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Abstract The performance of a biological Fe2+ oxidizing

fluidized bed reactor (FBR) was modeled by a popular

neural network-back-propagation algorithm over a period

of 220 days at 37 �C under different operational condi-

tions. A method is proposed for modeling Fe3+ production

in FBR and thereby managing the regeneration of Fe3+ for

heap leaching application, based on an artificial neural

network-back-propagation algorithm. Depending on output

value, relevant control strategies and actions are activated,

and Fe3+ production in FBR was considered as a critical

output parameter. The modeling of effluent Fe3+ concen-

tration was very successful, and an excellent match was

obtained between the measured and the predicted

concentrations.

Keywords Fe3+ production � Precipitate �
Neural network � Back-propagation algorithm � FBR

Introduction

The most important methods used in biohydrometallurgy

involve heap, bioleaching vat and tank biooxidation. Heap

leaching is economically the most important of these

methods. The bioleaching of sulfide minerals occurs in

an acidic medium that often contains a considerable

concentration of Fe3+. During the bioleaching applications,

the sulfidic mineral is chemically oxidized by microbially

generated Fe3+ and the resulting Fe2+ iron is biologically

regenerated to Fe3+. However, temperature and pH of heap

leaching solution can vary widely over time. Further, as

these parameter values increase, Fe3+ precipitation

increases. Hence, Fe3+ concentration within the recycled

leaching solution to the heap decreases and accordingly the

leaching efficiency reduces. Therefore, it is very important

to predict Fe3+ concentration recycled to heap by a com-

prehensive model for the design, monitoring, and

management of heap bioleaching operations. As an alter-

native to physical models, artificial neural networks

(ANNs) are a valuable forecast tool. So far, there are

several applications of ANN models in the engineering

area. For example, Strike et al. [1] used ANN to model H2S

and NH3 components of biogas from anaerobic digestion;

Clair and Ehrman [2] used ANN to simulate the effect of

climate change on discharge and the export of dissolved

organic carbon and nitrogen from river basin; Nunnari

et al. [3] applied ANN to model air pollution; Cinar [4]

used ANN to analyze the system behavior and to determine

operational problems of a full-scale activated sludge

wastewater treatment plant; Cinar et al. [5] used ANN to

evaluate the performance of a membrane bioreactor; Ka-

raca and Özkaya [6] used ANN to predict the leachate

quantity from a full-scale municipal solid waste landfill;

Ozkaya et al. [7] used ANN to estimate methane fraction in

biogas from field-scale landfill; Holubar et al. [8] used

ANN to predict biogas production and composition; Sa-

hinkaya et al. [9] used ANN to determine the performance

of high rate sulfidogenic fluidized bed reactor treating

acidic metal containing wastewater, neural network as a

tool. There are also other similar engineering applications

of ANN.
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In order to effectively extract valuable metals from the

minerals, the proper operation and control of bioleaching

applications have become very important. According to

current understanding the dissolution of metals occurs

purely chemically with the help of Fe3+ and H+ ions, which

act as oxidizing agents [10]. Better control of bioleaching

may be achieved by the use of a robust model to predict

certain key parameters based on past observations. Models

based on ANNs may be successfully used in bioleaching

applications and very effective at capturing the nonlinear

relationships existing between variables (multi-input/out-

put) in complex system like bioleaching. This study is

aimed at using this ability of artificial neural network for

evaluating Fe3+ production in fluidized bed reactor (FBR)

and thereby managing heap leaching application. In this

study, an artificial neural network based Fe3+ prediction

method (ANN-HEAP) using the back-propagation algo-

rithm was proposed to predict effluent Fe3+ concentration

of FBR under different operational conditions.

Experimental

Analyses

Total iron was analyzed by atomic absorption spectro-

photometer (Perkin Elmer, 1100B). The Fe2+ concentration

was determined using the Shimadzu UV 1601 spectrofo-

tometer (Shimadzu, Japan) by the colorimetric ortho-

phenantroline method, according to modified 3500-Fe

method [11]. Dissolved oxygen (DO) and pH were mea-

sured using WTW OXI96, and pH 330i1 (Weilheim,

Germany) pH meter, and WTW pH-Electrode Sentix411

(Weilheim, Germany), respectively.

The acidophilic iron-oxidizing culture was obtained

from a FBR, long-term fed with 7 g Fe2+/L, and nutrient

medium containing (g/L): (NH4)2HPO4 (0.35), K2CO3

(0.05), and MgSO4 (0.05) at pH 0.9. The microbial com-

munity was monitored by phase contrast microscopy and

by using denaturing gradient gel electrophoresis (DGGE)

of polymerase chain reaction (PCR) amplified partial 16S

rRNA genes as previously described [12]. DGGE analysis

was performed with total DNA extracted from the operat-

ing FBR carrier at different time intervals to reveal possible

changes in bacterial community over time. The sequencing

of the purified products was performed at DNA Sequencing

Facility, Institute of Biotechnology, Helsinki University,

Finland.

Fluidized bed reactor

Fluidized bed reactor (FBR) with activated carbon (Kaiser

0.4–1.4 mm) as biomass carrier at 37 �C was used for

continuous-flow experiments (Fig. 1). Total and fluidized

bed volumes of FBR were 500 and 340 mL, respectively.

The recycle flow rate was adjusted to maintain the fluid-

ization ratio at 30%. Air was used for aeration and the

aeration system was connected to the recycle flow line of

the FBR (Fig. 1). A settling tank with the capacity of 25 L

(hydraulic retention time = 2.4 h) was installed on day 50

and used thereafter. The solid retention time of the settling

unit was 1 week.

Operational data under different conditions over

220 days (total number of data points were 96) were used in

artificial neural network modeling. FBR was operated using

three different operation regimes as shown in Table 1.

In order to increase the biomass concentration in the

FBR, between days 0 and 40 (Regime-1), the reactor was

only fed with 7 g Fe2+/L in a growth medium (Table 1) at

pH 0.9. After the day 40, the FBR feed was changed to a

simulated heap leaching solution and growth medium. The

feed pH of the FBR was gradually increased from 1.5 to 2.5

by decreasing the amount of H2SO4 added to the feed.

While the hydraulic retention time (HRT) was kept con-

stant at 5 h, the feed pH was gradually increased from 1.5

to 2.5 (Regime-2). Thereafter, the FBR was operated at

HRT between 1.5 and 5 h at pH 2 (Regime-3). Detailed

information on the FBR and process variables has been

reported by Ozkaya et al. [13].

Fluidized bed reactor performance

The change of feed to the simulated heap leaching solution

significantly increased the effluent Fe2+ concentration and

Fig. 1 Schematic diagram of FBR used for biological iron oxidation
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inorganic precipitate formation within the FBR. The iron

oxidation rate decreased from 3.5 to around 2.0 g Fe2+/L h

between days 40 and 50, respectively. A settling tank was

installed to the recycle line and used from day 50 onwards,

to continuously remove the precipitate from the solution.

With the use of settling tank, the Fe2+ concentration

decreased from 8,000 to 400 mg/L within 15 days and Fe2+

oxidation was almost complete (98.5%). With the initial

simulated solution pH of 1.5, the pH of FBR effluent varied

in the range of 1.9–1.6. At feed pH of 1.8 and 2, the

effluent pH was about 1.6 and 1.8, respectively. Finally,

when pH was increased to 2.5, the effluent pH was around

2. The precipitation of Fe3+ even at pH of 1–1.5 cannot be

completely avoided. The incorporation of a gravity settler

to the system solved the clogging problems caused by the

precipitates of Fe3+ and other inorganic ions. Thereafter,

the effect of the loading rate on Fe2+ oxidation was studied

using various HRTs (1.5–5 h) for 60 days at pH 2. At

loading rates below 10.7 g Fe2+/L h, the Fe2+ conversion

was independent of loading rate and remained constant at

above 96%. The Fe2+ oxidation rate was not a function of

the HRT in this period (days 117–147). At loading rate

above 10.7 g Fe2+/L h, the increase in the Fe2+ oxidation

rate decreased due to the oxygen mass transfer limitation.

During this period, DO sharply decreased from 2.50 to

0.25 mg/L and accordingly effluent Fe2+ concentration

increased from 800 to 9,500 mg/L. Due to the oxygen mass

transfer limitation, Fe2+ conversion was 55% during this

period [13].

The microbial community was monitored microscopi-

cally using phase contrast and by using molecular methods.

Figure 2 shows the results of PCR–DGGE followed by

partial sequencing of 16 S rRNA genes (a) and a phase

contrast micrograph (b) of the Fe2+ oxidizing culture. The

results show that the FBR operation at different pH values

did not affect the biofilm composition and the bacterial

community was dominated by Leptospirillum ferriphilum

(100% similarity).

After completing the experimental studies, we designed

a neural network based FBR effluent Fe3+ prediction

method (ANN-HEAP) for evaluating and managing Fe3+

recycle to heap by input parameters selected considering

the operational conditions with the help of MATLAB1

computer program. A total of six input parameters such as

influent and effluent pH, redox potential, HRT, DO, and

Fe2+ loading rate were defined, which are essential for

accurate modeling of effluent Fe3+ using experimental

results.

Artificial neural network based FBR effluent

Fe3+ prediction model

The proposed model for modeling Fe3+ recycle to the heap

considering Fe3+ precipitation is based on back-propaga-

tion (BP) algorithms and was constructed as reported by

Karaca and Özkaya [6] (Fig. 3). BP algorithms use input

vectors and corresponding target vectors to train an ANN.

ANN with a sigmoid and linear output layer are capable of

approximating any function with a finite number of dis-

continuities [14]. The standard BP algorithm is a gradient

descent algorithm, in which the network weights are

changed along the negative of the gradient of the perfor-

mance function [15, 16]. There are a number of variations

Table 1 Different operational regime for FBR

Regime Feed

(pH)

HRT

(h)

Feed solution Operation

duration

(days)

1 0.9 5 7 g Fe2+/L

Growth mediuma

40

2 1.5–2.5 5 20 g Fe2+/L

Simulated solutionb

Growth mediuma

120

3 2 1.5–5 20 g Fe2+/L

Simulated solutionb

Growth mediuma

60

a Growth medium consisting of (g/L): (NH4)2SO4 (3.0), Na2SO4

(1.5); KCl (0.1), K2HPO4 (0.05), MgSO4�7H2O (0.5), Ca(NO3)2

(0.01)
b Simulated heap leaching solution consisting of (g/L): Fe2+ (20),

Mn2+ (3), Mg2+ (4), Al3+ (0.1), Na+ (3.6), Ca2+ (0.6)

Fig. 2 a DGGE gel of the biomass samples taken from operating

FBR at different pHs, b a phase contrast micrograph of the suspended

FBR culture
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of the basic BP algorithm, which are based on other opti-

mization techniques, such as conjugate gradient and

Newton methods. For properly trained BP networks, a new

input leads to an output similar to the correct output. This

ANN property enables the training of a network on a

representative set of input/target pairs and getting good

forecasting results.

After back-propagation training, the ANN model pre-

dicts Fe3+ percent based on operational conditions of FBR

(influent and effluent pH, redox, HRT, DO, and Fe2+

loading rate). The ANN-HEAP model (Fig. 3) has the

following steps. (1) For a given collected data from FBR,

the best fitting back-propagation algorithm, minimizing the

error between ANN output and target value, is selected. (2)

The ANN outputs are established, using experimental data.

If the percent of Fe3+ recycled to the heap is higher than the

threshold value (Fig. 3) relevant actions and warnings are

proposed. Fe3+ production percent by FBR may be used as

threshold value (\70%).

This ANN has k input and one output parameters, which

are essential for accurate modeling of the Fe3+ percent. The

input parameters, number of neurons at hidden layer and

output layer, should be determined according to currently

gathered data.

Selection of back-propagation algorithm

Thirteen BP algorithms were compared to select the best

fitting BP algorithm of the gathered data. For all algo-

rithms, a two-layer network with a tan-sigmoid transfer

function at the hidden layer and a linear transfer function at

the output layer were used.

The learning rate parameter may also play an important

role in the convergence of the network, depending on

application and network architecture. The learning rate can

be used to increase the chance of preventing the training

process being trapped in a local minimum instead of a

global minimum [17]. The larger the learning rate, the

bigger the step. If the learning rate is made too large, the

algorithm becomes unstable. If the learning rate is set too

small, the algorithm takes a long time to converge. In

addition, the momentum allows a network to respond, not

only to the local gradient, but also to recent trends in the

error surface. Without momentum, a network may get

stuck in a shallow local minimum [14]. In this study, the

learning rate and the momentum constant were 0.1 and 0.9,

respectively. The training results are given in Table 2.

The BP network is one of the several networks that is

widely used for predicting the output and is successfully

Fig. 3 ANN-HEAP model

sequence of steps
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applied to a wide range of problems [6, 7, 9]. The best BP

algorithm for the present application, with minimum

training error (0.0489), is the Levenberg–Marquardt algo-

rithm (Table 2).

The training stopped after ten iterations because the

validation error started to increase (Fig. 4). This result is

reasonable, as the test set error and the validation set error

have similar characteristics, and it does not appear that any

significant change over fitting has occurred.

Optimization of neural network structure

for ANN-HEAP model

A total of six parameters were defined, which are essential

for accurate modeling of Fe3+ percent recycled to heap

using experimental data from FBR combined with settling

tank. Input parameters are pH (feed and effluent of FBR),

redox potential, DO, HRT, and Fe2+ loading rates which

are key parameters indicating FBR performance (Fig. 5).

The data were divided into P and T matrices. P matrix

contains the input parameters and T matrix contains the

target of the ANN. The data were divided into training,

validation, and test subsets. One-fourth of the data were

taken for the validation set, one-fourth for the set and one

half for training.

Optimization of a neural network is an important task of

neural network based studies and there are some methods

applied [18]. In our study, neuron numbers and relevant

performance of the Levenberg–Marquardt algorithm were

evaluated. Increasing neuron numbers to more than 10

(Fig. 4) caused an unrealistic result, since the test set and

validation set errors have dissimilar characteristics, and a

significant change over fitting occurred. Therefore, the

optimal neuron number for Levenberg–Marquardt algo-

rithm is 10. The optimal neural network structure for the

ANN-HEAP method is given in Fig. 5: a two-layer net-

work, with a tan-sigmoid transfer function at the hidden

layer with ten neurons and a linear transfer function at the

output layer.

A regression analysis of the network response between

the output and the corresponding target was performed. For

the output, one regression was determined (Fig. 6) taking

into account the nonlinear dependence of the data, the

output seemed to track the targets reasonably well. The R

value is 0.901.

The performance of the ANN-HEAP model is visualized

for Fe3+ concentration in Fig. 7. There is a very good

agreement in the trends between predicted and measured

data.

Fig. 4 Training, validation, and test square mean errors for Leven-

berg–Marquardt algorithm

Table 2 Comparison of back-propagation algorithms

Back-propagation algorithms Mean squared

error

R values Iteration

number

Levenberg–Marquardt backpropagation 0.0489 0.901 10

BFGS quasi-Newton backpropagation 0.0532 0.919 25

Scaled conjugate gradient backpropagation 0.0647 0.923 35

Powell–Beale conjugate gradient backpropagation 0.0850 0.898 25

Gradient descent with adaptive learning rate backpropagation 0.0919 0.910 90

Resilient backpropagation (Rprop) 0.1013 0.901 15

One step secant backpropagation 0.1129 0.855 14

Fletcher–Powell conjugate gradient backpropagation 0.1171 0.897 35

Gradient descent with momentum and adaptive learning rate backpropagation 0.1388 0.897 20

Polak–Ribiere conjugate gradient backpropagation 0.3375 0.800 40

Gradient descent with momentum backpropagation 0.3756 0.796 95

Batch training with weight and bias learning rules 0.4990 0.737 100

Gradient descent backpropagation 0.5319 0.708 100
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Figure 7 has three critical points for FBR performance

under different operational conditions. Firstly, Fe3+ con-

centration significantly decreases due to the change of feed

to simulated heap leaching solution associated with inor-

ganic precipitate formation within the FBR. Secondly, FBR

performance decreases due to the high pH. Thirdly, reactor

performance decreases due to the oxygen mass transfer

limitation. All critical points and regular Fe3+ level were

successfully predicted by artificial neural network-back-

propagation algorithm (ANN-HEAP).

The ANN-HEAP model has the advantage of predicting

(not measuring) Fe3+ percent before leaching efficiency

becomes reduced, giving sufficient time to take appropriate

action. If the amount is predicted at levels lower than the

threshold for a heap, appropriate measures are proposed.

Suitable warnings are introduced, such as presenting these

values on a display in the control center and sending

information to higher authorities. In our case study, the

sequence is summarized as follows.

The threshold value is taken as 70%. If the Fe3+ percent

recycled to heap falls below this threshold, an initial stage

of actions and warnings are launched. A flashing control

format of rapid actions could: (1) send information to

higher authorities, (2) send information to FBR operator,

(3) control the FBR performance and measure pH, redox,

dissolved oxygen, etc., and (4) consider Fe3+ precipitation

in settling tank.

At the same time, other actions may be initiated, such as

a special warning to the relevant authorities, example,

‘‘Fe3+ percent of concern’’. The ANN-HEAP then checks

the FBR as a ‘‘special decision’’ (Fig. 3). If there is a

problem, special actions and warnings are taken. After the

Fe3+ returns to normal levels, regular treatment and control

strategies are resumed. Fe3+ levels may be announced on

boards in the control center as ‘‘suitable Fe3+ level’’.

Conclusions

This study demonstrates that ANNs provide a robust tool

for predicting the Fe3+ concentration of FBR combined

with a settling tank to recycle line to remove the inorganic

precipitate from the solution. The effective and robust

control and management system was developed by con-

sidering predicted Fe3+ concentration for indirect heap

leaching applications even though such applications

involve highly complex physical and biochemical mecha-

nisms. This study proposes a neural network based model

(ANN-HEAP) for Fe3+ concentration evaluation and con-

trol. The proposed model can reliably predict effluent Fe3+

concentration and, consequently offer the appropriate

warning signal and relevant actions to be taken by the

authorities or management of the facility to effectively

extract valuable metals from sulfidic minerals in indirect

heap leaching application. The advantages of ANN-HEAP

model are precise and effective prediction of Fe3+ recycled

Fig. 5 Optimal neural network structure for ANN-HEAP model

Fig. 6 Linear regression between the network outputs and the

corresponding targets for output for Levenberg–Marquardt algorithm.

A Measured, T predicted (circle data points, line best linear fit, dotted
line A = T )

Fig. 7 Predicted and measured Fe3+ concentrations (circle data

points, line predicted)
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to heap in an indirect leaching application, and an effec-

tive, powerful control and management system.
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