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Abstract One of the difficulties encountered in control
and optimisation of bioprocesses is the lack of reliable
on-line sensors for their key state variables. This paper
investigates the suitability of using on-line recurrent
neural networks to predict biomass concentrations. In-
put variables of the proposed recurrent neural network
are feed rate, liquid volume and dissolved oxygen.
Experimental results revealed that the proposed neural
network is able to predict biomass concentrations with
an accuracy of ±11%.

Introduction

Bioprocesses are the most complex in all fields of process
engineering due to high dimension, nonlinearity and
dynamical characteristics. Ability to control biopro-
cesses accurately and automatically at optimal states is
of considerable interests to many fermentation indus-
tries because it can reduce production costs and increase
yield while at the same time maintaining the quality of
the metabolic product [1, 2, 3, 4]. However, designing a
control system for bioprocesses is not a straightforward
task due to: (i) significant uncertainty in the model, (ii)
lack of reliable on-line sensors which can accurately
detect the key state variables, (iii) nonlinear and time
varying nature of the process, and (iv) slow response of
the process, in particular for cell and metabolic con-
centrations. This work is mainly focused on the second

above mentioned problem. Throughout the years, the
key state variables, such as biomass concentrations in
fermentation processes are usually measured off-line
with long measurement delay. This limits the range of
control algorithms that can be applied to the process.
Recently, artificial neural networks (ANNs) have drawn
considerable attention to the development of on-line soft
sensors [5, 6, 7, 8].

ANNs are computational systems whose architecture
and operation are inspired from our knowledge about
biological neural cells (neurons) in the brain. These are
not simulation of real neurons in the sense that they do
not model the biology, chemistry, or physics of a real
neuron. They do, however, model several aspects of the
information combining and pattern recognition behav-
iours of real neurons in a simple yet meaningful way.
Neural networks have an incredible capability for
emulation, analysis, prediction, and association. They
are able to solve difficult problems in a way that
resembles human intelligence. What is unique about
neural networks is their ability to learn by example.
However, ANNs can and should be retrained on or off-
line whenever new information becomes available.
Recurrent neural networks (RNNs), a member of the
ANN family, have proven to be a valuable tool and are
extensively used in modelling and control of nonlinear
dynamic systems [9, 10, 11, 12].

Apart from the selection of neural networks, another
important issue is the selection of appropriate state
variables to be measured online. Soft sensors work in a
manner of cause and effect; the inherent biologic relation
between measured and unmeasured states could signifi-
cantly affect the prediction accuracy. Carbon dioxide,
pH, ethanol and dissolved oxygen (DO) can be easily
measured online in a research laboratory using standard
sensors. Among them, dissolved oxygen, which reflects
the fundamental level of energy transduction in biore-
action, is intricately linked to cellular metabolism. Nor
et al. [13] studied the online application of dissolved
oxygen and mass balances used to estimate the specific
growth rate of a fed-batch culture of Kluyveromyces
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fragilis. Dissolved oxygen was also employed in [14] to
detect the Acetate formation in Escherichia coli. In [15],
neural networks have been used to relate the increase of
biomass concentration to the increase of lactic acid
concentration. This approach requires an additional
sensor for measuring the lactic acid concentration.

This paper investigates the suitability of using RNNs
to predict on-line biomass concentrations in a fermen-
tation process. RNN input variables are feed rate, liquid
volume and dissolved oxygen. All inputs are chosen
because they can easily be measured on-line. Output of
the RNN is the biomass concentration. Selection of a
suitable RNNs topology is done by data generated from
a mathematical model; the topology is then re-trained by
experimental data. The layout of the remainder of the
paper includes determination of a soft sensor structure
in Sect. 2, experimental results in Sect. 3, and conclu-
sions in Sect. 4.

Soft sensor structure determination and implementation

RNNs are chosen to estimate the biomass because of
their strong capability to capture dynamic information
underlying the input-output data pairs. The structure of
the proposed neural soft sensor is given in Fig. 1. This
neural network consists of one hidden layer, one output
neuron, feedforward paths, feedback paths and tapped
delay lines (TDLs). In order to enhance dynamical
behavior of the sensor, outputs from the output layer
and the hidden layer are fed back through TDLs. The
output of the ith neuron in the hidden layer is of the
form:
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where p is the neural network input, ^̂y is the neural
network output and h is the hidden neuron’s output.

bH
i is the bias of the ith hidden neuron. na, nb, nc are the
number of input delays, the number of output feedback
delays and the number of hidden neurons, respectively.
fh is a sigmoidal function, W I

ij is the weight connecting
the jth delayed input to ith hidden neuron, W R

ik is the
weight connecting the kth delayed output feedback to ith
hidden neuron, and W H

il is the weight connecting the lth
hidden neuron output feedback to the ith hidden neu-
ron.

Only one neuron is placed in the output layer, so the
output is:
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where, fY is a pure linear function, W Y
m is the weight

connecting the mth hidden neuron’s output to the out-
put neuron, and bY is the output neuron bias.

A mathematical fermentation model given in [16]
consists of six differential equations and is used to gen-
erate simulation data. Four different feed rate profiles
are chosen to excite the mathematical fermentation
model: the random step, the square wave, the saw wave
and an industrial feeding policy-like sequence. They are
shown in Fig. 2. Each feed rate profile yields 150 input-
output (target) pairs corresponding to 6 min sampling
time during a 15 hr fermentation.

A well-known fact for choosing the training data
set is that it must cover the entire state space of the
system as many times as possible. In this study, the
random step, which excites the process the most, is
used to generate the training data set. Before training
an RNN, the inputs and target data have to be pre-
processed (scaled) so that they are within a specified
range [-1,1]. This specified range is the most sensitive
area of the hidden layer activation function. In this
case, the output of the trained network will also be in
the range [-1,1].

Fig. 1 Structure of the proposed neural soft sensor Fig. 2 Four different feed rate profiles
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The performance function used for training and
testing the neural networks is a percentage mean square
error index [15], and is defined as:

E ¼
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where N is the number of sampling data pairs, X m
t is the

measured (actual) value of biomass, and ^̂X t is the cor-
responding estimated value predicted by the neural soft
sensors.

The Levenberg-Marquardt backpropagation training
algorithm is adopted to train the neural networks due to
its faster convergence and memory efficiency [17, 18].
The algorithm can be summarised as follows:

1. Present input sequences to the network. Compute the
corresponding network outputs with respect to the
parameters Xk (i.e. weights and bias), the error e and
the overall MSE.

2. Calculate the Jacobian matrix J through the back-
propagating of Marquardt sensitivities from the final
layer of the network to the first layer.

3. Update the network parameters using:

DXk ¼ � JT xkð ÞJ xkð Þ þ lkI
� ��1

JT xkð Þe ð4Þ

where, lk is initially chosen as a small positive value
(e.g., lk=0.01).

4. Recompute the MSE using Xk+DXk. If this new
MSE is smaller than that computed in step 1, then
decrease lk, let Xk+1=Xk+DXk and go back to step
1. If the new MSE is not reduced, then increase lk

and go back to step 3.

The algorithm terminates when: (i) the norm of gra-
dient is less than some predetermined value, or (ii) the
MSE has been reduced to some error goal, or (iii) the lk

is too large to be increased practically, or (iv) the pre-
defined maximum number of iterations has been
reached. During training, an early stopping method is
useful to prevent a neural network from being over-
trained. When random step data are used to train the
network, another set of data with a different feed rate
profile will be used as a validation data set. The error on
the validation set is monitored during the training pro-
cess. The validation error will normally decrease during
the initial phase of training. However, when the network
begins to over fit the data, the error on the validation set
will typically begin to rise. When the validation error
increases for a specified number of iterations, the
training is stopped, and the weights and biases at the
minimum of the validation error are obtained.

The rest of the data sets, which are not seen by the
neural network during the training period, are used in
examining the trained network. For each network
structure, 50 networks are trained; the one that produces
the smallest mean error of the test data sets is retained.
The error between the network output and the target

output is used to evaluate the ‘‘goodness’’ of the net-
work. Errors for various combinations of input and
output delays (hidden layer output feedback delay is
fixed at 1) are shown in Fig. 3 from which can be seen
that 12 hidden neurons networks frequently out-perform
the 6 hidden neurons networks. The errors produced by
the 0/4/1 structure (four output feedback delays, one
hidden layer output feedback delay and no input delays)
are smaller than others, and are very close for two dif-
ferent numbers of hidden neurons. The six hidden neu-
rons network with the above structure is chosen for the
online biomass estimation because it has less hidden
neurons.

One of the simulation results is plotted in Fig. 4. The
soft sensor provides a good prediction of the growth of
biomass. The percentage mean square error of predic-

Fig. 3 Estimation mean error on testing data sets for neural
networks with different combinations of delays. ‘0/4/1’ indicates
that the number of input delays=0, the number of output feedback
delays=4, the number of hidden layer output feedback delays=1

Fig. 4 Simulation result of biomass prediction using 6 hidden
neuron network for a fed-batch fermentation process
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tion is less than 3%. It should be mentioned that this
prediction is based on the assumption that data sets for
training, validation and testing are free from noise.
However, this assumption is not true in real environ-
ments. Practically, errors in measurement, noisy input
and output data may affect the accuracy of biomass
estimation.

Experimental results

Yeast strain, Saccharomyces cerevisiae, produced by
Goodman Fielder Milling and Baking N.Z. Ltd. was
grown in a YEPD medium [19] with the following
composition: Dextrose 20 g/L, Yeast extract 10 g/L,
Peptone 20 g/L, and commercial anti-foam 10 drops/L.
Starter culture was performed in the shaker at 30�C and
200 RMP for 60–90 min.

Three laboratory experiments with different feed
rates (Fig. 2) have been carried out using 3-liter fer-
mentors (New Brunswick Scientific Co., Inc., USA);
see Fig. 5. These experiments are used to examine the
suitability of the proposed soft sensor for real fer-
mentation processes. Three sets of data are collected,
27 samples are taken during an 8 hr fermentation for
each run. One set of data is used for re-training the
neural network, one is used for validation and one is

used for testing. Linear interpolation is used to make
the sampling time equal.

One of the prediction trajectories is presented in
Fig. 6. The network starts from an arbitrary initial
point. As can be seen from Fig. 6, the soft sensor is able
to converge within a very short time and can predict the
trend of the growth of biomass, but it gives a high
fluctuation in biomass estimation. In order to overcome
this problem, two additional delayed inputs are added to
the proposed network (RNN obtained in the previous
section). As shown in Fig. 7, a smooth prediction has
been achieved. However, the error is slightly higher than
that in Fig. 6. By incorporating the hidden layer feed-
back (with unit delay, see Fig. 1) to the input of the
network, the prediction mean error is reduced to 10.3%.
The biomass estimation is given in Fig. 8. The experi-
mental results show that the smallest percentage mean
error is obtained from the neural soft sensor with four
output feedback delays, one hidden layer output feed-
back delay and two input delays.

Fig. 5 Experimental setup

Fig. 6 On-line biomass prediction in a fed-batch baker’s yeast
fermentation process with zero network input delays, four output
feedback delays, one hidden layer output feedback delay

Fig. 8 On-line biomass prediction in a fed-batch baker’s yeast
fermentation process with two network input delays, four output
feedback delays, and one hidden layer output feedback delay

Fig. 7 On-line biomass prediction in a fed-batch baker’s yeast
fermentation process with two network input delays, four output
feedback delays, and no hidden layer output feedback delays
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Conclusion

This paper has investigated the suitability of using
recurrent neural networks to predict biomass concen-
trations online. Inputs to the proposed recurrent neural
network are the feed rate, liquid volume and dissolved
oxygen. A suitable topology of the neural network is
obtained via data generated by a mathematical model.
The suitable topology of the RNN is then evaluated via
experimental data. From the results obtained in both
simulation and real processes, it can be concluded that
RNNs are indeed a powerful tool for implementing an
on-line biomass soft sensor for fermentation processes.
The proposed neural network is able to predict the
biomass concentration within 11% of its true value.
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