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Abstract A data-driven model is presented that can serve

two important purposes. First, the specific growth rate and

the specific product formation rate are determined as a

function of time and thus the dependency of the specific

product formation rate from the specific biomass growth

rate. The results appear in form of trained artificial neural

networks from which concrete values can easily be com-

puted. The second purpose is using these results for online

estimation of current values for the most important state

variables of the fermentation process. One only needs

online data of the total carbon dioxide production rate

(tCPR) produced and an initial value x of the biomass, i.e.,

the size of the inoculum, for model evaluation. Hence,

given the inoculum size and online values of tCPR, the

model can directly be employed as a softsensor for the

actual value of the biomass, the product mass as well as the

specific biomass growth rate and the specific product for-

mation rate. In this paper the method is applied to

fermentation experiments on the laboratory scale with an

E. coli strain producing a recombinant protein that appears

in form of inclusion bodies within the cells’ cytoplasm.
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Introduction

E. coli is the most important host cell system for recom-

binant protein production systems if the desired products

do not need posttranslational modifications to obtain effi-

cacy [9]. In many practical cases, the heterologous

products appear in form of inclusion bodies within these

bacterial cells. Then, several downstream processing steps

including cell disruption followed by solubilization and

refolding are necessary before clinical efficacy of the

protein is achieved.

In order to obtain a high product titer in the fermenter,

the process operational procedure must be optimized for

high cell density, i.e., high biomass concentration X, and,

at the same time high specific product formation rates p.

The latter can only be adjusted to their optimal values if the

relationship between p and the variables that can be

adjusted during the cultivation process is known. Such

relationships are not well investigated, and thus, only very

rough estimates can be found in literature. Usually it is

simply assumed that the specific product formation rate is

in a fixed stoichiometric relationship to the specific bio-

mass growth rate l : p ¼ Ypx
l; or the specific substrate

consumption rate. Only a few groups developed more

complex kinetic expressions for product formation (e.g.,

[4]).

Strict mechanistic approaches are extremely difficult to

quantify as the anabolic metabolism of the cells is rather

complex and not yet completely understood. Anyway, for

process control purposes, it is straightforward to look for

correlations, preferably of variables that are online acces-

sible during industrial fermentation runs. Such data driven

approaches can be very well performing provided the right

variables are chosen and the relations are identified using

many data sets from the single process under consideration.
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The approach used here is based on artificial neural net-

works that are trained on an extended set of data records.

These networks are known to depict very good mapping

properties for complicated nonlinear relationships (e.g.,

[2]).

Data driven approach to product formation kinetics

A schematic view of the data-driven approach used here is

shown in Fig. 1 [1]. It is based on two simple feedforward

artificial neural networks (ANNs). The first one determines

the specific biomass growth rate l from online measured

carbon dioxide production rate (tCPR) data as well as tai,

the time after induction. The time signal tai is zero before

induction and increases continuously thereafter. Acting as a

switch this information first signals the induction point to

the network model and then delivers the current process

time axis after induction. The specific growth rate l
determined by the identified inputs is used in an ordinary

differential equation, i.e., a simple process model, to

determine the biomass x, which is then fed back onto the

input layer of the ANN. Thus, the model is a hybrid one,

where the kinetics, represented by ANNs are combined

with dynamic mass balances [5].

The estimate of l from this ANN is then used as an

input to the second ANN computing the specific product

formation rate p. A further input to this second ANN is

again the time after induction, tai. Additionally, the third

input is the specific protein concentration px = p/x (where x

is total biomass, and p the total product mass). p is obtained

from x and p by solving another simple mass balance

equation shown in the Fig. 1.

As there are no direct measurements available for l and

p, the networks must be trained using offline-measured

biomass x and product mass p data. This can be done with

the sensitivity equation technique discussed by Simutis and

Lübbert [7] and Gnoth et al. [1].

Experimental

Experiments were performed with genetically modified E.

coli bacteria that are able to produce the commercially

interesting gastric inhibitory polypeptide GIP [3]. The

desired product in the process reported about here is in

form of inclusion bodies. All experiments used E. coli

BL21(DE3) as the host cell. The target protein was coded

on the plasmid pET 28a and expressed under the control of

the T7 promoter after induction with isopropyl-thiogalac-

topyranosid (1 mM IPTG). The strain was resistant against

kanamycin. The product appears as inclusion bodies within

the cytoplasm. The particular strain used did not produce

notable amounts of acetate (data not shown) under the

cultivation conditions adjusted in the experiments reported.

All the experiments were performed within BIOSTAT C

15-L-bioreactor (BBI Sartorius) operated at maximal 8-L

volume. The fermenter was equipped with three standard

six-blade Rushton turbines that could be run up to

1,400 rpm. The aeration rate could be increased up to

24 sLpm. Aeration rate and then stirrer speed were

increased one after the other in order to keep the dissolved

oxygen concentration at 25% saturation.

The fermentations were operated in the fed-batch mode

immediately after inoculation. The initial volume was 5-L.

Temperature and pH were adjusted to 35 �C and 7, respec-

tively. The main C- and energy source, glucose, was fed at a

concentration of 300 and 600 g/kg. For more details about

the medium the reader is conferred to Jenzsch et al. [3].

All fermentations were started during night by automatic

transfer of the inoculum from a refrigerator into the reactor.

Substrate feeding was started in an open loop fashion with

predefined exponential profiles. When, after some cultiva-

tion time, the signal to noise ratio of the offgas data

reached a predefined level, closed loop control was started

with the total biomass or the total carbon dioxide produced

as control variables. Additionally experiments were per-

formed under unlimited conditions.
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Fig. 1 Scheme of the ANN-

based approach of deriving the

p(l) relationship as well as

biomass x and product mass p
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CO2 in the vent line was measured with MAIHAK’s

Unor 610, O2 with MAIHAK’s Oxor 610. The total

ammonia consumption during pH control was recorded by

means of a balance beneath the base reservoir. These three

quantities were measured online.

Biomass concentrations were measured offline via

optical density at 600 nm with a Shimadzu photo-spec-

trometer (UV-2102PC). Glucose was determined

enzymatically with a YSI 2700 Select Bioanalyzer. The

product was measured with SDS PAGE after separation of

the inclusion bodies and their solubilization.

Results

Forty-nine data sets from the E. coli fermentations

described above were used for training and validation

(cross-validation procedure) of the hybrid model depicted

in Fig. 1. These fermentations were performed under very

different conditions. Some of them were controlled to small

specific growth rates in the order l = 0.1 (1/h). Others

were run in an unlimited way with respect to the substrate

concentration S. Furthermore, some runs were controlled to

fairly high specific growth rates in the beginning of the

product formation phase.

Figure 2 depicts the result of the training of the network

system illustrated in Fig. 1 with respect to the simple p(l)

relationship.

In order to assure that the data-driven model is truly

mapping the biomass growth and product formation

kinetics, the model solutions were compared to the corre-

sponding experimental data. For this purpose, the cross-

validation technique was employed. The typical results

shown in Fig. 3 are from experiments, the data of which

were not used during the network training.

Note that the model depicted in Fig. 1 only needs the

online available tCPR signal, the initial biomass x as well

as the time tai at which the culture is induced. The actual

values of total biomass x and total product concentration p

then appear as model outputs together with the specific

growth and product formation rates at each time where a

new tCPR value becomes available. Hence, the method can
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Fig. 2 p(l) relationship derived from the network system depicted in

Fig. 1 for fixed tai = 1 (h) and p/x = 0.01 (g/g)
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Fig. 3 Typical example for

simulations using the data-based

kinetics. The biomass and

product mass profiles are shown

together with the corresponding

offline measured data (symbols).

These data were not used during

network training, thus, the

comparison in the plot can be

considered as a model’s

validation procedure
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be used as a soft sensor for x, p, l, and p. In Fig. 3 the lines

depict the outputs of this soft sensor for x and p, the

symbols show the corresponding offline measurement

values which, in the case of the protein data, are available

only days after the fermentation had been finished. It is

worthwhile to mention, that the online measured variable

tCPR and the information tai about the induction state are

sufficient for an online adaptation of the ANN-based model

to the current state of the process, particularly in the

product formation phase. With this online information,

biomass and product mass as well as the corresponding

specific formation rates l and p can quite accurately be

estimated. The full lines in Fig. 3 corresponding to the

biomass and the product mass shown confirm this.

Heterologous protein formation is usually accompanied

by a metabolic load of the cells. In order to quantify this,

the influence of the specific protein concentration px, i.e.,

the protein load of the cells, on p was examined as well.

The resulting three-dimensional graph is depicted in Fig. 4.

The specific product concentration px is seen not influ-

encing the p(l) relationship significantly. At a given l, p is

only slightly decreasing with the accumulation of the

inclusion body protein within the cytoplasm of the cells.

However, there is a significant influence of px, the protein

load of the cells, on the specific growth rate l, which is

referred to in literature as a metabolic burden.

To further clarify this, the p values, obtained from

experimental data were plotted into the p(l,px)-surface

depicted in Fig. 4. Figure 5 shows the data points for all 49

experiments. The values practically remain on the surface.

They clearly show which part of the (l px)-space has been

explored during the fermentations performed. With higher

px values smaller and smaller l values were obtained, even

when the culture does not run in a substrate-limited way.

Thus, only a part of the surface depicted in the model

(Fig. 4) is accessible during the process.

The monotonic increase of the specific product forma-

tion rate with the specific biomass growth rate l leads to

the consequence that the biomass growth rate must be kept

as high as possible in order to obtain a maximal product

titer at the end of the cultivation.

These results were successfully tested in some spot

checks. For this purpose additional validation experiments

were performed. In the first one the culture was grown at

its maximal specific growth rate after induction, in the

second one, a small specific growth rate which was
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Fig. 4 Specific product formation rate as a function of l, the specific

biomass growth rate and px, the specific protein concentration. In

general, two types of l – p – p/x dependencies were obtained. Type I

(dashed line) shows constant relationship if the fermentations run

under limited conditions below the critical specific growth-rate. Type

II depicts the relationship under maximum growth conditions, i.e., the

increasing protein-load on the cells reduces the achievable maximum

growth-rate after induction. Arrows indicate the process evolution

with increasing process time
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Fig. 5 Comparison of the

p(l,px) relationship derived

from the ANN-based model

with p values, obtained from

experimental data (symbols).

The data on the plane show the

size of the design space, i.e., the

about the range of values that

are possible at all in the (lpx)-

space
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suboptimal for the expression of inclusion body proteins

was chosen. Both resulting protein formation patterns are

depicted in Fig. 6.

The product mass profiles p are very different and show

the behavior expected from the monotonically increasing p
with increasing l.

Discussion

The most important point to note for the protein investi-

gated here, which is packed in form of inclusion bodies

within the cells, is, that the p(l) relationship is a simple

monotonic function of essentially the specific biomass

growth rate l only. The metabolic load of the cell, resulting

from the product accumulation within its cytoplasm and

characterized by the specific protein concentration px,

influences the maximal specific biomass growth lmax, but

not directly the specific product formation rate p. In other

words, the specific product formation rate p is only

dependent on the specific growth rate l as assumed by

many researches in bioprocess engineering (e.g., [6, 8, 10].

However, l cannot be freely adjusted as its maximally

attainable value lmax decreases with the specific product

concentration px. Thus, in this particular system, the

influence of the cell’s internal protein concentration or

accumulation on the cell’s protein formation performance

p is an indirect one.

The p(l)-relationship of the strain investigated here is

qualitatively different from the one of other E. coli

systems, e.g., one where the product appears in a soluble

active form. For a strain expressing the soluble green

fluorescence protein (GFP), Gnoth et al. [1] found that the

p(l) relationship depicts a maximum at a rather low spe-

cific biomass growth rate of about l = 0.14 (1/h). Other

strains possibly show further forms of the p(l) relationship.

Hence, it is straightforward to look for a well-performing

technique that allows determining the product kinetics

without the assumption of unproven models or constraints

on the cell metabolism. Such a method is presented in this

paper. It is not restricted to a special product and works

without any assumption about kinetic parameters. In so far

it is suitable for any kind of expressing protein (e.g., sol-

uble/insoluble).

As the approach proposed here is a purely data-driven

approach, relatively many data records are required to train

the networks and to validate the results. In the beginning of

the developments with a new biological system, having a

few data records only, the prediction might not be suffi-

ciently good. This could be considered a disadvantage of

the proposed method. However, this approach has the

advantage of excellent learning abilities. After each culti-

vation the networks can automatically be retrained using

the extended database. In this way the software learns

without much additional efforts of the plant personnel.

Experiments performed in much different ways as

compared to the records used for network training, will also

not be predicted sufficiently well. However, after adding

the data records to the database, the automatic learning will

quickly lead to a better model performance. Thus, in the

following runs the model will be sufficiently accurate for

state estimation.

Providing many data records might be a problem in

small laboratories, but it is definitely not a problem in

industrial production environments. The number of data

records necessary to obtain reliable results is dependent on

the quality of the data, particularly on the accuracy of the

product concentration values. Typically, data from about

ten experiments are needed. Again, this is not so much a

problem in industrial environments, where the laboratories

are usually very experienced in measuring the concentra-

tions of their particular product.

One of the main advantages of the method summarized

in Fig. 1 is that the evaluation of the identified model is

extremely quick. It can thus perfectly be used for online

model supported process monitoring and control purposes.

One example is its use as a software sensor for x and p as

well as for l and p. For these quantities no physical sensors

are available.
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