires the automatic

generation of a dynamic model with tuned kinetic param-

eters without any manual operations, from a given

Fig. 9 Prediction of the

dynamic behaviors of the

knockout mutants that are not

used for the optimization by

DCMOGA. The time courses of

the major molecular

components and events are

plotted for Cln3/Bck2 double

knockout mutant (a), Cdc14

knockout mutant (b), Swi5

knockout mutant (c), and Hct1

knockout mutant (d)
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biochemical network map. While the automatic converter

from a biochemical map to its associated mathematical

equations has been presented [5, 16, 33], an automatic

optimizer has not been proposed yet due to process com-

plexity. The IPES method is the first and critical step for

developing the standard technology for the automatic

optimization of large-scale networks.
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