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Summary. In a Distributed System with N sites, the precise with these clocks, two events may appear to be ordered ac-
detection of causal relationships between events can only beording to their timestamps even when they are concurrent.
done with vector clocks of size N. This gives rise to scal-In a replicated object system, this could lead to unnecessary
ability and efficiency problems for logical clocks that can consistency operations. For example, in the causal consis-
be used to order events accurately. In this paper we propogency implementation described by Ahamad, John, et al. [2,
a class of logical clocks called plausible clocks that can bel6], if a new object value written by operatianis fetched
implemented with a number of components not affected byat a site, existing object copies at the site are removed from
the size of the system and yet they provide good orderingts cache if the operations that produced them causally pre-
accuracy. We develop rules to combine plausible clocks tacedeo. This is done because the cached object copies may
produce more accurate clocks. Several examples of plausibleotentially have been overwritten by more recent operations
clocks and their combination are presented. Using a simuthat were executed before If scalar clocks are used to de-
lation model, we evaluate the performance of these clockstermine the causal orderings between operations, an object
We also present examples of applications where constargroduced by an operation which is concurrent witmay

size clocks can be used. unnecessarily be removed from the site cache. Such unneces-
sary removals and extra communications needed when such

Key words: Logical clocks — Causality detection — objects are accessed in the future can be avoided if more dis-

Distributed algorithms cerning clocks are used to determine the ordering between
operations.

In this paper, we explore logical clocks that make use
of multiple components, as in vector clocks, to provide a
high level of ordering accuracy. However, they can be im-
plemented in a scalable fashion because the number of com-

In large scale distributed systems, efficient access to shar nents in them is independent of the number .Of sites in
the distributed system. Such clocks are useful in systems

information requires the use of caching and replication. In here placing an ordering on concurrent events only im
such an environment, it is necessary to order read and upda\% P 9 9 y

operaionscn'an oject 0 determine s most recet vaud 25 ETOTANCE 200 1oL orecness T e o ey
Logical clocks have been explored for ordering events in y

distributed systems. These clocks do not require synchrogorithms‘ Thus, we explore efficiently implemented clocks

nized physical clocks and can be implemented by includin hat may order a small number of concurrent events but do
additional information with messages exchanged in the sys- ot significantly affect the performance of algorithms that

tem. Although vector clocks, one example of logical clocks,use such clocks due to their high level of ordering accuracy.

can precisely order events of a distributed system and deteélt}/e call theseplausible clocks. We descr'lbe several such
concurrent events, they are expensive to maintain and manilf-OCk systems and present rules to combine them to produce
ulate since vectors of integers must be included in messag ore accurate clocks. We study the performance of these
and it is necessary to compare vector times to determine the ocks using a simulation model for two different distributed

order between operations. Besides, since vector clocks havsér'cs)t?(;gsh.Tneosr(ejesr'.?u';éfnrz:h%vvr;ggt 2'1‘:::2';’ Effgsaﬁ_n
a component for each site in the system, they are not easil Vi \gh ordering uracy in y sy " X
scalable. le, the experiments show that in a group of client/server

Scalar logical clocks can be implemented efficiently systems with 76 sites (1 server, 75 clients) that include 96

: illion event pairs, a plausible clock with just 7 components
.g., Lamport Clock when even re tim m : ! U
(e.g., Lamport Clocks), but when events are timesta pe(E(?rdered, on the average, 93% of the event pairs in the same

* This work was supported in part by NSF grant CDA-9501637 and way as a vector clock which requires 76 components.
CCR-9619371.

1 Introduction
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This paper is a significant revision of a previous versionmessage sent by siteincludes a timestamp which is the
that appeared in the Proceedings of the Workshop on Disvalue ofL; when the message was sent.
tributed Algorithms (WDAG), 1996 [27]. We have refined
the model used to represent the clock systems and prese
additional details of the workings of plausible clocks. A new — Q) Initial value:
section, that illustrates where plausible clocks can be used,
has been added. We also include a much expanded discussion Li=0
of related work and its comparison with plausible clocks.  _ | 1) Before an event (other thanraceive is executed
Section 2 presents some background material on logi- gt sjtes:
cal clocks. We introduce the concept of plausible clocks in
Sect. 3. Section 4 explains how such clocks can be com- Li=L;+1
bined and demonstrates that the combination rules preserve_ L2) When a message with timestarfipis received by
correctness and provide improved accuracy. Some examples
of constant size clocks are described in Sect.5. Section 6
reports the simulation model used to evaluate the proposed L; = max(;, D)
clocks together with the obtained results. We outline some |, =, +1
applications of plausible clocks in Sect. 7. Related work is

examined in Sect.8. Finally, Sect.9 offers the conclusiondf @is an event oH;, thenL(a) is the value oL ; whena is
of this paper. executed. Lamport clocks exhibit theveak clock condition

that states thata, b € H:
a— b= L@ < L(b)

Lamport Clocks capture the order between causally re-
This section reviews some basic material on logical clockslated events but they do not detect concurrency between
We consider a system where a set of processes communicaggents and just by inspecting two timestamps, we are not
exclusively by exchanging messages. There is neither comable to decide if the associated events are causally related
mon memory nor a common physical clock, and the relativeor concurrent (hence the name weak clock condition).
speed of the processes is unknown. It is assumed that all
communication is asynchronous and point-to-point, and that
all messages are delivered correctly. Although failures are2.2 Vector clocks
an important issue in large scale distributed systems, we do
not consider failures in this work. Vector clockswere independently proposed by Fidge [10,
11, 12] and Mattern [19]. They consist of a mappihg
from events to integer vectors. Each sitkeeps an integer
2.1 Lamport clocks vector V; of N entries, where N is the number of sites in
the distributed system. Sitekeeps its own logical clock in
In 1978, Leslie Lamport proposed the conceptlagical V,;[4], while V[ 4] represents the current knowledge that site
clocksto order events in distributed systems [18]. A logical i has of the activity at sitg. Vector clocks are updated when
clock consists of a mappind from events to the set of events occur at the local site or when messages are received
integers that captures the causal order between events. (all messages include the timestamp of their corresponding
sendevent).
Site ¢ updatesVv,; according to the rules:

|’1f is updated according to 3 rules:

site :

2 Logical clocks

Definition 1. The local history of site i is a sequence of
eventsH; = e;1€;,... that are executed on site There is
a total order on the local events of each site. Thebal — VO) Initial value:
history H of the Distributed System is the set of all events _ ) .
occurring at all sites of the system. Lamport [18] defines the 0=J=N-1 :Vilj1=0

causality relation®—" over events as the smallest relation _ v/1) Before an event (other thanraceive is executed

such that: at sitei:
— If g andey € H; and j< k, thene;; — 6. V,i[i] = Vi[i] +1
— If &m is send M), e;n is receiveg(M) and M is the same o ) _
message in both cases, with arbitrary i, j, m apdhen ~ — V2) When a message with timestarid is received by
im — €jn. site ¢:
—Va,b,ce Hif a— b andb — cthena —: c. 0<j<N-—1:V,[5]=max(Vi[], W[j])
If neithera — b nor b — a holds between two different V[l = Vi[i] + 1

eventsa andb, thena andb areconcurrent This situation is
denoted as || b. Since the causality relation— is irreflex-

ive and transitive, it defines a strict partial ordét, —)  Definition 2. Given two vector time¥ andW, the following
over the events of the system.O tests are defined:

If a € H;, thenV (a) is the value ofV; whena is executed.

_TO implement a Lamp_or_t_CIock, each sitemaintains an 1 For all the logical clocks presented in this paper, an event is times-
integer countelL; that initially has a value of zero. Each tampedafter the local clock has been updated.
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captured by vector clocks with N entries. It may be possi-
<1,0,0,0> ’<_e,0,0,0> ,<_‘3,0,0,0> '<_e,0,0,0> <5,1,3,0>

Site 0: GG & 5 ble to design a different mechanism to determine causality
' ' 1 ' /7 between events, however Charron-Bost’s result [6] indicates
<3.8,0,00 that if such a mechanism characterizes the causality relation,

€1 el it would have a siz&)(N). This discourages any attempt to

Site 1: <0,1,0,0> <0,2,0,0> <3,3,0,0>

define some kind of clock that, while constant in size, com-
: . <0,1,2,0> <0, L 0> <0,1,4,0> <3,4,5,0> . .
Site 2 —- - =0 e pletely captures the causality relation.
Sl"e 3 _é0,0,D,D :,_?,0,0,2> :H!'),O,D,b '<_U9,0,0,A> :'_‘:),0,0,5> a)ﬂ,6>
€3 B2 %3 G €35 €36 3 Plausible clocks
Fig. 1. Vector clock timestamps of events in an execution In thi_S section We propose a class of clocks that do not char-
acterize causality completely, but are scalable because they
can be implemented using constant size structures. Further-
V=W<&0<j7<N-=-1:V[j]=WI[j] more, under appropriate circumstances, they can provide a
VIWES0<ji<N-1:V[j] <WI[j] high level of ordering accuracy.

V <W &V <W anddj such thatV[j] < W[j]
V || W < 3k such thatV[k] < WI[k] and 3j such that
V[l > WI[j]. O

Definition 3. Let atimestampbe a structure that represents
an instant in time as observed by some site. The particular
details of this structure are left open. For a distributed system

with global historyH, a Time Stamping Syste(@SS) X is
Mattern [19] proved that there is an isomorphism between d X y ping Syste(Ss)
(S, =), X.stamp), where:

the times read from a vector clock when events are executefl P&l

and the causality relation among eventddinsinceva,b Sis a set of timestamps.

H: X, is an irreflexive and transitive relation defined on the
a=b< V(@=V() elem)?nts ofS.

a—b< V() < V(b) (S,—) is a strict partial order.

allb< V(@) | V(b (1) — X.stamp is thetimestamping functiomappingH to S.
Condition (1) is called thestrong clock conditionA clock
that satisfies this conditiooharacterizescausality, while a
clock that only satisfies the weak clock conditiorcnsis- vEw e v =w
tent with causalityf22, 25]. Ve w s

Figure 1 shows a simple execution of a distributed sys- X x x x
tem with 4 sites. The arrows represent the sending and re-? | w & =(v=w) A =(v == w) A = (v +— w) U
ceiving of a message. Each event has been timestamped witRt stamp assigns timestamps to each eventbflt is nor-
its corresponding vector clock. It is easy to verify that the majly expressed as a series of rules for updating the logical
causal relations between any pair of events are correctly egsjock of a site before assigning a timestamp to an eveht. of
tablished by using the tests presented in Definition 2. When it is clear from the context, we just ud&a) instead
of X.stamp(a),va < H. If ais send M), it is assumed that
messagel/ carries the timestamg (a).

Since—5 is irreflexive, it is easy to see that the relations

For all timestamps), w € S, we define the additional rela-
tions:

2.3 Disadvantages of vector clocks

Vector clocks precisely capture the ordering between events™s, & 2 and)||( are mutually disjoint. Their purpose is
in a distributed system. However, they have the major dis+o reflect causality, equality and concurrency from the point
advantage of not being constant in size: the implementationf view of X. Even though these relations are defined over
of vector clocks requires an entry for each one of the Ntimestamps, we overload their definition to allow them to
sites in the system. If N is large, several problems arisedirectly compare events iH. For instance, considex, b €
There are growing storage costs because each site must rg-with timestampsX (a) and X (b), respectively X reports
serve space to keep its local version of the vector clock andthe causal relationship (not necessarily correct) betwseen
depending on the particular system, vector times associateahdb, in this way:
with certain events must be stored as well. All messages of x X
a distributed computation are tagged with timestamps reada=b < X(a) = X(b) & X “believes” thata andb are the
from vector clocks, which could add considerable overhead same event.
to communication in the system. Also, comparison of vector a3 b < X(a) N X(b) & X “believes” thata causally
timestamps to determine ordering between events will have preceded.
high processing overhead for large N. Thus, vector clocks 5 X X(a)éX(b) & X “believes” thatb causally
have poor scalability. precedes.

Charron-Bost [6] proved that given a Distributed Sys- = x X
tem with N sites, there is always a possible combination of a|| b < X(a) || X(b) & X “believes” thata andb are
events occurring in the system whose causality can only beconcurrent.
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As an example, using the tests presented in Definition 2
we can redefine vector clocks in the form of TSS =

(S, -5), V.stamp), where:

— Sis a set of N-dimensional vectors of integers.
— V.stamp: defined with rulesv0, V1 andV2 of Sect. 2.
— LetV andW € S, then

VEW & V=W

VLWeV<aw

Vv VL Wew-5VeVsw

VIWeaV|w

Definition 4. ATSS X = ((S, L), X.stamp) characterizes

causality[25] if Va,b € H:
a=beab
a—b @Xaib

allbealb O

Notice that this is equivalent to the strong clock condition.
Evidently, if TSSX characterizes causality, than— b <
acb.

Theorem 1. TSS V characterizes causality.

Proof. This result follows from property(1) and it was
proved by Mattern [19]. a

Definition 5. A TSS P = ((S, L>, P.stamp) is plausible
if Va,b € H:

a = beafb

a—b=ab m|

A plausible TSS satisfies the weak clock condition. In addi-
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4 Combination of TSSs

Given two plausible clocksA and B, they can be easily
combined to design a new plausible clokk The objective

of this combination is to produce TSSs where the ordering
between more pairs of events is correctly established.

Definition 6. Let A = ((Ss, ), A.stamp) and B
((SB,L>, B.stamp) be two plausible clocks. We define
TSSX = ((Sx, i)), X.stamp), where:
— Sy =S4 x Sg, i.e., the elements dby are of the form
(va,vB) with vy € Sy andvg € Spg.
— (VA,VB) i)(WA,WB) = (VA i>WA) A (VB i>WB)
— Vae€ H: X.stamp(a) = (A.stamp(a), B.stamp(a))

We say thatX is acombinationof A and B. O

Given an arbitrary TS® = ((S, i>>, P.stamp), we use the
P P
generic relationsp and ¢ with ¢, § € {—,+—,=||} to

P
denote one of the possible relationss, <, Eor ||. Using
this notation, and considering Definition 3 and Definition 6,
we have that ifv = (vA,vB) andw (w4, wg) are elements

of Sx such thatv 4 awA andvg quB, then:

v=w<:>(9=¢=‘

Vi>W<:>(0:¢: —)

v&w<:>(0=¢=‘
X
Viwes @ FovE=0="]"

This notation brings out the nature of TS®: if A and

B disagree on the causal relationships between the same
pair of events (i.e.f # ¢), X reports that these two events
are concurrent, otherwis& just reports the same causal

—)

. relationship that is reported by and B.

tion it assigns unique timestamps to events. Just for clarityTheorem 3. (Rule of Contradiction in TSSs) Let A and B

notice thata +— b = ab.

P
Theorem 2. IfaTSS Pis plausible, théna,b € H,a | b =
all b.
Proof. If the actual causal relation weee=b, a — b or
a +— b, it would have been reported as:Pb, a5 or

P
ac b, respectively. Therefore, iP reportsa || b, then the
only possibility left isa || b. O

A plausible TSSP never confuses the direction of
causality between any two ordered events. If in fact

causally precedeb, P will always reportai> b, orifb
causally precedes P will always reporta<L b. If P states
P

A B
be two plausible TSS¥.a,b € H such thatag b anda¢ b,
it holds that

@Fov(@=¢="[")=alb

Proof. It is known thatA and B are plausible TSSs, then
from Definition 5:

@ #¢)A(a=b) = Contradiction
(0 # ¢) A (a — b) = Contradiction
(@ # ¢) A (a+— b) = Contradiction

Thus, if two plausible TSSs disagree on the causal relation
between two eventa andb, then, necessarily, these events
are concurrent. Finally, i = ¢ ="' || ’, Theorem 2 proves
thata || b. O

Definition 7. Let X be an arbitrary TSS anf be a TSS

thata || b, this necessarily is correct. In a plausible TSS, thepased on vector clocks as defined in Sect.3. For a finite

timestamps assigned to events are unique. Vector clocks a
plausible clocks, but not every plausible T$Scharacter-
izes causality since it is possible that| b, but insteadP

P P
reportsa—: b or a<+—b.

Kistory H, we define the paramete(X) in this way:

{(ab) cH xH:ahbAapbAd el

LX) = IH % H|
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This ratio, called theate of errorsof X, is the proportion of number of sites in the distributed system. Since there are
all the pairs of events in the global histddywhose causality = fewer entries in the vector than sites in the system, sites will
relation is wrongly established by the TSS In particular,  share entries in the vector. Many mappings between sites and
if X is plausible therp(X) represents the number of pairs entries of the vector are possible, however for the purposes
of concurrent events that are ordered Kydivided by the  of this paper we limit ourselves to a modulo R mapping,
total number of pairs of events. When it is clear from thei.e. site; updates entry modulo R of the vector. A similar
context which TSS isX, we just usep. A more accurate technique is proposed by Haban and Weigel [14], where
TSS has a lower value gf (for vector clocks, is 0.0). O processes that are executed at the same site share an entry
Theorem 4. (Plausible + Plausible = Plausible)et 4 and in the vector clock]REV does not have this restriction and

) . T allows processes running on different sites to share an entr
B be two plausible TSSs. K is thecombination of A and b g y

! . in the vector. The mechanisms for timestamp comparison
B then.X is a plausible TSS anfp(4) = p(X)) A (o(B) = gre almost identical to the ones used by vector clocks.

X)).
PX) Let us defineREV = ((S, IE{), REV.stamp), where:
— S'is a set of pairs of the forn¥, V;) wherei is an integer
that identifies each site of the system<{0 < N — 1),
andV, is a R-dimensional vector of integers.

Proof. From Theorem 3 and Definition 6, it is evident th¥t
inherits the properties afi and B concerning the detection
of the casesa = b, a — b anda «— b, Va b € H.
ThereforeX is plausible. Because of the same reason, the , - ;
parametep(X) cannot be greater than eitheA) or p(B). — REV.stampis defined with the rules:
It is possible (and desirable) thaf detects more pairs of RV0) Initial value:

concurrent events than eithdror B. O i = Unique site identification;

: - 0<j<R-1:V,[]=0;
In order to generalize the concept of combination of plau-
sible clocks for more than 2 TSSs, we can notice the in- RV1) Before an event (other tharreceive is generated
teresting correspondence betweepraductof ordered sets at sites:
as defined in [8] and the combination of plausible clocks. ) s )
Let (O1,<1),...,{On <n) be n ordered sets. Theroduct V[« modulo R] =V;[i modulo R] +1;

of these ordered sets is the ordered{(§&tx ... x Op, <), RV2)When a message with timestang,V,) is re-
where< is the coordinatewise order defined as: ceived at site:
(@1, an) <o (Y1, 90) S Vi z <y 0<j<R—1:V;[j]=max(Vi[il, Vsl

_— 1 V[ modulo R] =V,[i modulo R] + 1;
Definition 8. Let P, = ((S;,—), Pi.stamp),..., P, =

(S, —+), P,.stamp) be n plausible clocks. We define TSS — Let (i, Vi), (4, V;) € 5, then:

— X .
P, = ((Sx,—), Px.stamp), where: (i,V) Iﬂ/ (3, V)
- Sx =851 %x...x 5, ‘ < (i =7 AV4[i modulo R]
= (Viy ety Vi) = (Wa, ..., Wh) < Vi v — W < V,[j modulo R])v
—Vae H : P,.stamp(a) = (P1.stamp(a), . . ., (i # AV, <V, AV,[j modulo R]
Py.stamp(a)) .
. o < V,[j modulo R])
We say thatP, is acombinationof Py, ..., P. O )
VectorsV; andV; are compared using the tests presented
in Definition 2, with the only difference that they have R
5 Examples of Constant Size Clocks entries instead of N. For completeness, notice that:

We consider three groups of plausible clocRsgntries vec- (2, V;) REV(]‘, V,) < (i = j AV;[i modulo R]

tor, K-Lamport clocksandCombined TSSThe first one is a = V,[j modulo R])
variant of the standard vector clocks where the vectors have a

. REV , . . . .
fixed number of entries. The second group is an extension ofi, Vi) <— (j,V;) < (i = j A V;[i modulo R]
Lamport clocks, where each site keeps its logical clock and > V,[j modulo R])v
a collection of the maximum message timestamps received (i # j AV; >V, A V;[i modulo R]
7 7 2

by itself and by sites that directly or indirectly have commu-  modul
nicated with this site. The third group combines TSSs from > Vi modulo R])
the previous two groups. Obviously, these are not the only REV . . REV .
possible plausible clocks, but they are efficient and simple (Vi) [ (Vi) & i 7 5 A=((0 Vi) == (7. V;)
to implement. A=((3,V;) E/(j, V)

5.1 R-Entries Vector TSS Theorem 5. REV is a plausible TSS.

R-Entries Vector TSSKEYV) is a variant of vector clocks, Proof. We have to prove, first, thaREV is a TSS and,
where vectors have a fixed size<RN, independent of the second, thatREV is plausible. The former is proved by
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Site 0: g fo 500 &0 5,15
€o.l 0.2 ET),L €04 €5
Site 1: 21> <9.2> il 3.

€1 €2 €3 €
Site 2: &0 <2.1> <3,1> <41
Ll L
€22

<5,4>
€1 €23 €24 €25

<0,5> 0,6

‘_
o0
s
o

Fig. 2. Execution timestamped witR EV (R = 2)

verifying that the relation = is irreflexive and transitive,
and the latter is proved by confirming th&FV satisfies

Definition 5.

Let <Z,V1>, <j,Vj>, <k,Vk> € 5. EVidently, _\(<Z,Vl>

REV

— (1, V4)), thus, ™2 is irreflexive. Let us assume that

REV , . REV

(i,Vi) — (4, V) and (j,V;) — (k,Vg). If ¢ = j = F,

REV

it is clear that(i,V;) — (k, V). Now, if at least one of

F.J. Torres-Rojas, M. Ahamad

5.2 K-Lamport Time Stamping System

This family of TSSs uses the same data structureRa¥:

a site identification and a vector of integers. However, the
rules for updating this vector are different. Each site keeps
a Lamport clock together with the maximum timestamp of
any message received by itself and by the K-2 previous sites
that directly or indirectly have had communications with this
site.

As an intuition for this clock, consider a case where two
eventsa and b were executed at different sites and have
Lamport clock timestamps 7 and 10, respectively. With just
these timestamps we would conclude that— b. Now,
let's assume that each site keeps the maximum timestamp
of all the received messages in a local variablelf h is
5 whenb is executed, we know tha can not causally
precedeb, because otherwisk would have been updated
and it would be greater than or equal to 7. Therefa@nd
b are concurrent events. Notice that this mechanism can
be extended if sité keeps not only its Lamport clock and
the maximum timestamp received, but also the maximum
timestamp received by any site that has sent a message to
site 7, and so on. This extra information will give us the

the timestamps corresponds to a different site, the compargpjjity to discern more accurately when it is true that two

ison of vectors as presented in Definition 2 guarantees thatyents are actually ordered.

(i,Vy) M(k:,vw. Hence,“2¥ is transitive and, therefore, In order to better understand the dynamics of e
REV is a TSS. Lamport TSSwe present and analyze the properties of the

Since the timestamps d@EV include a site identifica- basic cas@-Lamport TSS
tion, no two events occurring at different sites receive the
same timestamp. Similarly, ruld&8V1 and RV2 guarantee
that no two different events occurring at the same site receiv@-Lamport Time Stamping System

the same timestamp. Therefore: ]
2-Lamport TSS (2LA)s an extension of Lamport clocks

where sitei has a 2-entries vectdr,. Sitei keeps a local
Lamport Clock inV;[0] and saves the maximum timestamp
Let a,b € H be two distinct events such th&EV(a) =  carried by any received messageMi[1].

,V;) and REV(b) = (j,V,). If a andb were executed ) 2LA

;t th(>a same site, just<by Jc>omparir\g[z' modulo R] and Ve define ZA = ((S, =), 2L A.stamp), where:

V;[j modulo R], we establish the order of these events. — S is a set of pairs of the forri, V;) wherei is an integer
Now, consider the case wheeeand b were generated at that identifies each site of the system<0i < N — 1),
different sites. Because of the definition BfEV.stamp, if andV, is a 2-dimensional vector of integers.

a — b then necessarily; < V,. Besidesy ;[; modulo R] — 2LA.stampis defined with the rules:

must be strictly greater thavi;[j modulo R] becaus¥ ;[j 2L0) Initial value:

modulo R] is incremented wheb is executed. Thus, if
V; < V; but V;[j modulo R] =V;[; modulo R], thena

Va,beH:a=b<:)am§Vb

1 = Unique site identification;

andb are concurrent events. Finally, if# j andV; =V, V;[0] = 0;
orV; || V; then necessariln || b. Therefore: V;[1]=0;
REV 2L1) Before an event (other tharreceive is generated:

VabeH:a—b=a-—b
V;[0] = V;[0] + 1;

2L2) When a message with timestamp, V) is re-
ceived:

V;[0] = max(V;[0], V[0]);

V;[0] = V;[0] + 1;

Vi[1] = max(V;[1], V[0]);
— Let (;,V,), (j,V;) € S, then:

In conclusion,REV is a plausible TSS. O

Figure 2 shows the same execution presented in Fig. 1,
but using timestamps fro®EV (R = 2). In order to sim-
plify, the part of the timestamp corresponding to the site
identification has been omitted. This clock establishes cor-
rectly the causal relationship between 320 out of the 400
possible pairs of events, i.e(REV) is 0.2 for this partic-

ular history. For instanceR EV recognizes thaés; || €2, -_
but orders concurrent events when it repas — e », Y
V(i # 7 A Vi[0] < V1))

sincees; || ey 2.
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Notice thatV;[0] > V;[1] for any timestamp assigned to '2Pl¢ 1. Possible relations betwean; andV; (2L.A).

any event. For completeness, we have that: Vi[0] < V5[1]  Vi[0] > V(1]
. a<—>b
(V) £ V) (= AVil0] = V(0] VOl SVl | - impossible .
) LA . ] ' uncertain
(4, Vi) &=(4,V;) & (z = ] AV;[0] > V,[0]) V;[0] > Vild] a—b allb
V(i # 5 A Vi[1]V;[0]) uncertain certain!
‘ 2LA L . 20A, .
(@, Vi) |l (G, V) =i #F5A((E V) ==, Vy)) < ow that\ 2] < V.[0]) A (V. [1] < V. [0])
. 2LA , . Ince we Know al i < i A\ j < i , we
A= (3, Vi) &= (4, V;)) can notice that:
Theorem 6. 2L A is a plausible TSS. (V4[0] < V,[1]) A (V,[0] < Vi[1]) =
Vi[0] < V;[1] <V4[0] <Vi[1] = o
Proof. We have to prove that=2 is irreflexive and transi-  Vil0l < Vi[1] = Contradiction

tive, and that Z A satisfies Definition 5. i i ) ) )
2LA Table 1 summarizes the previous relations. Using the in-

Lethf’Vi>’ {3, Vi), (k, Vi) € 5. Sinceﬁ(<i,2\£i =i, formation in this table, 2A detects correctly all the cases
V;)), — isirreflexive. Let us assume th@t V,) == (j, V;) wherea — b or a «<— b. Therefore,

and(j,V;) ZL—A>(I<:,V;€>. We can see that: a—b=a4p
(i =j=k) = (Vi[0] <V;[0] <V[0]) Thus, Z A is a plausible TSS. 0
= (i = k AVAI0] < V4[O]) = (3, Vi) 25k, V)
(i #7=k) = (Vi[0] <V,[1] < V,[1]) General Case: K-Lamport TSS
. . 2LA
= (@ #kAVi[0] < Vi[1]) = (i, Vi) ==(k, V) consider briefly whaB-Lamport TSS (3LAYould be. Times-
(J #Fi=k) = (Vi[0] < V,[1] < V,[0] < Vi[1] < Vi[0]) tamps are of the forngi, V;) wherei is a site identification
. _ S\, 2LA andV; is a 3 entry vector, whose entry 0 is a Lamport
o = (0 =k AVi[0] <Vi[0]) = (i, Vi) == (. Vi) clock. Every message sent by sitecarries the timestamp
(k #1i=7) = (Vi[0] <V,[0] < Vi[1]) (i,V;) that corresponds to the time assigned to the particular

. ' vy 2LA send event. When sitereceives a message with timestamp
o = (0 F R AVIO] < Vi[LD) = (5, Vi) ==k, Vi) (s,Vy), its entryV;[0] is updated withV[0] in a standard
(i #j 7 k) = (Vi[0] < V;[1] <V;[0] < V,[1]) Lamport clock fashion and its entrieg;[1] and V;[2] are
= (1 # k AV;[0] < Vi[1]) = (i,V,) ZL_A><k’Vk> max-ed withV[0] and V[1]. The results shown in Table 1
- for entries 0 and 1 of two arbitrary timestamygs andV
Thus, 224 is transitive and thereforel24 is a TSS. are still valid for 3 A; besides, entries 1 and 2 9f andV;
From rules2L1 and2L2, and the fact that the timestamps will exhibit these same relations. ThUS, given two different
generated by A include a site identification, it is easy to €ventsa andb with timestamps(i, V;) and (j,V):

see that: a— b= (V;[0] <V,[1]) A (V;i[1] <V,[2])
VabecH:a=boa’®'b a<+— b= (Vi[1] > V,[0]) A (Vi[2] > V;[1])
Let a,b € H be two arbitrary events such thal A(a) = The relation®4 is equivalent to\;[0] < V,[1) A(V;[1] <

(i,V;) and 2LA(b) = (4,V;). If aandb occur at the same V,[2]). With this test, 3.4 is detecting correctly all the
site the causal relation is correctly established just by comeases whera —; b. If this test fails and 84 encounters
paring V;[0] and V;[0]. Consider the case whereandb that (V;[1] > V,[0]) A (Vi[2] > V;[1]) holds, then®? is
have been executed at different sitesa i sendM) andb  reported, detecting correctly all the cases where— b. If

is receivgM), then V;[0] would have been communicated ) 3LA

to the site wheréd occurs and the entry;[1] would have  both tests fail, A reportsa || b.

been updated. Therefore: K-Lamport TSS ((LA) is a generalization of 2A and
a=sendM) A b = receiveM) = (V;[0] < V,[1]) 3LA, where we extend the pattern shown in these TSSs

to a vector with K entries. Let us defif€ LA = ({5, @),

These conclusions can be easily generalized whandb K LA.stamp), where:

are causally related: . .
a b= (Vi[0] < V,[1]) — S'is a set of pairs of the forn¥, V;) wherei is an integer

that identifies each site of the system<0 < N — 1),

On the other hand, ¥;[0] > V,[1] thena does not causally andV; is a K-dimensional vector of integers.
precedeb because of the definition of/24.stamp. Con- — KLA.stampis defined with the rules:
versely, if V,;[0] > V,[1], b does not causally precede KLO) Initial value:

Therefore, i = Unique site identification;

(Vil0] > V;[1]) A (V5[0] > Vi[1]) = a|| b 0<j<K-1:Vi[]=0;
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+1
Logical Time before the event is executed: -
0 1 2 K-1

0 T >~ Tx1

Fig. 3. KL A update rule for a local event

Logical Time assigned to the event:

Message Timestamp: (H 34 19 15 |7D

K-2  K-1

AL \ J s J
- ey
Logical Time before message is received: ]zl
0 1 2 -~ K-1
max | max j max max

LD

Logical Time assigned to receive event: >
0 T 2~ Tk

Fig. 4. KL A update rule when a message is received

o ( FLLT L)
= @@ @
KLA(b) M |13 9 loD

2 K-2_ K-1

a) agusb

Fig. 5. Tests for causally related events und€i A

KL1) Before an event (other tharreceive) is generated:

V,;[0] = V;[0]+1; (See Figure 3)

KL2)When a message with timestanip,
ceived:

V;[0] = max(V;[0], V[0]);
V;[0] = V;[0] + 1;
1<j<K-1:V4j]=
(See Figure 4)

— Let (i, V), (j,V;) € S, then:

V) is re-

max(V;[i], Vsl — 1);

F.J. Torres-Rojas, M. Ahamad
(i, Vi) G, V) o (6= 5 A VS[0] < V5[0]) v
(i #5 AV4[0] < V(1]
A V(1] < V521 A
S AVGK =2] < V4K —1])
The non-zero entries of; satisfy that for anyk < K — 1,
V,[k] > V;[k+1]. The rightmost entries of the vector could

contain zeroes (see Sect. 5.4). However, this does not affect
the correctness of the algorithm. As before, notice that:

(i,V) "EA V) & (0= 5 A V,[0] = V,[0])
(i,Va) E235,V5) & (0= 5 A V(0] > V5[0]) v

(i #j A Vi[l] > V(0]
AVi[2] > VI A
LAVGK — 1] > VK — 2])
KLA

(&, Va) I {,

>KLA<

V)i 7 A (i, Vi) =55, V)
>KLA<

A _‘(<i7vi — ja V]>)
Figures 5a and 5b present the tests mad&liyd when two

events occur at different sites and are causally related from
the point of view of K LA.

Theorem 7. KLA is a plausible TSS.

Proof. We have to prove thakkLA is a TSS (i.e. Ilf is

irreflexive and transitive), and tha L A is plausible, i.e., it
satisfies Definition 5.

Let (i,Vy), (j,V,), (k,Vy) € S. Since —((i,V;) “£5i

Vi), KLY s irreflexive. Let us assume that, V; )K A(g,
V,) and(j,V >KLA<k V). Notice that:
(i=j=k) = (Vi0] <V '[0] < Vi[0])
= (i, Vi) (k, Vi)
(i 7 =k) = (Vi[0] < V;[1] < Vi[1]) A (Vi[1] < V;[2]
<Vil2D A ..
A (VK = 2] < VK — 1] < Vi [K —1])
= (6,Vy) S8k, Vi)

(j #i=Fk) = (Vi[0] <V,[1] < V[2] < Vi[1] < Vi[0])
= (i, V) "8 0k, V)
(k #1i=7) = (V4[0] < V,[0] < Vi[1]) A (V4[1] < V(1]

<Vi2D)A...
/\(Vz[K — 2] < VK — 2] € Vi [K — 1))
= (i,Vi) Sk, V)

(@7 #Fk) = (Vi[0] <V,[1] < Vi[2] < Vi[1]) A (Vi[1]
<V[2] S Vi[81 < Vi[2) A
CAVGIK — 21 < VK — 1] < VK — 2]
< VilK — 1)) = (4, Vi) S8k, Vi)

Thus,}&>4 is transitive and therefor& LA is a TSS.

From rulesKL1 andKL2, and the fact that the timestamps
generated by L A include a site identification, it is easy to
see that:
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Table 2. Possible relations betwean; andV; (KLA)

Vil < ViIk+1] Vil > Vilk+1]

VK < Vilk+ 1] Impossible a«—b
uncertain
VI > Vilk+ 1) a—b allb
uncertain certain!

VabeH: a=boa“t'p

Let a,b € H be two arbitrary events such thatLA(a) =
(1,V;) and KLA(b) = (j,V;). If ais sendM) and b is
receivgM), then,V k < K—1,V;[k] would have been com-
municated to the site wheteoccurs and the entry ;[k+ 1]

Slte 0.. <1,0,0> E.D,lb ;%.D.D ‘E‘?,D,D <5,3,1>
€),1 €2 E_OL €04 /?05_
Sl’e 1 <1,0,0> <DZ,D,0> :,3,0> ’<_‘5,3,0>
€l €12 €3 €4
Slte 2.. <1,0,0 2,1,0 <3,1,0: <4,1,0: <6,5,3
€21 €22 €23 €24 €25
] . <1,0,0: <2,0,0: <3,0,0> <4,0,0> <5,0,0> <6,0,0>
Site 3: _§ fa' 3} n s —
€31 €32 €33 €34 €35 €36

Fig. 6. Execution timestamped withkl LA (K = 3)

would have been updated. This can be easily generalized— g s a set of elements of the formi(V;), (i, W;)), where

for any case whera andb are causally related. Therefore,
Vk<K-1:

a— b= (V4K <V,[k+1])

If (V,[K] > V,[k+1]), adoes not causally precetiebecause
of the definition of K'LA.stamp. Conversely, if ¥/;[k] >
V,;[k +1]), b does not causally precede Therefore,

Jk < K — 1 such thatV/;[K] > V;[k +1]) A

(VjIkl > Vilk+1]) =a| b
We know that for the non-zero entries of the vecto(s;[k+
1] < V4K A (V;[k+ 1] < V,[K]), then:

(Vilk] < V;[k+1]) A (VK] < Vi[k+1]) =
Vil < Vjk+1] < V,[k] < Vik+1] =
VK] < V,[k+1] = Contradiction

Table 2 summarizes the previous relations. Using the infor-

mation on this table X LA detects correctly all the cases
wherea — b ora<+— bh.
Therefore,

Va,beH:a—>b:aK—L/>4b

7 is an integer that identifies each site of the system
(0 <i <N-1),V,; a R-Dimensional vector of integers
andW,; a K-Dimensional vector of integefs.

—VYaeH: Comb.stamp(@) = (REV.stamp(a),
K LA.stamp(a))

— Let (<Z7V2>7<27Wz>)1 (<]7V]>7<J7W]>) €S If <27V2>
REV KLA

0 <]avj> and <17W1> ¢ <jaWj>! then:

(3, Vid, G, W) S5 (0, V), (G, W)

S 0=0="—)

It is easy to see that:

(i, Va), (6, Wa)) “E (5, V), (G, W)
S(@=0="=)

({6, V), (i, W) 2 (3, V), (5, W)

S 0=0=")

Com
@@V aw) TGV, G
S GEOVE=0="

Theorem 8. Comb is a plausible TSS.

)

K LA satisfies Definition 5 and therefore it is a plausible Proof. This result follows from Theorem 4 since each com-

TSS. ad

Every case whera || b that is recognized by — 1)L A,

ponent clock is plausible. O

As an illustration, if the clocksREV and K LA used to

is also recognized byX LA, but the converse is not always timestamp the execution presented in Figs.2 and 6 were
true. Thus,K LA can provide higher ordering accuracy than combined to timestamp the same execution history, the num-
(K —1)LA. Figure 6 shows the same execution presented irber of errors is reduced to 38 out of 400 pairs of events
Figs. 1 and 2, but using timestamps fradtLA (K = 3). This  (p = 0.095). This result is consistent with Theorem 4.

clock fails to establish the causal relationship between 46 out

of 400 possible pairs of eventp € 0.115). For instance, it
detects correctly thags, || e, but fails when it reports

KLA .
€13 < €33, since actuallye, 3 || e33.

5.4 Discussion

This section describes briefly some refinements to the imple-
mentations ofREV, K LA and Comb clocks. The purpose
of these changes is either to improve the ordering accuracy
of the clocks or to reduce the overhead that such clocks
impose.

Many mappings between sites and entries of the vector
are possible undeREV . Given two different mappingg

5.3 Combined Time Stamping System (Comb)

By using Definition 6, we can create a combination 'V’

andK LA. Let us defingomb = ((S, 223"}, Comb.stamp),

where: _—
3 As Sect. 5.4 suggests, this timestamp can be optimized by including

2 There is at least one non-zero entry in each of the vectors. just one copy of the site identification.
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andg, it is likely that they induce different results f@EV. ~ 12Ple 3. Sample groups used

An interesting option is to divide the R entries of the vec- A B c D
tor in two or more parts, each with a different mapping and
then, using Definition 6, their individual results are com- Samples 3 3 3 8
bined. If the mappings are chosen in such a way that their Se?\;t:rss ,\11.0:. 16 ;7 28
results about concurrent events are as disjoint as possible, gyents 13719 16951 16933 16739
their combination tends to be more accurate. The selection pairs 62748749 95856633 95652805 93453195
of the mapping of sites to entries could benefit from previous
knowledge about the communication patterns among sites.

In particular, if two sites communicate frequently among sjte jdentifier) and relations among internal elements of the
themselves, most of their events will be ordered and therezgmbined clocks could reveal new tests to discern more ac-

fore better results can be obtained by making them sharg ately the actual causal ordering between timestamps.
the same entry in the vector, or equivalently, if two sites do

not interact very frequently, it is better if they use different
entries in the vector. 6 Performance evaluation

From ruleKL2, we can notice that when a site receives a
message timestamped By A, entry K—1 of this imestamp  we now ponder the number of cases for which plausible
is not used to update the local clock of the receiving site.clocks, such as the ones defined in this paper, fail to re-
Therefore, there is no need to send this entry with eachyort the correct causal relations. We generate random global
message in the system. FurthermoreVifis the vector of  historiesH and use the proposed TSSs to timestamp all the
integers of a timestamp generated/y. A, we have that for  events of these histories. Using the tests associated with each
any k< K—1itholds thatifV[k] > 0, thenV[K] > V[k+1],  TSS, we determine the causal relation between each pair of
or if V[K] =0, thenV[K] = V[k + 1], i.e. if there are any events inH x H and compare these results with the ones

entries inV whose value is zero, they will be together in produced by vector clocks under the same circumstances.
the rightmost positions o¥. This means that there is no

need to store, compare and send all the K entries 6flad
clock: we only have to worry about the nonzero entries sinces. 1 Simulation
the other entries can be filled out with zeroes when needed.
Under this scheme, variable-length timestamps can help imn the first part of the simulation, we generate a sample his-
reducing the overhead df LA (the length of a timestamp is  tory of a distributed system with N sites. In the second part,
the number of non-zero entries in its corresponding vector)this history is executed, collecting timestamps and statistics
In order to implement variable-length timestamps, weabout each one of the TSSs. A sample is a set of N se-
now represent the logical time of siteas (i, Q,V;), where  quences of events.There are 3 types of events: local event,
i andQ are integers, an¥¥; is a vector of integers witlQ  senda message angceivea message. The samples were of
entries. Notice that £ Q < K. When local events are gen- two types: random communication pattern and Client/Server
erated one after another at sitdts componenQ is not al-  communication pattern. In the first type, any pair of sites
tered because only,[0], i.e. the Lamport clock, is updated. can communicate with each other. The probability of site
Q is incremented and the length ¥ grows every time that  ; sending a message to sifeis the samevi,j < N. In
a message is received, unless tQais already greater than the second type of sample, the sites are divided dtients
the length of the timestamp received in the message. Thigndservers Client sites can communicate only with server
growth stops whe is equal to K. sites in a request/reply fashion, where the client first sends
A variation of the previous scheme alloWgsto be incre-  a message to a server and the next eventriscaive from
mented even i¥/; has reached its maximum physical length this server. We assume that servers don’t send unsolicited
of K entries. In this caseQ becomes théogical lengthof ~ messages (e.g. callbacks) to the clients. Servers are free to
V;, while the actual length d; is min(K, Q). If Ty andT>  communicate among themselves in a random fashion, but
are timestamps generated at two different sites, with logicator each message that they receive from a client, the next
lengthsQ, andQ,, respectively, it holds that: event must be aendto this client.
The simulation executes the particular history of each
Ti—=Te=Q<Q; site, sending and receiving messa%es and keepiné the times-
This fact can be used to improve the accuracy of the testsamps assigned to each event by each one of the TSSs that
defined inkK' L A, allowing the correct detection of more pairs we are evaluating, together with standard vector clocks. Af-
of concurrent events. ter that, using the tests defined by each TSS, we decide the
A combination of clocks, as established by Definition 6, causal relationships between all the ordered pairs from the
uses the component plausible clocks as black boxes, i.e. wsetH x H and compute the parameter
are just interested in their results when two timestamps are
compared and not in their internal workings. This is con-
venient because it only requires that the clocks satisfy thé.2 Results
characteristics of a plausible clock. On the other hand, if
we have access to implementation details of the clocks, sevA total of 347,711,382 pairs of events distributed in 4 groups
eral optimizations may be possible. Duplicate information (A, B, C and D) of 3 samples each, were used to evaluate the
can be eliminated (e.gGombkeeps two copies of the same proposed TSSs. Group A exhibits a random communication
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Table 4. Values ofp for the evaluated TSSs value of p slightly. However, these increases are very small

A B c D Aver and of local nature and overall the tendency is towards a
reduction ofp as the size of the vector is increased.

The K LA curve shows an excellent start, with a rate of
errors of 0.156 for 2A which is reduced to 0.083 forI34
and to 0.079 for B A. The minimum value op is 0.078 with
15 entries, from that point on there are no improvements

. ‘when more entries are added to the clock. In fact even with
pattern. The other 3 groups have a Client/Server communizg many entries as sites, the rate of errors never gets to zero.

cation pattern with 1, 2 and 3 servers respectively. Table 3 is jnteresting to consider the problem of how to distribute
shows statistics for each group of samples. _ a given number of entries betwedtZV and K LA. This
Table 4 presents the rate of erroyg that was obtained gimylation experiment demonstrates that with modest size

for each of the samples when timestamped by each TS§|ausibIe clocks, a large number of orderings can be captured
described in Sect.5. The final column of the table ShOWScorrectIy.

weighted averages of t'his parameter. As it was predicted by Figure 7 may suggest a connection between the perfor-
Theorem 4,Comb consistently produces the minimum val- mance of a plausible clock and the number of sites in the
ues ofp for exactly the same samples. The evaluations in-gysiem (j.e., the accuracy decreases when N increases). Even
dicate thatComb has excellent performance when the com-\yhen this behavior would be expected, our preliminary re-
munication pattern is Client/Server. In particular, the bestg;is seem to indicate that the accuracy of plausible clocks
results are obtained for Group B (1 server and 75 clients)may he more sensitive to other factors, such as: communica-
where this TSS, with just an overhead of 7 elements, cOryjong patterns, size of the global history, level of concurrency
rectly determln.ed the causal rela.t|on between 92.9% of the, the system, frequency of communications, etc. In order to
95,856,633 pairs of events considered. If we take into acyqqress this interesting question, it is necessary that a more

count all the 347,711,382 pairs of events, we find thatnb  getajled study be developed which considers the effects of
is correct in 84.6% of the cases. In the random case wher[snany factors in the performance of plausible clocks.

errors are highComb improves accuracy over 13% com-
pared to eitheREV or K L A. Better results can be expected
for higher values of R and K. 7 Some applications of plausible clocks

REV(R=3) 0.446 0.141 0.150 0.153 0.202
KLA (K=3) 0521 0.076 0.137 0.166 0.197
Comb (R=3,K=3) 0.388 0.071 0.112 0.127 0.154

Plausible clocks strive to provide a high level of accuracy
6.3 Effects of the values of R and K in ordering events in a distributed system but they do not
guarantee that concurrent events are not ordered. Thus, such

By decreasing the number of components in the Vectorf:locks are useful for any application where imposing order-

. . e : ings on some pairs of concurrent events has no effect on the
clocks, we are improving the efficiency of clock operations

but decreasing the accuracy with which they detect order_c:orrectness of the application. Notice that given the imper-

) L fection of plausible clocks, some applications could incur in-
ings between events. Th? result_s of Table 4 |nd|cat<_a thgt fficiencies from time to time. However, such inefficiencies
small number of entries (in a Client/Server communication

due to unnecessary orderings of concurrent events will not

4nduce wrong results, and if the frequency of these orderings

tions between events. We are interested in investigating th% relatively low, the loss in performance is compensated by
behavior of the described plausible clocks when the numbe{he potential for scalability and the savings in communica-

ggggg;gigl?&i?;ﬁgﬁ gsrég‘;irﬁgssewdi‘mldseg% \'};Sg:lgf bR ions pverhead, storage costs and timestamp processing. We

and K. describe some applications where plausible clocks can be
With a simulation study (7078 events and 50,098,084"5%"

pairs of events), we relate the ordering accuracy of REV

and KLA W|th the Size Chosen for them The Samp|e haS7_1 Concurrency measures

a Client/Server communication pattern and simulates a dis-

tributed system with 99 client sites, 1 server site, an averagé concurrency measure is a metric that ponders how con-

of 60 events per site and an average of 35 messages frogurrent a computation is. It takes into account the causal re-

each site. Figure 7 plots the obtained valuespdbr this lationships between the events in a given finite history and

sample when R and K are varied from 2 to 99 entries. how many events can be executing concurrently at a given
In general, the rate of errors reduces when the size of thénstant. Let us consider two concurrency measures proposed

vector is increased. ThREV curve presents a fast reduction by Charron-Bost [5], namely andm. The key element to

of p during the initial increase in R, e.g. it decreases fromcompute both of them is the ability to detect concurrent pairs

0.167 to 0.097 when R is increased from 2 to 15 entriesof events, which can be done using vector clocks. Plausible

However, after that point the pace of reductionpo$lows  clocks fail in detecting some of the pairs of events that are

down. In order to move down from 0.097 to 0.02, R must concurrent, but can be used to obtain approximated values

be increased from 15 to 77. Obviously, a value of R=100for these metrics.

makesREV equivalent to standard vector clocks and there-  The first concurrency measure is the ratio of pairs of

fore p would be 0.0. On several occasions, an increase irconcurrent events to the total number of pairs of events oc-

the number of entries used BYEV actually increases the curring at different sites, i.e.:
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5
: ]
2
&
0.06 - -
0.03 - -
0 —l 1 1 1 1 1 1 1 1
10 20 30 40 50 60 70 80 90
Number of Entries Fig. 7. Varying the values of R and K
W(H) = {{ab} rabeHAa| b} number of events executed by each site. The quantity m is
{{a,b} :(@cH)A(beH))AGEZN} demonstrated to be a better measure thabecause when it

gonsiders the number of consistent cuts, it is taking into ac-
count larger collections of events that are concurrent among
themselves (i.e. longer antichains [5]).

Since plausible clocks may fail to detect that two events

This measure can be accurately computed by assigning ve
tor clocks to all the events ikl. Now, if we use a plausible
clock P instead of vector clocks, we obtain the quantity:

] B are concurrent, the test of the simultaneous concurrency of
wp(H) = [{{ab}:abeHAal b}! : N cut events as described above is not convenient for find-
{{a,b}:(@e H)A(beH;)AGF I} ing consistent cuts with plausible clocks. However, we can

Since the number of pairs of concurrent events detectdd by consider a slightly different approach. Given a €t we
is less or equal than the actual number of pairs of concurrerg®y_thatiast; € H; is the latest event dff; that is included
events, we have thatp(H) < w(H). The differences(H) — in G, and_nexti' € H;is .the earliest event dfl; that is not
wp(H) is a function of p(P), i.e. the better the plausible included inG (i.e., last; is the last event of the prefix taken
clock P is, the closetsp(H) is to w(H). from H; andnext; is the first event oH; after such prefix).
Let G C H be a set of events formed by taking a prefix G IS @ consistent cut if naext 4(0 <1< N—1)is causally
from each one of the N local historie.is acutof history ~ Pefore anyast; (0 < j < N—1)". If this test is implemented

H. As defined by Mattern [19], we say th@tis aconsistent with plausible clocks, it will reject any cut that is not consis-
cut, if it has the property: ' tent. Furthermore, it is less prone to missing consistent cuts

compared to the test of concurrent cut events. For instance,
VabeH:(beGAr(@a—b)=actC the distributed computation presented in Fig. 1 has 636 con-
sistent cuts and using the plausible cloBiE'V (R=2) we
éind 476 of them. Nevertheless, there may be consistent cuts
where a certaimext; is concurrent with a givelast; (which
does not affect the consistency of the cut) but the plausible
clock reports thahext; is causally beford¢ast; and then the

cut is classified as not consistent. Given a plausible clock

o op—pd P, we say thatGp C H is aplausible consistent cut under

m(H) = uC — S P (or just plausible cutfor short), if it has the property:

If we insert one artificial event, callecut event after each
one of the N prefixes taken from the local histories and thes
N cut events are concurrent among themselves, Géna
consistent cut [19].

The concurrency measure is defined as:

. . c
Here 1 is the nl_meer of consistent cuts H, p© is t_he _ VabeH:(beGp)A (ai> b) = ac Gp

number of consistent cuts if there was no communication

between any of the sites (i.e. all teendandreceiveevents It can be easily proved that every plausible cut is a consistent
are considered just local events without exchange of meseut [26]. However, it is possible that a number of consistent
sages) ang.® is the number of consistent cuts if the exe- cuts are not recognized as plausible cuts. We deififieas
cution were totally sequential, e.g., all the events of site 0

are followed by all the events of site 1 and so on. Notice ¢ ajternatively, if V' is a vector clockG is consistent iffV/(last;)[i] <

that all we need to compute the valug§ and p° is the  V(last)[i]for 0<j <N—1and0<i<N-—1
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the number of plausible cuts in a given history and computemessage and its responge,knows that any future request
the quantity: of p;i will not have a timestamp smaller than the timestamp
p g of the request being considered.

A The average message cost of accessing the resource in
pe — pd this algorithm will depend on the communication pattern

Sinceu” <y we have thatnp(H) < m(H), and that the ~@mong the processes and the ordering accuracy of the clock

differencem(H)—m p(H) is a function ofp(P), i.e. the better ~ System that is used to timestamp the requests. It should be
the plausible clockP is, the closenn p(H) is to m(H). noted, however, that as long as the weak clock condition is

met by the clock system, the correctness of the algorithm
is guaranteed. If a vector clock is used instead of the scalar
7.2 Distributed resource sharing logical clock, on the average, the number of unnecessary
messages sent kpg to p; can be decreased. This is because
Lamport [18] introduced a fair resource sharing problem andps need not send a messageptavhen its timestamp stored
solved it using a logical clock. This algorithm provides mu- at ps is concurrent with the timestamp of the request under
tually exclusive access to a resource and guarantees that ¢bnsideration which is fronp;. Since the evena that cor-
the request of process is causally ordered before the re- responds to the last communication betweeand ps, and
quest ofp;, pi is allowed to access the resource first. Times-the event corresponding {g's request could be concurrent,
tamps read from logical clocks maintained at the processeand vector clocks identify such events accurately, no unnec-
are used to order their requests. The algorithm is completelgssary messages will be sent in this case. (A scalar clock
distributed and requires a large number of messages (3N fanay order event beforep;’s request which will result in
N processes) for each access to the resource. More efficiept sending a message £g).
algorithms for distributed mutual exclusion exist, however  Although vector clocks reduce unnecessary messages,
we explore a simple server based solution to the problemthey do not eliminate them completely. Processcould
Such solutions are natural (e.g. the site having the resourckave sent a messagegpafter event. In this caseps must
implements the synchronization server) and have been useabcertain that no request frgmis timestamped between the
widely in distributed shared memory systems where synchroelock value it stores and the timestamppg$é request. In this
nization operations are used to coordinate access to sharedgorithm, the performance improvements are possible be-
data. cause of message savings in cases when the awdnj that
Consider a set of processgs p», ..., pn that compete corresponds to its last communication wiigis concurrent
for a shared resourd® and access it in a mutually exclu- with the request ofy; that the server wants to grant next.
sive fashion. Access tB is controlled by a synchronization Plausible clocks can identify such concurrent events more
server procesgs. Thus, a procesy; (1 < i < N) must accurately than scalar clocks. On the other hand, if these
send a request messagepo and wait for it to grant the concurrent events appear ordered from the plausible clock
resource beforg; can access it. We assume that in additiontimestampsps may have to send an unnecessary message
to sharingR, the processeg, p», . .., pn also communicate but the correctness of the algorithm is not compromised.
among themselves to meet their cooperation and coordina-
tion needs. These additional messages can create causal or-
derings among requests of different processes that are sent %3 Object consistency
the serveps. We want such causal orderings to be respected
whenps grants access to the resource to various processe®istributed systems are increasingly being used to support
One straightforward solution to this problem, based onsharing among widely distributed users. If the shared infor-
scalar Lamport clocks, timestamps requests with clock valimation is encapsulated in objects, replication and caching
ues ands grants the requests in timestamp order. However of object state is necessary to provide high availability and
before a request is grantegs must ascertain that no request performance, and to deal with problems such as discon-
with a lower timestamp is in transit or will be received at nection that arise in mobile environments. Both replication
a later time. This can be achievedpd sends a message to and caching create problems of consistency among multiple
all processes and the processes respond with an acknowtopies of related objects.
edgment. When communication channels are FIFO, this will A number of consistency criteria have been developed
ensure the property that no causally preceding requests cahat meet the sharing needs of many types of applications.
be received bys after it grants a request from some pro- In this section, we explore one criterion, called causal con-
cess. (This is similar to the request and acknowledgmensistency CC). CC has been shown to be sufficient for appli-
messages in the original algorithm presented in [18]). cations that support asynchronous sharing among distributed
The performance of the algorithm can be improved by re-users. It has been explored both in message passing systems
ducing the number of messages as follows. Proggeseeds [4] and in shared memory and object systems [1, 16, 17].
to send a message to a procpgsand receive a response from CC ensures that values read at a site are consistent with
it only to ensure that a future request frgmwill not have  the causality order [18]. This order is established because
a timestamp smaller than the request that it wants to grandf local order between operations at a process, and a read-
next. If ps stores the largest timestamp received from eachfrom order that orders operatiom before operatiom when
process and if the timestamp faris concurrent with, greater r reads the value written by. For example, in Fig. 8, once
than or equal to the timestamp of the requestdoes not  p, reads value yof vy, its future read ok cannot return y.
need to send a messageptoThis is because without such a This is because, according to causal order, the second read

m/p(H) =
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pr: WXV wW(x)vy w(y)vs P WXV w(z)vp w(y)vs
Py r(x)vy  r(y)vy r(x)? pr: r(x)vy  r(y)vy r(x)v;
Fig. 8. Last read ofp, can not be y Fig. 9. Causally consistent execution

to remove such copies from a site cache to preserve causal
consistency.

of x by p, occurs after the operation(x)v, of p;. Since When vector clocks are used, a causally overwritten
this operation overwrites the valug of x, vi must not be  yajue will always have a lower timestamp than the times-
read byp, after its read ofy. tamp of an incoming object copy but the reverse may not

In an implementation oEC described by Ahamad, John, pe true. For example, in Figs.8 and 9, will receive the
etal. [2, 16], a client can access objects that are in its cachgame vector clock with the copy of. However, in Fig. 8
freely. However, when a new object value is introduced intothe value ofx should be invalidated whereas this is unnec-
the site cache, it is necessary to ensure that existing valu%sary in the execution shown on Fig.9. Singecannot
do not become causally overwritten as a result of reading th@jistinguish between the two situations just by looking at the
new value that is added to the site cache (such a read cafector timestamps, in both cases the existing valug o
create new causal orderings). For example, in the executiopyalidated. Therefore, even a vector clock based system can
ShOWn in F|98, once the Valu% \Df y al’l’iveS atpz, the suffer from unnecessary inva”dations_
value v for x can no longer be accessed because it has The ability to accurately detect if the two writes that
been overwritten. _ _ _ produced the values of andy are concurrent or not, only

There are two options for handling new object valuesjmpacts the performance of the consistency algorithm by re-
when they arrive at a site. The site can either wait until a.”ducing the number of unnecessary invalidations. Thus' p|au_
causally preceding values are received or it can invalidatjple clocks can be used instead of vector clocks in such
existing values that it suspects are causally overwritten. Th%plementations, avoiding the high costs of vector clocks.
latter is preferred when client access patterns are dynamigt the same time, more concurrent operations are detected
and it is undesirable to send values of updates to all sites thagith plausible clocks than with a Lamport Clock, which im-
may have copies of the objects. Therefore, we consider thgjies a reduction in the number of unnecessary invalidations
implementation in whiclCC is maintained by invalidating  of objects and therefore improved performance of the sys-
cached copies that may be potentially overwritten accordingem.
to causality. . As an example, Table 5 presents the results from a sim-

_The problem of detecting what values are causally overple simulation of a set of processes that share causally con-
written when a new value of objeat is received at a site  sjstent objects, using the techniques originally described by
is solved by Ahamad, John, et al. [2, 16] by associatingkordale and Ahamad [17], and later refined by Torres-Rojas,
timestamps read from a logical clock with copies of ob- Ahamad and Raynal [28]CC is ensured by invalidating
jects. These timestamps capture the logical time at whiclzached copies that are potentially overwritten as determined
the object copy was produced by a write operation. If thepy timestamps read from a logical clock. When an object
timestamp of objecy that is added to a site cachel§  ¢opy is updated by a process, a message with the new value
all the existing object at the site are invalidated if their of the object is sent to the server of the system. The cache
associated timestamps are less tifarThis is done because mjsses are reported to the server as well, which in turn re-

the cached objects may potentially be overwritten by moresponds by sending the last value of the requested object
recent operations that occurred before tiineOn the other  known to the server. It is at this point that object copies
hand, if the timestamps of andy are concurrent, the tWo  that may have been potentially overwritten are invalidated.
copies can coexist without violating consistency. If Lamport Notice that these invalidations do not generate messages to
clocks are used to determine the ordering between operationgy other processes, i.e. invalidations are local operations.
that produced the object copies, objects that were producefiowever, if there are object copies in the local cache whose
by concurrent operations may appear to be generated by ofimestamps are greater than the timestamp of the received
dered operations because these clocks can order concurresiject, then the received object must be validated by sending
events. As a result, objects can be unnecessarily removegiessages to the server and other client processes, because it
from the site cache. o _may have been overwritten.

Such Unnecessary remoValS can be a.VO|ded if the times- A total of 49 C“ent processes and 1 server proceSS, ex-
tamps associated with object copies are derived from MOr@cuting 835 operations (336 updates) over 4 objects were
precise clocks. This could result in improved performancesimulated. The first row of Table 5 shows the statistics col-
by not removing consistent object copies and avoiding com{ected when 50-entries vector clocks were used to establish
munication on accessing such objects in the future. Oncegnhe causal relationships between the events that produced the

again, vector clocks can precisely order events of a disppject values residing in a particular cache at a given time.
tributed system. Concurrent events are detected to be so by

these (_:|OCk5, therefore _Obj_eCt copies prOdl_JC_ed by concurrent s or the purposes of this simulation, we are only interested in the num-
operations could co-exist in a cache and it is not hecessaryer of messages and the size of the required timestamps



Plausible Clocks 193

Table 5. Causal consistency with vector clocks and plausible clocks

Updates Cache Misses Invalidations Validations Messages
Clock Mechanism Total Mess. Total Mess. Total Mess. Total Mess. Total
Vector Clocks 336 336 103 206 6 0 3 5 547
Plausible Clocks 336 336 109 218 34 0 11 20 574

Similarly, the second row shows the same statistics when the A technique to reduce the size of timestamps appended
same history was executed ugia 6 element plausible clock to messages is proposed by Singhal and Kshemkalyani [24].
Comb. The number of cache misses, invalidations, valida-It is based on the observation that a given site tends to in-
tions and their associated messages obtained with plausibteract frequently with only a small set of other sites and
clocks are not much bigger than the corresponding numberthat timestamps assigned to two consecutive events by a site
for vector clocks. On the other hand, each one of the 54®iffer in just a few entries. This technique reduces commu-
messages generated by the execution with vector clocks musications overhead but, as it is mentioned by Meldal et al.
carry a 50 entry vector, i.e. an overhead of 27350 integers[20] and Schwarz and Mattern [25], since the information in
while each one of the 574 messages generated by the execlimestamps is compressed, there are cases when the causality
tion with plausible clocks must incleda 6 entry vector, i.e. relationship between different messages sent concurrently to
an overhead of just 3444 integers. Both algorithms producehe same site can not be correctly established. These clocks,
a causally consistent execution. similarly to plausible clocks, may order some concurrent
events. Notice, however, that even though the size of times-
tamps carried by messages is reduced, the size of several
data structures stored at each site depends on the number
of sites in the distributed system. A different technique is
described by Fowler and Zwaenepoel [13], where each site
Fundamental concepts for ordering in distributed systemsnaintains a vectol; with N entries. Sitei tags the mes-
such as logical clocks, partial orderings of events and the&ages that it sends with just[i], eventually this value will
“happens before” relation, were all presented in the semupdate entryi of the receiver’s vector. This technique fails
inal paper by Lamport [18]. Fidge [10, 11, 12] and Mat- to represent transitive dependencies and is more useful for
tern [19] independently proposed the technique of vectompplications where the causal dependencies are determined
clocks that permits a complete characterization of causaloff-line [22].
ity. Charron-Bost [6] proved that this characterization can  Ahuja, Carlson and Gahlot [3] propose a model for dis-
only be done with vector clocks where there is one entrytributed systems where the notion of each process as a se-
for each site in the distributed system. Cheriton and Skeemuence of events is eliminated, i.e. the complete system is
[7] mention problems in scalability that are incurred by sys-considered a partially ordered set of events. This allows
tems where causally and totally ordered communications arg¢he presence of not only interprocess concurrency but also
implemented using vector clocks. Reviews of diverse techof intra-process concurrency. In order to detect these new
niques for representation of logical time and its applicationssources of concurrency, a clock with much more complexity
are presented by Raynal [21], Raynal and Singhal [22] andhan vector clocks is required. The authors explain a mech-
Schwarz and Mattern [25]. A compilation of some of the anism to trade cost and concurrency identification, that at a
most significant papers on logical time and global statesninimum reduces their clock to a standard vector clock, but
in distributed systems was prepared by Yang and Marslandacrifices their ability to detect intra-process concurrency.
[30]. Notice that if a unique identification is available for each
There have been many efforts to reduce the overhead imene of the threads of sequential execution inside a process,
posed by vector clocks. We review these briefly here. Habamlausible clocks could be used to detect a fraction of both
and Weigel [14] use vector clocks as part of their mecha-inter-process and intra-process concurrency.
nism for defining global breakpoints in a distributed system.  Diehl and Jard [9] presented the timestamping technique
In order to save space, they allow processes to share an eRnown as “interval clocks” that obtains better results than
try in the vector clock when they are executed on the same Lamport clock in ordering events and has a similar cost.
physical processor. This is similar to the basic ide&&fl/. They recognize the importance of approximating the causal-
Notice, however, thalREV permits different processes to ity relation with a realistic overhead. In that sense, our work
share the same entry even if they are executing at differenfith plausible clocks can be considered a generalization and
sites. Meldal, Sankar and Vera [20] assume a communicatioextension of such ideas. Valot [29] studies the trade-offs
network that is static and reasonably sparse. In that case, si{gpace vs. accuracy) that Lamport clocks, interval clocks
i does not need to keep entries in its vector clock to rep-and vector clocks offer when used as timestamping mecha-
resent sites that don’t communicate withif eventually a  nisms. She concludes that, according to the knowledge that
new communication link is established between two sitesye have of the nature of the execution, it may be possible
the size of the vectors is adjusted appropriately. Thus, irto obtain an acceptable level of accuracy without using ex-
the worst of cases, their clocks can grow up to the size otessive space in timestamps; the parameter accuracy defined
standard vector clocks. Plausible clocks make no assumption
about the connectivity of the sites in the system.

8 Related work
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in Valot's paper can be obtained from the parametérate
of errors) presented in Definition 7.

All the logical clocks mentioned in this paper are based
on structures built with integer numbers. This fact poses
the practical issue of how to deal with the capacity limits
of integer representation. Several solutions to this problem,
have been proposed, e.g. [15] and [23]. Notice that this issue
can be addressed orthogonally to the chosen representation
for logical time, being this Lamport clocks, vector clocks or 3
plausible clocks.

, 4,
9 Conclusions

5.
There is an isomorphism between vector clocks and the
causality relation of events in a Distributed System. There-
fore, vector clocks are useful in understanding the behavior
of distributed systems. However, they have the major disad-
vantage of not being constant in size: their implementation
requires the presence of an entry for each one of the N sites
in the distributed system. Charron-Bost’s results [6] discour- 8.
age any attempt to define some kind of clock that, while
constant in size, completely captures the causality relation. *
We propose a class of logical clocks called plausible

clocks that can be implemented with a constant numbegq

of components and yet they provide, under certain circum-
stances, ordering accuracy close to vector clocks. We de-

velop rules to combine known plausible clocks to producell-

more accurate clocks.

Several implementations of constant size plausible clockd?
are presentedRE'V is a variant of vector clocks where R- ;3

entries vectors are used; since<RN several entries are

shared by more than one site of the distributed system ana4.

therefore a mapping between sites and entries in the vector
must be definedK LA is an extension of Lamport clocks
where each site keeps a standard Lamport clock togethe
with a collection of the maximum timestamp of any message

received by itself and by the K-2 previous sites that directly1e.

or indirectly have had communications with this sif&mb
is a combination ofREV and K LA, and as such can be

proved to be at least as good (and possibly better than) as arly-

of its components. These implementations were evaluated
using a simulation model and we found that even with a
small number of components IRE'V and K LA, ordering

among a large number of events can be detected accurately

when the communication pattern is Client/Server. We alsol9-

presented examples of applications that could benefit from
plausible clocks.

We claim that any constant size clock must be plausible,q

in order to be useful, but evidently, there are many other
possible implementations of plausible clocks that would be

interesting to consider. We have to evaluate the effects that!-

diverse factors have on the performance of plausible clocks
(e.g., number of sites in the system, communications pat-
terns, size of the global history, level of concurrency in the,3
system, frequency of communications, etc.). Also, we will
explore how to distribute a given number of entries of a
vector betweemREV and K LA clocks.
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