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Abstract The crucial problem associated with control of Q; specific consumption or production rate,
fed-batch fermentation process is its time-varying char- mol X C-mol™ x h™
acteristics. A successful controller should be able to deal m glucose consumption rate for the mainte-
with this feature in addition to the inherent nonlinear nance, mol X C-mol™ x h™!
characteristics of the process. In this work, various kra; volumetric mass transfer coefficient for
schemes for controlling the glucose feed rate of fed-batch component i, h™*
baker’s yeast fermentation were evaluated. The controllers K; saturation constant of component i, mol x 17!
evaluated are fixed-gain proportional-integral (PI), K; inhibition constant, mol x 17

scheduled-gain PI, adaptive neural network and hybrid
neural network PI. The difference between the specific Greek symbols

carbon dioxide evolution rate and oxygen uptake rate (Q.~ o, f5, y adjustment law paramaters
Q,) was used as the controller variable. The evaluation was grade of membership function
carried out by observing the performance of the control- p; specific growth rate based on component i, h™
lers in dealing with setpoint tracking and disturbance re- !
jection. The results confirm the unsatisfactory Uer critical specific growth rate, h™
performance of the conventional controller where signifi- A difference
cant oscillation and offsets exist. Among the controllers ¢ adaptive factor
considered, the hybrid neural network PI controller shows
good performance. Subscripts and superscripts
x baker’s yeast cell
Abbreviations s glucose
CER Carbon dioxide evolution rate e ethanol
min minimum; a function 0 oxygen
PI Proportional-integral c carbon dioxide
OUR Oxygen uptake rate f feed
RQ Respiratory quotient ox oxidative
pr production
List of symbols * interface
C; concentration of component i, mol X It max maximum
E absolute error differentiation between process lim limitation
and model red reductive
e error up uptake
F feed rate, 1 x h™ t, t+1, t-1  sampling point, discrete time
k. proportional band e ethanol
k; integral time act actual
14 volume of the fermentor, | sp setpoint
Yi; yield of component i on j, mol X mol™ pred predicted
cor corrected
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gain and at the same time be able to deal with the inherent
process nonlinearity.

Generally, strategies which have been developed in
controlling feed rate of fed-batch fermentation can be di-
vided into three categories, namely single optimal control,
single feedback control, and hybrid control. In single op-
timal control strategy, the feed rate is adjusted by means of
an optimal profile determined either offline (programmed
control approach) or online (feedforward control ap-
proach). The determination of this optimal feed rate pro-
file can be carried out by using the simplified material
balance equations and optimization procedures [1, 2, 3, 4].
In single feedback control strategy, the regulation of the
feed rate relies merely on the feedback control scheme.
Early attempts on this strategy were made with PID con-
trollers. Subsequently, motivated by nonlinearity and the
modeling uncertainty of bioprocesses, other feedback ap-
proaches have been developed involving model-based
adaptive schemes [5, 6]. Application of hybrid control
strategies commonly involved optimal and feedback con-
trollers. The optimal controller, either programmed or
feedforward control approach, serves as the primary
controller, while the feedback controller serves as the
compensator [7, 8, 9].

During the past decade, the use of artificial neural
networks in fed-batch fermentation control has grown
significantly [10, 11]. Neural networks can represent
complex nonlinear relationships and uncertainty as posed
by the fed-batch fermentation process. The use of neural
networks as state estimation, pattern recognition, fuzzy
membership function adjustment, and parameter adapta-
tion for the purpose of fed-batch fermentation control has
been intensively studied [10]. However, the use of it as a
direct controller has not been intensively explored yet.
This is because there are difficulties encountered in for-
mulating a neural network control model. Due to its time-
varying characteristics, fed-batch fermentation requires
substantial training data for the neural network control
model to represent its dynamic behavior. Unfortunately,
such a large amount of data is costly and difficult to ob-
tain. Moreover, by using such a large number of data for
training, the desired model with a small error is difficult
and takes a long training time.

A gain-changing scheme has shown to be able to im-
prove the performance of neural-network-based control-
lers for nonlinear processes by eliminating or reducing
offsets. Schubert et al. [12] applied this scheme to adapt
the hybrid neural-network model of the internal model
controller (IMC) for a fed-batch yeast cultivation. The
hybrid model was adapted online by additionally training
it with small gains, in order to reduce the deviation be-
tween its estimation values and the values monitored at the
plant. Dayal et al. [13] incorporated a gain-scheduling
scheme in the neural-network internal model controller
(NN-IMC) for a nonlinear continuous stirred-tank reactor
(CSTR). This scheme was aimed at correcting for the
control action of the neural-network controller in order to
eliminate the steady-state offsets of the controlled variable
due to the discrepancy between the inverse model of the
neural-network controller and the internal neural-network
model.

In this work, we used an adaptive scheme using a fuzzy-
logic method to improve the performance of an inverse
neural-network controller for fed-batch baker’s yeast fer-
mentation. A hybrid strategy involving neural-network
and PI controllers was proposed to improve the perfor-
mance further. The performance of these neural-network-
based controllers are compared to fixed- and scheduled-
gain proportional-integral (PI) controllers. The control
objective was to obtain optimum productivity and yield of
baker’s yeast by regulating the glucose feed rate. To reg-
ulate the glucose feed rate, the difference between the
specific carbon dioxide evolution rate and oxygen uptake
rate (Q.-Q,) was chosen as the controlled variable.

2

Baker’s yeast fermentation

Optimizing productivity and yield is essential in baker’s
yeast fermentation. This issue emerges because a conflict
exists between the two. If glucose is excessively available in
the culture, the productivity is high, but the yield is low. In
contrast, if the culture lacks glucose, the productivity is
low, but the yield is high. According to Sonnleitner and
Kappeli [14], three different metabolic pathways take place
during baker’s yeast fermentation. They are oxidation of
glucose (R1), reduction of glucose (R2), and oxidation of
ethanol (R3). These pathways are governed by the respi-
ratory capacity of the cells. If the substrate flux is less than
the respiratory capacity of the cells, both pathway R1 and
pathway R3 are active with priority for pathway R1.
Pathway R2 is active only if the glucose flux exceeds the
respiratory capacity of the cells. Glucose flux is high when
its residual concentration in the fermentation medium is
high. Conversely, glucose flux is low when its residual
concentration is low. Hence, the need to control the re-
sidual concentration of glucose in the fermentation me-
dium at a level which will give glucose flux matching the
respiratory capacity of the cells.

Although, all the pathways result in cell production, the
pathway R2 is economically undesirable because it leads to
ethanol formation which results in low baker’s yeast yield.
One cannot rely on pathway R3 to utilize all the ethanol
formed because part of it may be carried out of the fer-
mentor along with aeration gases due to its volatility. The
way to overcome this productivity and yield conflict is by
accurately regulating the glucose feeding in such a way that
it ensures the glucose concentration is tightly maintained
in the state where only pathway R1 occurs and the respi-
ratory capacity of the cells are utilized to the maximum.

3

Control variable selection

Since glucose concentration is the main factor affecting the
switching among the various pathways mentioned above,
its regulation is important, but it is a state variable which
is difficult to measure [6]. Besides, its measurement does
not give any indication as to how the glucose is channeled
through different pathways. Ethanol concentration in the
culture, which can be easily measured by gas chromato-
graphy, can be also used to observe the switching of the
pathways. The best variable which gives indication of
switching of pathways in baker’s yeast fermentation is the
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respiratory quotient (RQ). The respiratory quotient (RQ)
is the ratio of the carbon dioxide evolution rate (CER) to
the oxygen uptake rate (OUR). RQ greater than 1 indicates
ethanol formation and RQ in the range 0.9-1.0 indicates
oxidative growth. Although using RQ as a controlled
variable showed some success in some studies, control
quality has been limited in the sense that glucose con-
centration in the culture is not tightly maintained at the
optimal value [15]. This is because an RQ value around 1.0
does not mean the full utilization of the respiratory
capacity of the cells through pathway R1.

In this study, we used the difference between specific
CER and OUR, i.e., Q--Q,, as a controlled variable by
regulating the glucose feed rate. The use of the specific
quantities enables Q.~Q, to be held constant and inde-
pendent of the increasing change in biomass during fer-
mentation. Since the control variables involve specific
values, besides measuring CER and OUR, biomass con-
centration also needs to be measured. This can be achieved
by sensors [16] and various estimation methods such as
neural networks that have been developed [12, 17]. Unlike
ethanol concentration and RQ, Q.-Q, has a unique value
for the state of the full utilization of the respiratory capacity
of cells through pathway R1. Figure 1 illustrates this point.

Figure 1 was generated by computer simulation based
on the model reported by Pertev et al. [18]. The same
model was used to evaluate the performance of the various
controllers. The model and its parameter values are given
in Table 1 and Table 2, respectively. The profile of the feed
rate was adjusted in such a way that the activation of the
three pathways could be observed, as shown by the change
in glucose and ethanol concentrations in the culture dur-
ing fermentation. At around 3 h, it can be seen that the
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Fig. 1. Changes in ethanol concentration, the respiratory capacity
(RQ), and the dierence between specific carbon dioxide evolution rate
and oxygen uptake rate (CER-OUR) due to varying glucose feed rate

ethanol concentration is just beginning to rise from zero
value. At this point, the respiratory capacity of the cells is
fully utilized for glucose oxidation. At this state, RQ is
equal to 1.083 and the value of Q.-Q, is 0.0062. At the later
part of the fermentation, i.e., after 7 h, even when the re-
spiratory capacity is not fully utilized for glucose oxida-
tion, the RQ value remains constant at 1.083, but a
variation in Q.-Q, is observed. Hence, RQ equals 1.083
does not mean that the respiratory capacity of the cells is
fully utilized. However, if the magnitude of Q.-Q, is equal
to 0.0062, it means the respiratory capacity of the cells is
tully utilized for glucose oxidation. Below this value means
it is not fully utilized for glucose oxidation. In baker’s

Table 1. Process model used in the simulation study

Balance equations
dC,/dt = (p, — F/V)Cy
dc,/dt = (F/V) (c{ - cs> - ((us/Y;75> + (@) + m> C.
dc,/dt = —(F/V)CL + (&' — Q)
dC,/dt = —(F/V)Ch — Q,Cx + kua, (C; — C,)
dC./dt = —(F/V)C + Q.Cy + kia . (C — C.)
dv/dt=F

Rate equations
Q. = Q(Cy/ (K + )
ng = Q™ (Co/ (Ko + Go))
Q?m = .ucr/ ;:75 . .
Q¢ = min([(Q); (&™): (YosQ™)])
Qe =Q — Q¥
e = Q™ (Ce/ (K. + C@))(Kl/(Kl +C))
Q" = min([(Q"); (@™ = Q*Yoss) Yore)])
Qgr = e/sQEEd
Hy = Y Q0 + VRO 4 Y Q0
b= Yo+ v
Q. = YHQ + Vg + v,.0x
Q = o/stgx + Yo/ngx
RQ = Qc/Qo

Table 2. Parameter values for the process model [18]

Parameters Values

m 0.00321 mol x C-mol™ x h™*
K, 0.008 mol x 1!

K; 0.001 mol x 1!

K, 0.000003 mol x 17

K, 0.002 mol x 1!

Qmax 0.70805 mol x C-mol™ x h™!
Qmax 0.20 mol x C-mol™ x h™
Qrax 0.06 mol x C-mol™'h™*
Uer 0.15753 h™

Yyse 2.0 mol x mol™!

Yese 0.68 mol x mol™!

Yo 1.28 mol x mol™’

Yo/ 1.9 mol x mol™

Yo 2.17 mol x mol™

YC"/"S 2.35 mol x mol™

Ycrjf 1.89 mol x mol™!

Yo 4.570636 mol x mol ™'
Y;jf 0.1 mol x mol™!

C: 0.00001 mol x 17

c 0.000241 mol x 17

kra, 600 h!

kpa. 4704 h™
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yeast fermentation, respiratory capacity of the cells should
be used fully to maximize productivity. Hence, Q.-Q, is a
better control parameter than RQ for regulating glucose
feed rate. It should be noted that, due to its small mag-
nitude, the Q~Q, value may be affected by noisy mea-
surement. However, experimental results show that noises
in carbon dioxide measurement are small enough, i.e.,
within 0.01%, and the same range applies for oxygen
measurement as well [19]. Also biomass concentration can
be estimated with only a small error and hence, it is rea-
sonable to conclude that the use of Q.-Q, is practically
viable. In spite of this, in practice, an effective noise filter
is still recommended.

4

Simulation study

In this work, the fed-batch baker’s yeast fermentation
process was simulated using the model given in Table 1.
The length of fermentation time was fixed at 15 h and the
sampling time interval was 0.05 h. The process was initiated
with the following conditions: 0.54 mol X It 5x107*

mol x 17, 2.41 x 107 mol x 1"}, and 0 mol x 1! for cell,
glucose, ethanol, oxygen, and carbon dioxide concentra-

control objective was to obtain optimum productivity and
yield of baker’s yeast by tightly controlling the glucose feed
rate to the culture to maintain the Q.-Q, value at 0.0062.
The controllers studied were PI controllers with fixed-
and scheduled-gain schemes and neural-network-based
controllers with single adaptive and hybrid schemes. The
performance of the controllers was evaluated by observing
the process responses through setpoint tracking for the
nominal value of Q.~Q, at 0.0062 and disturbance rejection
studies. The disturbance was the change in glucose con-
centration in feed stream from its nominal value of
1.6 mol x I"!. The disturbance was introduced at t=2.0, 5.0,
7.5, 10.0, and 12.5 h with the value of the glucose con-
centration changed to 1.7, 1.5, 1.7, 1.5, and 1.6 mol x I
respectively. The control action was constrained within the
range of 0 to +750 1 X h™' for practical reasons.

5

Results and discussion

5.1

Fixed-gain PI controller

The algorithm of the controller is as follows:

tions in the culture, respectively, and 50,000 1 for volume At
of the fermentor. In the first 0.90 h of the operation, the AFpy =ke( e — e + k_Iet (1)
glucose, whose concentration in the feed was 1.6 mol X L
was added to the fermentor according to a predetermined 5
profile. Then, at £=0.90 h, the controller was activated. The e = (Q — Q")SP_(QC - Q) (2)
(a) g X10 3 ,
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Fi1 = F + AF, (3)

The controller parameters, k. and k;, were determined by
means of trial and error and the best result is presented
here, i.e., for tuning values of 400 and 0.00007 for k. and k;,
respectively. The values are fixed throughout the fermen-
tation. The performance of the controller for the setpoint
tracking and disturbance rejection is shown in Fig. 2.

From Fig. 2a, we can see that in the early period after
control was implemented, i.e., from ¢ = 0.90 to ¢t = 1.5 h,
the controller is able to track the setpoint in a reasonable
manner. Further to this, offset is observed below the set-
point with increasing magnitude. In Fig. 2b, significant
oscillation is observed when the controller responds to the
disturbances in the early period of the process, i.e., in the
first 7.5 h operation. It can been seen that the response of
the controller is faster when the deviation is negative
(above the setpoint) compared to that of positive (below
the setpoint). Generally, it can be pointed out that the
performance of this fixed-gain PI controller is poor due to
the existence of offset.

5.2

Scheduled-gain Pl controller

For this controller, the values of k. and k; in Eq. 1 were
scheduled according to linearized segments. The fermen-

(a) x10 3

tation process was divided into three segments, whose
time lengths were 5 h each. For the first, second, and third
period, the k. and k; settings were set at 400 and 0.0001;
450 and 0.00007; and 550 and 0.00005, respectively. The
performance of the controller for the setpoint tracking and
disturbance rejection is shown in Fig. 3.

Figure 3a shows that the PI controller with scheduled-
gain scheme results in better performance in tracking the
setpoint compared to that with fixed-gain (Fig. 2a). It can
be seen that the offset is reduced in every segment, i.e., at
t =5h and ¢ = 10 h, as the gain of the controller is
improved. This improvement also resulted in faster re-
sponse. Nevertheless, as a consequence, it lead to some
oscillation as observed at + = 10 h and ¢ = 12.5 h.

53

Adaptive neural-network controller

The neural-network model used for the controller is the
inverse form of the process. Details of neural networks and
their various control strategies can be found elsewhere [20,
21, 22]. The model has three input nodes, consisting of the
current difference in the value of the feed rate, the current
and the future values of Q.-Q,, while the output is the
future difference in the value of feed rate. The hidden layer
has four nodes, whose number was determined by trial and
error. The architecture of the model is shown in Fig. 4. The
notations in the model are expressed by Egs. 4, 5, 6, and 7.
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AF, = F, — F,_, (4)
AF,., = Fryy — F, (5)
AQe — Q)= (Q — Qo) —(Q — Qo),, (6)
A(Qc = Qo)1= (Qc — Qo) —(Qc — Qo), (7)

Using two sets of batch data, the model was trained using a
sigmoidal function for nodes in the hidden layer and a
linear function for the output node. In implementation,
the (Q.~Q,):+; in Eq. 7 serves as the setpoint, while the
control action is the F,,; obtained from Eq. 5.

Due to the architecture of the model and the lack of
training data, the control based on this model resulted in
poor performance, as shown in Fig. 5. It can be seen that
the controller induced severe oscillation in the first half of
the period of operation and had offset in the later period.
Hence, to improve the performance of the controller, we
incorporated an adaptive factor for the output of the model.

By this scheme, the adaptive factor o serves as a gain
correcting the output of the controller F,; in order to
match the gain of the process along the operation. The
adaptive control law is expressed as follows:

Ft+1,c0r = 5~Ft+1 (8)

AQc- Qo) AF 1+

A(Qc - Qo)t+l

Fig. 4. The inverse neural-network model for control

The concentration of the cells in the culture was used
to determine the adaptive factor using a fuzzy-logic
method. The method involves fuzzy membership func-
tions for the concentration of biomas constituting fuzzy
sets of low, medium, high, and very high as shown in
Fig. 6 and fuzzy rules established by the Sugeno fuzzy
inference method [20]. The adaptive factors are given in
the equation below.

If Xislowthend = 0.35u

If X is medium then é = 0.9u
If X is highthen é = 1.5u

If X is veryhighthend = 2.1u

(©)

X and u are biomass concentration and grade of fuzzy
membership function, respectively. Performance of the
neural-network controller with this adaptive scheme for
the nominal setpoint tracking and disturbance rejection
is shown in Fig. 7.

In Fig. 7a, it can be seen that the controller per-
formed well for nominal setpoint tracking. A very small
offset was observed in the beginning as soon as the
controller was activated. Compared to the performance
of the unadapted controller model in Fig. 5, we can point
out that the adaptive scheme works well. In Fig. 7b, no
oscillations and offsets are observed when the controller
rejects the disturbances. However, slow response is

low medium high very high
1
y7;
0
0.5 1.3 2.5 4.0
Cell concentration, X

Fig. 6. Fuzzy membership function for biomass concentration
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Fig. 5. Response of the process con-
trolled by the poorly modeled neural-

time, h

15 network controller for nominal setpoint
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observed. Compared to the fixed-gain PI controller
(Fig. 2b) and the scheduled-gain controller (Fig. 3b), this
controller results in a longer time for the controlled
variable to settle.

5.4

Hybrid neural-network PI controller

Looking back at the previous control strategies we can
conclude that the scheduled-gain PI controller produces
fast response, but results in oscillations and offsets. On the
other hand, the adaptive neural-network controller is slow
in response, but it does not result in oscillations and off-

sets. Hence, we combined the merits of these two con-
trollers into a hybrid control scheme, i.e., the hybrid
neural-network PI controller.

In this hybrid controller, the neural-network controller
serves as the main controller. It provides control actions
directly based on the output of the process. The process
response of this control action is then predicted by a
model installed in parallel with the process. In case the
predicted process response action indicates deviations
from the setpoint, the PI controller will make correction
for it by introducing a compensation signal. The hybrid
control scheme is shown in Fig. 8.
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Since the control scheme is model based, the controller
may cause slight error in the compensation signal when
model mismatch occurs during the process. For this rea-
son, it is reasonable to reduce the gain of the PI controller
in the case of model mismatch. This is achieved by de-
creasing k. and increasing k; (see Eq. 1), with the relative
model mismatch error as the reference parameter. The
reduction law is expressed as follows:

k’c = kc((/'l — E)/av o 2> Emax (10)
k; = ki(BE); E > Emin and 8 > 1/Epin (11)
where

E=|(yp — ym) /Y| (12)

k. and ki represent the reducted values of k. and k;. « and
p denote the reducing factors for k. and kj, respectively. E,
Enaw and E;, represent the relative model mismatch er-
ror, its estimated maximum value, and its minimum value,
respectively. y, and y,, represent the process and model
outputs, respectively.

Figure 9 shows the performance of the controller for
nominal setpoint tracking and disturbance rejection. The
values for k. and k; are set at 400 and 0.0001, respectively,
for first 7.5 h and 400 and 0.00007, respectively, for the
rest. From Fig. 9a, it can be noted that the controller

performance is satisfactory from the start. No oscillations
and offsets are observed. The setpoint is tracked correctly.
Figure 9b shows the merits of the scheduled-gain PI and
the adaptive neural-network controllers when they are
combined properly. The controller is able to reject the
disturbances with fast response with no offset except for
t=7.5 h, where offset with oscillations are observed.
Robustness of the controller is illustrated in Fig. 10. It
shows the response of the process to the variation in Q™**
(its nominal value is 0.060 mol x C-mol™* x h™). The
parameter varies with values of 0.065, 0.057, 0.063, 0.055,
and 0.065 mol x C-mol™* x h™! at operation times of 2.5, 5,
7.5, 10, and 12.5 h, respectively. Figure 10a shows the
process response with setting values for «, f, and E,;, of
0.75, 200, and 0.005, respectively. It can be seen that when
the effect of model mismatch is large (large E), sluggish
process response with oscillations is observed (¢ = 2.5-5 h
and t = 7,5-10 h). In these periods, the gain of the PI
controller gets reduced in such a way that the compensa-
tion signal resulting from the controller is small and so the
neural-network controller dominates the control action.
When the effect of model mismatch is low (low E), the
reduced gain still makes the PI controller significant to
give contribution to control action. Because the PI con-
troller works based on the predicting model, it produces
an over-compensating signal as a result of erroneous
predicted process output when model mismatch occurs.

response
»»»»»»»» setpoint

time, h

(b) x10 3

(Qc - Qo)

——— response
-------e. - SEtpOINt -

Fig. 9a, b. Response of the hybrid neu-
ral-network and PI controller for a

time, h

15 nominal setpoint tracking and b distur-
bance rejection
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Such a signal will result in offsets in process response, as
observed in the figure in the periods of t = 5-7.5, t = 10-
12.5 h, and t = 12.5-15 h. The offsets can further be
minimized, i.e., by setting the value of « to 0.5 and the
value of f§ to 400. The result for this is shown in Fig. 10b.
From this study, it can be seen that the proposed con-
troller can take care of model mismatch reasonably well
and is fairly robust.

6

Conclusion

The crucial problem in controlling a fed-batch fermenta-
tion is that the process exhibits time-varying and nonlin-
ear characteristics. Oscillations and offset are features
controllers should overcome. This study shows that con-
ventional control strategies, as represented by the fixed-
gain PI controller, result in unsatisfactory performance. It
also demonstrates that control schemes with simple
adaptive methods, as represented by the scheduled-gain PI
and the adaptive neural-network controllers, are also un-
able to solve this problem. Hybrid control schemes appear
to be one of the answers to overcome this. Hybrid neural-
network PI controller performance is relatively better in

overcoming the oscillation and offsets with fast response
and short settling time for setpoint tracking and distur-
bance rejection compared to the three previously
mentioned control strategies. Model mismatches are dealt
with by this controller by reducing the gain of the PI
controller so as to prevent it from producing over-com-
pensating signal when model mismatch occurs. By setting
proper parameters for the reduction law, reasonable ro-
bustness can be achieved, which makes it viable for online
implementation.
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