
Distrib. Comput. (1999) 12: 179–195

c© Springer-Verlag 1999

Plausible clocks: constant size logical clocks for distributed systems?

Francisco J. Torres-Rojas, Mustaque Ahamad

College of Computing, Georgia Institute of Technology, USA (e-mail:{torres, mustaq}@cc.gatech.edu)

Received: January 1997 / Accepted: January 1999

Summary. In a Distributed System with N sites, the precise
detection of causal relationships between events can only be
done with vector clocks of size N. This gives rise to scal-
ability and efficiency problems for logical clocks that can
be used to order events accurately. In this paper we propose
a class of logical clocks called plausible clocks that can be
implemented with a number of components not affected by
the size of the system and yet they provide good ordering
accuracy. We develop rules to combine plausible clocks to
produce more accurate clocks. Several examples of plausible
clocks and their combination are presented. Using a simu-
lation model, we evaluate the performance of these clocks.
We also present examples of applications where constant
size clocks can be used.

Key words: Logical clocks – Causality detection –
Distributed algorithms

1 Introduction

In large scale distributed systems, efficient access to shared
information requires the use of caching and replication. In
such an environment, it is necessary to order read and update
operations on an object to determine its most recent value.
Logical clocks have been explored for ordering events in
distributed systems. These clocks do not require synchro-
nized physical clocks and can be implemented by including
additional information with messages exchanged in the sys-
tem. Although vector clocks, one example of logical clocks,
can precisely order events of a distributed system and detect
concurrent events, they are expensive to maintain and manip-
ulate since vectors of integers must be included in messages
and it is necessary to compare vector times to determine the
order between operations. Besides, since vector clocks have
a component for each site in the system, they are not easily
scalable.

Scalar logical clocks can be implemented efficiently
(e.g., Lamport Clocks), but when events are timestamped

? This work was supported in part by NSF grant CDA-9501637 and
CCR-9619371.

with these clocks, two events may appear to be ordered ac-
cording to their timestamps even when they are concurrent.
In a replicated object system, this could lead to unnecessary
consistency operations. For example, in the causal consis-
tency implementation described by Ahamad, John, et al. [2,
16], if a new object value written by operationo is fetched
at a site, existing object copies at the site are removed from
its cache if the operations that produced them causally pre-
cedeo. This is done because the cached object copies may
potentially have been overwritten by more recent operations
that were executed beforeo. If scalar clocks are used to de-
termine the causal orderings between operations, an object
produced by an operation which is concurrent witho may
unnecessarily be removed from the site cache. Such unneces-
sary removals and extra communications needed when such
objects are accessed in the future can be avoided if more dis-
cerning clocks are used to determine the ordering between
operations.

In this paper, we explore logical clocks that make use
of multiple components, as in vector clocks, to provide a
high level of ordering accuracy. However, they can be im-
plemented in a scalable fashion because the number of com-
ponents in them is independent of the number of sites in
the distributed system. Such clocks are useful in systems
where placing an ordering on concurrent events only im-
pacts performance and not correctness. This is true for many
consistency maintenance schemes and resource allocation al-
gorithms. Thus, we explore efficiently implemented clocks
that may order a small number of concurrent events but do
not significantly affect the performance of algorithms that
use such clocks due to their high level of ordering accuracy.
We call theseplausible clocks. We describe several such
clock systems and present rules to combine them to produce
more accurate clocks. We study the performance of these
clocks using a simulation model for two different distributed
systems. These simulations show that plausible clocks can
provide high ordering accuracy in many systems. For exam-
ple, the experiments show that in a group of client/server
systems with 76 sites (1 server, 75 clients) that include 96
million event pairs, a plausible clock with just 7 components
ordered, on the average, 93% of the event pairs in the same
way as a vector clock which requires 76 components.

180 F.J. Torres-Rojas, M. Ahamad

This paper is a significant revision of a previous version
that appeared in the Proceedings of the Workshop on Dis-
tributed Algorithms (WDAG), 1996 [27]. We have refined
the model used to represent the clock systems and present
additional details of the workings of plausible clocks. A new
section, that illustrates where plausible clocks can be used,
has been added. We also include a much expanded discussion
of related work and its comparison with plausible clocks.

Section 2 presents some background material on logi-
cal clocks. We introduce the concept of plausible clocks in
Sect. 3. Section 4 explains how such clocks can be com-
bined and demonstrates that the combination rules preserve
correctness and provide improved accuracy. Some examples
of constant size clocks are described in Sect. 5. Section 6
reports the simulation model used to evaluate the proposed
clocks together with the obtained results. We outline some
applications of plausible clocks in Sect. 7. Related work is
examined in Sect. 8. Finally, Sect. 9 offers the conclusions
of this paper.

2 Logical clocks

This section reviews some basic material on logical clocks.
We consider a system where a set of processes communicate
exclusively by exchanging messages. There is neither com-
mon memory nor a common physical clock, and the relative
speed of the processes is unknown. It is assumed that all
communication is asynchronous and point-to-point, and that
all messages are delivered correctly. Although failures are
an important issue in large scale distributed systems, we do
not consider failures in this work.

2.1 Lamport clocks

In 1978, Leslie Lamport proposed the concept oflogical
clocksto order events in distributed systems [18]. A logical
clock consists of a mappingL from events to the set of
integers that captures the causal order between events.

Definition 1. The local history of site i is a sequence of
eventsHi = ei1ei2 . . . that are executed on sitei. There is
a total order on the local events of each site. Theglobal
history H of the Distributed System is the set of all events
occurring at all sites of the system. Lamport [18] defines the
causality relation“−→” over events as the smallest relation
such that:

– If eij andeik ∈ Hi and j< k, theneij −→ eik.
– If eim is send(M), ejn is receive(M) andM is the same

message in both cases, with arbitrary i, j, m andn, then
eim −→ ejn.

– ∀a, b, c ∈ H if a−→ b andb −→ c thena−→ c.

If neither a−→ b nor b −→ a holds between two different
eventsa andb, thena andb areconcurrent. This situation is
denoted asa ‖ b. Since the causality relation−→ is irreflex-
ive and transitive, it defines a strict partial order〈H,−→〉
over the events of the system.ut
To implement a Lamport Clock, each sitei maintains an
integer counterL i that initially has a value of zero. Each

message sent by sitei includes a timestamp which is the
value ofL i when the message was sent.

L i is updated according to 3 rules:

– L0) Initial value:

L i = 0

– L1) Before an event (other than areceive) is executed
at sitei:

L i = L i + 1

– L2) When a message with timestampD is received by
site i:

L i = max(L i, D)

L i = L i + 1

If a is an event ofHi, thenL(a) is the value ofL i whena is
executed1. Lamport clocks exhibit theweak clock condition,
that states that∀a, b ∈ H:

a−→ b⇒ L(a) < L(b)

Lamport Clocks capture the order between causally re-
lated events but they do not detect concurrency between
events and just by inspecting two timestamps, we are not
able to decide if the associated events are causally related
or concurrent (hence the name weak clock condition).

2.2 Vector clocks

Vector clockswere independently proposed by Fidge [10,
11, 12] and Mattern [19]. They consist of a mappingV
from events to integer vectors. Each sitei keeps an integer
vector Vi of N entries, where N is the number of sites in
the distributed system. Sitei keeps its own logical clock in
Vi[i], while Vi[j] represents the current knowledge that site
i has of the activity at sitej. Vector clocks are updated when
events occur at the local site or when messages are received
(all messages include the timestamp of their corresponding
sendevent).

Site i updatesVi according to the rules:

– V0) Initial value:

0≤ j ≤ N− 1 : Vi[j] = 0

– V1) Before an event (other than areceive) is executed
at sitei:

Vi[i] = Vi[i] + 1

– V2) When a message with timestampW is received by
site i:

0≤ j ≤ N− 1 : Vi[j] = max(Vi[j], W[j])

Vi[i] = Vi[i] + 1

If a ∈ Hi, thenV (a) is the value ofVi whena is executed.

Definition 2. Given two vector timesV andW, the following
tests are defined:

1 For all the logical clocks presented in this paper, an event is times-
tampedafter the local clock has been updated.

Plausible Clocks 181

Fig. 1. Vector clock timestamps of events in an execution

V = W ⇔ 0≤ j ≤ N− 1 : V[j] = W[j]
V ≤W ⇔ 0≤ j ≤ N− 1 : V[j] ≤W[j]
V < W ⇔ V ≤W and∃ j such thatV[j] < W[j]
V ‖ W ⇔ ∃ k such thatV[k] < W[k] and ∃ j such that
V[j] > W[j]. ut

Mattern [19] proved that there is an isomorphism between
the times read from a vector clock when events are executed
and the causality relation among events inH, since∀a, b ∈
H:

a = b⇔ V (a) = V (b)

a−→ b⇔ V (a) < V (b)

a ‖ b⇔ V (a) ‖ V (b) (1)

Condition (1) is called thestrong clock condition. A clock
that satisfies this conditioncharacterizescausality, while a
clock that only satisfies the weak clock condition isconsis-
tent with causality[22, 25].

Figure 1 shows a simple execution of a distributed sys-
tem with 4 sites. The arrows represent the sending and re-
ceiving of a message. Each event has been timestamped with
its corresponding vector clock. It is easy to verify that the
causal relations between any pair of events are correctly es-
tablished by using the tests presented in Definition 2.

2.3 Disadvantages of vector clocks

Vector clocks precisely capture the ordering between events
in a distributed system. However, they have the major dis-
advantage of not being constant in size: the implementation
of vector clocks requires an entry for each one of the N
sites in the system. If N is large, several problems arise.
There are growing storage costs because each site must re-
serve space to keep its local version of the vector clock and,
depending on the particular system, vector times associated
with certain events must be stored as well. All messages of
a distributed computation are tagged with timestamps read
from vector clocks, which could add considerable overhead
to communication in the system. Also, comparison of vector
timestamps to determine ordering between events will have
high processing overhead for large N. Thus, vector clocks
have poor scalability.

Charron-Bost [6] proved that given a Distributed Sys-
tem with N sites, there is always a possible combination of
events occurring in the system whose causality can only be

captured by vector clocks with N entries. It may be possi-
ble to design a different mechanism to determine causality
between events, however Charron-Bost’s result [6] indicates
that if such a mechanism characterizes the causality relation,
it would have a sizeO(N). This discourages any attempt to
define some kind of clock that, while constant in size, com-
pletely captures the causality relation.

3 Plausible clocks

In this section we propose a class of clocks that do not char-
acterize causality completely, but are scalable because they
can be implemented using constant size structures. Further-
more, under appropriate circumstances, they can provide a
high level of ordering accuracy.

Definition 3. Let a timestampbe a structure that represents
an instant in time as observed by some site. The particular
details of this structure are left open. For a distributed system
with global historyH, a Time Stamping System(TSS) X is

a pair (〈S,
X−→〉, X.stamp), where:

S is a set of timestamps.
X−→ is an irreflexive and transitive relation defined on the

elements ofS.
〈S,

X−→〉 is a strict partial order.
– X.stamp is the timestamping functionmappingH to S.

For all timestampsv, w ∈ S, we define the additional rela-
tions:

v
X
= w ⇔ v = w

v
X←−w ⇔ w

X−→ v

v
X

‖ w ⇔ ¬(v
X
= w) ∧ ¬(v

X−→w) ∧ ¬(v
X←−w) ut

X.stamp assigns timestamps to each event ofH. It is nor-
mally expressed as a series of rules for updating the logical
clock of a site before assigning a timestamp to an event ofH.
When it is clear from the context, we just useX(a) instead
of X.stamp(a),∀a ∈ H. If a is send(M), it is assumed that
messageM carries the timestampX(a).

Since
X−→ is irreflexive, it is easy to see that the relations

X−→,
X←−,

X
=, and

X

‖ are mutually disjoint. Their purpose is
to reflect causality, equality and concurrency from the point
of view of X. Even though these relations are defined over
timestamps, we overload their definition to allow them to
directly compare events inH. For instance, considera, b ∈
H with timestampsX(a) andX(b), respectively.X reports
the causal relationship (not necessarily correct) betweena
andb, in this way:

a
X
= b⇔ X(a)

X
= X(b)⇔ X “believes” thata andb are the

same event.
a X−→b⇔ X(a)

X−→X(b)⇔ X “believes” thata causally
precedesb.

a X←−b⇔ X(a)
X←−X(b)⇔ X “believes” thatb causally

precedesa.

a
X

‖ b ⇔ X(a)
X

‖ X(b) ⇔ X “believes” thata and b are
concurrent.

182 F.J. Torres-Rojas, M. Ahamad

As an example, using the tests presented in Definition 2,
we can redefine vector clocks in the form of TSSV =
(〈S,

V−→〉, V.stamp), where:

– S is a set of N-dimensional vectors of integers.
– V.stamp: defined with rulesV0, V1 andV2 of Sect. 2.
– Let V andW ∈ S, then

V
V
= W ⇔ V = W

V V−→W ⇔ V < W
V V←−W ⇔W V−→V ⇔ V > W

V
V

‖W ⇔ V ‖W

Definition 4. A TSSX = (〈S,
X−→〉, X.stamp) characterizes

causality[25] if ∀a, b ∈ H:

a = b⇔ a
X
= b

a−→ b⇔ a X−→b

a ‖ b⇔ a
X

‖ b ut
Notice that this is equivalent to the strong clock condition.
Evidently, if TSSX characterizes causality, thena←− b⇔
a X←−b.

Theorem 1. TSS V characterizes causality.

Proof. This result follows from property(1) and it was
proved by Mattern [19]. ut

Definition 5. A TSS P = (〈S,
P−→〉, P.stamp) is plausible

if ∀a, b ∈ H:

a = b⇔ a
P
= b

a −→ b⇒ a P−→b ut

A plausible TSS satisfies the weak clock condition. In addi-
tion it assigns unique timestamps to events. Just for clarity,

notice thata←− b⇒ a P←−b.

Theorem 2. If a TSS P is plausible, then∀a, b ∈ H, a
P

‖ b⇒
a ‖ b.

Proof. If the actual causal relation werea = b, a −→ b or

a ←− b, it would have been reported asa
P
= b, a P−→b or

a P←−b, respectively. Therefore, ifP reportsa
P

‖ b, then the
only possibility left isa ‖ b. ut

A plausible TSSP never confuses the direction of
causality between any two ordered events. If in facta

causally precedesb, P will always reporta P−→b, or if b

causally precedesa, P will always reporta P←−b. If P states

that a
P

‖ b, this necessarily is correct. In a plausible TSS, the
timestamps assigned to events are unique. Vector clocks are
plausible clocks, but not every plausible TSSP character-
izes causality since it is possible thata ‖ b, but insteadP

reportsa P−→b or a P←−b.

4 Combination of TSSs

Given two plausible clocksA and B, they can be easily
combined to design a new plausible clockX. The objective
of this combination is to produce TSSs where the ordering
between more pairs of events is correctly established.

Definition 6. Let A = (〈SA,
A−→〉, A.stamp) and B =

(〈SB ,
B−→〉, B.stamp) be two plausible clocks. We define

TSSX = (〈SX ,
X−→〉, X.stamp), where:

– SX = SA × SB , i.e., the elements ofSX are of the form
(vA, vB) with vA ∈ SA andvB ∈ SB .

– (vA, vB)
X−→(wA, wB)⇔ (vA

A−→wA) ∧ (vB
B−→wB)

– ∀a ∈ H: X.stamp(a) = (A.stamp(a), B.stamp(a))

We say thatX is a combinationof A andB. ut
Given an arbitrary TSSP = (〈S,

P−→〉, P.stamp), we use the

generic relations
P

φ and
P

θ with φ, θ ∈ {−→,←−, =, ‖} to

denote one of the possible relations
P−→,

P←−,
P
= or

P

‖. Using
this notation, and considering Definition 3 and Definition 6,
we have that ifv = (vA, vB) andw = (wA, wB) are elements

of SX such thatvA

A

θ wA andvB

B

φ wB , then:

v
X
= w⇔ (θ = φ = ‘ = ’)

v X−→w⇔ (θ = φ = ‘ −→ ’)

v X←−w⇔ (θ = φ = ‘ ←− ’)

v
X

‖ w⇔ (θ /= φ) ∨ (θ = φ = ‘ ‖ ’)

This notation brings out the nature of TSSX: if A and
B disagree on the causal relationships between the same
pair of events (i.e.,θ /= φ), X reports that these two events
are concurrent, otherwiseX just reports the same causal
relationship that is reported byA andB.

Theorem 3. (Rule of Contradiction in TSSs) LetA andB

be two plausible TSSs.∀a, b ∈ H such thata
A

θ b and a
B

φ b,
it holds that

(θ /= φ) ∨ (θ = φ = ‘ ‖ ’)⇒ a ‖ b

Proof. It is known thatA and B are plausible TSSs, then
from Definition 5:

(θ /= φ) ∧ (a = b) ⇒ Contradiction.
(θ /= φ) ∧ (a−→ b)⇒ Contradiction.
(θ /= φ) ∧ (a←− b)⇒ Contradiction.

Thus, if two plausible TSSs disagree on the causal relation
between two eventsa andb, then, necessarily, these events
are concurrent. Finally, ifθ = φ = ‘ ‖ ’, Theorem 2 proves
that a ‖ b. ut

Definition 7. Let X be an arbitrary TSS andV be a TSS
based on vector clocks as defined in Sect. 3. For a finite
history H, we define the parameterρ(X) in this way:

ρ(X) =
|{〈a, b〉 ∈ H × H : a

X

θ b ∧ a
V

φ b ∧ θ /= φ}|
|H × H|

Plausible Clocks 183

This ratio, called therate of errorsof X, is the proportion of
all the pairs of events in the global historyH whose causality
relation is wrongly established by the TSSX. In particular,
if X is plausible thenρ(X) represents the number of pairs
of concurrent events that are ordered byX divided by the
total number of pairs of events. When it is clear from the
context which TSS isX, we just useρ. A more accurate
TSS has a lower value ofρ (for vector clocks,ρ is 0.0). ut
Theorem 4. (Plausible + Plausible = Plausible)Let A and
B be two plausible TSSs. IfX is thecombination of A and
B thenX is a plausible TSS and(ρ(A) ≥ ρ(X)) ∧ (ρ(B) ≥
ρ(X)).

Proof. From Theorem 3 and Definition 6, it is evident thatX
inherits the properties ofA andB concerning the detection
of the casesa = b, a −→ b and a ←− b, ∀a, b ∈ H.
ThereforeX is plausible. Because of the same reason, the
parameterρ(X) cannot be greater than eitherρ(A) or ρ(B).
It is possible (and desirable) thatX detects more pairs of
concurrent events than eitherA or B. ut

In order to generalize the concept of combination of plau-
sible clocks for more than 2 TSSs, we can notice the in-
teresting correspondence between aproductof ordered sets
as defined in [8] and the combination of plausible clocks.
Let 〈O1,≤1〉, . . . , 〈On,≤n〉 be n ordered sets. Theproduct
of these ordered sets is the ordered set〈O1× . . .×On,≤×〉,
where≤× is the coordinatewise order defined as:

(x1, . . . , xn) ≤× (y1, . . . , yn)⇔ ∀ i : xi ≤i yi

Definition 8. Let P1 = (〈S1,
1−→〉, P1.stamp), . . . , Pn =

(〈Sn,
n−→〉, Pn.stamp) be n plausible clocks. We define TSS

P× = (〈S×,
×−→〉, P×.stamp), where:

– S× = S1× . . .× Sn

– (v1, . . . , vn)
×−→(w1, . . . , wn)⇔ ∀ i : vi

i−→wi
– ∀a ∈ H : P×.stamp(a) = (P1.stamp(a), . . . ,

Pn.stamp(a))

We say thatP× is a combinationof P1, . . . , Pn. ut

5 Examples of Constant Size Clocks

We consider three groups of plausible clocks (R-entries vec-
tor, K-Lamport clocksandCombined TSS). The first one is a
variant of the standard vector clocks where the vectors have a
fixed number of entries. The second group is an extension of
Lamport clocks, where each site keeps its logical clock and
a collection of the maximum message timestamps received
by itself and by sites that directly or indirectly have commu-
nicated with this site. The third group combines TSSs from
the previous two groups. Obviously, these are not the only
possible plausible clocks, but they are efficient and simple
to implement.

5.1 R-Entries Vector TSS

R-Entries Vector TSS (REV) is a variant of vector clocks,
where vectors have a fixed size R≤ N, independent of the

number of sites in the distributed system. Since there are
fewer entries in the vector than sites in the system, sites will
share entries in the vector. Many mappings between sites and
entries of the vector are possible, however for the purposes
of this paper we limit ourselves to a modulo R mapping,
i.e. sitei updates entryi modulo R of the vector. A similar
technique is proposed by Haban and Weigel [14], where
processes that are executed at the same site share an entry
in the vector clock;REV does not have this restriction and
allows processes running on different sites to share an entry
in the vector. The mechanisms for timestamp comparison
are almost identical to the ones used by vector clocks.

Let us defineREV = (〈S,
REV−→〉, REV.stamp), where:

– S is a set of pairs of the form〈i, Vi〉 wherei is an integer
that identifies each site of the system (0≤ i ≤ N − 1),
andVi is a R-dimensional vector of integers.

– REV.stamp is defined with the rules:
RV0) Initial value:

i = Unique site identification;

0 ≤ j ≤ R− 1 : Vi[j] = 0;

RV1) Before an event (other than areceive) is generated
at sitei:

Vi[i modulo R] =Vi[i modulo R] + 1;

RV2) When a message with timestamp〈s, Vs〉 is re-
ceived at sitei:

0≤ j ≤ R− 1 : Vi[j] = max(Vi[j] , Vs[j])

Vi[i modulo R] =Vi[i modulo R] + 1;

– Let 〈i, Vi〉, 〈j, Vj〉 ∈ S, then:

〈i, Vi〉 REV−→ 〈j, Vj〉
⇔ (i = j ∧ Vi[i modulo R]

< Vj [j modulo R])∨
(i /= j ∧ Vi < Vj ∧ Vi[j modulo R]

< Vj [j modulo R])

VectorsVi and Vj are compared using the tests presented
in Definition 2, with the only difference that they have R
entries instead of N. For completeness, notice that:

〈i, Vi〉REV
= 〈j, Vj〉 ⇔ (i = j ∧ Vi[i modulo R]

= Vj [j modulo R])

〈i, Vi〉REV←−〈j, Vj〉 ⇔ (i = j ∧ Vi[i modulo R]

> Vj [j modulo R])∨
(i /= j ∧ Vi > Vj ∧ Vi[i modulo R]

> Vj [i modulo R])

〈i, Vi〉
REV

‖ 〈j, Vj〉 ⇔ i /= j ∧ ¬(〈i, Vi〉REV−→〈j, Vj〉)
∧¬(〈i, Vi〉REV←−〈j, Vj〉)

Theorem 5. REV is a plausible TSS.

Proof. We have to prove, first, thatREV is a TSS and,
second, thatREV is plausible. The former is proved by

184 F.J. Torres-Rojas, M. Ahamad

Fig. 2. Execution timestamped withREV (R = 2)

verifying that the relation
REV−→ is irreflexive and transitive,

and the latter is proved by confirming thatREV satisfies
Definition 5.

Let 〈i, Vi〉, 〈j, Vj〉, 〈k, Vk〉 ∈ S. Evidently, ¬(〈i, Vi〉
REV−→〈i, Vi〉), thus,

REV−→ is irreflexive. Let us assume that

〈i, Vi〉REV−→〈j, Vj〉 and 〈j, Vj〉REV−→〈k, Vk〉. If i = j = k,

it is clear that〈i, Vi〉REV−→〈k, Vk〉. Now, if at least one of
the timestamps corresponds to a different site, the compar-
ison of vectors as presented in Definition 2 guarantees that

〈i, Vi〉REV−→〈k, Vk〉. Hence,
REV−→ is transitive and, therefore,

REV is a TSS.
Since the timestamps ofREV include a site identifica-

tion, no two events occurring at different sites receive the
same timestamp. Similarly, rulesRV1 and RV2 guarantee
that no two different events occurring at the same site receive
the same timestamp. Therefore:

∀a, b ∈ H : a = b⇔ a
REV

= b

Let a, b ∈ H be two distinct events such thatREV (a) =
〈i, Vi〉 and REV (b) = 〈j, Vj〉. If a and b were executed
at the same site, just by comparingVi[i modulo R] and
Vj [j modulo R], we establish the order of these events.
Now, consider the case wherea and b were generated at
different sites. Because of the definition ofREV.stamp, if
a−→ b then necessarilyVi < Vj . Besides,Vj [j modulo R]
must be strictly greater thanVi[j modulo R] becauseVj [j
modulo R] is incremented whenb is executed. Thus, if
Vi < Vj but Vi[j modulo R] = Vj [j modulo R], thena
and b are concurrent events. Finally, ifi /= j and Vi = Vj

or Vi ‖ Vj then necessarilya ‖ b. Therefore:

∀a, b ∈ H : a−→ b⇒ aREV−→ b

In conclusion,REV is a plausible TSS. ut

Figure 2 shows the same execution presented in Fig. 1,
but using timestamps fromREV (R = 2). In order to sim-
plify, the part of the timestamp corresponding to the site
identification has been omitted. This clock establishes cor-
rectly the causal relationship between 320 out of the 400
possible pairs of events, i.e.ρ(REV) is 0.2 for this partic-
ular history. For instance,REV recognizes thate3,1 ‖ e0,2,

but orders concurrent events when it reportse3,1
REV−→ e1,2,

sincee3,1 ‖ e1,2.

5.2 K-Lamport Time Stamping System

This family of TSSs uses the same data structures asREV :
a site identification and a vector of integers. However, the
rules for updating this vector are different. Each site keeps
a Lamport clock together with the maximum timestamp of
any message received by itself and by the K-2 previous sites
that directly or indirectly have had communications with this
site.

As an intuition for this clock, consider a case where two
eventsa and b were executed at different sites and have
Lamport clock timestamps 7 and 10, respectively. With just
these timestamps we would conclude thata −→ b. Now,
let’s assume that each site keeps the maximum timestamp
of all the received messages in a local variableh. If h is
5 when b is executed, we know thata can not causally
precedeb, because otherwiseh would have been updated
and it would be greater than or equal to 7. Thereforea and
b are concurrent events. Notice that this mechanism can
be extended if sitei keeps not only its Lamport clock and
the maximum timestamp received, but also the maximum
timestamp received by any site that has sent a message to
site i, and so on. This extra information will give us the
ability to discern more accurately when it is true that two
events are actually ordered.

In order to better understand the dynamics of theK-
Lamport TSS, we present and analyze the properties of the
basic case2-Lamport TSS.

2-Lamport Time Stamping System

2-Lamport TSS (2LA)is an extension of Lamport clocks
where sitei has a 2-entries vectorVi. Site i keeps a local
Lamport Clock inVi[0] and saves the maximum timestamp
carried by any received message inVi[1].

We define 2LA = (〈S,
2LA−→〉, 2LA.stamp), where:

– S is a set of pairs of the form〈i, Vi〉 wherei is an integer
that identifies each site of the system (0≤ i ≤ N − 1),
andVi is a 2-dimensional vector of integers.

– 2LA.stamp is defined with the rules:
2L0) Initial value:

i = Unique site identification;

Vi[0] = 0;

Vi[1] = 0;

2L1) Before an event (other than areceive) is generated:

Vi[0] = Vi[0] + 1;

2L2) When a message with timestamp〈s, Vs〉 is re-
ceived:

Vi[0] = max(Vi[0], Vs[0]);

Vi[0] = Vi[0] + 1;

Vi[1] = max(Vi[1], Vs[0]);

– Let 〈i, Vi〉, 〈j, Vj〉 ∈ S, then:

〈i, Vi〉 2LA−→〈j, Vj〉 ⇔ (i = j ∧ Vi[0] < Vj [0])

∨(i /= j ∧ Vi[0] ≤ Vj [1])

Plausible Clocks 185

Notice thatVi[0] > Vi[1] for any timestamp assigned to
any event. For completeness, we have that:

〈i, Vi〉 2LA
= 〈j, Vj〉 ⇔ (i = j ∧ Vi[0] = Vj [0])

〈i, Vi〉 2LA←−〈j, Vj〉 ⇔ (i = j ∧ Vi[0] > Vj [0])

∨(i /= j ∧ Vi[1]Vj [0])

〈i, Vi〉
2LA

‖ 〈j, Vj〉 ⇔ i /= j ∧ ¬(〈i, Vi〉 2LA−→〈j, Vj〉)
∧¬(〈i, Vi〉 2LA←−〈j, Vj〉)

Theorem 6. 2LA is a plausible TSS.

Proof. We have to prove that
2LA−→ is irreflexive and transi-

tive, and that 2LA satisfies Definition 5.
Let 〈i, Vi〉, 〈j, Vj〉, 〈k, Vk〉 ∈ S. Since¬(〈i, Vi〉 2LA−→〈i,

Vi〉), 2LA−→ is irreflexive. Let us assume that〈i, Vi〉 2LA−→〈j, Vj〉
and〈j, Vj〉 2LA−→〈k, Vk〉. We can see that:

(i = j = k)⇒ (Vi[0] < Vj [0] < Vk[0])

⇒ (i = k ∧ Vi[0] < Vk[0]) ⇒ 〈i, Vi〉 2LA−→〈k, Vk〉
(i /= j = k)⇒ (Vi[0] ≤ Vj [1] ≤ Vk[1])

⇒ (i /= k ∧ Vi[0] ≤ Vk[1]) ⇒ 〈i, Vi〉 2LA−→〈k, Vk〉
(j /= i = k)⇒ (Vi[0] ≤ Vj [1] < Vj [0] ≤ Vk[1] < Vk[0])

⇒ (i = k ∧ Vi[0] < Vk[0]) ⇒ 〈i, Vi〉 2LA−→〈k, Vk〉
(k /= i = j)⇒ (Vi[0] < Vj [0] ≤ Vk[1])

⇒ (i /= k ∧ Vi[0] ≤ Vk[1]) ⇒ 〈i, Vi〉 2LA−→〈k, Vk〉
(i /= j /= k)⇒ (Vi[0] ≤ Vj [1] < Vj [0] ≤ Vk[1])

⇒ (i /= k ∧ Vi[0] ≤ Vk[1]) ⇒ 〈i, Vi〉 2LA−→〈k, Vk〉
Thus,

2LA−→ is transitive and therefore 2LA is a TSS.
From rules2L1 and2L2, and the fact that the timestamps

generated by 2LA include a site identification, it is easy to
see that:

∀a, b ∈ H : a = b⇔ a
2LA
= b

Let a, b ∈ H be two arbitrary events such that 2LA(a) =
〈i, Vi〉 and 2LA(b) = 〈j, Vj〉. If a and b occur at the same
site the causal relation is correctly established just by com-
paring Vi[0] and Vj [0]. Consider the case wherea and b
have been executed at different sites. Ifa is send(M) and b
is receive(M), then Vi[0] would have been communicated
to the site whereb occurs and the entryVj [1] would have
been updated. Therefore:

a = send(M) ∧ b = receive(M) ⇒ (Vi[0] ≤ Vj [1])

These conclusions can be easily generalized whena and b
are causally related:

a−→ b⇒ (Vi[0] ≤ Vj [1])

On the other hand, ifVi[0] > Vj [1] thena does not causally
precedeb because of the definition of 2LA.stamp. Con-
versely, if Vj [0] > Vi[1], b does not causally precedea.
Therefore,

(Vi[0] > Vj [1]) ∧ (Vj [0] > Vi[1]) ⇒ a ‖ b

Table 1. Possible relations betweenVi andVj (2LA).

Vi[0] ≤ Vj [1] Vi[0] > Vj [1]

Vj [0] ≤ Vi[1] Impossible
a←− b

uncertain

Vj [0] > Vi[1]
a−→ b a ‖ b

uncertain certain!

Since we know that (Vi[1] < Vi[0]) ∧ (Vj [1] < Vj [0]), we
can notice that:

(Vi[0] ≤ Vj [1]) ∧ (Vj [0] ≤ Vi[1]) ⇒
Vi[0] ≤ Vj [1] < Vj [0] ≤ Vi[1] ⇒
Vi[0] < Vi[1] ⇒ Contradiction.

Table 1 summarizes the previous relations. Using the in-
formation in this table, 2LA detects correctly all the cases
wherea−→ b or a←− b. Therefore,

a−→ b⇒ a 2LA−→b

Thus, 2LA is a plausible TSS. ut

General Case: K-Lamport TSS

Consider briefly what3-Lamport TSS (3LA)would be. Times-
tamps are of the form〈i, Vi〉 wherei is a site identification
and Vi is a 3 entry vector, whose entry 0 is a Lamport
clock. Every message sent by sitei carries the timestamp
〈i, Vi〉 that corresponds to the time assigned to the particular
send event. When sitei receives a message with timestamp
〈s, Vs〉, its entryVi[0] is updated withVs[0] in a standard
Lamport clock fashion and its entriesVi[1] and Vi[2] are
max-ed withVs[0] and Vs[1]. The results shown in Table 1
for entries 0 and 1 of two arbitrary timestampsVi and Vj

are still valid for 3LA; besides, entries 1 and 2 ofVi andVj

will exhibit these same relations. Thus, given two different
eventsa andb with timestamps〈i, Vi〉 and〈j, Vj〉:

a−→ b⇒ (Vi[0] ≤ Vj [1]) ∧ (Vi[1] ≤ Vj [2])

a←− b⇒ (Vi[1] ≥ Vj [0]) ∧ (Vi[2] ≥ Vj [1])

The relation
3LA−→ is equivalent to (Vi[0] ≤ Vj [1])∧(Vi[1] ≤

Vj [2]). With this test, 3LA is detecting correctly all the
cases wherea −→ b. If this test fails and 3LA encounters
that (Vi[1] ≥ Vj [0]) ∧ (Vi[2] ≥ Vj [1]) holds, then

3LA←− is
reported, detecting correctly all the cases wherea←− b. If

both tests fail, 3LA reportsa
3LA

‖ b.

K-Lamport TSS (KLA) is a generalization of 2LA and
3LA, where we extend the pattern shown in these TSSs

to a vector with K entries. Let us defineKLA = (〈S,
KLA−→〉,

KLA.stamp), where:

– S is a set of pairs of the form〈i, Vi〉 wherei is an integer
that identifies each site of the system (0≤ i ≤ N − 1),
andVi is a K-dimensional vector of integers.

– KLA.stamp is defined with the rules:
KL0) Initial value:

i = Unique site identification;

0≤ j ≤ K − 1 : Vi[j] = 0;

186 F.J. Torres-Rojas, M. Ahamad

Fig. 3. KLA update rule for a local event

Fig. 4. KLA update rule when a message is received

Fig. 5. Tests for causally related events underKLA

KL1) Before an event (other than areceive) is generated:

Vi[0] = Vi[0] + 1; (See Figure 3)

KL2) When a message with timestamp〈s, Vs〉 is re-
ceived:

Vi[0] = max(Vi[0], Vs[0]);

Vi[0] = Vi[0] + 1;

1≤ j ≤ K − 1 : Vi[j] = max(Vi[j] , Vs[j − 1]);

(See Figure 4)

– Let 〈i, Vi〉, 〈j, Vj〉 ∈ S, then:

〈i, Vi〉KLA−→〈j, Vj〉 ⇔ (i = j ∧ Vi[0] < Vj [0]) ∨
(i /= j ∧ Vi[0] ≤ Vj [1]

∧ Vi[1] ≤ Vj [2] ∧ . . .

. . . ∧ Vi[K − 2] ≤ Vj [K − 1])

The non-zero entries ofVi satisfy that for anyk < K − 1,
Vi[k] > Vi[k + 1]. The rightmost entries of the vector could
contain zeroes (see Sect. 5.4). However, this does not affect
the correctness of the algorithm. As before, notice that:

〈i, Vi〉KLA
= 〈j, Vj〉 ⇔ (i = j ∧ Vi[0] = Vj [0])

〈i, Vi〉KLA←−〈j, Vj〉 ⇔ (i = j ∧ Vi[0] > Vj [0]) ∨
(i /= j ∧ Vi[1] ≥ Vj [0]

∧ Vi[2] ≥ Vj [1] ∧ . . .

. . . ∧ Vi[K − 1] ≥ Vj [K − 2])

〈i, Vi〉
KLA

‖ 〈j, Vj〉 ⇔ i /= j ∧ ¬(〈i, Vi〉KLA−→〈j, Vj〉)
∧ ¬(〈i, Vi〉KLA←−〈j, Vj〉)

Figures 5a and 5b present the tests made byKLA when two
events occur at different sites and are causally related from
the point of view ofKLA.

Theorem 7. KLA is a plausible TSS.

Proof. We have to prove thatKLA is a TSS (i.e.,
KLA−→ is

irreflexive and transitive), and thatKLA is plausible, i.e., it
satisfies Definition 5.

Let 〈i, Vi〉, 〈j, Vj〉, 〈k, Vk〉 ∈ S. Since ¬(〈i, Vi〉KLA−→〈i,
Vi〉), KLA−→ is irreflexive. Let us assume that〈i, Vi〉KLA−→〈j,
Vj〉 and〈j, Vj〉KLA−→〈k, Vk〉. Notice that:

(i = j = k)⇒ (Vi[0] < Vj [0] < Vk[0])

⇒ 〈i, Vi〉KLA−→〈k, Vk〉
(i /= j = k)⇒ (Vi[0] ≤ Vj [1] ≤ Vk[1]) ∧ (Vi[1] ≤ Vj [2]

≤ Vk[2]) ∧ . . .

. . . ∧ (Vi[K − 2] ≤ Vj [K − 1] ≤ Vk[K − 1])

⇒ 〈i, Vi〉KLA−→〈k, Vk〉
(j /= i = k)⇒ (Vi[0] ≤ Vj [1] ≤ Vk[2] < Vk[1] < Vk[0])

⇒ 〈i, Vi〉KLA−→〈k, Vk〉
(k /= i = j)⇒ (Vi[0] < Vj [0] ≤ Vk[1]) ∧ (Vi[1] ≤ Vj [1]

≤ Vk[2]) ∧ . . .

. . . ∧ (Vi[K − 2] ≤ Vj [K − 2] ≤ Vk[K − 1])

⇒ 〈i, Vi〉KLA−→〈k, Vk〉
(i /= j /= k)⇒ (Vi[0] ≤ Vj [1] ≤ Vk[2] < Vk[1]) ∧ (Vi[1]

≤ Vj [2] ≤ Vk[3] < Vk[2]) ∧ . . .

. . . ∧ (Vi[K − 2] ≤ Vj [K − 1] < Vj [K − 2]

≤ Vk[K − 1])⇒ 〈i, Vi〉KLA−→〈k, Vk〉
Thus,

KLA−→ is transitive and thereforeKLA is a TSS.

From rulesKL1 andKL2 , and the fact that the timestamps
generated byKLA include a site identification, it is easy to
see that:

Plausible Clocks 187

Table 2. Possible relations betweenVi andVj (KLA)

Vi[k] ≤ Vj [k + 1] Vi[k] > Vj [k + 1]

Vj [k] ≤ Vi[k + 1] Impossible
a←− b

uncertain

Vj [k] > Vi[k + 1]
a−→ b a ‖ b

uncertain certain!

∀a, b ∈ H : a = b⇔ a
KLA

= b

Let a, b ∈ H be two arbitrary events such thatKLA(a) =
〈i, Vi〉 and KLA(b) = 〈j, Vj〉. If a is send(M) and b is
receive(M), then,∀ k < K−1, Vi[k] would have been com-
municated to the site whereb occurs and the entryVj [k +1]
would have been updated. This can be easily generalized
for any case wherea andb are causally related. Therefore,
∀ k < K − 1:

a−→ b⇒ (Vi[k] ≤ Vj [k + 1])

If (Vi[k] > Vj [k+1]), a does not causally precedeb because
of the definition ofKLA.stamp. Conversely, if (Vj [k] >
Vi[k + 1]), b does not causally precedea. Therefore,

∃ k < K − 1 such that (Vi[k] > Vj [k + 1]) ∧
(Vj [k] > Vi[k + 1]) ⇒ a ‖ b

We know that for the non-zero entries of the vectors2, (Vi[k+
1] < Vi[k]) ∧ (Vj [k + 1] < Vj [k]), then:

(Vi[k] ≤ Vj [k + 1]) ∧ (Vj [k] ≤ Vi[k + 1])⇒
Vi[k] ≤ Vj [k + 1] < Vj [k] ≤ Vi[k + 1] ⇒
Vi[k] < Vi[k + 1] ⇒Contradiction.

Table 2 summarizes the previous relations. Using the infor-
mation on this table,KLA detects correctly all the cases
wherea−→ b or a←− b.

Therefore,

∀a, b ∈ H : a−→ b⇒ aKLA−→ b

KLA satisfies Definition 5 and therefore it is a plausible
TSS. ut

Every case wherea ‖ b that is recognized by (K − 1)LA,
is also recognized byKLA, but the converse is not always
true. Thus,KLA can provide higher ordering accuracy than
(K−1)LA. Figure 6 shows the same execution presented in
Figs. 1 and 2, but using timestamps fromKLA (K = 3). This
clock fails to establish the causal relationship between 46 out
of 400 possible pairs of events (ρ = 0.115). For instance, it
detects correctly thate3,1 ‖ e1,2, but fails when it reports

e1,3
KLA←− e3,3, since actuallye1,3 ‖ e3,3.

5.3 Combined Time Stamping System (Comb)

By using Definition 6, we can create a combination ofREV

andKLA. Let us defineComb = (〈S,
Comb−→ 〉, Comb.stamp),

where:

2 There is at least one non-zero entry in each of the vectors.

Fig. 6. Execution timestamped withKLA (K = 3)

– S is a set of elements of the form (〈i, Vi〉, 〈i, Wi〉), where
i is an integer that identifies each site of the system
(0≤ i ≤ N− 1), Vi a R-Dimensional vector of integers
andWi a K-Dimensional vector of integers.3

– ∀a ∈ H : Comb.stamp(a) = (REV.stamp(a),
KLA.stamp(a))

– Let (〈i, Vi〉, 〈i, Wi〉), (〈j, Vj〉, 〈j, Wj〉) ∈ S. If 〈i, Vi〉
REV

θ 〈j, Vj〉 and〈i, Wi〉
KLA

φ 〈j, Wj〉, then:

(〈i, Vi〉, 〈i, Wi〉) Comb−→ (〈j, Vj〉, 〈j, Wj〉)
⇔ (φ = θ = ‘−→ ’)

It is easy to see that:

(〈i, Vi〉, 〈i, Wi〉) Comb
= (〈j, Vj〉, 〈j, Wj〉)
⇔ (φ = θ = ‘= ’)

(〈i, Vi〉, 〈i, Wi〉) Comb←− (〈j, Vj〉, 〈j, Wj〉)
⇔ (φ = θ = ‘←− ’)

(〈i, Vi〉, 〈i, Wi〉)
Comb

‖ (〈j, Vj〉, 〈j, Wj〉)
⇔ (φ /= θ) ∨ (θ = φ = ‘ ‖ ’)

Theorem 8. Comb is a plausible TSS.

Proof. This result follows from Theorem 4 since each com-
ponent clock is plausible. ut

As an illustration, if the clocksREV and KLA used to
timestamp the execution presented in Figs. 2 and 6 were
combined to timestamp the same execution history, the num-
ber of errors is reduced to 38 out of 400 pairs of events
(ρ = 0.095). This result is consistent with Theorem 4.

5.4 Discussion

This section describes briefly some refinements to the imple-
mentations ofREV , KLA andComb clocks. The purpose
of these changes is either to improve the ordering accuracy
of the clocks or to reduce the overhead that such clocks
impose.

Many mappings between sites and entries of the vector
are possible underREV . Given two different mappingsf

3 As Sect. 5.4 suggests, this timestamp can be optimized by including
just one copy of the site identification.

188 F.J. Torres-Rojas, M. Ahamad

andg, it is likely that they induce different results forREV .
An interesting option is to divide the R entries of the vec-
tor in two or more parts, each with a different mapping and
then, using Definition 6, their individual results are com-
bined. If the mappings are chosen in such a way that their
results about concurrent events are as disjoint as possible,
their combination tends to be more accurate. The selection
of the mapping of sites to entries could benefit from previous
knowledge about the communication patterns among sites.
In particular, if two sites communicate frequently among
themselves, most of their events will be ordered and there-
fore better results can be obtained by making them share
the same entry in the vector, or equivalently, if two sites do
not interact very frequently, it is better if they use different
entries in the vector.

From ruleKL2 , we can notice that when a site receives a
message timestamped byKLA, entry K−1 of this timestamp
is not used to update the local clock of the receiving site.
Therefore, there is no need to send this entry with each
message in the system. Furthermore, ifV is the vector of
integers of a timestamp generated byKLA, we have that for
any k< K−1 it holds that ifV[k] > 0, thenV[k] > V[k+1],
or if V[k] = 0, then V[k] = V[k + 1], i.e. if there are any
entries inV whose value is zero, they will be together in
the rightmost positions ofV. This means that there is no
need to store, compare and send all the K entries of aKLA
clock: we only have to worry about the nonzero entries since
the other entries can be filled out with zeroes when needed.
Under this scheme, variable-length timestamps can help in
reducing the overhead ofKLA (the length of a timestamp is
the number of non-zero entries in its corresponding vector).

In order to implement variable-length timestamps, we
now represent the logical time of sitei as〈i, Q, Vi〉, where
i andQ are integers, andVi is a vector of integers withQ
entries. Notice that 1≤ Q ≤ K. When local events are gen-
erated one after another at sitei, its componentQ is not al-
tered because onlyVi[0], i.e. the Lamport clock, is updated.
Q is incremented and the length ofVi grows every time that
a message is received, unless thatQ is already greater than
the length of the timestamp received in the message. This
growth stops whenQ is equal to K.

A variation of the previous scheme allowsQ to be incre-
mented even ifVi has reached its maximum physical length
of K entries. In this case,Q becomes thelogical lengthof
Vi, while the actual length ofVi is min(K, Q). If T1 andT2
are timestamps generated at two different sites, with logical
lengthsQ1 andQ2, respectively, it holds that:

T1 −→ T2⇒ Q1 < Q2

This fact can be used to improve the accuracy of the tests
defined inKLA, allowing the correct detection of more pairs
of concurrent events.

A combination of clocks, as established by Definition 6,
uses the component plausible clocks as black boxes, i.e. we
are just interested in their results when two timestamps are
compared and not in their internal workings. This is con-
venient because it only requires that the clocks satisfy the
characteristics of a plausible clock. On the other hand, if
we have access to implementation details of the clocks, sev-
eral optimizations may be possible. Duplicate information
can be eliminated (e.g.,Combkeeps two copies of the same

Table 3. Sample groups used

A B C D

Samples 3 3 3 3
Sites 100 76 77 78

Servers N.A. 1 2 3
Events 13719 16951 16933 16739
Pairs 62748749 95856633 95652805 93453195

site identifier) and relations among internal elements of the
combined clocks could reveal new tests to discern more ac-
curately the actual causal ordering between timestamps.

6 Performance evaluation

We now ponder the number of cases for which plausible
clocks, such as the ones defined in this paper, fail to re-
port the correct causal relations. We generate random global
historiesH and use the proposed TSSs to timestamp all the
events of these histories. Using the tests associated with each
TSS, we determine the causal relation between each pair of
events inH × H and compare these results with the ones
produced by vector clocks under the same circumstances.

6.1 Simulation

In the first part of the simulation, we generate a sample his-
tory of a distributed system with N sites. In the second part,
this history is executed, collecting timestamps and statistics
about each one of the TSSs. A sample is a set of N se-
quences of events.There are 3 types of events: local event,
senda message andreceivea message. The samples were of
two types: random communication pattern and Client/Server
communication pattern. In the first type, any pair of sites
can communicate with each other. The probability of site
i sending a message to sitej is the same∀ i, j < N. In
the second type of sample, the sites are divided intoclients
and servers. Client sites can communicate only with server
sites in a request/reply fashion, where the client first sends
a message to a server and the next event is areceive from
this server. We assume that servers don’t send unsolicited
messages (e.g. callbacks) to the clients. Servers are free to
communicate among themselves in a random fashion, but
for each message that they receive from a client, the next
event must be asend to this client.

The simulation executes the particular history of each
site, sending and receiving messages and keeping the times-
tamps assigned to each event by each one of the TSSs that
we are evaluating, together with standard vector clocks. Af-
ter that, using the tests defined by each TSS, we decide the
causal relationships between all the ordered pairs from the
setH × H and compute the parameterρ.

6.2 Results

A total of 347,711,382 pairs of events distributed in 4 groups
(A, B, C and D) of 3 samples each, were used to evaluate the
proposed TSSs. Group A exhibits a random communication

Plausible Clocks 189

Table 4. Values ofρ for the evaluated TSSs

A B C D Aver.

REV(R=3) 0.446 0.141 0.150 0.153 0.202
KLA (K=3) 0.521 0.076 0.137 0.166 0.197

Comb (R=3, K=3) 0.388 0.071 0.112 0.127 0.154

pattern. The other 3 groups have a Client/Server communi-
cation pattern with 1, 2 and 3 servers respectively. Table 3
shows statistics for each group of samples.

Table 4 presents the rate of errors (ρ) that was obtained
for each of the samples when timestamped by each TSS
described in Sect. 5. The final column of the table shows
weighted averages of this parameter. As it was predicted by
Theorem 4,Comb consistently produces the minimum val-
ues ofρ for exactly the same samples. The evaluations in-
dicate thatComb has excellent performance when the com-
munication pattern is Client/Server. In particular, the best
results are obtained for Group B (1 server and 75 clients),
where this TSS, with just an overhead of 7 elements, cor-
rectly determined the causal relation between 92.9% of the
95,856,633 pairs of events considered. If we take into ac-
count all the 347,711,382 pairs of events, we find thatComb
is correct in 84.6% of the cases. In the random case where
errors are high,Comb improves accuracy over 13% com-
pared to eitherREV or KLA. Better results can be expected
for higher values of R and K.

6.3 Effects of the values of R and K

By decreasing the number of components in the vector
clocks, we are improving the efficiency of clock operations
but decreasing the accuracy with which they detect order-
ings between events. The results of Table 4 indicate that a
small number of entries (in a Client/Server communication
pattern) correctly capture a large number of the causal rela-
tions between events. We are interested in investigating the
behavior of the described plausible clocks when the number
of entries of these clocks is increased. Ideally, it should be
possible to capture most orderings with small values of R
and K.

With a simulation study (7078 events and 50,098,084
pairs of events), we relate the ordering accuracy of REV
and KLA with the size chosen for them. The sample has
a Client/Server communication pattern and simulates a dis-
tributed system with 99 client sites, 1 server site, an average
of 60 events per site and an average of 35 messages from
each site. Figure 7 plots the obtained values ofρ for this
sample when R and K are varied from 2 to 99 entries.

In general, the rate of errors reduces when the size of the
vector is increased. TheREV curve presents a fast reduction
of ρ during the initial increase in R, e.g. it decreases from
0.167 to 0.097 when R is increased from 2 to 15 entries.
However, after that point the pace of reduction ofρ slows
down. In order to moveρ down from 0.097 to 0.02, R must
be increased from 15 to 77. Obviously, a value of R=100
makesREV equivalent to standard vector clocks and there-
fore ρ would be 0.0. On several occasions, an increase in
the number of entries used byREV actually increases the

value ofρ slightly. However, these increases are very small
and of local nature and overall the tendency is towards a
reduction ofρ as the size of the vector is increased.

The KLA curve shows an excellent start, with a rate of
errors of 0.156 for 2LA which is reduced to 0.083 for 3LA
and to 0.079 for 5LA. The minimum value ofρ is 0.078 with
15 entries, from that point on there are no improvements
when more entries are added to the clock. In fact even with
as many entries as sites, the rate of errors never gets to zero.
It is interesting to consider the problem of how to distribute
a given number of entries betweenREV and KLA. This
simulation experiment demonstrates that with modest size
plausible clocks, a large number of orderings can be captured
correctly.

Figure 7 may suggest a connection between the perfor-
mance of a plausible clock and the number of sites in the
system (i.e., the accuracy decreases when N increases). Even
when this behavior would be expected, our preliminary re-
sults seem to indicate that the accuracy of plausible clocks
may be more sensitive to other factors, such as: communica-
tions patterns, size of the global history, level of concurrency
in the system, frequency of communications, etc. In order to
address this interesting question, it is necessary that a more
detailed study be developed which considers the effects of
many factors in the performance of plausible clocks.

7 Some applications of plausible clocks

Plausible clocks strive to provide a high level of accuracy
in ordering events in a distributed system but they do not
guarantee that concurrent events are not ordered. Thus, such
clocks are useful for any application where imposing order-
ings on some pairs of concurrent events has no effect on the
correctness of the application. Notice that given the imper-
fection of plausible clocks, some applications could incur in-
efficiencies from time to time. However, such inefficiencies
due to unnecessary orderings of concurrent events will not
induce wrong results, and if the frequency of these orderings
is relatively low, the loss in performance is compensated by
the potential for scalability and the savings in communica-
tions overhead, storage costs and timestamp processing. We
describe some applications where plausible clocks can be
used.

7.1 Concurrency measures

A concurrency measure is a metric that ponders how con-
current a computation is. It takes into account the causal re-
lationships between the events in a given finite history and
how many events can be executing concurrently at a given
instant. Let us consider two concurrency measures proposed
by Charron-Bost [5], namelyω andm. The key element to
compute both of them is the ability to detect concurrent pairs
of events, which can be done using vector clocks. Plausible
clocks fail in detecting some of the pairs of events that are
concurrent, but can be used to obtain approximated values
for these metrics.

The first concurrency measure is the ratio of pairs of
concurrent events to the total number of pairs of events oc-
curring at different sites, i.e.:

190 F.J. Torres-Rojas, M. Ahamad

Fig. 7. Varying the values of R and K

ω(H) =
|{{a, b} : a, b ∈ H ∧ a ‖ b}|

|{{a, b} : (a ∈ Hi) ∧ (b ∈ Hj) ∧ (i /= j)}|
This measure can be accurately computed by assigning vec-
tor clocks to all the events inH. Now, if we use a plausible
clock P instead of vector clocks, we obtain the quantity:

ωP (H) =
|{{a, b} : a, b ∈ H ∧ a

P

‖ b}|
|{{a, b} : (a ∈ Hi) ∧ (b ∈ Hj) ∧ (i /= j)}|

Since the number of pairs of concurrent events detected byP
is less or equal than the actual number of pairs of concurrent
events, we have thatωP (H) ≤ ω(H). The differenceω(H)−
ωP (H) is a function ofρ(P), i.e. the better the plausible
clock P is, the closerωP (H) is to ω(H).

Let G⊆ H be a set of events formed by taking a prefix
from each one of the N local histories.G is a cut of history
H. As defined by Mattern [19], we say thatG is aconsistent
cut, if it has the property:

∀a, b ∈ H : (b ∈ G) ∧ (a−→ b)⇒ a ∈ G

If we insert one artificial event, calledcut event, after each
one of the N prefixes taken from the local histories and these
N cut events are concurrent among themselves, thenG is a
consistent cut [19].

The concurrency measurem is defined as:

m(H) =
µ− µS

µC − µS

Here µ is the number of consistent cuts inH, µC is the
number of consistent cuts if there was no communication
between any of the sites (i.e. all thesendandreceiveevents
are considered just local events without exchange of mes-
sages) andµS is the number of consistent cuts if the exe-
cution were totally sequential, e.g., all the events of site 0
are followed by all the events of site 1 and so on. Notice
that all we need to compute the valuesµC and µS is the

number of events executed by each site. The quantity m is
demonstrated to be a better measure thanω, because when it
considers the number of consistent cuts, it is taking into ac-
count larger collections of events that are concurrent among
themselves (i.e. longer antichains [5]).

Since plausible clocks may fail to detect that two events
are concurrent, the test of the simultaneous concurrency of
N cut events as described above is not convenient for find-
ing consistent cuts with plausible clocks. However, we can
consider a slightly different approach. Given a cutG, we
say thatlasti ∈ Hi is the latest event ofHi that is included
in G, andnexti ∈ Hi is the earliest event ofHi that is not
included inG (i.e., lasti is the last event of the prefix taken
from Hi andnexti is the first event ofHi after such prefix).
G is a consistent cut if nonexti (0≤ i ≤ N− 1) is causally
before anylastj (0≤ j ≤ N−1)4. If this test is implemented
with plausible clocks, it will reject any cut that is not consis-
tent. Furthermore, it is less prone to missing consistent cuts
compared to the test of concurrent cut events. For instance,
the distributed computation presented in Fig. 1 has 636 con-
sistent cuts and using the plausible clockREV (R=2) we
find 476 of them. Nevertheless, there may be consistent cuts
where a certainnexti is concurrent with a givenlastj (which
does not affect the consistency of the cut) but the plausible
clock reports thatnexti is causally beforelastj and then the
cut is classified as not consistent. Given a plausible clock
P , we say thatGP ⊆ H is a plausible consistent cut under
P (or just plausible cutfor short), if it has the property:

∀a, b ∈ H : (b ∈ GP) ∧ (a P−→b)⇒ a ∈ GP

It can be easily proved that every plausible cut is a consistent
cut [26]. However, it is possible that a number of consistent
cuts are not recognized as plausible cuts. We defineµP as

4 Alternatively, if V is a vector clock,G is consistent iffV (lastj)[i] ≤
V (lasti)[i] for 0 ≤ j ≤ N− 1 and 0≤ i ≤ N− 1

Plausible Clocks 191

the number of plausible cuts in a given history and compute
the quantity:

mP (H) =
µP − µS

µC − µS

SinceµP ≤ µ we have thatmP (H) ≤ m(H), and that the
differencem(H)−mP (H) is a function ofρ(P), i.e. the better
the plausible clockP is, the closermP (H) is to m(H).

7.2 Distributed resource sharing

Lamport [18] introduced a fair resource sharing problem and
solved it using a logical clock. This algorithm provides mu-
tually exclusive access to a resource and guarantees that if
the request of processpi is causally ordered before the re-
quest ofpj , pi is allowed to access the resource first. Times-
tamps read from logical clocks maintained at the processes
are used to order their requests. The algorithm is completely
distributed and requires a large number of messages (3N for
N processes) for each access to the resource. More efficient
algorithms for distributed mutual exclusion exist, however
we explore a simple server based solution to the problem.
Such solutions are natural (e.g. the site having the resource
implements the synchronization server) and have been used
widely in distributed shared memory systems where synchro-
nization operations are used to coordinate access to shared
data.

Consider a set of processesp1, p2, . . . , pN that compete
for a shared resourceR and access it in a mutually exclu-
sive fashion. Access toR is controlled by a synchronization
server processpS. Thus, a processpi (1 ≤ i ≤ N) must
send a request message topS and wait for it to grant the
resource beforepi can access it. We assume that in addition
to sharingR, the processesp1, p2, . . . , pN also communicate
among themselves to meet their cooperation and coordina-
tion needs. These additional messages can create causal or-
derings among requests of different processes that are sent to
the serverpS. We want such causal orderings to be respected
whenpS grants access to the resource to various processes.

One straightforward solution to this problem, based on
scalar Lamport clocks, timestamps requests with clock val-
ues andpS grants the requests in timestamp order. However,
before a request is granted,pS must ascertain that no request
with a lower timestamp is in transit or will be received at
a later time. This can be achieved ifpS sends a message to
all processes and the processes respond with an acknowl-
edgment. When communication channels are FIFO, this will
ensure the property that no causally preceding requests can
be received bypS after it grants a request from some pro-
cess. (This is similar to the request and acknowledgment
messages in the original algorithm presented in [18]).

The performance of the algorithm can be improved by re-
ducing the number of messages as follows. ProcesspS needs
to send a message to a processpi and receive a response from
it only to ensure that a future request frompi will not have
a timestamp smaller than the request that it wants to grant
next. If pS stores the largest timestamp received from each
process and if the timestamp forpi is concurrent with, greater
than or equal to the timestamp of the request,pS does not
need to send a message topi . This is because without such a

message and its response,pS knows that any future request
of pi will not have a timestamp smaller than the timestamp
of the request being considered.

The average message cost of accessing the resource in
this algorithm will depend on the communication pattern
among the processes and the ordering accuracy of the clock
system that is used to timestamp the requests. It should be
noted, however, that as long as the weak clock condition is
met by the clock system, the correctness of the algorithm
is guaranteed. If a vector clock is used instead of the scalar
logical clock, on the average, the number of unnecessary
messages sent bypS to pi can be decreased. This is because
pS need not send a message topi when its timestamp stored
at pS is concurrent with the timestamp of the request under
consideration which is frompj . Since the eventa that cor-
responds to the last communication betweenpi andpS, and
the event corresponding topj ’s request could be concurrent,
and vector clocks identify such events accurately, no unnec-
essary messages will be sent in this case. (A scalar clock
may order eventa beforepj ’s request which will result in
pS sending a message topi).

Although vector clocks reduce unnecessary messages,
they do not eliminate them completely. Processpi could
have sent a message topj after eventa. In this case,pS must
ascertain that no request frompi is timestamped between the
clock value it stores and the timestamp ofpj ’s request. In this
algorithm, the performance improvements are possible be-
cause of message savings in cases when the eventa of pi that
corresponds to its last communication withpS is concurrent
with the request ofpj that the server wants to grant next.
Plausible clocks can identify such concurrent events more
accurately than scalar clocks. On the other hand, if these
concurrent events appear ordered from the plausible clock
timestamps,pS may have to send an unnecessary message
but the correctness of the algorithm is not compromised.

7.3 Object consistency

Distributed systems are increasingly being used to support
sharing among widely distributed users. If the shared infor-
mation is encapsulated in objects, replication and caching
of object state is necessary to provide high availability and
performance, and to deal with problems such as discon-
nection that arise in mobile environments. Both replication
and caching create problems of consistency among multiple
copies of related objects.

A number of consistency criteria have been developed
that meet the sharing needs of many types of applications.
In this section, we explore one criterion, called causal con-
sistency (CC). CC has been shown to be sufficient for appli-
cations that support asynchronous sharing among distributed
users. It has been explored both in message passing systems
[4] and in shared memory and object systems [1, 16, 17].
CC ensures that values read at a site are consistent with
the causality order [18]. This order is established because
of local order between operations at a process, and a read-
from order that orders operationw before operationr when
r reads the value written byw. For example, in Fig. 8, once
p2 reads value v3 of y , its future read ofx cannot return v1.
This is because, according to causal order, the second read

192 F.J. Torres-Rojas, M. Ahamad

Fig. 8. Last read ofp2 can not be v1

of x by p2 occurs after the operationw(x)v2 of p1. Since
this operation overwrites the value v1 of x , v1 must not be
read byp2 after its read ofy .

In an implementation ofCC described by Ahamad, John,
et al. [2, 16], a client can access objects that are in its cache
freely. However, when a new object value is introduced into
the site cache, it is necessary to ensure that existing values
do not become causally overwritten as a result of reading the
new value that is added to the site cache (such a read can
create new causal orderings). For example, in the execution
shown in Fig. 8, once the value v3 of y arrives atp2, the
value v1 for x can no longer be accessed because it has
been overwritten.

There are two options for handling new object values
when they arrive at a site. The site can either wait until all
causally preceding values are received or it can invalidate
existing values that it suspects are causally overwritten. The
latter is preferred when client access patterns are dynamic
and it is undesirable to send values of updates to all sites that
may have copies of the objects. Therefore, we consider the
implementation in whichCC is maintained by invalidating
cached copies that may be potentially overwritten according
to causality.

The problem of detecting what values are causally over-
written when a new value of objectx is received at a site
is solved by Ahamad, John, et al. [2, 16] by associating
timestamps read from a logical clock with copies of ob-
jects. These timestamps capture the logical time at which
the object copy was produced by a write operation. If the
timestamp of objecty that is added to a site cache isT ,
all the existing objectsx at the site are invalidated if their
associated timestamps are less thanT . This is done because
the cached objects may potentially be overwritten by more
recent operations that occurred before timeT . On the other
hand, if the timestamps ofx and y are concurrent, the two
copies can coexist without violating consistency. If Lamport
clocks are used to determine the ordering between operations
that produced the object copies, objects that were produced
by concurrent operations may appear to be generated by or-
dered operations because these clocks can order concurrent
events. As a result, objects can be unnecessarily removed
from the site cache.

Such unnecessary removals can be avoided if the times-
tamps associated with object copies are derived from more
precise clocks. This could result in improved performance
by not removing consistent object copies and avoiding com-
munication on accessing such objects in the future. Once
again, vector clocks can precisely order events of a dis-
tributed system. Concurrent events are detected to be so by
these clocks, therefore object copies produced by concurrent
operations could co-exist in a cache and it is not necessary

Fig. 9. Causally consistent execution

to remove such copies from a site cache to preserve causal
consistency.

When vector clocks are used, a causally overwritten
value will always have a lower timestamp than the times-
tamp of an incoming object copy but the reverse may not
be true. For example, in Figs. 8 and 9,p2 will receive the
same vector clock with the copy ofy . However, in Fig. 8
the value ofx should be invalidated whereas this is unnec-
essary in the execution shown on Fig. 9. Sincep2 cannot
distinguish between the two situations just by looking at the
vector timestamps, in both cases the existing value ofx is
invalidated. Therefore, even a vector clock based system can
suffer from unnecessary invalidations.

The ability to accurately detect if the two writes that
produced the values ofx andy are concurrent or not, only
impacts the performance of the consistency algorithm by re-
ducing the number of unnecessary invalidations. Thus, plau-
sible clocks can be used instead of vector clocks in such
implementations, avoiding the high costs of vector clocks.
At the same time, more concurrent operations are detected
with plausible clocks than with a Lamport Clock, which im-
plies a reduction in the number of unnecessary invalidations
of objects and therefore improved performance of the sys-
tem.

As an example, Table 5 presents the results from a sim-
ple simulation of a set of processes that share causally con-
sistent objects, using the techniques originally described by
Kordale and Ahamad [17], and later refined by Torres-Rojas,
Ahamad and Raynal [28].CC is ensured by invalidating
cached copies that are potentially overwritten as determined
by timestamps read from a logical clock. When an object
copy is updated by a process, a message with the new value
of the object is sent to the server of the system. The cache
misses are reported to the server as well, which in turn re-
sponds by sending the last value of the requested object
known to the server. It is at this point that object copies
that may have been potentially overwritten are invalidated.
Notice that these invalidations do not generate messages to
any other processes, i.e. invalidations are local operations.
However, if there are object copies in the local cache whose
timestamps are greater than the timestamp of the received
object, then the received object must be validated by sending
messages to the server and other client processes, because it
may have been overwritten.

A total of 49 client processes and 1 server process, ex-
ecuting 835 operations (336 updates) over 4 objects were
simulated5. The first row of Table 5 shows the statistics col-
lected when 50-entries vector clocks were used to establish
the causal relationships between the events that produced the
object values residing in a particular cache at a given time.

5 For the purposes of this simulation, we are only interested in the num-
ber of messages and the size of the required timestamps

Plausible Clocks 193

Table 5. Causal consistency with vector clocks and plausible clocks

Updates Cache Misses Invalidations Validations Messages

Clock Mechanism Total Mess. Total Mess. Total Mess. Total Mess. Total

Vector Clocks 336 336 103 206 6 0 3 5 547
Plausible Clocks 336 336 109 218 34 0 11 20 574

Similarly, the second row shows the same statistics when the
same history was executed using a 6 element plausible clock
Comb. The number of cache misses, invalidations, valida-
tions and their associated messages obtained with plausible
clocks are not much bigger than the corresponding numbers
for vector clocks. On the other hand, each one of the 547
messages generated by the execution with vector clocks must
carry a 50 entry vector, i.e. an overhead of 27350 integers,
while each one of the 574 messages generated by the execu-
tion with plausible clocks must include a 6 entry vector, i.e.
an overhead of just 3444 integers. Both algorithms produce
a causally consistent execution.

8 Related work

Fundamental concepts for ordering in distributed systems
such as logical clocks, partial orderings of events and the
“happens before” relation, were all presented in the sem-
inal paper by Lamport [18]. Fidge [10, 11, 12] and Mat-
tern [19] independently proposed the technique of vector
clocks that permits a complete characterization of causal-
ity. Charron-Bost [6] proved that this characterization can
only be done with vector clocks where there is one entry
for each site in the distributed system. Cheriton and Skeen
[7] mention problems in scalability that are incurred by sys-
tems where causally and totally ordered communications are
implemented using vector clocks. Reviews of diverse tech-
niques for representation of logical time and its applications
are presented by Raynal [21], Raynal and Singhal [22] and
Schwarz and Mattern [25]. A compilation of some of the
most significant papers on logical time and global states
in distributed systems was prepared by Yang and Marsland
[30].

There have been many efforts to reduce the overhead im-
posed by vector clocks. We review these briefly here. Haban
and Weigel [14] use vector clocks as part of their mecha-
nism for defining global breakpoints in a distributed system.
In order to save space, they allow processes to share an en-
try in the vector clock when they are executed on the same
physical processor. This is similar to the basic idea ofREV .
Notice, however, thatREV permits different processes to
share the same entry even if they are executing at different
sites. Meldal, Sankar and Vera [20] assume a communication
network that is static and reasonably sparse. In that case, site
i does not need to keep entries in its vector clock to rep-
resent sites that don’t communicate withi. If eventually a
new communication link is established between two sites,
the size of the vectors is adjusted appropriately. Thus, in
the worst of cases, their clocks can grow up to the size of
standard vector clocks. Plausible clocks make no assumption
about the connectivity of the sites in the system.

A technique to reduce the size of timestamps appended
to messages is proposed by Singhal and Kshemkalyani [24].
It is based on the observation that a given site tends to in-
teract frequently with only a small set of other sites and
that timestamps assigned to two consecutive events by a site
differ in just a few entries. This technique reduces commu-
nications overhead but, as it is mentioned by Meldal et al.
[20] and Schwarz and Mattern [25], since the information in
timestamps is compressed, there are cases when the causality
relationship between different messages sent concurrently to
the same site can not be correctly established. These clocks,
similarly to plausible clocks, may order some concurrent
events. Notice, however, that even though the size of times-
tamps carried by messages is reduced, the size of several
data structures stored at each site depends on the number
of sites in the distributed system. A different technique is
described by Fowler and Zwaenepoel [13], where each site
maintains a vectorVi with N entries. Sitei tags the mes-
sages that it sends with justVi[i], eventually this value will
update entryi of the receiver’s vector. This technique fails
to represent transitive dependencies and is more useful for
applications where the causal dependencies are determined
off-line [22].

Ahuja, Carlson and Gahlot [3] propose a model for dis-
tributed systems where the notion of each process as a se-
quence of events is eliminated, i.e. the complete system is
considered a partially ordered set of events. This allows
the presence of not only interprocess concurrency but also
of intra-process concurrency. In order to detect these new
sources of concurrency, a clock with much more complexity
than vector clocks is required. The authors explain a mech-
anism to trade cost and concurrency identification, that at a
minimum reduces their clock to a standard vector clock, but
sacrifices their ability to detect intra-process concurrency.
Notice that if a unique identification is available for each
one of the threads of sequential execution inside a process,
plausible clocks could be used to detect a fraction of both
inter-process and intra-process concurrency.

Diehl and Jard [9] presented the timestamping technique
known as “interval clocks” that obtains better results than
a Lamport clock in ordering events and has a similar cost.
They recognize the importance of approximating the causal-
ity relation with a realistic overhead. In that sense, our work
with plausible clocks can be considered a generalization and
extension of such ideas. Valot [29] studies the trade-offs
(space vs. accuracy) that Lamport clocks, interval clocks
and vector clocks offer when used as timestamping mecha-
nisms. She concludes that, according to the knowledge that
we have of the nature of the execution, it may be possible
to obtain an acceptable level of accuracy without using ex-
cessive space in timestamps; the parameter accuracy defined

194 F.J. Torres-Rojas, M. Ahamad

in Valot’s paper can be obtained from the parameterρ (rate
of errors) presented in Definition 7.

All the logical clocks mentioned in this paper are based
on structures built with integer numbers. This fact poses
the practical issue of how to deal with the capacity limits
of integer representation. Several solutions to this problem
have been proposed, e.g. [15] and [23]. Notice that this issue
can be addressed orthogonally to the chosen representation
for logical time, being this Lamport clocks, vector clocks or
plausible clocks.

9 Conclusions

There is an isomorphism between vector clocks and the
causality relation of events in a Distributed System. There-
fore, vector clocks are useful in understanding the behavior
of distributed systems. However, they have the major disad-
vantage of not being constant in size: their implementation
requires the presence of an entry for each one of the N sites
in the distributed system. Charron-Bost’s results [6] discour-
age any attempt to define some kind of clock that, while
constant in size, completely captures the causality relation.

We propose a class of logical clocks called plausible
clocks that can be implemented with a constant number
of components and yet they provide, under certain circum-
stances, ordering accuracy close to vector clocks. We de-
velop rules to combine known plausible clocks to produce
more accurate clocks.

Several implementations of constant size plausible clocks
are presented.REV is a variant of vector clocks where R-
entries vectors are used; since R< N several entries are
shared by more than one site of the distributed system and
therefore a mapping between sites and entries in the vector
must be defined.KLA is an extension of Lamport clocks
where each site keeps a standard Lamport clock together
with a collection of the maximum timestamp of any message
received by itself and by the K-2 previous sites that directly
or indirectly have had communications with this site.Comb
is a combination ofREV and KLA, and as such can be
proved to be at least as good (and possibly better than) as any
of its components. These implementations were evaluated
using a simulation model and we found that even with a
small number of components inREV andKLA, ordering
among a large number of events can be detected accurately
when the communication pattern is Client/Server. We also
presented examples of applications that could benefit from
plausible clocks.

We claim that any constant size clock must be plausible
in order to be useful, but evidently, there are many other
possible implementations of plausible clocks that would be
interesting to consider. We have to evaluate the effects that
diverse factors have on the performance of plausible clocks
(e.g., number of sites in the system, communications pat-
terns, size of the global history, level of concurrency in the
system, frequency of communications, etc.). Also, we will
explore how to distribute a given number of entries of a
vector betweenREV andKLA clocks.

Acknowledgments.We were greatly helped by the comments and sugges-
tions of the anonymous reviewers.

References

1. M. Ahamad, M. Raynal, G. Thiakime: An adaptive architecture for
causally consistent services. Proc. of 18th International Conference on
Distributed Computing Systems, ICDCS’98, Amsterdam. 1998

2. M. Ahamad, P. Hutto, R. John: Implementing and Programming Causal
Distributed Shared Memory, Proc. of 11th International Conference on
Distributed Computing Systems, 1991

3. M. Ahuja, T. Carlson, A. Gahlot: Passive-space and Time View: Vector
Clocks for Achieving Higher Performance, Program Correction, and
Distributed Computing, IEEE Transactions on Software Engineering,
Vol 19, No. 9, September 1993

4. K. Birman, A. Schiper, P. Stephenson: Lightweight Causal and Atomic
Group Multicast, ACM Trans Comput Syst 9(3) 272–314 (1991)

5. B. Charron-Bost: Combinatorics and Geometry of Consistent Cuts:
Application to Concurrency Theory, Proc. Int. Workshop on Parallel
and Distributed Algorithms, Nice, France, pp 45–56, 1989

6. B. Charron-Bost: Concerning the size of logical clocks in Distributed
Systems, Inform Process Lett 39: 11–16 (1991)

7. D.R. Cheriton, D. Skeen: Understanding the Limitations of Causally
and Totally Ordered Communications, Operating Systems Review,
Vol 27, No. 5, December 1993

8. B.A. Davey, H.A. Priestley: Introduction to Lattices and Order, Cam-
bridge University Press, 1990

9. C. Diehl, C. Jard: Interval approximations of message causality in
distributed executions, Proc. Symposium on Theoretical Aspects of
Computer Science, Cachan, France, pp 363–374, February 1992

10. C.J. Fidge: Timestamps in message-passing systems that preserve the
partial ordering, Proc. 11th Australian Computer Science Conference,
University of Queensland, pp 55–66, 1988

11. C.J. Fidge: Logical Time in Distributed Computing Systems, Computer
24(8) 28–33 (1991)

12. C.J. Fidge: Fundamentals of Distributed System Observation, IEEE
Software, Vol 13, No. 6, November 1996

13. J. Fowler, W. Zwaenepoel: Causal distributed breakpoints, Proc. of
10th Int’l. Conf. on Distributed Computing Systems, pp 134–141, 1990

14. D. Haban, W. Weigel: Global Events and Global Breakpoints in Dis-
tributed Systems, Proc. 21st Hawaii International Conference on Sys-
tems Sciences, January 1988

15. A. Israeli, M. Li: Bounded Time-stamps, Proceedings of Twenty-eighth
Annual Symposium on Foundations of Computer Science, pp 371–382,
1987

16. R. John, M. Ahamad: Evaluation of Causal Distributed Shared Memory
for Data-racefree Programs, Technical Report, College of Computing,
Georgia Institute of Technology, 1991

17. R. Kordale, M. Ahamad: A Scalable Technique for Implementing Mul-
tiple Consistency Levels for Distributed Objects, Proceedings of the
16th International Conference on Distributed Computing Systems, May
1996

18. L. Lamport: Time, clocks and the ordering of events in a Distributed
System, Communications of the ACM, Vol 21, pp 558–564, July 1978

19. F. Mattern: Virtual Time and Global States in Distributed Systems,
Conf. (Cosnard et al. (eds)) Proc. Workshop on Parallel and Distributed
Algorithms, Chateau de Bonas, North-Holland: Elsevier, pp 215–226,
1988

20. S. Meldal, S. Sankar, J. Vera: Exploiting locality in maintaining po-
tential causality. Proc. 10th Annual ACM Symposium on Principles of
Distributed Computing, Montreal, Canada, pp 231–239, 1991

21. M. Raynal: About Logical Clocks for Distributed System, Operating
Systems Review, Vol. 26, No. 1, January 1992

22. M. Raynal, M. Singhal: Logical Time: Capturing Causality in Dis-
tributed Systems, IEEE Computer, Vol. 29, No. 2, 1996

23. A.K. Singh: Bounded Timestamps in Process Networks, Department
of Computer Science, University of California at Santa Barbara, June
1992

24. M. Singhal, A. Kshemkalyani: An efficient implementation of vector
clocks, Inf. Process Lett. 43: 47–52 (1992)

25. R. Schwarz, F. Mattern: Detecting causal relationships in distributed
computations: in search of the holy grail, Distrib Comput 7: 149–174
(1994)

Plausible Clocks 195

26. F. Torres-Rojas: Efficient Time Representation in Distributed Systems,
MSc. Thesis, Georgia Institute of Technology, 1995

27. F. Torres-Rojas, M. Ahamad: Plausible Clocks: Constant Size Logical
Clocks for Distributed Systems, Proc. 10th International Workshop on
Distributed Algorithms, (WDAG 96). Bologna, Italy, October 1996

28. F. Torres-Rojas, M. Ahamad, M. Raynal, Lifetime Based Consistency
Protocols for Distributed Objects, Proc. 12th International Symposium
on Distributed Computing, DISC’98, Andros, Greece, September 1998

29. C. Valot: Characterizing the Accuracy of Distributed Timestamps,
ACM SIGPLAN Notices, 28 (12), December 1992

30. Z. Yang, T.A. Marsland (eds): Global States and Time in Distributed
Systems, IEEE Computer Society Press, 1994

Francisco Torres-Rojas was born in San Jose, Costa Rica. He received
a B.Sc. in Computer Science from the Universidad de Costa Rica, and
a M.Sc. in Computer Science from the College of Computing at Georgia
Tech, where currently he is a Ph.D. candidate. His research interests include
operating systems, distributed systems, distributed algorithms, consistency
of distributed objects and theoretical issues of parallel and distributed com-
puting.

Mustaque Ahmad is a Professor in the College of Computing at the Geor-
gia Institute of Technology. He received his Ph.D. in Computer Science
from the State University of New York at Stony Brook in 1985. His pri-
mary research interests are in the areas of distributed operating systems,
middleware, and scalable and secure systems. In particular, his current re-
search focus is on scalable consistency protocols for sharing dynamic infor-
mation, and on system support for interactive applications in the wide-area
networking environment.

