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Summary. In a shared-memory distributed system,n inde-
pendent asynchronous processes communicate by reading and
writing to shared variables. An algorithm isadaptive(to total
contention) if its step complexity depends only on the actual
number,k, of active processes in the execution; this number is
unknown in advance and may change in different executions
of the algorithm. Adaptive algorithms are inherentlywait-free,
providing fault-tolerance in the presence of an arbitrary num-
ber of crash failures and different processes’ speed.

A wait-free adaptive collect algorithm withO(k) step com-
plexity is presented, together with its applications in wait-free
adaptive algorithms for atomic snapshots, immediate snap-
shots and renaming.

Keywords: Asynchronous shared-memory systems – Con-
tention-sensitive complexity – Wait-free algorithms – Read/
write registers – Atomic snapshots – Immediate snapshots –
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1 Introduction

An asynchronous shared-memory systemconsists ofn asyn-
chronous processes, each with a distinct identifier, communi-
cating by reading and writing to shared variables.Wait-free
algorithms [25] guarantee that a process completes its opera-
tion within a finite number of its own steps regardless of the
behavior of other processes.

In a wait-free algorithm, processes typically collect up-to-
date information from each other by reading from an array
indexed with process’ identifiers. Since distributed algorithms
are designed to accommodate a large number of processes,
this scheme is an over-kill when few processes participate in
the algorithm: many entries are read although they contain
irrelevant information about processes not wishing to coordi-
nate. Anadaptivealgorithm alleviates this concern as its step
complexity expression is bounded by a function of the num-
ber of processes that participate in the algorithm (theactive
processes).
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This paper presents an algorithm for collecting up-to-date
information whose step complexity adjusts to the number of
active processes. We also present several applications of this
algorithm, demonstrating a modular way to obtain adaptive
algorithms for other problems.

Our adaptive wait-free collect algorithm (presented in
Sect. 3) hasO(k) step complexity, wherek is the number
of active processes. Clearly, any algorithm that requiresf(k)
stores and collects (for some functionf ) can be made adap-
tive by substituting our collect algorithm. More sophisticated
usage of the collect algorithm is required in order to obtain
adaptive wait-free algorithms for atomic snapshots and im-
mediate snapshots. Adaptive atomic snapshots and immediate
snapshots, in turn, imply adaptive renaming algorithms.

Atomic snapshots[1] provide instantaneous global views
of the shared memory; they are widely accepted as a tool for
simplifying the design of wait-free algorithms. Our atomic
snapshots algorithm (Sect. 4) is based on [15] and it has
O(k log k) step complexity.

Immediate snapshots[19] extend atomic snapshots, and
guarantee that no process obtains a view that isstrictlybetween
an update of processpj and the following viewpj obtains; they
were used for renaming [19] and to study wait-free solvable
tasks [16,18,29]. Our immediate snapshots algorithm (Sect. 5)
is based on [7,17] and it hasO(k3) step complexity.

In theM -renamingproblem [10], each process starts with
a distinct name in some range and is required to choose a
distinct name in a smaller range of sizeM . In the more gen-
eral long-livedM -renaming problem [28], processes repeat-
edly acquireand releasenames. Adaptive versions of well-
known wait-free(2k − 1)-renaming algorithms are easily ob-
tained with adaptive atomic snapshots and immediate snap-
shots (see [24]). This includes a one-shot algorithm withO(k3)
step complexity [19], which is presented in Sect. 6.

In another paper [13], we present efficient adaptive wait-
free algorithms for lattice agreement (one-shot atomic snap-
shots) and(6k − 1)-renaming; these algorithms do not use
a collect procedure and their step complexity isO(k log k).
Afek and Merritt [4] use them to obtain an adaptive wait-free
(2k − 1)-renaming algorithm, withO(k2) step complexity.

Several papers [9,27,28] study algorithms whose step
complexity depends only onn, and not on the range of pro-
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cess’ identifiers. These algorithms provide a weaker guarantee
than adaptive algorithms, whose step complexity adjusts to the
actual number of active processes, which can be much lower
than the upper bound,n. Anderson and Moir [9] present an
adaptive renaming algorithm that uses the (stronger) test&set
memory access operation.

The algorithms presented in this paper adapt to thetotal
contention–if a process ever performs a step, then it influ-
ences the step complexity of the algorithm throughout the ex-
ecution. More useful are algorithms that adapt to thecurrent
contention, that is, whose step complexity depends only on the
number of currently active processes. Our collect algorithm is
a building block in a long-lived renaming algorithm [2,12],
whose step complexity adapts to the current contention. The
long-lived renaming algorithm, in turn, is used in a collect al-
gorithm [5] withO(k3) step complexity, wherek is the current
contention. This collect algorithm is used to extend our imme-
diate snapshot algorithm to be long-lived and adapt to current
contention [6] (withO(k4) step complexity). Afek, Dauber
and Touitou [3] introduce implementations of long-lived ob-
jects whose step complexity is linear in the current contention;
however, they use strongload-linked andstore-conditional
operations.

Lamport [26] suggests a mutual exclusion algorithm that
requires a constant number of steps when a single pro-
cess wishes to enter the critical section, using reads and
writes; when several processes compete for the critical sec-
tion, the complexity depends on the range of names. Choy and
Singh [21] present mutual exclusion algorithms, using reads
and writes, which are adaptive in an amortized sense; in the
worst case, the step complexity of their algorithms depends
onn. (Alur and Taubenfeld [8] show that this is inherent.)

2 Preliminaries

We considern processes, p1, . . . , pn; each processpi is mod-
eled as a (possibly infinite) state machine, with a unique name
idi ∈ {0, . . . , N − 1}. Processes communicate byread and
writeoperations on shared variables; aread(R) operation does
not change the state ofR and returns the current state ofR; a
write(v,R) operation changes the state ofR tov. Registers are
multi-writer multi-reader, allowingread andwrite operations
by all processes.

An eventis a computation step by a single process; in an
event, a process determines the operation to perform according
to its local state, and determines its next local state according
to the value returned by the operation.

An executionα is a (finite or infinite) sequence of events
φ0, φ1, φ2, . . .. For everyr = 0, 1, . . ., if pi is the process
performing the eventφr, then it applies a read or a write oper-
ation to a single register and changes its state according to its
transition function. There are no constraints on the interleav-
ing of events by different processes, reflecting the assumption
that processes areasynchronousand there is no bound on their
relative speeds.

A process isactivein an executionα if it takes a step inα.
Let k(α) be the number of active processes inα.

An algorithm specifies procedures to be invoked when a
process performs an operation. Theinterval of an operation
opi by processpi is the execution segment between the first

event and the last event ofpi in opi. If the last event ofpi in
opi is before the first event of processpj in an operationopj ,
thenopi precedes opj andopj follows opi.

For an execution segmentβ, let step(β, pi) be the number
of read/write operations performed by processpi in β.

Algorithm A is adaptive (to total contention)if there is a
functionf : N �→ N such that the following holds for every
executionα ofA: if processpi has an operation intervalβ inα,
thenstep(β, pi) ≤ f(k(α)). Namely, the step complexity of
an operation depends only on the number of active processes
in α.

A wait-freealgorithm guarantees that every process com-
pletes its computation in a finite number of steps, regardless
of the behavior of other processes. Sincek(α) is bounded (it
is at mostn), f(k(α)) is also bounded; hence, an adaptive
algorithm must be wait-free.

A viewV is a set of process-value pairs,{〈pi1 , vi1〉, . . .},
without repetitions of processes.V (idj) refers to vj , if
〈pj , vj〉 ∈ V , and to⊥ otherwise.

A solution for the collect problem provides algorithms for
two operations–store andcollect. A store(val) operation of
pi declaresvalas the latest value forpi, and acollectoperation
returns the latest values stored by active processes. Formally, a
collect operationcopreturns a viewV such that the following
holds for every processpj : if V (pj) = ⊥, then nostore
operation ofpj precedescop; if V (pj) = v �= ⊥ thenv is the
value of astore operationsopof pj that does not followcop,
and there is no otherstoreoperationsop′ of pj that followssop
and precedescop. That is,copdoes not read from the future
or miss a precedingstore operation.

Moreover, if acollectoperationopfollows anothercollect
operationcop′, thencopshould return a view that is more up-
to-date. To capture this notion, we define a partial order on
views:V1  V2, if for every processpi such that〈pi, v

1
i 〉 ∈ V1,

we have〈pi, v
2
i 〉 ∈ V2, andv2

i is written in astore operation
of pi that follows or is equal to astore operation ofpi that
writesv1

i . We require that ifcopprecedescop′, thenV1  V2.
The collect problem is easily solved using an array indexed

with processes’ names: A process stores its most recent value
to the entry indexed with its name; to collect, a process reads
the entire array. (This can be used as an alternative definition,
cf. [5].) In this scheme, a collect requiresO(N) steps.

3 Adaptive collect

We present an adaptive wait-free algorithm forstore and
collect, with O(k) step complexity. The algorithm uses the
splitter suggested by Moir and Anderson [28]: A process en-
tering a splitter exits with eitherstop, left or right . It is guar-
anteed that if a single process enters the splitter, then it obtains
stop, and if two or more processes enter the splitter, then there
are two processes that obtain different values. (See Fig. 1) Thus
the set of processes is “split” into smaller subsets, according
to the values obtained.

The collect algorithm uses a complete binary tree of depth
n− 1, with splitters in the vertices. In its firststore, a process
acquires a vertexv; from this point on, the process stores its
up-to-date values inv.val.

A process acquires a vertex in the tree using procedure
register; in register, the process starts at the root and moves
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Fig. 2.An execution ofregister in a complete binary tree of splitters

down the tree according to the values obtained in the splitters
along the path: If it receivesleft, it moves to the left child; if it
receivesright , it moves to the right child.A process marks each
vertex it accesses by raising a flag associated with the vertex;
a vertex ismarked, if its flag is raised. The process acquires a
vertexv when it obtainsstopat the splitter associated withv;
then it writes its id intov.id. (See Fig. 2.)

To perform acollect, a process traverses the part of the
tree containing marked vertices, in DFS order, and collects
the values written in the marked vertices.

A simple implementation of a splitter [28] is based on Lam-
port’s mutual exclusion algorithm [26], and uses two shared
variables,X andY . Initially, X = ⊥ andY = false.A process
executing the splitter first writes its id intoX and then reads
Y . If Y = true, then the process returnsright . Otherwise, the
process setsY = true and checksX. If X still contains its
id, then the process returnsstop; if X does not contain its id,
then the process returnsleft. The following lemma, from [28],
states the main properties of the splitter.

Lemma 1 If � processes access a specific splitter, then the
following conditions hold:
(1) at most one process obtainsstop in this splitter,
(2) at most� − 1 processes obtainleft in this splitter, and
(3) at most� − 1 processes obtainright in this splitter.

The code forcollect andstore, as well as for the splitter,
appears in Algorithm 1. In the algorithm, the following shared
variables are associated with each vertexv in the tree:

mark: Indicates whether some process accessedv; ini-
tially false.

id: Holds the identifier of the process that stops inv;
initially ⊥.

value: Holds an updated value of the process that stops
in v; initially ⊥.

X: Holds a process’ identifier, for the splitter associ-
ated withv; initially ⊥.

Alg. 1 store andcollect: code for processpi.

shared variables:
CollectTree: complete binary tree of splitters

of depthn − 1
local variables: // persistent across invocations ofstore

descriptor: vertex, initially⊥

void procedurestore(val) // update value
1. if ( descriptor== ⊥ ) then // first time

descriptor= register()
2. descriptor.value= val

vertex procedureregister() // acquire a vertex
1. v = CollectTree.root
2. repeat
3. v.mark= true
4. move= splitter(v) // returnsstop, left, or right
5. if ( move== left ) thenv = v.left-child
6. if ( move== right ) thenv = v.right-child
7. until ( move== stop )
8. v.id = idi // write your identifier
9. returnv // location descriptor

view procedurecollect()
// collect updated values of active processes

1. return(DFS(∅, CollectTree.root) )

view procedureDFS(V : view; v : vertex)
// DFS traversal of the marked part of the tree

1. if ( v.mark) then
2. if ( v.value �= ⊥ ) thenV = V ∪ {〈v.id, v.value〉}
3. V = V ∪ DFS(V, v.left-child)
4. V = V ∪ DFS(V, v.right-child)
5. return(V )

{left, right , stop} proceduresplitter(v : vertex)
// from Moir and Anderson [28]

1. v.X = idi // write your identifier
2. if ( v.Y ) then return(right )
3. v.Y = true
4. if ( v.X == idi ) then return(stop) // check identifier
5. else return(left)

Y: Holds a Boolean value, for the splitter associated
with v; initially false.

left-child: Pointer to the left child ofv.
right-child: Pointer to the right child ofv.

To prove the correctness and complexity of the algorithm,
fix an executionα of the algorithm and letk be the number of
processes that callstore at least once inα.

Lemma 2 If the depth of a vertexv is d, 0 ≤ d ≤ k, then at
mostk − d processes accessv.

Proof. The proof is by induction ond, the depth ofv. In the
base case,d = 0, the lemma trivially holds since at mostk
processes are active.

For the induction step, suppose that the lemma holds for
vertices at depthd, 0 ≤ d < k, and consider some vertexv
with depthd + 1. Let u bev’s parent in the tree. The depth
of u is d, and by the inductive hypothesis, at mostk − d
processes accessu. If v is the left child ofu, then Property (2)
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of the splitter (Lemma 1) implies that at mostk− d− 1 of the
processes obtainleft atu and accessv. If v is the right child
of u, then Property (3) of the splitter (Lemma 1) implies that
at mostk−d−1 of the processes obtainright atu and access
v. ��

By Lemma 2 and the algorithm, when a process performs
register, it stops in a vertex with depth less than or equal to
k − 1. By Property (1) of the splitter (Lemma 1), at most one
process stops in each vertex. Therefore, we have the following
lemma:

Lemma 3 Each process writes its id in a vertex with depth
≤ k − 1 and no other process writes its id in the same vertex.

Since each splitter requires a constant number of opera-
tions, Lemma 3 implies that the step complexity ofregister is
O(k). This implies that the first invocation ofstore requires
O(k) steps; clearly, all later invocations ofstore require only
O(1) steps. In addition, this lemma implies that the location
descriptors returned byregister are unique.

If a vertexv is marked, then some processpi setsv.mark
to true; this process also marks all the vertices on the path
from the root tov before markingv. Since no process resets
markvariables tofalse, this implies the next lemma:

Lemma 4 All vertices on the path from the root to a marked
vertexv are marked.

Assume thatcop is acollect of processpi. If some pro-
cesspj completes its firststore beforepi startscop, thenpj

writes idj into v.id, for some vertexv, beforepi startscop.
By Lemma 4, all vertices on the path from the root tov are
marked, and therefore,pi visitsv during the DFS traversal in
cop. The algorithm implies thatpi readspj ’s most up-to-date
value fromv.value. Clearly,pi cannot read a value written
by astore of pj that followscop. Moreover, since values are
updated with a single operation, a later collect returns a more
up-to-date view. This implies that Algorithm 1 solves the col-
lect problem.

Theorem 1 Assume acollect operation cop returns a view
V . Then the following holds for every processpj :
(1) if V (pj) = ⊥, then nostore operation ofpj precedes cop;
(2) if V (pj) = v �= ⊥, thenv is the value of astore operation
sop ofpj that does not follow cop, and there is no otherstore
operation sop′ of pj that follows sop and precedes cop;
(3) if cop precedes acollect operation cop′ that returns a view
V ′, thenV  V ′.

The step complexity ofcollect is linear in the number of
vertices in the marked tree that are traversed by procedure
DFS. We prove that this number is at most2k−1. (This holds
despite the fact that the depth of the marked tree can bek,
which in general implies only a bound of2k on the number of
marked vertices.)

Consider acollect operation, and letα be the shortest
finite execution prefix that contains its execution interval. Let
S = v0, v1, . . . , vl be the vertices of the marked tree afterα,
appearing in an in-order; i.e., for every marked vertex,v, the
vertices of the left sub-tree ofv appear beforev in S and the
vertices of the right sub-tree ofv appear afterv in S.

vi+1vi

x

a

vi+1

all processesno process

x = vi

b

Fig. 3. Illustrations for the proof of Lemma 5

A vertexv ∈ S is grey if there is a process that accesses
the left child ofv in α (that is, writestrue in the variablemark
of v.left-child) and there is a process that accesses the right
child of v in α (that is, writestrue in the variablemark of
v.right-child). A marked vertex that is not grey isblack. For
any black vertexv, (a) there is a process that setsv.mark to
true, and(b) one of the children ofv (e.g.,v.right-child) is
not accessed by any process inα. By Lemma 1(2), not all
the processes accessingv return left. Therefore, at least one
process that accessesv either returnsstop in v, or fault-stops
in v.

Lemma 5 There is a black vertex between every pair of grey
vertices inS.

Proof. Suppose, by way of contradiction, that there are two
consecutive grey verticesvi andvi+1 in S. We first prove that
one of them is an ancestor of the other in the marked tree. Let
x be the lowest common ancestor ofvi andvi+1 in the marked
tree; by Lemma 4,x is marked. Ifx �= vi andx �= vi+1, then
vi belongs to the left subtree ofx, andvi+1 belongs to the right
subtree ofx (see Fig. 3(a)). SinceS is an in-order traversal
of the marked subtree,x appears betweenvi andvi+1 in S,
contradicting the assumption thatvi andvi+1 are consecutive
in S.

Suppose thatvi is an ancestor ofvi+1. Sincevi appears
beforevi+1 in the in-order sequenceS, vi+1 belongs to the
right subtree ofvi. Sincevi+1 appears immediately aftervi

in S, the left child ofvi+1 is unmarked, contradicting the fact
thatvi+1 is grey. (See Fig. 3(b).)

A similar argument can be applied ifvi+1 is an ancestor
of vi. Sincevi appears beforevi+1 in the in-order sequence
S, vi belongs to the left subtree ofvi+1. Sincevi appears
immediately beforevi+1 inS, the right child ofvi is unmarked,
contradicting the fact thatvi is grey. ��

If the first vertex inS, v0, is grey, then the left subtree
of v0 must contain marked vertices. Therefore, some vertex
precedesv0 in S, which is a contradiction. A similar argument
shows that the last vertex inS is black, implying the next
lemma:

Lemma 6 The first and the last vertices inS are black.

With each black vertex we can associate a distinct active
process that accesses the vertex and does not go below it inα;
thus, there are at mostk black vertices. Therefore, the number
of grey vertices is at mostk − 1, by Lemma 5 and Lemma 6.
Hence, the marked tree contains at most2k−1 vertices. Thus,
procedureDFS visits at most2k − 1 vertices, each requiring
a constant number of operations, implying that the step com-
plexity of collect is O(k).

Theorem 2 Algorithm 1 solves the collect problem, with
O(k) step complexity.
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Alg. 2 The classifier procedure (from [15]): code forpi

procedureclassifier(M : integer;Ii: view)
returns{left, right } and a view

1: store(Ii)
2: {R1, . . . , Rn} = collect
3: if | ∪ {R1, . . . , Rn}| > M then
4: {R1, . . . , Rn} = collect

return (right , ∪{R1, . . . , Rn})
5: else return(left,Ii)

4 Adaptive atomic snapshots

Theatomic snapshotproblem [1] extends the collect problem
by requiring views to look instantaneous. Instead of separate
update andstore operations, we provide a combinedupscan
operation, which updates a new value and atomically collects
a view. The returned views should satisfy the following con-
ditions (cf. [14]):

Validity: If an upscan operationop returns a viewV , and
precedes anupscanoperationop′, thenV does not include
the value written byop′.1

Self-inclusion: The view returned by the�th upscan opera-
tion of pj includes the�th value written bypj .

Comparability: IfV1 andV2 are the views returned by two
upscan operations, then eitherV1  V2 or V2  V1.

An efficient adaptive atomic snapshot algorithm, with
O(k log k) step complexity, can be derived from the algo-
rithm solving the problem forn processes withO(n log n)
steps [15]. This transformation is not trivial since in the non-
adaptive algorithm, processes descend down a binary tree of
depthO(log n) (see below); thus, the number of stores and
collect depends onn. We describe the one-shot algorithm; it
can be made long-lived using techniques of [14,15,22].

The non-adaptive algorithm uses a complete binary tree
of depthlog n, whose vertices are labeled as a search tree, in
which all values are stored in the leaves: The leaves are la-
beled1, 2, . . . from left to right; the label of an inner vertex
is equal to the label of the right-most leaf in its left subtree
(Fig. 4). A simpleclassifier procedure (Algorithm 2) is asso-
ciated with each vertex; the procedure takes a threshold value
and an input view as parameters; it returns aside(left or right)
and a view. Procedureclassifier separates operations so that
less knowledgeable operations proceed to the left, and more
knowledgeable operations proceed to the right (see Lemma 7).

An upscan operation traverses the tree downwards from
the root. In each inner vertexv, the operation callsclassifier
with Label(v) as the threshold parameter and the view it ob-
tained in the previous vertex (in the root, the view contains
only the operation’s value); the operation continues left or
right, according to the side returned byclassifier. The opera-
tion terminates at a leaf and returns the view obtained in the last
inner vertex (without performingclassifier in the leaf). The
following simple lemma [15, Lemma 3.1] states the properties
of classifier.

Lemma 7 Assumeclassifier is called with threshold pa-
rameterM , and that processpi obtains the viewOi from

1 Typically, this condition trivially holds and we do not prove it
below.

classifier. Then the following holds:
(1) | ∪ {Oj | pj returnsleft}| ≤ M , and
(2) if pi returns right , then |Oi| > M and Oi contains
∪{Oj | pj returnsleft}.

The adaptive algorithm uses an unbalanced binary tree,
constructed fromlog n complete binary trees of exponentially
growing sizes (1, 2, 22, . . . leaves), connected by a single path
(Fig. 4). As in the non-adaptive algorithm, leaves are labeled
1, 2, . . . from left to right and an inner vertex is labeled with
the label of the right-most leaf in its left subtree.

First, note that views returned by two operations,opi and
opj , returningVi andVj from different leaves are comparable.
Let v be the minimal common ancestor of these leaves;v
is an inner vertex. Clearly,opi andopj callsclassifier at v,
and one of them (say,opi) returnsleft, while the other (say,
opj) returnsright . The algorithm implies thatVi is contained
in ∪{Ol | pl returnsleft andOl in v}, and thatVj contains
the viewpj returns fromclassifier in v. By Lemma 7(2),Vj

containsVi.
Next, consider two operations,opi andopj , returningVi

andVj from the same leafv; denoteM = Label(v). Letu be
the last vertex (on the path from the root tov) in which opi
andopj go right2; v is the left-most leaf in the right subtree of
u and by construction,Label(u) = M − 1. By Lemma 7(2),
|Vi|, |Vj | > M − 1. Let w be the last vertex in whichopi
andopj go left; v is the right-most leaf in the left subtree of
w and hence,Label(w) = Label(v) = M . As mentioned
above, the algorithm implies thatVi and Vj are contained
in ∪{Ol | pl returnsleft andOl in v}. By Lemma 7(1), this
union contains at mostLabel(w) values. Thus,|Vi ∪Vj | ≤ M ,
soVi = Vj .

This allows to prove that the snapshot algorithm is correct,
along the lines of [15]. An operation accesses at mostO(log k)
vertices on its way to a leaf. Sinceclassifier in each vertex
requiresO(k) steps, the algorithm requiresO(k log k) steps.

5 Adaptive immediate snapshots

The immediate snapshotproblem [19] provides a combined
im-upscan operation, updating a new value and returning a
view. In addition to the validity, self-inclusion, and compa-
rability properties of the atomic snapshot problem, returned
views should satisfy the next condition:

Immediacy: If the view returned by someim-upscan opera-
tion, V1, includes the value written in the�th im-upscan
of pj that returns the viewV2, thenV2  V1.

5.1 Overview of the algorithm

For ease of exposition, a view is represented by a set of
counters, holding the number of updates performed by pro-
cesses. Each process owns an unbounded array of values.3

In an im-upscan operation, a process writes the new value
into its array and increments a counter holding the number of

2 If u does not exist, thenM = 1 and a simpler version of the
following argument can be applied.

3 This array can be bounded, see [7].
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Fig. 4. Trees for lattice agreement: Non-adaptive (left) and
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values it has written; then it obtains a view of the counters
(which can be used to retrieve the values from the arrays). The
sumof counters in a viewV , denoted

∑
V , is the total num-

ber of updates precedingV ; clearly, for views satisfying the
comparability property

∑
V1 ≤ ∑

V2 if and only ifV1  V2.
The overall structure of our algorithm follows the non-

adaptive immediate snapshot algorithm [7,17]. Processpi first
finds an atomic snapshot viewV containing its new value.
V is written in afloor whose numbersi is equal to

∑
V ;

clearly, all views written in the same floor are equal. (The
number of floors is infinite, since

∑
V is unbounded for a

long-lived algorithm.) Then,pi participates in a distinct copy
of one-shot immediate snapshot in each floor belowsi, with its
new value as input, until it sees its previous value in the view
written in one of these floors. When this happens,pi returns
the maximal values from the view written in this floor and the
view it obtained in the one-shot immediate snapshot of this
floor.

To bound the number of floors processpi accesses, it takes
asV the smallestatomic snapshot view containing its new
value among the snapshots obtained by other processes. That
is, si is the smallest floor where a view containingpi’s new
value is written. This is used below (Lemma 11) to show thatpi

accesses at mostk floors. To allowpi to find the smallest view
containing its new value, each processpj maintains an array
which holds, for every processpl, the first viewpj observes
with the most recent value ofpl; pj updates this view whenever
it sees a new value forpl. To findV and calculate its start floor,
pi reads the appropriate entries of the active processes’ arrays
and picks the minimal view containing its last value.

Since the view written in floorsi containspi’s new value,
processes returning from floors≥ si see this (or a later) value
of pi. Sincepi returns from some floorff < si containing its
previous value, processes returning from floors< ff see pre-
vious values ofpi. Sincepi performs the one-shot immediate
snapshot algorithm with its last value as input in each floor be-
tweensi andff, the views returned from these floors include
this value. The one-shot immediate snapshot in floorff guar-
antees that views returned from floorff satisfy the immediacy
property.

The one-shot immediate snapshot algorithm used in each
floor [19] relies on the number of participants: processes start
at leveln, and descend through levels until some condition is
met. We notice that processes need not start at the same level:
they only have to start at (possibly different) levels that are
larger than the number of processes participating in the one-
shot immediate snapshot algorithm (see Sect. 5.4). Below, we
show how a process picks its start level for floorf to be larger

than or equal tokf , the number of processes participating in
floor f . The step complexity of the one-shot algorithm used
in each floor depends on the start level, which is smaller than
or equal tok + 1, making the algorithm adaptive.

5.2 Details of the algorithm

Algorithm 3 uses an infinite number of floors. A copy of
the adaptive one-shot immediate snapshot algorithm (Algo-
rithm 4, presented below), denotedos-im-upscanf , is asso-
ciated with every floorf , as well as the following data struc-
tures:

1. view[f ], a view; initially contains the empty view,⊥.
2. flag[f ][1 . . . N ] an array of bits, one for each process; ini-

tially, all bits arefalse.

Each processpi maintains an arrayAi[0, . . . , N − 1] of
views;Ai[idj ] holds the first view containing the last value of
pj , among the views observed bypi.

After obtaining a viewV ′,pi checks, for each processpj ∈
V ′, whetherpj incremented its counter sincepi’s previous
im-upscan operation. If it did, thenpi writesV ′ (containing
the new counter ofpj) into Ai[idj ]. To find its start floor,
pi chooses the minimal viewV containing its new counter,
among the views stored for it by other processes. To keep the
step complexity of the algorithm adaptive,pi readsAj [idi]
only for processespj ∈ V ′. Thenpi writesV in its start floor,
whose number is

∑
V .

Processpi continues the algorithm one floor below its start
floor. In each floorf , if pi reads a non-⊥ view from view[f ]
thenpi setsflag[f ][i] to true. Then,pi obtains a viewW f

i from
os-im-upscanf . If view[f ] does not contain the last value of
pi and the flag of one of the processes inW f

i is true, thenpi

returns a view containing the maximal counters fromW f
i and

view[f ]; otherwise,pi accesses floorf − 1.
Clearly, processes appearing inpi’s initial view, Vi, may

access floors belowpi’s start floor. In addition, processes may
descend from higher floors. These processes “register” in the
floor before participating in the one-shot immediate snapshot
associated with it. To allow registration, a distinct copy of
store andcollect (Algorithm 1), denotedstoref andcollectf ,
is associated with each floorf . A process registers before
accessing floorf , usingstoref . Processpi collects a setUi

of processes registered in its start floor,si, usingcollectsi .
|Vi∪Ui|+1 is the start level parameter ofpi foros-im-upscan
in all floors it accesses. SinceVi andUi contain only active
processes,|Vi ∪ Ui| + 1 ≤ k + 1.
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Alg. 3 Adaptive long-lived immediate snapshot: code for processpi.

local variables:
V ′, V , U , W : view
Ai[0, . . . , N ] : array of views, initially⊥ // persistent
f , start-level: integer

view im-upscan(count: integer)
1. V ′ = upscan(count) // increment your counter and get a view
2. for all idj ∈ V ′ do // update views for other processes
3. if V ′(idj) > Ai[idj ](idj) then //pj updated its counter after the previous scan bypi

4. Ai[idj ] = V ′ // update the view containing the last counter ofpj

5. V = min{Aj [idi] | idj ∈ V ′ andAj [idi](idi) = count} // minimal view stored forpi, which containspi’s new counter
6. f =

∑
V // calculate start floor

7. view[f ] = V // write your initial view
8. U = collectf () // collect id’s of the processes registered in the start floor
9. start-level= |U ∪ V | + 1 // estimate the number of participants in lower floors
10. while (true ) do // descend through the floorsf − 1, f − 2, . . .
11. f = f − 1
12. storef (〈idi, count〉) // register in floorf
13. flag[f ][i] = (view[f ] �= ⊥)
14. W = os-im-upscanf (count, start-level)
15. if ( count> view[f ](idi) and for some〈idj , cj〉 ∈ W , flag[f ][j] == true ) then
16. return(join(W, view[f ])) // maximal counters appearing inW or view[f ]

view procedurejoin(V1, V2 : view)
1. return({〈idj , cj〉 | idj ∈ V1 ∪ V2 andcj == max{V1(idj), V2(idj)}})

Note that different invocations ofim-upscan by process
pi do not call the same copy ofos-im-upscan. If an operation
op1 of pi starts in floorf , thenop1 callsos-im-upscan only in
floors< f , and the view written in floorf contains the value
of op1. A later operationop2 of pi reads this value (or a later
one) from a floor≥ f ; thereforeop2 returns from a floor≥ f
and does not callos-im-upscan in floors< f .

5.3 Proof of correctness and complexity analysis

Our key lemma proves that only processes inVi ∪ Ui may
access floors1, . . . , si −1; that is,start-leveli is larger than or
equal to the number of processes in the floorspi accesses.

Lemma 8 If pi starts at floorsi, and pj accesses a floor
f < si, thenpj ∈ Ui ∪ Vi.

Proof. If pj ∈ Vi, then the lemma clearly holds. Otherwise,
the atomic snapshots properties imply thatpj accesses floor
si, before it accesses floorf .

If pj completesstoresi
beforepi startscollectsi

, then
pj ∈ Ui, and the lemma follows.

Otherwise,pj readsVi �= ⊥ from view[si] since it reads
after completingstoresi(idj), andpi writesVi into view[si]
before startingcollectsi . Sincepj �∈ Vi, it follows that pj

evaluates the condition in Line 15 totrue, and returns from
floor si, which is a contradiction. ��

If pi returnsVi andpj returnsVj from the same floorf , then
they read the same value fromview[f ]. W f

i andW f
j are views

returned byos-im-upscanf and hence, they are comparable.
Thus,Vi andVj are comparable. The comparability property
is proved by showing that views returned from different floors
are comparable; the proof follows [17, Lemma 3.3.2].

Lemma 9 If pi returnsVi from floor fi and pj returnsVj

from floorfj < fi, thenVj  Vi.

Proof. Since views written in the floors are ordered by con-
tainment,view[fj ]  view[fi]. We show thatW fj

j (pk) ≤
Vi(pk), for any processpk.

The lemma trivially holds ifW fj

j (pk) = ⊥. Other-

wise, 〈pk, l〉 ∈ W
fj

j , for somel; thus, pk participates in
os-im-upscanfj (on floorfj) during itsl’th immediate snap-
shot, which starts at floorsk. The lemma clearly holds if
sk < fi, since〈pk, l〉 ∈ view[sk]  view[fi]  Vi.

If sk ≥ fi, thenpk accesses floorfi, evaluates the con-
dition in Line 15 to false, and goes to a lower floor. Ifpk

reads a non-⊥ value fromview[fi] that includes〈pk, l〉, then
〈pk, l〉 ∈ view[fi]  Vi, sincepi reads the same non-⊥ value
from view[fi].

Otherwise,pk readsfalse from flag[fi][x], for every pro-
cesspx ∈ W fi

k . Clearly, pi reads true from flag[fi][y],
for some processpy ∈ W fi

i . However,py writes true to
flag[fi][y] before callingos-im-upscan, andpk must read
true from flag[fi][y] if py ∈ W fi

k . Thus,py /∈ W fi

k , and by
the comparability property,W fi

k ⊂ W fi

i . The self-inclusion
property ofos-im-upscan implies that〈pk, l〉 ∈ W fi

i . ��
If processpi returnsVi from floorf in its lth im-upscan,

then〈pi, l〉 ∈ W f
i  Vi, sinceos-im-upscan returns a snap-

shot. This proves the self-inclusion property.
The proof of the immediacy property follows [17, Lemma

3.3.6] .

Lemma 10 (Immediacy)The returned views satisfy the im-
mediacy property.
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Proof. Assume thatVj , a view returned bypj from floor fj ,
includes thel-th value written bypi. Let Vi be the view re-
turned by thel-th im-upscan operation ofpi from floor fi.
We show thatVi  Vj .

Assume thatpi returns from a floor abovefj (that is,
fi > fj). Then〈idi, l〉 �∈ view[fj ] (by the condition in Line 15)

and 〈idi, l〉 �∈ W
fj

j (since 〈idi, l〉 does not participate in
os-im-upscanfj ). Therefore,〈idi, l〉 �∈ Vj , which is a con-
tradiction.

If pi returns from a floor belowfj (that is,fi < fj), then
by Lemma 9,Vi  Vj .

If pi returns from floorfj , then〈idi, l〉 �∈ view[fj ], im-

plying that 〈idi, l〉 ∈ W
fj

j . By the immediacy property of

os-im-upscan in floor fj , pi gets a viewW fj

i  W
fj

j . Since
pi andpj read the same (non-⊥) view fromview[fj ],Vi  Vj .
��

The next lemma completes the complexity analysis by
bounding the number of floors a process accesses; its proof
is similar to [17, Lemma 3.3.3].

Lemma 11 In im-upscanl
i, processpi descends through at

mostk floors.

Proof. Processpi starts in floor
∑

V , whereV is the mini-
mal atomic snapshot view containingpi’s new value, which
is stored forpi by other processes (Line 5 ofim-upscan).
Sincek processes are active, at mostk − 1 views are unwrit-
ten betweenV and the next (smallest) written view withpi’s
previous value. Thus,pi accesses at mostk floors. ��

Sinceos-im-upscan in each floor requiresO(k2) steps
(see below), we have the next theorem:

Theorem 3 Algorithm 3 solves the immediate snapshot prob-
lem, withO(k3) step complexity.

5.4 One-shot immediate snapshot algorithm

The one-shot immediate snapshot algorithm presented in this
section follows Borowsky and Gafni [19]. In Algorithm 4, a
process descends throughlevels, checking the levels of other
processes, until the number of processes in the levels below
is larger than the level. In our algorithm, processes may start
at different levels; however, as proved above, every process
startsos-im-upscan on floorf at a level larger thankf , the
number of the processes accessing floorf .

The set of processesdescendingto level�, by performing
store(〈∗, ∗, �〉) after store(〈∗, ∗, � + 1〉), is denotedD�. At
most� processes descend to level� [17, Lemma 3.1.1].

Lemma 12 |D�| ≤ �, for every level�, 1 ≤ � ≤ n.

Proof. Assume, by way of contradiction, that�+ 1 (or more)
processes descend to level�. Letpj be the process inD� whose
store(〈∗, � + 1〉) is the latest to complete. Since processes’
levels do not increase,pj ’s following collect returns at least
�+1 processes in levels1, . . . , �+1, andpj does not descend
to level�. ��

Alg. 4 One-shot immediate snapshot (based on [19]): code
for processpi.

procedureos-im-upscan(count, start-level: integer)
returns a view

1. level= start-level
2. store(〈idi, count, level〉) // the start level ofpi

3. while ( true ) do
4. level= level− 1
5. store(〈idi, count, level〉) // pi descends one level
6. V = collect()

// returns a set of〈id, counter, level〉 triples
7. W = {〈idj , countj , levelj〉 ∈ V | levelj ≤ level}

// processes on smaller or equal levels
8. if ( |W | ≥ level) then return(W )

If pi starts at a level larger thank, then it descends to level
� ≤ k after descending to levelsk, . . . , �+1; thus, ifpi ∈ D�,
thenpi ∈ Dk, . . . , D�+1, implying the next lemma:

Lemma 13 If all process start above levelk, thenD1 ⊆
D2 ⊆ . . . ⊆ Dk.

Let Si be the set of processes in the viewpi returns from
some level�; Si contains only processes descending to level�
or below. By Lemma 13,Si ⊆ D� and by Lemma 12,|D�| ≤ �.
By the algorithm,� ≤ |Si|, which implies the next lemma:

Lemma 14 If all processes start above levelk, thenSi = D�.

If processpi returns from levelli, 1 ≤ li ≤ k, thenpi ∈
Dli which is equal toSi (by Lemma 14); thus, the returned
views satisfy the self-inclusion property.

If another processpj returns from levellj , then Lemmas 13
and 14 imply that eitherSi ⊆ Sj (if li ≤ lj) or Sj ⊆ Si (if
lj ≤ li); thus, the returned views are comparable.

If pi ∈ Sj , thenpi ∈ Dlj , by Lemma 14. That is,pi

descends to levellj and hence,li ≤ lj . By Lemmas 13 and 14,
Si = Dli ⊆ Dlj = Sj , implying the immediacy property.

When called from Algorithm 3, processpi descends
through at moststart-leveli ≤ k + 1 levels. In each level,
it performsO(k) operations (using ourstore andcollect pro-
cedures), implying the next theorem:

Theorem 4 If all processes start above levelk, Algorithm 4
solves the one-shot immediate snapshot problem withO(k2)
step complexity.

6 Adaptive (2k − 1)-renaming

The (one-shot)(2k− 1)-renamingproblem [10] requires pro-
cesses to acquire distinct names in the range{0, . . . , 2k− 2}.
The algorithm of Borowsky and Gafni [19], can be made adap-
tive by using our immediate snapshot algorithm. The BG re-
naming algorithm proceeds in rounds; a process takes an im-
mediate snapshot in each round, and processes are partitioned
into groups according to the size of the returned views. The
views also partition the name space into disjoint intervals; pro-
cesses in each group continue the algorithm in the associated
interval. The process with the maximal id in the group gets
a name in the interval; other processes proceed to the next
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Alg. 5 Adaptive(2k − 1)-renaming (based on [19]): code for processpi.

shared objects:
Slots[0] : an adaptive immediate snapshot object // Algorithm 3, used here as one-shot
Slots[1 . . . 2n − 2] : array of immediate snapshot objects // Algorithm 4

local variables:
S : view, initially ⊥
firstSlot: integer, initially 0 // first slot of the current range
start-level: integer, initially 0
direction: Boolean, initiallytrue

rename(firstSlot,direction)
1. if ( firstSlot== 0 ) then // only the first round starts from slot 0

S = Slots[0].im-upscan(1) // Algorithm 3
start-level= |S| // estimate the number of processes

2. elseS = Slots[firstSlot].os-im-upscan(1,start-level) // Algorithm 4
3. firstSlot= NewInterval(firstSlot,direction,|S|)
4. if ( idi is the maximalid in S ) then return(firstSlot) // allocate self
5. elserename(firstSlot,¬direction) // start again in a new range, opposite direction

NewInterval(slot, direction, snapSize) // allocate an interval of name space for the processes in the group
6. if ( direction) then return(slot+ (2snapSize− 1)) // allocate going up
7. else return(slot− (2snapSize− 1)) // allocate going down

round. The code appears in Algorithm 5; a process starts the
algorithm by callingrename(0,true).

For simplicity of presentation,2n − 1 distinct immediate
snapshot objects are associated with slots0, 1, . . . 2n − 2. In
the first round, starting from slot 0, adaptive immediate snap-
shot Algorithm 3 is used, since the number of participating
processes is not known. In later rounds, starting from slots
1, . . . , 2n − 2, the size of the group is bounded by the size
of the view obtained in the first round, therefore it suffices
to use non-adaptive Algorithm 4 with appropriate parameter
start-level.

As proved in [19], at least one process halts in each round;
therefore, the number of rounds is at mostk. In the first round,
Algorithm 3 requiresO(k3) steps, while in each of the later
rounds, Algorithm 4 requiresO(k2) steps. This implies the
next theorem:

Theorem 5 Algorithm 5 solves the one-shot(2k − 1)-
renaming problem, withO(k3) step complexity.

7 Discussion

This paper presents an adaptive collect algorithm; the algo-
rithm is simple and its step complexity is linear in the number
of active processes. Many algorithms can be made adaptive
by substituting our collect algorithm. In particular, we show
how to obtain adaptive algorithms for atomic snapshots, with
O(k log k) step complexity, for immediate snapshots, with
O(k3) step complexity, and for(2k − 1)-renaming problem,
with O(k3) step complexity.

An adaptivelong-lived(2k − 1)-renaming algorithm can
easily be derived from the�-assignment algorithm of Burns
and Peterson [20], using our collect algorithm. However, the
step complexity of the resulting algorithm is at least exponen-
tial in k, since the step complexity of Burns and Peterson’s
algorithm is at least exponential inn [23]. A polynomial long-

lived(2k−1)-renaming algorithm, which adapts to the current
contention, appears in [12].
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