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Abstract A family of 10 competing, unstructured models
has been developed to model cell growth, substrate
consumption, and product formation of the pyruvate
producing strain Escherichia coli YYC202 ldhA::Kan
strain used in fed-batch processes. The strain is com-
pletely blocked in its ability to convert pyruvate into
acetyl-CoA or acetate (using glucose as the carbon
source) resulting in an acetate auxotrophy during
growth in glucose minimal medium. Parameter estima-
tion was carried out using data from fed-batch fermen-
tation performed at constant glucose feed rates of
qVG=10 mL h)1. Acetate was fed according to the
previously developed feeding strategy. While the model
identification was realized by least-square fit, the model
discrimination was based on the model selection crite-
rion (MSC). The validation of model parameters was
performed applying data from two different fed-batch
experiments with glucose feed rate qVG=20 and
30 mL h)1, respectively. Consequently, the most suit-
able model was identified that reflected the pyruvate and
biomass curves adequately by considering a pyruvate
inhibited growth (Jerusalimsky approach) and pyruvate
inhibited product formation (described by modified
Luedeking–Piret/Levenspiel term).

Keywords Escherichia coli Æ Production of pyruvate Æ
Unstructured cell model Æ Fermentation of recombinant
E. coli

List of symbols

cA acetate concentration (g L)1)
cA,0 acetate concentration in the feed (g L)1)

cG glucose concentration (g L)1)
cG,0 glucose concentration in the feed (g L)1)
cP pyruvate concentration (g L)1)
cP,max critical pyruvate concentration above which

reaction cannot proceed (g L)1)
cX biomass concentration (g L)1)
KI inhibition constant for pyruvate production

(g L)1)
KI

A inhibition constant for biomass growth on
acetate (g L)1)

KP saturation constant for pyruvate production
(g L)1)

KP inhibition constant of Jerusalimsky (g L)1)
KS

A Monod growth constant for acetate (g L)1)
KS

G Monod growth constant for glucose (g L)1)
mA maintenance coefficient for growth on ace-

tate (g g)1 h)1)
mG maintenance coefficient for growth on glu-

cose (g g)1 h)1)
n constant of extended Monod kinetics

(Levenspiel) (–)
qV volumetric flow rate (L h)1)
qVA volumetric flow rate of acetate (L h)1)
qVG volumetric flow rate of glucose (L h)1)
rA specific rate of acetate consumption

(g g)1 h)1)
rG specific rate of glucose consumption

(g g)1 h)1)
rP specific rate of pyruvate production

(g g)1 h)1)
rP,max maximum specific rate of pyruvate produc-

tion (g g)1 h)1)
t time (h)
V reaction (broth) volume (L)
YP/G yield coefficient pyruvate from glucose

(g g)1)
YX/A yield coefficient biomass from acetate (g g)1)
YX/A,max maximum yield coefficient biomass from

acetate (g g)1)
YX/G yield coefficient biomass from glucose

(g g)1)
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YX/G,max maximum yield coefficient biomass from
glucose (g g)1)

a growth associated product formation coeffi-
cient (g g)1)

b non-growth associated product formation
coefficient (g g)1 h)1)

l specific growth rate (h)1)
lmax maximum specific growth rate (h)1)

Introduction

Pyruvic acid and its salts are important chemicals used
in the pharmaceutical, food, agrochemical, and cosmetic
industry [1, 2, 5]. Pyruvate represents one of the most
important metabolites in the central metabolism of liv-
ing cells because of its role in the glucose uptake (via
carbohydrate phosphoenolpyruvate:phosphotransferase
system (pts)), its impact as a precursor for amino acid
synthesis, its relevance as an intermediate of glycolysis,
etc., thus making the metabolite one of the most widely
used reactants in the E. coli metabolic network [3].

Basically, there are two different approaches known
for the production of pyruvate: (i) the classical chemical
route considering the energy-intensive pyrolysis of tar-
taric acid [4] and (ii) the biotechnological access using
purified enzymes, non-growing, immobilized or living
cells [1, 2, 5, 7]. Currently, the fermentation is regarded
as one of the most promising routes for the production
of pyruvate. As an example, the conversion of glucose to
pyruvate with non-growing, acetate auxotrophic cells of
E. coli YYC202 ldhA::Kan was published, which
achieved a maximum volumetric productivity (QP) of
145 gPyruvate/L/d, a maximum pyruvate/glucose yield
(YP/G) of 1.78 molPyruvate/molGlucose, and maximum
product titers (cP) of about 720 mM (approx. 65 g L)1),
thus offering good starting conditions for subsequent
downstream processing [1, 6, 7].

For further process development (optimization) and
scale-up, the quantitative understanding of the basic cel-
lular characteristics, such as the cellular demand for the
sole carbon source glucose and for the auxotrophic sub-
stance acetate, are of outstanding importance. Therefore,
modeling studies were performed to identify simple, easy-
to-use, and robust models that are suitable to support the
engineering tasks of process optimization and design.

For this purpose, ‘‘black-box’’ unstructured cell
models were chosen because they offer a significant
simplicity at the same time providing a general under-
standing of the dominant metabolic processes in the
production strain. Although these type of models
require very rigorous constraints such as ‘‘balanced
growth’’ (i.e. ‘‘pseudo’’ steady-state metabolic condi-
tions) or ‘‘one-component cell systems’’, they neverthe-
less showed their applicability and suitability for a
variety of different modeling tasks and they additionally
represent a valuable basis for subsequently establishing

structured models that aim at describing the intracellular
metabolism in detail [8, 9]. Unstructured models usually
use simple Michaelis–Menten type kinetic equations
with few variables, each (more or less) contributing a
physical meaning while structured models consist of a
wide number of variables thus trying to reflect the
microbial complexity on a biochemical level. Because of
the simplified model structure ‘‘black-box’’ models
usually have problems in describing lengthy cell-lag
phases [10], which necessitates their careful application
for highly unstable process conditions. However, they
can legitimately be applied to systems in which ‘‘bal-
anced growth’’ occurs [11, 12].

The estimation of kinetic parameters in unstructured
growth models with high parameter accuracy is essential
for successful model validation. Parameter estimation in
unstructured growth models is often performed with the
aid of continuous fermentation [13]. These experiments
are usually time-consuming and their practical realiza-
tion is not always feasible because of the (relatively)
complex experimental set-up (e.g. complex cell recycle
system, complex pump–balance system). In contrast,
simpler experiments can be achieved using batch fer-
mentations, but the kinetic parameters of the Michaelis–
Menten type models cannot be uniquely identified from
noisy batch measurements [11, 14]. The extension of the
batch experiment by a fed-batch phase with time-variant
feed rate leads to a higher accuracy of the parameter
estimates [15]. However, it is noteworthy that feed rate
profiles obtained for optimal process performance are
not necessarily optimal for parameter estimation [16].
For instance, Baltes et al. [11] emphasized that changes in
feeding rates should be as small as possible to avoid fast
dynamic system responses, which are not described by
unstructured models. Nevertheless, our study was based
on fed-batch experiments for the estimation of kinetic
parameters. This decision was motivated by the aim to
identify kinetic parameters of a process that resembles
the optimal production conditions as much as possible.
Therefore, the glucose-feeding profile kept constant and
the acetate feed followed previous findings [2].

Thus the aim of this work was to develop an
unstructured, mathematical model of the pyruvate pro-
duction process considering the acetate auxotrophic
strain E. coli YYC202 ldhA::Kan. Because of primary
uncertainties regarding the microbial kinetics (and the
underlying mechanism) several models for microbial
growth and product formation were formulated as a
‘‘competing’’ set of model candidates. To our knowl-
edge, this represents the first approach to model E. coli
based pyruvate formation with a production strain.

Modeling

In our previous experimental studies [1, 7] we observed
that pyruvate formation followed a typical pattern,
which can be described as a mixture of growth and non-
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growth associated product formation. Glucose was
assumed to be the only carbon source for cell growth
and product formation. However, the acetate auxotro-
phy had to be considered as well. Furthermore, high
extracellular pyruvate levels were identified as an
inhibiting factor for cell growth and/or pyruvate
formation. Taking these ‘‘vague’’ basic characteristics
into account, the following constraints were formulated
and used to define primary, verbal models:

– Glucose and acetate are limiting substrates. All other
nutrients such as nitrogen, phosphate, and growth
factors are ample;

– Cell growth occurs simultaneously using glucose and
acetate, however acetate is essential for growth;

– There was no oxygen effect on either biomass growth
or bioconversion of glucose to pyruvate—at least at
the dissolved oxygen range investigated (from 40 to
100%);

– Product formation kinetics combined growth associ-
ated and non-growth associated characteristics;

– For simplification, the bioconversion of glucose to
pyruvate is regarded as a one-step enzymatic reaction:

C6H12O6 �!
O2

2C3H4O3 þ 2H2O;

– Pyruvate production and/or biomass growth are
inhibited by high pyruvate concentrations;

– The suspension viscosity in the reactor remains con-
stant during the experiment;

– Potential mixing effects of the highly concentrated
feeds with the cultivation medium are neglected for
the sake of the model simplicity.

Microbial growth

To model the microbial specific growth rate various,
well-known approaches were tested. The ‘‘multiple

substrates Monod kinetics’’ was used in models 1 and 2
[17, 18, 19]. However, it is known that this kinetic term
has an inherent disadvantage if many essential sub-
strates are considered. Even if the concentrations of, for
example, five essential substrates are so high that their
contribution of the growth rate reaches 90% of the
saturation value, the total growth rate will be limited to
60% of the maximum possible value.

In models 3 and 4, growth inhibition by-product
formation was considered according to the Levenspiel
approach [20]. This model presumes a critical inhibitor
(product) concentration,cP,max, as an upper limit for
cell growth. As a consequence, the parameters of the
Monod equation are dependent on the product con-
centration.

In models 5, 6, and 9 inhibition of growth by-product
formation was described by the model of Jerusalimsky
[21]. This model represents an approximate analogy to
the non-competitive substrate inhibition, which is often
used in pure enzyme kinetic models.

In models 7 and 8, acetate was assumed to be only
limiting substrate for growth, which, strictly speaking,
was not experimentally observed. However, this
approach was motivated by the strain genotype, namely
its acetate auxotrophy.

Finally, in model 10, the well-known Andrews
kinetics [22] were considered with respect to a potential
acetate (substrate) inhibition of growth at high acetate
levels. In models 7, 8, and 10, glucose was only used for
pyruvate production and not for growth.

Product formation

In models 1, 3, 5, 7, and 10 the kinetics of product
formation was based on the Luedeking–Piret equation
[23] to cope with the experimental observations
mentioned in the introductory part of this section. As

Table 1 Kinetic equations used
for description of biomass
growth and product formation
in the developed models

Model Biomass growth Product formation

1 l ¼ lmax � cG
KG
S
þcG
� cA

KA
S
þcA

rP ¼ a � lþ b

2 l ¼ lmax � cG
KG
S
þcG
� cA

KA
S
þcA

rP ¼ rP;max � cP

KPþcPþ
c2
P

KI

� �

3 l ¼ lmax � cG
KG
S
þcG
� cA

KA
S
þcA
� 1� cP

cP;max

� �n
rP ¼ a � lþ b

4 l ¼ lmax � cG
KG
S
þcG
� cA

KA
S
þcA
� 1� cP

cP;max

� �n
rP ¼ rP;max � cP

KPþcPþ
c2
P

KI

� �

5 l ¼ lmax � cG
KG
S
þcG
� cA

KA
S
þcA
� KP

cPþKPð Þ rP ¼ a � lþ b

6 l ¼ lmax � cG
KG
S
þcG
� cA

KA
S
þcA
� KP

cPþKPð Þ rP ¼ rP;max � cP

KPþcPþ
c2
P

KI

� �

7 l ¼ lmax � cA
KA
S
þcA

rP ¼ a � lþ b

8 l ¼ lmax
cA

KA
S
þcA

rP ¼ rP;max � cP

KPþcPþ
c2
P

KI

� �

9 l ¼ lmax � cG
KG
S
þcG
� cA

KA
S
þcA
� KP

cPþKPð Þ rP ¼ a � dcX
dt þ b � cX

� �
� 1� cP

cP ;max

� �

10 l ¼ lmax � cA

KA
S
þcAþ

c2
A

KA
I

rP ¼ a � lþ b
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an alternative, pyruvate formation was modeled using
a modified Michaelis–Menten equation for non-
competitive product inhibition [24] (see models 2, 4, 6,
and 8). Finally, model 9 includes a modified Luede-
king–Piret equation together with the Levenspiel term
to describe pyruvate formation and product inhibition.
The proposed models are summarized in Table 1.

Substrate uptake

The biomass dependent substrate consumption rates are
expressed in Eqs. 1 and 2. Yields such as biomass/glu-
cose YX/G and biomass/acetate YX/Awere assumed to be
functions of the biomass growth and maintenance
energy demand (Eqs. 3 and 4).

rG ¼
l

YX=G

ð1Þ

rA ¼
l

YX=A

ð2Þ

YX=G ¼
YX=G; max � l

YX=G; max � mG þ l
ð3Þ

YX=A ¼
YX=A; max � l

YX=A; max � mA þ l
ð4Þ

A simplified overview of the basic model character-
istics is given in Table 2.

The mass balance model for the fed-batch fermentation

The mathematical model (Eqs. 5, 6, 7, 8, and 9) for the
fed-batch fermentation of recombinant E. coli based on
the mass balance of the components in a fed-batch reac-
tor is represented by the following differential equations:

dcX
dt
¼ � qV

V
� cX þ l � cX ð5Þ

dcG
dt
¼ � qV

V
� cG þ

qVG

V
cG;0 � rG � cX � rP � cX ð6Þ

dcA
dt
¼ � qV

V
� cA þ

qVA

V
cA;0 � rA � cX ð7Þ

dcP
dt
¼ � qV

V
� cP þ rP � cX � YP=G ð8Þ

dV
dt
¼ qVG þ qVA ¼ qV ð9Þ

where V is the biosuspension volume,qV is the time-
dependent overall volumetric flow rate, qVGand qVA are
the analogues for glucose (G) and acetate (A), and cG,0

and cA,0 are glucose and acetate concentration in the
feed.

Experimental

Strain and medium

E. coli YYC202ldhA::Kan [1, 6, 7] was stored at )80�C
in LB medium containing glycerol (50%). The culture
was reactivated by inoculating a frozen aliquot (500 lL)
into an Erlenmeyer flask with 200 mL mineral medium,
which was incubated at 37�C on a rotary shaker (3033,
GFL GmbH, Burgwedel, Germany) for 15 h.

The fermentation medium contained per liter: 1.50 g
NaH2PO4ÆH2O, 3.25 g KH2PO4, 2.50 g K2HPO4, 0.20 g
NH4Cl, 2.00 g (NH4)2SO4, 0.50 g MgSO4, 1 mL trace
element solution, 11 g glucose monohydrate, and 0.79 g
potassium acetate. Trace element solution contained per
liter: 10.00 g CaCl2Æ2H2O, 0.50 g ZnSO4Æ7H2O, 0.25 g
CuCl2Æ2H2O, 2.50 g MnSO4ÆH2O, 1.75 g CoCl2Æ6H2O,

Table 2 Kinetics used for description of biomass growth and
product formation in the developed models. Microbial specific
growth rate approaches: multiple substrate Monod kinetics [17, 18,
19], growth inhibition by product formation according to the
Levenspiel [20], growth inhibition by product formation described
by the Jerusalimsky [21], Monod kinetics and acetate growth
inhibition described by Andrews kinetics [22]. Product formation

kinetics: product formation based on the Luedeking–Piret [23],
product formation according to the Michaelis–Menten equation
for non-competitive inhibition with product [24] and product for-
mation and product inhibition described by the modified
Luedeking–Piret equation together with the Levenspiel term (L–P
Levenspiel)

Model Biomass growth Product formation

Multiple substrate
Monod

Levenspiel Jerusalimsky Monod Andrews Luedeking–Piret Michaelis–Menten L–P Levenspiel

1 + +
2 + +
3 + +
4 + +
5 + +
6 + +
7 + +
8 + +
9 + +
10 + +
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0.12 g H3BO3, 2.50 g AlCl3Æ6H2O, 0.50 g Na2MoO4Æ2-
H2O, 10.00 g FeSO4. Shake flask growth medium con-
tained per liter: 3.00 g Na2HPO4, 1.50 g KH2PO4, 0.25 g
NaCl, 0.50 g NH4Cl, 0.05 g MgSO4, 0.01 g CaCl2,
2.00 g glucose monohydrate, 0.10 g potassium acetate.
The fed-batch fermentation feed medium consisted of
700 g L)1 glucose monohydrate and 109 g L)1 potas-
sium acetate.

Fed-batch fermentation

All experiments were carried out in a 7.5 L bioreactor
(INFORS AG, Bottmingen, Switzerland) containing
2.25 L fermentation medium, which was equipped with
standard control units for pH, pressure, temperature,
aeration, stirrer speed, etc.

After sterilization of the bioreactor and peripheral
equipment, fermentation medium was filled into the
bioreactor through a sterile microfiltration unit (0.2 lm
cut-off, Sartobran, Sartorius AG, Göttingen, Germany)
and pH was adjusted at 7.0 by 25% ammonia titration,
also during the later fermentation process. All experi-
ments were carried out at the temperature of 37�C.
Sufficient aeration (DO (dissolved oxygen) ‡ 40%) was
obtained by vigorous stirring (200–1,800 rpm), airflow
rate (1–10 L min)1), and reactor overpressure (0.2–
0.8 bar). A reflux cooler condensed the outlet gas
stream. The condensate was returned to the medium.
Exhaust gases were analyzed by the gas analyzer (Binos
100 2 M, Rosemont Analytical/Process Analytical
Division, Orville, OH, USA). The bioreactor was inoc-
ulated with 10% of the working volume of a preculture.

The fed-batch experiments were performed under
different glucose-feeding conditions. All considered a
constant feed at 10, 20, and 30 mL h)1, respectively. The
acetate was fed by applying the previously developed
indirect acetate control ensuring acetate saturating
conditions. According to the heuristic approach, acetate
consumption was calculated based on the on-line esti-
mated CO2production rate. As a result of our experi-
mental studies an optimum equimolar ratio between
acetate consumption rate and CO2 production rate was
identified [1, 2].

Analytical methods

The optical density (OD) was measured in a double
beam spectrophotometer (UV-160, Shimadzu, Kyoto,
Japan) at 600 nm. Cell dry weight was measured by fil-
tration of 2.5 mL fermentation broth using pre-weighed
microfilters (0.2 lm cut-off, Schleicher & Schuell, Das-
sel, Germany). After drying for 48 h at 80�C, the filters
were cooled in an exsiccator for another 48 h. After filter
weighing, the cell dry mass was calculated. Glucose
concentration was measured off-line by the enzyme-
based biosensor appliance Accutrend (F. Hoffmann–La
Roche Ltd, Basel, Switzerland).

The concentrations of pyruvate and acetate in the
fermentation supernatant were measured using the
HPLC. Determination of the organic acid concentration
involves the use of two Aminex HPX-87H (Bio-Rad
Laboratories GmbH, Munich, Germany) columns in
series. The separation was performed with 0.2 M H2SO4

solution at a flow rate of 0.5 mL min)1 (PUMP S1000,
Sykam Chromatografie Vertriebs GmbH, Eresing,
Germany) and the detection was at a wavelength of
k=254 nm (diode array detector, DAD). The signal was
analyzed with an integrator (C-R3A, Sykam Chroma-
tografie Vertriebs GmbH) and the sample volume used
was 100 lL.

Data handling

The model parameters were estimated by non-linear
regression analysis and they were optimized using the
Nelder–Mead algorithm [25]. The numerical values of
the parameters were evaluated by fitting the model to the
experimental data with the ‘‘Scientist’’ [26] software
(MicroMath Inc., St. Louis, MO, USA). The model
equations were solved numerically by the fourth order
Runge–Kutta algorithm, which is also offered in the
same software. The set of estimated parameters has been
used for the simulation (Figs. 1, 2, and 3).

The calculated data were compared with the experi-
mental data, recalculated in the optimization routine and
fed again to the integration step until minimal errors
between experimental and integrated values was achieved
(built-in Scientist). The residual sum of squares was de-
fined as the sum of the squares of the differences between
experimental and calculated data. For discrimination of
various models, the minimal value of the residual sum of
squares and the model selection criterion (MSC) [27] were
used as trial functions. The MSC is defined as (Eq. 10):

MSC ¼ ln

Pn
i¼1

wi � Yobsi � Y obs

� �2

Pn
i¼1

wi � Yobsi � Ycalið Þ2

0
BB@

1
CCA�

2 � p
n

ð10Þ

where n is the number of points, wi is the weight applied
to each points, Y obs is the weighted mean of the observed
data, Yobsi is the weighted value of observed data, Ycali

represents the weighted value of calculated data and p is
the level of significance of the simulation. The MSC
attempts to represent the ‘‘information content’’ of a
given set of parameter estimates by relating the coeffi-
cient of determination to the number of parameters (or
equivalently, the number of degrees of freedom) that
were required to obtain the fit. When comparing two
models with different numbers of parameters, this cri-
terion imposes a burden on the model with more
parameters. The most appropriate model will be the one
with the largest MSC.

The ‘‘Episode’’ algorithm for a stiff system of differ-
ential equations, implemented in the ‘‘Scientist’’
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software package, was used for the simulations. It uses
variable coefficient Adams–Moulton and backward dif-
ferentiation formula methods in the Nordsieck form,
treating the Jacobian matrix as full or banded.

Results and discussion

Estimation of parameters

As shown in the preceding section, all models consisted
of a set of five differential equations (Eqs. 5, 6, 7, 8, and
9) thus representing five dependent state variables and
up to 13 parameters. State variables such as biomass
concentration cX, glucose concentration cG, acetate
concentration cA, pyruvate concentration cP, and reac-
tion volume were taken from the experimental studies
presented elsewhere [1, 2]. At the beginning, a primary
model identification was performed using the data
obtained from the fed-batch fermentation with
qVG=10 mL h)1. As already mentioned, the model

identification based on the least-square method to min-
imize difference between experimental and calculated
values of state variables. Model validation was per-
formed using two alternative data sets, namely those of
the fed-batch fermentations when glucose feed rates of
qVG=20 and 30 mL h)1 were installed. In each case, the
MSC criterion was used to qualify the model suitability
for reflecting the experimental findings.

Initial values of parameters YX/G,max,YX/A,max,KS
G,

and KS
Awere those previously identified for growth of

E. coli K12 on a single substrate [28]. The initial value of
the parameter YP/G was calculated from the experi-
mental data (fed-batch fermentation performed at
qVG=10 mL h)1). In all models cP,max was set to be
63.6 g L)1, which represents the experimentally
observed value [1, 2]. All other model parameters were
initially estimated so that negative estimates of simu-
lated concentration curves were avoided.

Table 3 provides an overview of the residual sum of
squares and MSC values obtained after the modeling of
the first data set. As indicated, the models, 5, 7, and 9

Fig. 1 Data obtained by model simulation (model 5, solid line;
model 7, dashed line; model 9, gray line), and experimental data for
biomass (square) and pyruvate (circle) concentration in fed-batch
process at constant glucose volumetric flow rate of
qVG=10 mL h)1

Fig. 2 Data obtained by model simulation (model 5, solid line;
model 7, dashed line; model 9, gray line), and experimental data for
biomass (square) and pyruvate (circle) concentration in fed-batch
process at constant glucose volumetric flow rate of
qVG=20 mL h)1
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have the similar and the lowest sum of square errors.
Additionally, the MSC values are the highest for models
5, 7, and 9 thus stressing their convenience. As a con-
sequence, these models were favored for further analysis.

Interestingly, models 2, 4, 6, and 8, in which pyruvate
formation was described according to the modified
Michaelis–Menten equation with non-competitive
product inhibition, achieved the lowest accuracy level.
However, the consideration of the Luedeking–Piret
approach (models 1, 3, 5, 7, and 9) enabled better model
predictions. Furthermore, some parameter estimates of
the models 2 and 4 were negative, which is meaningless
in a biological sense (data not shown). It is also note-
worthy that the multiple substrate Monod kinetics
(models 1 and 2) and multiple substrate Monod kinetics
with the Levenspiel term for product inhibition were not
able to describe the behavior of the process adequately.
Furthermore, it is known that high acetate concentra-
tions in the fermentation medium lead to inhibition of
biomass growth. This was the reason for considering
Andrews kinetics [22] in model 10. Unfortunately, the

kinetics were not able to describe experimental results
acceptably (Table 3).

For the sake of brevity, only the parameter estimates
(together with the confidence intervals) of the most fa-
vored models, namely models 5, 7, and 9, are listed in
Table 4. The calculated values obtained by simulation
compared to the experimental data points, for biomass
and pyruvate concentrations, are shown in Fig. 1.

As it can be seen, all models are able to mirror the
dynamic behavior of the process. The simulated biomass
concentration curves obtained from model 5 were sig-
nificantly lower than the measured values. Additionally,
the simulated pyruvate curves of model 7 were higher
than the experimental data (Fig. 1). In general, relatively
large error bars were estimated for almost all parameters
of model 5 (except for the parameters a andb of the
Luedeking–Piret approach), which are probably caused
by inadequate kinetic assumptions. On the contrary,
relatively high parameter accuracies were achieved using
the models 7 and 9.

Despite the high parameter accuracy and the rela-
tively high model predictive quality of model 7 this
model should be not favored because acetate was
assumed to be the only limiting substrate for growth. As
already stated, this simplifying assumption motivated
the acetate auxotrophy of the E. coli strain. However,
the strain was not capable of growing without glucose,
which, basically, would necessitate considering addi-
tional intracellular biochemical reactions and thus
obviously contradict the initial motivation to solely use
unstructured models.

The predicted biomass and pyruvate curves of model
9 reflect well the experimental data. On the basis of a
single criterion, the residual sum of squares, model 9
should thus be favored because it achieved the lowest
residual sum of squares. Additionally, the estimated
parameters in this model have acceptable confidence
interval and the model is mechanistically correct. Fur-
thermore, model 9 is mechanistically the most accurate
one because it contains all experimentally observed
effects: growth inhibition by pyruvate and pyruvate
inhibited product (pyruvate) formation.

Some parameter values given in Table 4, can be
qualified as biologically meaningless and are the result of
the numerical Nelder–Mead parameter identification

Table 3 Residual sum of squares and model selection criterion
(MSC) for different models

Model Residual sum of squares MSC

1 3.97Æ102 2.18
2* 1.15Æ103 1.09
3 5.58Æ102 1.82
4* 1.39Æ103 0.88
5 2.46Æ102 2.68
6 8.37Æ102 1.39
7 2.06Æ102 2.59
8 4.31Æ102 2.14
9 1.99Æ102 2.77

*Negative values of estimated parameters.

Fig. 3 Data obtained by model simulation (model 5, solid line;
model 7, dashed line; model 9, gray line), and experimental data for
biomass (square) and pyruvate (circle) concentration in fed-batch
process at constant glucose volumetric flow rate of
qVG=30 mL h)1
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considering partially non-appropriate macrokinetic
models. For example, the yield coefficients YX/G,max and
also lmax appear to be too high. However, if large
confidence intervals of these parameters (lmax,YX/

G,max,YX/A,max,mG,mA, etc.) are taken into account the
parameter values are fairly reasonable (Table 4). Pref-
erably, these parameters should have been estimated
directly from the experiments which—unfortu-
nately—was not possible because of the properties of the
E. coliYYC202 ldhA::Kan used. For example, cell
growth is realized by the simultaneous consumption of
the C sources glucose and acetate, thus making inde-
pendent growth-parameter estimation in fed-batch
experiments impossible. Nevertheless, a simple, easy-to-
use, and robust model has successfully been identified,
which can be used for typical process engineering
applications such as process optimization and design.
This model (model 9) and the estimated parameter are
the first step in the quantitative understanding of the
basic cellular characteristics of the genetically modified
production strain used in this study.

Validation of the models

Kinetic modeling is still a difficult task for bioprocesses,
where a succession of decisions must be made in respect
of which systematic methodologies are still lacking.
Therefore it is important to validate a model by using
data other than those applied to identify parameters. In
order to further validate the selected models (models 5,
7, and 9), further fed-batch experiments were performed
at constant volumetric flow rate of glucose of qVG=20
and 30 mL h)1 as mentioned before. For model valida-
tion experimental data were compared to data obtained
by model simulation for biomass and pyruvate concen-
trations (Figs. 2 and 3).

The good fitting quality of the model 9 to the biomass
concentration and especially to the pyruvate concen-
tration is remarkable for both volumetric glucose flow
rates. The models 5 and 7 were not able to predict bio-
mass and pyruvate concentrations with acceptable
accuracy. Pyruvate levels predicted by those models
were approximately 50% higher than experimental
observations.

Unfortunately, all developed models were not able
to predict glucose concentration profiles adequately
especially when high glucose feeds were used
(qVG=30 mL h)1). Rising glucose levels were suggested
by all models for the pyruvate production period
starting after 20 h fermentation time (data not shown).
This was in accordance with the primary assumption
that glucose is significantly used for biomass growth,
which obviously did not occur during the pyruvate
production. However, no glucose accumulation was
observed experimentally indicating that a higher
amount of glucose was consumed for pyruvate pro-
duction, by-product formation and maintenance as
primarily expected. In this regard, the working
hypothesis is remarkable in that high extracellular
pyruvate concentrations (which occur during the pro-
duction phase) could cause futile cycling owing to ac-
tive pyruvate export and diffusive pyruvate import (see
[2]). Obviously, as yet, this significant impact has not
been covered by the models, nor has the fact that
approximately 50% of the acetate used is converted
into CO2 production. Both aspects would necessitate a
structured model formulation and could not be covered
by the current modeling approaches used.

Sensitivity analysis

In order to qualify the sensitivity of model predictions
with respect to estimated parameter errors, a sensitivity
analysis has been performed [29]. The parameter values
of model 9 (Table 4) were taken as reference values. The
solutions of the model equations are then calculated
with relative parameter errors ranging from )50% to
+50% of the reference values. The final concentration
of biomass cX and the final pyruvate concentration cP
were than compared to the reference concentrations. All
simulations were performed for the period of 35 h. The
results are shown in Fig. 4.

Both, calculated biomass and pyruvate concentra-
tion, are sensitive to yield coefficients,YX/G,YX/A,YP/G.
This effect was expected because decreasing yields thus
indicate reduced final titers provided that the same
amount of substrate is used. Interestingly, there was
almost no effect on the investigated concentrations

Table 4 Estimated values and
confidence intervals of
parameters for the models 5, 7,
and 9

Parameter Model 5 Model 7 Model 9

YX/G,max 1.45±0.74 – 9.18 10)1±1.01 10)1

YX/A,max 9.21 10)1±2.18 10)1 8.91 10)1±5.14 10)1 1.52±7.52 10)1

YP/G 6.78 10)1±3.12 10)1 5.49 10)1±4.90 10)2 9.32 10)1±3.80 10)1

lmax 2.35±2.27 1.31±9.04 10)1 1.69±2.87 10)1

KG
S 1.78 10)2±4.76 10)2 – 1.10 10)1±1.05 10)1

KA
S 2.93 10)1±9.59 10)2 2.46 10)1±5.49 10)3 3.22 10)1±1.94 10)1

mG 4.41 10)2±6.14 10)2 – 4.90 10)2±1.77 10)2

mA 1.26 10)1±3.44 10)2 1.13 10)1±8.30 10)2 1.47 10)1±6.60 10)2

a 7.91 10)1±3.53 10)1 5.34 10)1±2.50 10)1 6.10 10)1±3.34 10)1

b 2.03 10)1±8.00 10)2 1.79 10)1±3.93 10)2 2.14 10)1±2.89 10)2

KP 1.77±2.87 – 3.93±1.32
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when yield coefficients are higher than their nominal
value.

The maintenance coefficient for growth on acetate,
mA, was found to be the most sensitive parameter for the
achievable biomass concentration. If mA was higher
than the reference value, the final biomass concentration
reduced linearly. On the contrary, there was no effect on
the biomass titer if mA values were lower than the
reference. mA also significantly affects the pyruvate
concentrations (as shown in Fig. 4). The non-growth-
associated product formation coefficient b was found to
be most important parameter for product formation.
Increasing b caused linear pyruvate concentration rises.

Both, calculated biomass and pyruvate concentra-
tions are slightly sensitive to maintenance coefficient for
growth on glucose mG and growth associated product
formation coefficient a.

Finally, the model predictions are almost insensitive
to the parameterslmax,KS

G,KS
A, and KP. Unfortunately,

this clearly indicates the necessity to improve the
parameter accuracy in further studies. For this, the
optimal experimental design method focusing on con-
tinuous (or fed-batch) experiments should be applied
[11, 13].

Conclusions

Ten simple, unstructured models have been developed
for the bioconversion of glucose to pyruvate in a fed-
batch process by genetically modified E. coli strain. All

Fig. 4 Sensitivity analysis for the kinetic parameters of the model.
The changes in the final value of the biomass (solid line) and
pyruvate (dashed line) concentrations are represented with respect
to the deviation of the nominal value of considered parameter
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models were identified by the least-square fit and qual-
ified by the MSC thus allowing the estimation of cor-
responding model parameters. It is noteworthy that the
model identification was based on a different data set
than the model validation. Within the investigated
experimental range the model, which combines growth
inhibition by pyruvate (Jerusalimsky approach), and
pyruvate inhibited product formation (described by
modified Luedeking–Piret/Levenspiel term) should be
favored. Using this modeling approach, an acceptable
model prediction for cell growth and pyruvate formation
was achieved, which are both essential variables to
model process alternatives and scale-ups. In the case of
glucose, further studies must be performed to increase
the model predictive quality.

In principle, even the favored model 9 represents only
the first step in the modeling of the pyruvate production
process, strictly speaking, by uncovering the limits of the
unstructured model used. The need to incorporate
additional aspects of energy demand or by-product
formation was identified with necessities to extend the
existing model by structured modeling terms. Never-
theless, the identified model 9 should be qualified as a
promising tool for modeling studies as well as for fur-
ther, more detailed, kinetic modeling approaches.
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