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Summary. In a shared-memory distributed systeminde- This paper presents an algorithm for collecting up-to-date
pendent asynchronous processes communicate by reading aimfformation whose step complexity adjusts to the number of
writing to shared variables. An algorithmaslaptive(to total ~ active processes. We also present several applications of this
contention) if its step complexity depends only on the actualalgorithm, demonstrating a modular way to obtain adaptive
numberk, of active processes in the execution; this number isalgorithms for other problems.
unknown in advance and may change in different executions Our adaptive wait-free collect algorithm (presented in
of the algorithm. Adaptive algorithms are inherentigit-freg Sect. 3) has)(k) step complexity, wheré is the number
providing fault-tolerance in the presence of an arbitrary num-of active processes. Clearly, any algorithm that requifi(gs
ber of crash failures and different processes’ speed. stores and collects (for some functigih can be made adap-

Await-free adaptive collectalgorithmwith(k) stepcom-  tive by substituting our collect algorithm. More sophisticated
plexity is presented, together with its applications in wait-freeusage of the collect algorithm is required in order to obtain
adaptive algorithms for atomic snapshots, immediate snapadaptive wait-free algorithms for atomic snapshots and im-
shots and renaming. mediate snapshots. Adaptive atomic snapshots and immediate

snapshots, in turn, imply adaptive renaming algorithms.

Keywords: Asynchronous shared-memory systems — Con-  Atomic snapshotfl] provide instantaneous global views
tention-sensitive complexity — Wait-free algorithms — Read/ of the shared memory; they are widely accepted as a tool for
write registers — Atomic snapshots — Immediate snapshots simplifying the design of wait-free algorithms. Our atomic
Renaming snapshots algorithm (Sect. 4) is based on [15] and it has
O(klog k) step complexity.

Immediate snapshofd9] extend atomic snapshots, and
guarantee that no process obtains a view thstiistly between
an update of procegs and the following viewp; obtains; they
were used for renaming [19] and to study wait-free solvable
An asynchronous shared-memory systamsists ofn asyn- f[asbks [1(?’ 18,72591].70ur(;n_1rrr1]ed|2t3e snapshots ?Ig_orlthm (Sect.5)
chronous processes, each with a distinct identifier, communi> ?Sﬁl ?\2 [7.17] and it biﬁ( 1)05tep Cﬁmp exity. tarts with
cating by reading and writing to shared variabM#&it-free d'nt' et “renamingprobliem [101, (cajap proqesgf arﬁm
algorithms [25] guarantee that a process completes its opera?—. IStinct name in Some range and IS required to choose a

distinct name in a smaller range of sizé. In the more gen-

tion within a finite number of its own steps regardless of theeral long-lived M-renaming problem [28], processes repeat-

behavior of other processes. edly acquire andreleasenames. Adaptive versions of well-
In a wait-free algorithm, processes typically collect up-to- yacq X P

date information from each other by reading from an arrayknown wait-free(2 — 1)-renaming algorithms are easily ob-

; - vy e ; . . tained with adaptive atomic snapshots and immediate snap-
indexed with process’ identifiers. Since distributed algorithms ots (see [24]). This includes a one-shot algorithm @ith?)

are designed to accommodate a large number of processe ep complexity [19], which is presented in Sect. 6
this scheme is an over-kill when few processes participate P plexity ' P - L :
In another paper [13], we present efficient adaptive wait-

the algorithm: many entries are read although they contaiqree algorithms for lattice agreement (one-shot atomic snap-
irrelevant information about processes not wishing to coordi- 9 9 P

nate. Anadaptivealgorithm alleviates this concern as its step Zhggﬁ)e;nc(rgléeaulr)érgggn&"g% ;Peesioari??gi?tngég? nz; use
complexity expression is bounded by a function of the num- P P P 08 F)-

e . : : Afek and Merritt [4] use them to obtain an adaptive wait-free
greorc(;fsgggesses that participate in the algorithm gtive (2k — 1)-renaming algorithm, wittD (k?) step complexity.

Several papers [9,27,28] study algorithms whose step
* Work supported by the fund for the promotion of research in thecomplexity depends only on, and not on the range of pro-
Technion.

1 Introduction
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cess’identifiers. These algorithms provide a weaker guaranteevent and the last event gf in op;. If the last event op; in
than adaptive algorithms, whose step complexity adjusts to thep; is before the first event of procegsin an operatiorop;,
actual number of active processes, which can be much lowethenop; precedes opandop; follows op.

than t_he upper _boundv,. Anderson and Moir [9] present an For an execution segmefif let ste 3, p;) be the number
adaptive renaming algqnthm that uses the (stronger) test&seif read/write operations performed by procgsi 3.
memory access operation. Algorithm A is adaptive (to total contentiorij there is a

The algorithms presented in this paper adapt totdt@  function f : A — A such that the following holds for every
contention—if a process ever performs a step, then it influexecutiony of A: if process; has an operation intervalin «,
ences the step complexity of the algorithm throughout the exthensteg 3, p;) < f(k(c)). Namely, the step complexity of
ecution. More useful are algorithms that adapt todheent  an operation depends only on the number of active processes
contention, thatis, whose step complexity depends only onthé@n «.
number of currently active processes. Our collect algorithmis A wait-freealgorithm guarantees that every process com-
a building block in a long-lived renaming algorithm [2,12], pletes its computation in a finite number of steps, regardless
whose step complexity adapts to the current contention. Thef the behavior of other processes. Sifte) is bounded (it
long-lived renaming algorithm, in turn, is used in a collect al- is at mostn), f(k(«)) is also bounded; hence, an adaptive
gorithm [5] withO(k3) step complexity, wherkis the current  algorithm must be wait-free.
contention. This collect algorithm is used to extend ourimme- A viewV is a set of process-value paifSp;, , v, ), - - -},
diate snapshot algorithm to be long-lived and adapt to currenfithout repetitions of processed/(id;) refers tov;, if
contention [6] (withO(k*) step complexity). Afek, Dauber {p;j,vj) € V, and toL otherwise.
and Touitou [3] introduce implementations of long-lived ob- A solution for the collect problem provides algorithms for
jects whose step complexity is linear in the current contentiontwo operationsstore andcollect. A store(val) operation of
however, they use strorigad-linked andstore-conditional p; declarewal as the latest value fgr, and acollect operation
operations. returns the latest values stored by active processes. Formally, a

Lamport [26] suggests a mutual exclusion algorithm thatcollect operatiorcopreturns a view/” such that the following
requires a constant number of steps when a single proholds for every process;: if V(p;) = L, then nostore
cess wishes to enter the critical section, using reads andperation ofp; precedesop; if V(p;) = v # L thenv is the
writes; when several processes compete for the critical searalue of astore operationsopof p; that does not follovcop,
tion, the complexity depends on the range of names. Choy andnd there is no othetore operatiorsog of p; that followssop
Singh [21] present mutual exclusion algorithms, using readsind precedesop. That is,cop does not read from the future
and writes, which are adaptive in an amortized sense; in ther miss a precedingtore operation.
worst case, the step complexity of their algorithms depends  Moreover, if acollect operatioropfollows anothecollect
onn. (Alur and Taubenfeld [8] show that this is inherent.)  operationcop, thencopshould return a view that is more up-

to-date. To capture this notion, we define a partial order on
views:V; = Vs, iffor every procesg; such thatp;, v}) € Vi,

2 Preliminaries we have(p;, v?) € Vs, andv? is written in astore operation
of p; that follows or is equal to atore operation ofp; that
We considen processe, . . ., p,; €ach procesg; is mod-  writesv}. We require that itopprecedesog, thenV; < V5.

eled as a (possibly infinite) state machine, with a unique name  The collect problem is easily solved using an array indexed
id; € {0,...,N — 1}. Processes communicate isad and  with processes’ names: A process stores its most recent value
write operations on shared variablesead(R) operationdoes  to the entry indexed with its name; to collect, a process reads
not change the state & and returns the current state®fa  the entire array. (This can be used as an alternative definition,
write(v, R) operation changes the statefdfov. Registersare  cf. [5].) In this scheme, a collect requir€g V) steps.
multi-writer multi-reader allowingread andwrite operations
by all processes.

An eventis a computation step by a single process; in an3 Adaptive collect
event, a process determines the operation to perform according
to its local state, and determines its next local state accordingVe present an adaptive wait-free algorithm &iore and

to the value returned by the operation. collect, with O(k) step complexity. The algorithm uses the
An executionx is a (finite or infinite) sequence of events splitter suggested by Moir and Anderson [28]: A process en-
oo, 91,09, .... FOr everyr = 0,1,..., if p; is the process tering a splitter exits with eithestop, left or right. It is guar-

performing the evenp,., then it applies a read or a write oper- anteed that if a single process enters the splitter, then it obtains
ation to a single register and changes its state according to itstop, and if two or more processes enter the splitter, then there

transition function. There are no constraints on the interleavare two processes that obtain different values. (See Fig. 1) Thus
ing of events by different processes, reflecting the assumptiothe set of processes is “split” into smaller subsets, according

that processes aasynchronouand there is no bound on their to the values obtained.

relative speeds. The collect algorithm uses a complete binary tree of depth
A process iactivein an execution if it takes a step inv. n — 1, with splitters in the vertices. In its firstore, a process

Let k(«) be the number of active processesin acquires a vertex; from this point on, the process stores its
An algorithm specifies procedures to be invoked when aup-to-date values in.val.

process performs an operation. Tineerval of an operation A process acquires a vertex in the tree using procedure

op; by procesy; is the execution segment between the firstregister; in register, the process starts at the root and moves
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¢ processes Alg. 1 store andcollect: code for process;.

shared variables:
CollectTree: complete binary tree of splitters
of depthn — 1
local variables: /I persistent across invocationstofe
descriptor: vertex, initially |

Fig. 1. A splitter void procedurestore(val) /I update value
1. if (descriptor==_1)then Il first time
descriptor= register()
d=0 2. descriptorvalue=val
vertex procedureegister() Il acquire a vertex
d=1 1. v=CollectTreeroot
2. repeat
d=2 3. v.mark= true
4., move= splitter(v) /I returnsstop, left, orright
5. if ( move==left ) thenv = v.left-child
d=3 ) 6. if ( move==right ) thenv = v.right-child
, N 7. until (move==stop)
. 8. v.id=id; /I write your identifier
9. returnv / location descriptor

Fig. 2.An execution ofegister in a complete binary tree of splitters

view procedureollect()

. . . . /I collect updated values of active processes
down the tree according to the values obtained in the splitters return(DFS(0, CollectTreeroot) )

along the path: If it receivdsft, it moves to the left child; if it
receivesight, itmoves to the rightchild. A process marks each  yiew procedurddFS(V : view; v : vertex)

vertex it accesses by raising a flag associated with the vertex; /I DFS traversal of the marked part of the tree
a vertex ismarked if its flag is raised. The process acquiresa 1. if (v.mark) then
vertexv when it obtainstop at the splitter associated with 2. if (v.value# 1 )thenV =V U {{v.id, v.value }
then it writes its id intav.id. (See Fig. 2.) 3. V =V UDFS(V,v.left-child)
To perform acollect, a process traverses the part of the 4. V =V UDFS(V, v.right-child)

tree containing marked vertices, in DFS order, and collects 5. return{)
the values written in the marked vertices.
Asimple implementation of a splitter [28] is based on Lam-  {left, right , stop} proceduresplitter(v : vertex)
port’s mutual exclusion algorithm [26], and uses two shared /I from Moir and Anderson [28]

variables X andY . Initially, X = 1 andY” = false Aprocess 1. v-X=id; /1 write your identifier
executing the splitter first writes its id int§ and then reads :23 'f\((li-m;he” return(ght)

Y. If Y = true, then the process returright . Otherwise, the S UrE e -
process set¥” = true and checksX. If X still contains its g' gl(sgrét_u_rr;(ézft)) then returngtop) /I check identifier

id, then the process returstop; if X does not contain its id, :

then the process returledt. The following lemma, from [28],

states the main properties of the splitter. Y: Holds a Boolean value, for the splitter associated
Lemma 1 If ¢ processes access a specific splitter, then the , with v; initially false.

following conditions hold: left-child:  Pointer to the left child of.

(1) at most one process obtais®pin this splitter, right-child: Pointer to the right child of.

(2) at most’ — 1 processes obtaikeft in this splitter, and To prove the correctness and complexity of the algorithm,
(3) at most — 1 processes obtainght in this splitter. fix an executiony of the algorithm and let be the number of

) processes that catore at least once .
The code forcollect andstore, as well as for the splitter,

appears in Algorithm 1. In the algorithm, the following shared Lemma 2 If the depth of a vertexisd, 0 < d < k, then at

variables are associated with each vertén the tree: mostk — d processes access
mark Indicates whether some process accesséu- Proof. The proof is by induction or, the depth ofv. In the
tially false. base case] = 0, the lemma trivially holds since at mokt
id: Holds the identifier of the process that stops;in  processes are active.
initially L. For the induction step, suppose that the lemma holds for
value Holds an updated value of the process that stopwertices at depthl, 0 < d < k, and consider some vertex
inv; initially L. with depthd + 1. Let u be v's parent in the tree. The depth
X: Holds a process’identifier, for the splitter associ- of « is d, and by the inductive hypothesis, at mdst- d

ated withy; initially L. processes accesslf v is the left child ofu, then Property (2)
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of the splitter (Lemma 1) implies that at mdst- d — 1 of the Qe T =

processes obtaileft at « and access. If v is the right child Vis1

of u, then Property (3) of the splitter (Lemma 1) implies that

at mostk — d — 1 of the processes obtaiight at« and access

. 0O v; Vit1 no process all processes

By Lemma 2 and the algorithm, when a process performsa b
register, it stops in a vertex with depth less than or equal toFig. 3. lllustrations for the proof of Lemma 5
k — 1. By Property (1) of the splitter (Lemma 1), at most one
process stops in each vertex. Therefore, we have the following

) A vertexv € S is greyif there is a process that accesses
lemma:

the left child ofv in « (that is, writedrue in the variablemark
h of v.left-child) and there is a process that accesses the right
child of v in « (that is, writestrue in the variablemark of
v.right-child). A marked vertex that is not grey dack For

Since each splitter requires a constant number of opera@ny black vertex, () there is a process that setsnarkto
tions, Lemma 3 implies that the step complexityegisteris  true, and(b) one of the children of (e.g.,v.right-child) is
O(k). This implies that the first invocation atore requires N0t accessed by any processanBy Lemma 1(2), not all
O(k) steps; clearly, all later invocations store require only the processes accessingeturnleft. Therefore, at least one
O(1) steps. In addition, this lemma implies that the location Process that accessesither returnstopin v, or fault-stops
descriptors returned knggister are unique. nuv.

If a vertexv is marked, then some processsetsu.mark  Lemma 5 There is a black vertex between every pair of grey
to true; this process also marks all the vertices on the pathyertices inS.
from the root tov before markingy. Since no process resets
markvariables tdfalse this implies the next lemma:

Lemma 3 Each process writes its id in a vertex with dept
< k — 1 and no other process writes its id in the same vertex.

Proof. Suppose, by way of contradiction, that there are two
consecutive grey verticeg andv; 1 in S. We first prove that
Lemma 4 All vertices on the path from the root to a marked ON€ of them is an ancestor of the other in the marked tree. Let
vertexy are marked. x be the lowest common ancestorgfindv; ,; in the marked
tree; by Lemma 4z is marked. Ifx # v; andz # v;4 1, then
Assume thatopis acollect of procesg;. If some pro-  v; belongsto the left subtree ofandv; ., belongs to the right
cessp; completes its firsstore beforep; startscop thenp; ~ Subtree ofz (see Fig. 3(a)). Sincé'is an in-order traversal
writesid; into v.id, for some vertex, beforep; startscop. ~ Of the marked subtree; appears between; andv;;, in S,
By Lemma 4, all vertices on the path from the roottare ~ contradicting the assumption thatandv; ., are consecutive
marked, and thereforg; visits v during the DFS traversal in  in 5. . .
cop The algorithm implies thas; readsp;’s most up-to-date Suppose that; is an ancestor ob; . Sincev; appears
value fromv.value Clearly, p; cannot read a value written beforev; ., in the in-order sequenct, v;,, belongs to the
by astore of p; that followscop. Moreover, since values are right subtree ofv;. Sincev;,, appears immediately afte;
updated with a single operation, a later collect returns a mordn S, the left child ofv; , is unmarked, contradicting the fact
up-to-date view. This implies that Algorithm 1 solves the col- thatv; 1 is grey. (See Fig. 3(b).)
lect problem. A similar argument can be applieddf; is an ancestor
of v;. Sincewv; appears before;,; in the in-order sequence
Theorem 1 Assume aollect operation cop returns a view S, v; belongs to the left subtree ef,. Sincev; appears
V. Then the following holds for every procgss immediately before, , ; in S, the right child ofv; is unmarked,
(1)if V(p,;) = L, then nastore operation ofp; precedes cop; ~ contradicting the fact that; is grey. O
(2)if V(p;) = v # L, thenv is the value of store operation
sop ofp; that does not follow cop, and there is no otlsésre
operation sopof p; that follows sop and precedes cop;
(3) if cop precedes aollect operation copthat returns a view
V' thenV < V',

If the first vertex inS, vg, is grey, then the left subtree
of vy must contain marked vertices. Therefore, some vertex
precedesy in S, which is a contradiction. A similar argument
shows that the last vertex ifi is black, implying the next
lemma:

The step complexity ofollect is linear in the number of Lemma 6 The first and the last vertices # are black.
vertices in the marked tree that are traversed by procedure it each black vertex we can associate a distinct active

DFS. We prove that this numberis atmast—1. (Thisholds  ,ocess that accesses the vertex and does not go below; it in
despite the fact that the depth of the marked tree cah,be ;5 there are at moktblack vertices. Therefore, the number
which in general implies only a bound ®f on the number of of grey vertices is at modt — 1, by Lemma 5 and Lemma 6.
marked \{ernces.) . Hence, the marked tree contains at nitdst- 1 vertices. Thus,
Consider acollect operation, and letv be the shortest 1, cequreDFS visits at mosek — 1 vertices, each requiring

finite execution prefix that co.ntains its execution interval. Lety constant number of operations, implying that the step com-
S = vy, v1,. ..,y be the vertices of the marked tree after plexity of collect is O (k).

appearing in an in-order; i.e., for every marked vertexhe . ]
vertices of the left sub-tree afappear before in S and the ~ Theorem 2 Algorithm 1 solves the collect problem, with
vertices of the right sub-tree ofappear after in S. O(k) step complexity.
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Alg. 2 The classifier procedure (from [15]): code fgr classifier. Then the following holds:

procedureclassifier(M : integer;I;: view) (1) |U{O; | p, returnsleft}| < M, and
returns{left, right } and a view (2) if p; returnsright, then|O;| > M and O; contains

1. store(l;) U{O; | p; returnsleft}.

2: {Ri,...,R,} =collect ) ) .

3: if |U{Ri,...,Rn} > M then The adaptive algorithm uses an unbalanced blnary tree,

4: {Ri1,...,Rn} = collect constructed frontog n complete binary trees of exponentially
return (right, U{Ru, ..., Rn}) growing sizes, 2,22, ... leaves), connected by a single path

5: else return(left,I;) (Fig. 4). As in the non-adaptive algorithm, leaves are labeled

1,2,... from left to right and an inner vertex is labeled with
the label of the right-most leaf in its left subtree.
4 Adaptive atomic snapshots First, note that views returned by two operationmg, and
op;, returningl; andV; from different leaves are comparable.

Theatomic snapshaproblem [1] extends the collect problem Let v be the minimal common ancestor of these leaves;
by requiring views to look instantaneous. Instead of separaté an inner vertex. Clearlpp; andop; calls classifier at v,
update andstore operations, we provide a combinegscan ~ and one of them (sagp,) returnsleft, while the other (say,
operation, which updates a new value and atomically collect®p;) returnsright. The algorithm implies thal;; is contained
a view. The returned views should satisfy the following con-in U{O; | p; returnsleft andO, in v}, and thatV; contains
ditions (cf. [14]): the viewp; returns fromclassifier in v. By Lemma 7(2) V;
containsV;.

Next, consider two operationsp; andop;, returningV;
andV; from the same leaf; denoteM = Labelv). Letu be

X . : _ the last vertex (on the path from the rootutpin which op;
Seh;i:)nncgjfsl;??hc-lruhdee\élte&;ﬁt\lgf g vszt:gg] bligscan opera andop; go righ?; v is the left-most leaf in the right subtree of
J J-

Comparability: IfV; and Vs are the views returned by two ¢ @nd by constructiori.abel(u) = M — 1. By Lemma 7(2),

upscan operations, then eithéf, < V5 or V, < V. [Vil,[V;] > M — 1. Letw be the last vertex in whichp,
andop; go left; v is the right-most leaf in the left subtree of

An efficient adaptive atomic snapshot algorithm, with ,, gng hencelLabe(w) = Labelv) = M. As mentioned
O(klogk) step complexity, can be derived from the algo- ghove, the algorithm implies thaf, and V; are contained
rithm solving the problem for processes withO(nlogn) in U{O; | p; returnsleft andO; in v}. By Lemma 7(1), this

steps [15]. This transformation is not trivial since in the non- nion contains at mosmbelw) values. Thus\V; UV;| < M
adaptive algorithm, processes descend down a binary tree %t)Vz =V 7

depthO(logn) (see below); thus, the number of stores and  Thjs allows to prove that the snapshot algorithm is correct,
collect depends on. We de_scrlbe th_e one-shot algorithm; it along the lines of [15]. An operation accesses at rogig k)
can be made long-lived using techniques of [14,15,22].  yertices on its way to a leaf. Sinatassifier in each vertex

The non-adaptive alg_orithm uses a complete binary tre_‘?equiresO(k) steps, the algorithm requiré¥k log k) steps.
of depthlog n, whose vertices are labeled as a search tree, in

which all values are stored in the leaves: The leaves are la-

beledl, 2, ... from left to right; the label of an inner vertex 5 agaptive immediate snapshots

is equal to the label of the right-most leaf in its left subtree

(Fig. 4). A simpleclassifier procedure (Algorithm 2) is asso-  The immediate snapshgroblem [19] provides a combined
ciated with each vertex; the procedure takes a threshold valugh.ypscan operation, updating a new value and returning a
and an input view as parameters; it retursicie(left or right) - yjjew, In addition to the validity, self-inclusion, and compa-

and a view. Procedunelassifjer separates operations so that rability properties of the atomic snapshot problem, returned
less knowledgeable operations proceed to the left, and morgiews should satisfy the next condition:

knowledgeable operations proceed to the right (see Lemma 7?. ) ] )
An upscan operation traverses the tree downwards fromImmediacy: If the view returned by sonme-upscan opera-

the root. In each inner vertex the operation callslassifier tion, V3, includes the value written in théh im-upscan

with Labelv) as the threshold parameter and the view it ob- ~ Of p; that returns the view, thenV, < V;.

tained in the previous vertex (in the root, the view contains

only the operation’s value); the operation continues left or . )

right, according to the side returned tigssifier. The opera- -1 Overview of the algorithm

tion terminates ataleaf and returns the view obtained in the last " .

inner vertex (without performinglassifier in the leaf). The ~FOr ease of exposition, a view is represented by a set of

following simple lemma [15, Lemma 3.1] states the propertiescounters, holding the number of updates performed by pro-
of classifier. cesses. Each process owns an unbounded array of Values.

In anim-upscan operation, a process writes the new value
Lemma 7 Assumeclassifier is called with threshold pa- into its array and increments a counter holding the number of
rameter M, and that procesg; obtains the viewO; from

Validity: If an upscan operationop returns a viewl, and
precedes anpscan operatiorop, thenV does notinclude
the value written byp'.!

2 |f » does not exist, thed/ = 1 and a simpler version of the
1 Typically, this condition trivially holds and we do not prove it following argument can be applied.
below. 3 This array can be bounded, see [7].
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1 23 45 67 8

Fig. 4. Trees for lattice agreement: Non-adaptive (left) and
adaptive (right)

values it has written; then it obtains a view of the countersthan or equal td;, the number of processes participating in
(which can be used to retrieve the values from the arrays). Th#oor f. The step complexity of the one-shot algorithm used
sumof counters in a view’, denotedy_ V, is the total num-  in each floor depends on the start level, which is smaller than
ber of updates precedifg; clearly, for views satisfying the or equal tok + 1, making the algorithm adaptive.
comparability property - V; <> Vs ifand only if V; <X V4.

The overall structure of our algorithm follows the non-
adaptive immediate snapshot algorithm [7,17]. Propefisst 5.2 Details of the algorithm
finds an atomic snapshot vielW containing its new value.

V' is written in afloor whose numbes; is equal to} V;  Algorithm 3 uses an infinite number of floors. A copy of
clearly, all views written in the same floor are equal. (Thethe adaptive one-shot immediate snapshot algorithm (Algo-
number of floors is infinite, sinc® | V' is unbounded for a  rithm 4, presented below), denotes-im-upscan , is asso-

long-lived algorithm.) Thenyp; participates in a distinct copy  ciated with every floorf, as well as the following data struc-
of one-shotimmediate snapshotin each floor belgwithits  tyres:

new value as input, until it sees its previous value in the view L . )

written in one of these floors. When this happensieturns 1. view(f], a view; initially contains the empty view,.
the maximal values from the view written in this floor and the 2- flag[f][1... N]an array of bits, one for each process; ini-
view it obtained in the one-shot immediate snapshot of this tially, all bits arefalse.

floor. _ Each procesp; maintains an arrayl; [0, ..., N — 1] of

To bound the number of floors procgssiccesses, ittakes jiews: 4,id,] holds the first view containing the last value of
as V' the smallestatomic snapshot view containing its new among the views observed by.
value among the snapshots obtained by other processes. Tt?dt’ After obtaining a viewl”’, p; checks, for each process
is, s; is the smallest floor where a view containipgs new -/ whetherp, incremented its counter singe’s previous
value is written. This is used below (Lemma 11) to show that im-upscan op]eration. If it did, them; writesV’ (containing
accesses at mokffloors. To allowp; to find the smallestview  iha new counter op,) into A;[id,]. To find its start floor,
containing its new value, each procggsmaintains an array p; chooses the mini?nal view’ céntaining its new counter,
which holds, for every procegs, the first viewp; observes  3mong the views stored for it by other processes. To keep the
with the most recent value pf; p; updates this view whenever step complexity of the algorithm adaptive, readsA; id;]

it sees a new value fgi. To findV and calculate its start floor, only for processes; € V'. Thenp; writesV in its start floor
pi reads the appropriate entries of the active processes’ array$,ose number iEJV. ! '

and picks the minimal view containing its last value. Procesg; continues the algorithm one floor below its start
Since the view written in floog; containsp;’s new value, floor. In each floorf, if p; reads a nont view from view|f]

processes returning from floorss; see this (or a later) value thenp, setsflag] f][i] totrue. Then p: obtainsavievWif from

of p;. Sincep; returns from some flodf < s; containing its : . ;
previous value, processes returning from floaréf see pre- os-im-upscany. If view[f] does not contain the last value of

vious values of;. Sincep; performs the one-shot immediate »: and the _flag of one _Of the proce_sses’/liﬁ is true, thenp;
snapshot algorithm with its last value as input in each floor beseturns a view containing the maximal counters frﬁfﬁ and
tweens, andff, the views returned from these floors include view|f]; otherwisep; accesses floof — 1.

this value. The one-shot immediate snapshot in fifbguar- Clearly, processes appearingyif's initial view, V;, may
antees that views returned from fldbsatisfy the immediacy —access floors below;’s start floor. In addition, processes may
property. descend from higher floors. These processes “register” in the

The one-shot immediate snapshot algorithm used in eacfloor before participating in the one-shot immediate snapshot
floor [19] relies on the number of participants: processes starassociated with it. To allow registration, a distinct copy of
at leveln, and descend through levels until some condition isstore andcollect (Algorithm 1), denotedtore ; andcollecty,
met. We notice that processes need not start at the same levés: associated with each flogf. A process registers before
they only have to start at (possibly different) levels that areaccessing flooyf, usingstore;. Procesg; collects a set;
larger than the number of processes participating in the oneof processes registered in its start flogr, usingcollect,, .
shot immediate snapshot algorithm (see Sect. 5.4). Below, wg/; UU; |+ 1 is the start level parameterpffor os-im-upscan
show how a process picks its start level for flgao be larger  in all floors it accesses. Sind¢ andU; contain only active

processegV; UU;| +1 < k+ 1.
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Alg. 3 Adaptive long-lived immediate snapshot: code for proggss

local variables:
V', V,U, W :view
A;[0,..., N]:array of views, initially L
f, start-level: integer

view im-upscan(count: integer)
V'’ = upscan(coun)
forallid; € V' do
if V/(Id]) > Al[ld]](ld]) then
Ailid;] =V’
V =min{A,lid;] | id; € V' and A,[id;](id;) = counf
f=2v
view[f] =V
U = collecty()
start-level= |[UU V| + 1
. while (true ) do
f=r-1
storef((id;, count)
flag]f][i] = (view(f] # 1)

W = os-im-upscan(count start-leve)

N AMWNE

15.
16. returnjoin(W, view f1))
view procedurgoin(V4, V2 : view)

1.

/I persistent

/I increment your counter and get a view
[/l update views for other processes
/lp; updated its counter after the previous scamppy
/I update the view containing the last countepof
/I minimal view stored fop;, which containg;’s new counter
/I calculate start floor
/[ write your initial view
/I collect id’s of the processes registered in the start floor
// estimate the number of participants in lower floors
// descend through the floofs— 1, f — 2, ...

Il register in floorf

if (count> view[f](id;) and for som€id;, ¢;) € W, flag[f][j] == true ) then

/I maximal counters appearing ¥ or view[f]

return{(id;, ¢;) | id; € V1 U Vz andc; == max{Vi(id;), Va(id;)}})

Note that different invocations @fn-upscan by process
p; do not call the same copy ok-im-upscan. If an operation
op, of p; starts in floorf, thenop, callsos-im-upscan only in
floors< f, and the view written in flooy contains the value
of op; . A later operatiorop, of p; reads this value (or a later
one) from a floo> f; thereforeop, returns from a flooe> f
and does not catbs-im-upscan in floors < f.

5.3 Proof of correctness and complexity analysis

Our key lemma proves that only processed/jrnJ U; may
accessfloors, ..., s; — 1; thatis,start-leve] is larger than or
equal to the number of processes in the flggraccesses.

Lemma 8 If p; starts at floors;, and p; accesses a floor
f < S;, thenpj eU; UV,.

Proof. If p; € V;, then the lemma clearly holds. Otherwise,
the atomic snapshots properties imply thataccesses floor
s;, before it accesses flogr

If p; completesstore,, beforep; startscollect,,, then
p; € U;, and the lemma follows.

Otherwisep; readsV; # L from view[s;] since it reads
after completingstore,, (id;), andp; writes V; into view[s;]
before startingcollect,,. Sincep; ¢ V;, it follows that p;
evaluates the condition in Line 15 tue, and returns from
floor s;, which is a contradiction. a

If p; returnsl; andp; returnsy’; from the same floof, then
they read the same value froriew| f]. W/ andiW/ are views

returned byos-im-upscan; and hence, they are comparable.
Thus,V; andV; are comparable. The comparability property

Lemma 9 If p; returnsV; from floor f; and p; returnsV;
from floor f; < f;, thenV; <X V.

Proof. Since views written in the floors are ordered by con-
tainment,viewf;] =< view(f;]. We show thathj (pr) <
Vi(px), for any procesgy.

The lemma trivially holds iijfj (pk) L. Other-

wise, (px,l) € ijj, for somel; thus, p, participates in
os-im-upscany; (on floor f;) during its/'th immediate snap-
shot, which starts at floog;,. The lemma clearly holds if
sk < fi, since(pg, ) € view[s,] <X view[f;] < V;.

If s, > f;, thenp, accesses floof;, evaluates the con-
dition in Line 15 tofalse and goes to a lower floor. If
reads a nonkt value fromview(f;] that includes(py, (), then
(px, 1) € view[f;] <V}, sincep, reads the same nah-value
from view(f;].

Otherwise p;, readsfalsefrom flag|f;][z], for every pro-
cessp, € W,f Clearly, p; readstrue from flagf:][y].
for some procesg, € W;'. However,p, writes true to
flag[ f;][y] before callingos-im-upscan, andp, must read
true from flag[ f;l[y] if p, € W}*. Thus,p, ¢ Wi, and by
the comparability propertyi¥’/* ¢ W;*. The self-inclusion

property ofos-im-upscan implies that(py, () € Wf O

If processp; returnsV; from floor f in its ithim-upscan,
then(p;,l) € Wif =< V;, sinceos-im-upscan returns a snap-
shot. This proves the self-inclusion property.

The proof of the immediacy property follows [17, Lemma
3.3.6].

is proved by showing that views returned from different floors Lemma 10 (Immediacy)The returned views satisfy the im-

are comparable; the proof follows [17, Lemma 3.3.2].

mediacy property.
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Proof. Assume thal/;, a view returned by; from floor f;, Alg. 4 One-shot immediate snapshot (based on [19]): code
includes thel-th value written byp;. Let V; be the view re-  for procesy;.

turned by thel-th im-upscan operation ofp; from floor f;. procedureos-im-upscan(count start-level: integer)
We show thatl; < V. returns a view
Assume thatp; returns from a floor aboveg; (that is, 1. level= start-level
fi > f;).-Then(id;, 1) & view(f;] (by the conditionin Line 15) 2. store((id;, count level) I the start level op;

and (id;,l) ¢ ij" (since (id;, 1) does not participate in 3. Wwhile (true) do

; : s _ PR _ 4. level=level— 1
?rz(;riztil:)%scanfj)' Therefore,(id;, ) ¢ V;, which s a con 5. store((id;, count level) /I p; descends one level
o _ I _ 6. V = collect()
b Iif Pi retlg‘n/s EO‘T a floor below; (thatis, f; < f;), then Il returns a set ofid, counter leve) triples
yLemmasy; = ;. 7. W = {(id;, count;, level;) € V' | level; < level}

If p; returns from floorf;, then (id;, 1) ¢ view(f;], im- /I processes on smaller or equal levels
plying that (id;,l) € ijj. By the immediacy property of 8. if (|W] > level) then return{y)
os-im-upscan in floor f;, p; gets avie\/\Wifj = ijf. Since
p; andp, read the same (non) view fromview(f;], V; < V;. _
O If p; starts at a level larger tha@n then it descends to level

¢ < k after descendingto levels. .., ¢+ 1;thus, ifp; € Dy,

The next lemma completes the complexity analysis bythe€np; € Dy, ..., D1, implying the next lemma:
bounding the number of floors a process accesses; its pro
is similar to [17, Lemma 3.3.3].

f
(Lemma 13 If all process start above levdl, then D; C
Dy C...C Dy.

Lemma 11 In im-upscant, processp; descends through at

mostk floors. Let S; be the set of processes in the vigywreturns from

some level; S; contains only processes descending to lével
orbelow. By Lemma135; C D,andbyLemmal2D,| < ¢.

Proof. Procesy; starts in floorS" V, whereV is the mini- By the algorithm/ < |S;|, which implies the next lemma:

mal atomic snapshot view containipg's new value, which
is stored forp; by other processes (Line 5 @h-upscan).

: . . g Lemma 14 Ifall processes start above levglthenS; = D,.
Sincek processes are active, at mést 1 views are unwrit- P ve ! ‘

ten betweerV and the next (Sma||eSt) written view Wim,S If processp; returns from |eve[i, 1 < ll < k’ thenpi c
previous value. Thugy; accesses at moatfloors. 0O Dy, which is equal taS; (by Lemma 14); thus, the returned
. ) . ) views satisfy the self-inclusion property.
Sinceos-im-upscan in each floor requires)(k?) steps Ifanother process; returns from level;, then Lemmas 13
(see below), we have the next theorem: and 14 imply that eithes; C S; (if I, < 1,) or S; C S, (if

; < 1;); thus, the returned views are comparable.

If p; € S;, thenp; € Dy, by Lemma 14. That isp;
descends to levé) and hencel; < [;. By Lemmas 13 and 14,
S; = Dy, € D;; = S, implying the immediacy property.

When called from Algorithm 3, process; descends
5.4 One-shot immediate snapshot algorithm through at mosstart-leve] < k -+ 1 levels. In each level,

it performsO (k) operations (using owgtore andcollect pro-
The one-shot immediate snapshot algorithm presented in thisedures), implying the next theorem:
section follows Borowsky and Gafni [19]. In Algorithm 4, a
process descends throulgivels checking the levels of other Theorem 4 If all processes start above leve] Algorithm 4
processes, until the number of processes in the levels belowolves the one-shot immediate snapshot problem @(#t)
is larger than the level. In our algorithm, processes may starstep complexity.
at different levels; however, as proved above, every process
startsos-im-upscan on floor f at a level larger thaky, the
number of the processes accessing flpor 6 Adaptive (2k — 1)-renaming

The set of processekescendingo level?, by performing
store({x, *, £)) after store((x, *,£ + 1)), is denotedD,. At The (one-shot}2k — 1)-renamingproblem [10] requires pro-

l
Theorem 3 Algorithm 3 solves the immediate snapshot prob-
lem, withO(k3) step complexity.

most/ processes descend to le¥gll 7, Lemma 3.1.1]. cesses to acquire distinct names in the raftge. . , 2k — 2}.
The algorithm of Borowsky and Gafni[19], can be made adap-
Lemma 12 |D,| < ¢, for every level, 1 < ¢ < n. tive by using our immediate snapshot algorithm. The BG re-

naming algorithm proceeds in rounds; a process takes an im-
Proof. Assume, by way of contradiction, thé&t- 1 (or more)  mediate snapshot in each round, and processes are partitioned
processes descend to leddletp; be the processifv, whose  into groups according to the size of the returned views. The
store((x, ¢ + 1)) is the latest to complete. Since processes'views also partition the name space into disjoint intervals; pro-
levels do not increase,’s following collect returns at least cesses in each group continue the algorithm in the associated
¢+ 1processesinlevels..., ¢+ 1, andp; does notdescend interval. The process with the maximal id in the group gets
to level. ad a name in the interval; other processes proceed to the next
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Alg. 5 Adaptive (2k — 1)-renaming (based on [19]): code for process

shared objects:
Slot40] : an adaptive immediate snapshot object /I Algorithm 3, used here as one-shot
Slotg1...2n — 2] : array of immediate snapshot objects [/ Algorithm 4
local variables:
S :view, initially L
firstSlot: integer, initially O [l first slot of the current range
start-level: integer, initially O
direction: Boolean, initiallytrue

rename(firstSlotdirection)

1. if (firstSlot== 0) then I only the first round starts from slot 0
S = Slot40].im-upscan(1) I/ Algorithm 3
start-level= | S| / estimate the number of processes
2. elseS = SlotdfirstSlof.os-im-upscan(1,start-leve) I/ Algorithm 4
3. firstSlot= NewlInterval(firstSlotdirection|S|)
4. if (id, is the maximald in S') then returrfjrstSlo) Il allocate self
5. elserename(firstSlot—direction) /I start again in a new range, opposite direction
Newlnterval(slot, direction, snapSize // allocate an interval of name space for the processes in the group
6. if (direction) then returnglot+ (2snapSize- 1)) // allocate going up
7. else returrglot — (2snapSize- 1)) /I allocate going down

round. The code appears in Algorithm 5; a process starts thived (2k —1)-renaming algorithm, which adapts to the current
algorithm by callingrename(0,true). contention, appears in [12].
For simplicity of presentatiorn — 1 distinct immediate
shapshot objects are associated with sdots ... 2n — 2. In
the first round, starting from slot 0, adaptive immediate snap
shot Algorithm 3 is used, since the number of participating
processes is not known. In later rounds, starting from slots
1,...,2n — 2, the size of the group is bounded by the size References
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