Distrib. Comput. (1999) 12: 75-90 @H@FRU@WE@
COMRUTING

© Springer-Verlag 1999

Characterization of a sequentially consistent memory
and verification of a cache memory by abstractiom

Susanne Graf

VERIMAG**, Avenue de la Vignate, F-38610 &es, France (e-mail: Susanne.Graf@imag.fr)

Abstract. The contribution of the paper is two-fold. We give compositionality consists in deducing properties of the com-
a set of properties expressible as temporal logic formulagposed system from properties of its components under some
such that any system satisfying them is a sequentially conhypotheses on its environment — which must be proven to
sistent memory, and which is sufficiently precise such thathold. The abstractions of components not directly involved
every reasonable concrete system that implements a sequein-the property play the same role as the hypotheses on the
tially consistent memory satisfies these properties. environment, except that their correctness is obtained “by
Then, we verify these properties on a distributed cacheconstruction”. An abstraction of each component is obtained
memory system by means of a verification method, based oapplying the principle of abstract interpretation by means of
the use of abstract interpretation which has been presentedl relationp relating the domain of its variables and the do-
in previous papers and so far applied to finite state systemsnain of the set of some abstract variables.
The motivation for this paper was to show that it can also be In [GL93, Loi94] is described a tool allowing to ver-
successfully applied to systems with an infinite state spaceify finite state systems in a fully automatic way by using
This is a revised and extended version of [Gra94]. this method. Here, we show that the same method is also
tractable for infinite state systems. In fact, if — depending on
the formula one wants to verify — for each componBnbne
can guess an appropriate abstraction relagigrverification
becomes often a relatively simple task as

1 Introduction

— the corresponding finite state abstract program is reason-
We propose to verify the distributed cache memory pre- aply easy to obtain,
sented in [ABM93] and [Ger94] by using the verification _ the verification of the properties on the abstract program
method proposed in [BBLS92,LG84,CGL94,Lon93]. This can be fully automatized.
method, based on the principle of abstract interpretation . _)]
[CCT77], proposes to verify a set oETL* [SG90] formulas D_esplte the fact thz?\iCTL* contains alsdlvene_sqoropertles, 3
on a composed program as follows: define an appropriatéhis method does in general not support directly the verifi-
abstract program, obtained compositionally from the givencation of liveness properties as they often do not hold on
program, and verify the required properties on it. Our wayfinite abstractions. Here, we succeed to verify the liveness

of computing abstract programs is similar to that proposedProperty of the cache memory by applying variants of the
in [CGL94, Lon93, Cri95], but induction rules given in [Pnu85, JPR94] which allow under
some fairness assumptions to reduce a liveness property to
— in the opposite to most other approaches, our approach set of safety properties.
allows to deal with arbitrary data types, In Sect. 2, we recall all the ingredients we need for our
— our abstractions are harder to obtain, but possibly mucKerification method:
more precise as the “standard” abstractions proposed in

[Cri95] as they are property oriented, — a simple program formalism similar to that used e. g.,
— our concept of compositionality is different from that in [Pnu86],
proposed in [Lon93] or in [Pnu85]. — a method to compute abstract programs, which consists

i in defining for each operator occurring in the program a
We construct a global abstraction of the system by com- ¢qrrespondingabstract operator

posing abstractions of its components, whereas the usually_ the temporal logicCTz* and its fragments, used for the

" This work was partially supported by ESPRIT Basic Research Action description Of. properties, . -
“REACT" — the preservation results allowing to deduce the validity

** \erimag is a Research Laboratory affiliated to CNRS, Universit of a property on the concrete program from its V_a_"dity
Joseph Fourier and Institut Nationale Polytechnique of Grenoble on the abstract program which include compositional-

76 S. Graf

ity results allowing to compute an abstract program byand which ones are used only locally, even if in the model,
composing abstractions of its components. for simplicity, all variables are interpreted as global.

. — Labels are used to name “events” or “actions”Z{fis
We illustrate all the definitions and results on a small bu1‘ferthe label ofaction; and @, ') a pair of valuations such that

example. In Sgct. 3, we give a set of temporalllo_glc formu-am.om(v, v") evaluates to true, then the transition from state
las guaranteeing that, whenever a system satisfies all thesbeto statev’ is called an event. . If e is the valuation of the
"

properties, it is a “sequentially consistent memory” [Lam79]. sinput” variables extracted fron, then we call this event

This set of properties has be?” chosen in Sl.JCh a way th Iso?;(e). Events are used for the expression of properties.
most reasonable implementations of sequentially consisten

memories will satisfy it. In Sect. 4, we verify this set of prop-
erties on the distributed cache memory system. It turns ou . . f
that, using our method, this verification is almost as simpler%%isggzz :;m Z?bour_\rdheed:\/u;er tal;;(ng; gﬁtlenrgm (?fl?t hass
as the verification of the tiny buffer, as we can use almost the ypeécenn. tushle ¢

same abstract types and corresponding operations, and tHiever been entered yet) into the buffer or arbitrarily “loses

is the most time consuming part of the verification process.'{’ andpop(e) takese out of the buffer if it is its first element.

anmple 1. An infinite lossy buffeéFhe following program

2 A verification method using abstraction Name: Lossy buffer
Variables: e: elem (Input)
E : set of elem
(already occurred evengsush(e))
B : buffer of elem

Transitions: push(e)) allowed(e, E, E’)

2.1 A program description formalism

We adopt a simple program formalism which is not meant

as a real programming language but which is sufficient tg Aappend(B, e, B') vunchB))
illustrate our method. A system is a parallel composition of (pop(e)) first(B,e)
basic programs of the form Atail(B, e, B)
AunchE)
Name : P Initial States: empty(B)
Variables : 1 Tys ooy @n P Ty - -
Transitions : @) actiony(z1, .., xn, T, ..., x0) At any moment the value of variablE contains the
" elementse € elem such thatpush(e) has already oc-
(bp) actionp(m1, ..., Tn, T, ..., Th) curred before, and for all elementsand setsE and E’,
Initial States : Init(z1, ..., zn) allowede, E, E’) is true ife ¢ E andE’ = E U {e}. This

guarantees that the evemish(e) can occur at most once in
where P is an identifier used to refer to the program in a every execution sequence. All other predicates have the in-
composition expression;; are variables of typé’,, — defin- tuitive meaningsappendB, ¢, B’) holds if the bufferB’ is

ing its set of possible values — aig> = {¢1,...,{,} is aset obtained by appending elemenat the end of the buffeB;

of program labels. Eachction; is an expression with free tail(B, ¢, B’) holds if B’ is obtained by eliminating from
variables in the set of program variables and the correspondp if ¢ is its first elementfirst(B, ¢) holds);emptyB) is true

ing set of primed variables which for each state variablejf B is the empty bufferunch(Y), whereY = (v, ...yx) is @

z contains a variable’ with the same type as. As e.g. tuple of program variables is a shorthand 7‘??:1(314 =),

in [Pnu86, Lam94]action; represents a transition relation yhat means it holds if all variables ifi have the same value
on the set of valuations of the program variables by interpret;, the actual and in the next state.

ing the valuations oiXp = (x1,...,2,) as the statdefore We use predicates of the formppend(B, e, B') instead of
and the valuations oK, = (z1, ..., z7,) as the statefterthe g/ = 4,,,.,,4(B, €) where Append is a function, as abstract
transition. For any set of variablés = {y1,...,us} € X, gperations are in general non deterministic. This is the same
we denote its set of valuations - =Ty, x... x Ty, way of representing operations which has been proposed

Semantics.A program P defines a transition system in [MP91,CGL94,Lam94].

Sp=(@Qp, lip) where Composed programén [GL93] results for more general par-

— Qp =Tx, is the set of states, allel composition operators are given, but here we need only
— Rp C QpxQ@p is a transition relation defined by composition obtained by interleaving of the actions of the
Rp ={(g,q') | 3¢ . action;(q,q')}. composed programs. I, and P, are programs defined on a

tuple of state variableX, respectivelyX,, then P, || P; is

The predicatdnit defines the set of initial states. Itis used e parallel composition of; and P, defining the transition
in the formulas specifying the program: they are in general

of the form Init=-¢ — where¢ is a temporal logic formula systems =(Tx,ux;,) where

— as we are only interested in properties of reachable states. R = R, AunchX,—X1) V Rp, Aunch{X1—X>)
Variables representing inputs need not to be distinguished

as they are not treated in a particular manner. HoweverEach transition ofP; | P, is either a transition of’; which

we indicate in programs the variables which are meant aseaves all variables not declared i unchanged or a tran-

inputs as this makes them easier to read. We also indicatsition of P, which leaves all variables not declared i

sometimes which variables are shared with other programsnchanged.

Characterization of a sequentially consistent memory 77

2.2 Abstract programs variables by a predicatep4 on abstract variableX 4 sat-
isfying (1). If the expressions i’rog are negation free (as

Let P be a program on the set of variabl&s and letX 4 it is the case in the lossy buffer), thefrog 4 is in fact a

be a set of abstract variables, defining a set of abstract statesabstraction ofProg.

Tx ,. Then, arelationn C T'xxTx,, which is total onT’x, is Our intention is to define for any predicate — de-
called an abstraction relation (frof to T'x). For the ease pending in general only on a small subset of the concrete
of expression of properties, we suppose i represented variables — an abstract predicate on the “corresponding”,
by a predicate on concrete and abstract variables denotgabpefully also small, set of abstract variables. Also, in or-
o(X, X 4). Furthermore, the abstraction relations we use inder to be able to verify interesting properties Bnog 4, the
practice, are often (total) functions: Tx — Tx,. In this abstract predicate should be “reasonably close” to the “opti-
case, we denote for € Tx by o(v) the (unique) value mal” abstract predicate which is defined by the requirement

€ Tx , such thato(v, holds.
va Xa (v, va) Voa, vy € Tx, . (opa(va,vy) =

Definition 1. (Abstract programs) Let, in addition to the Ju,v" € Tx . o(v,va) A 0(v',vy) Nop(v,v')) (2)
above conventions?4 be a program defined oX 4. P, is
an abstractionor more precisely a-abstractiorof P, if for
every actiomct of P, there exists an actiotact 4 of P4 (with
the same label), such that

This approach makes no sense for arbitrary abstraction rela-
tions. We are interested in abstraction relations relating each
variable of typeT, to a single abstract variable of ty(&’,
such that, e.g. each occurrence of expresgionii(e,B) in

Yo, o' € Tx . act(v,v’) = Fva,vy € Tx, . the concrete program can be replaced by an expression of
o(v,va)Ao(V', v\)Aact a(va,v’y) the form firsta(ea, Ba) in the abstract program wheeg
and (1) is a variable of some type “abstract elemef’y a variable
Vo € Tx .init(v) = FJva € Tx, . o(v,v4) of some type “abstract buffer” andirst4 is a predicate
Ninit 4(va). satisfying condition (1). That means, given a set of abstract

_ - . . o variables, we are interested in abstraction functions such that
This condition ensures that defines a simulation in the

sense of [Mil71] between the transition systems associated V(v1,...,0n) € Tx . 0(v) = (0" (vky), -, 0" (vk,))

with the concrete and the abstract program. wherep is the cardinality ofX 4 and the indices; are all

Remark. Obviously, it is in principle sufficient, that the different. That means that if = p, every abstract variable
above conditions hold only in those statess Tx which is related to exactly one concrete variable. Otherwise, i.e., if
are reachable, which means that whenever one has a known< n, there exist concrete variables related to no abstract
invariant of the system, the conditions need only be checkedariable; these variables are calledistentially abstracted
on the states satisfying this invariant. For states outside thigariables. For the verification of the cache memory, we use
invariant, nothing is required. If one has a “desired” invari- also an abstraction function mapping the values of a pair of
ant (a property to be proved) of the system, a usual methoatariables 4,d) onto the value of a single variabk but in
consists in considering a trivial set of successors (such athis case, the two variables represented by a single abstract
true) of the states outs ide this desired invariant. This sim-one are such that (almost) all predicates depend on both or
plifies the definition and respects the conditions above. on none of them.
The use of such an abstraction function allows to con-

For the verification of programs composed of severalstruct an abstract program in a very simple way: Each vari-
parallel components, it is interesting to compute an abstracable « : T, of the concrete program is either eliminated
program compositionally, i. e., as a parallel composition(existentially abstracted) or it is declared of an abstract
of abstract component programs. From a more general retype 72 instead of the concrete tygg,. Then, each ba-
sult [LGS'94], we deduce the following, sufficient for the sic pregicateopTz’Tw'(x,y,) is replaced by a predicate

. pe . . . A
verification of the distributed cache memory system. Opzm Ty (2, v,) depending on the same variables as the

Proposition 2. (compositionality of abstraction) Let concrete predicate except the existentially abstracted ones.
0/(X', X’,) be abstraction functions represented by predi- All these predicates must satisfy condition (1) which is sim-

cates on concrete and abstract variables. Let the progranpliﬁed as it dep_ends only on the (few) concrete variables oc-
sz be ai-abstraction ofP" for i € {1,2}. If the predicate curring in predicatep and the corresponding abstract vari-

A 0° represents a total function : T — T , ables. . -
ene L P 5 : o) XIZUXZ XAuX4 The guess of appropriate abstract types and the definition
then P || P4 is a g-abstraction of P || P*. of abstract predicates is the only part of our verification

method which in general cannot be automatized. The abstract
Computation of abstract programs in practicéhe idea of predicates defined by condition (1) or (2) make reference to
abstract interpretation [CC77] is to interpret evéupction existentially quantified concrete variables. These quantifiers
on concrete values used in the program by a correspondinust be eliminated in order to explicitly construct the finite
abstract functionon the abstract values, and then to ana-abstract model. If all concrete types are finite, this can always
lyze the so obtained simpler abstract model instead of thde done automatically [Loi94, Lon93].
concrete one. Notice also, that for given“guess” of an abstract pred-
Consider the progranProg , obtained by replacing every icate, the verification of condition (1) is often easyifs a
basic predicatep (such astail, first,...) on the concrete function.

78 S. Graf

In the domain of protocol verification, the used data VB € bufferof elem . g,f;f?el,’s’K(B) =

structures are “messages” on which no operations are carried (¢ if length(B)eops) =0
out, “memO(ies” or “registers” in which data can be stored, QZﬁi’;ﬁ(B\wbs) if 1 < length(Bjeops) < K
integers which are mostly used as counters or constant pa- 1 if length(B)eops) > K

rameters, and “buffers” with the usual operatiangend,

tail, first,.. as in our example. As furthermore the proper- Thus, the abstract bufferel2 represents all concrete buffers
ties to be verified are often similar, for the verification of containing any number of non-distinguished elements and
many algorithms similar abstract types and correspondinghe distinguished elements, e,, exactly once, and, before

operations (with adaptations to each particular case) may bét-)]]])
used. It remains to define abstract predicates for all the basic predi-

cates used in the concrete buffer program, suchiagved,
Example 2.An abstract lossy buffer. To illustrate the idea, append, tail, unch depending on the abstract types cho-
consider again the lossy buffer of Example 1. In order tosen for their parameters. The following abstract predicates
show that it has the property of “order preservation” (seesatisfy condition (1). The proofs are omitted, but they are
Example 3), it is sufficient to show order preservation for simple.
arbitrary two elements,, e; € elem. To show order preser- The abstract predicate associated wittthis obviously
vation forey, ey, all the information we need about the value unchitself (where all the existentially abstracted variables
of the variableB is, if and in which order, it contains the are omitted). For the other predicates occurring in the lossy
elementse; and e,. Similarly, for the input variablee we buffer, we have,
only need to distinguish if its value is, e, or any other ,
vaIZe. Concerning the value Bfdeterminating which events Vea € e,lemA VEII%’ By € set O_f abs.elem
push(e) are still allowed, we only need to know if the event 715454 € buffer™ of abs.elem:
push(ey), respectivelypush(ez), is still possible or not. In allowed 4(e, Ex, Ea") = (ea = 0) A (Ea" = Ex)
general, all the abstract types for the typlem that we V (ea720)A(ea € Ex) A(ea € Ey))
need, distinguish particular elements ofiem and merge
all others in a single abstract value. Suppose that we want append’ (Ba,ea, B)y) = (ea =0)A (Ba = B)) V

to distinguish the elementsobs = {ey, ..., e, } C elem, we (ea Z0)A ((length(Ba) < K) AN (B, =es®By) V
use as abstract type for variables of tygem: (length(Ba) = K) A (B, = 1))
elemy = {0}Uabselem whereabselem ={1,...,n} tail ,(Ba,ea, BYy) = (Ba=1) V (ea=0)

— / — /
where the concrete typdem and the abstract typeem 4 NBa=By) V (ea? 0N (Ba=Byeea)

are related by empty ,(Ba) = (Ba =€)
Ve € elem . 052 (e) = {O I]]: ‘ % cobs b first,(Ba,ea) = (Ba=1)V (ea=0)
i if e=e; (€ eobs) V(ea #0)A3B, . (Ba=B)eca)

We denote bygg;2)> also the pointwise extension of this e concrete predicateil defines a function, whereas the
function to a function from sets, sequences, ... containing.qresponding abstract predicate cannot be a function on the
concrete elements, to sets, sequences, ... where the concr%qgen abstract domaintail ,(L,1, B'}) must, in order to
elements are replaced by the corresponding abs_tract ONeSgatisfy condition (1), hold fo3’, = L and for all values of
The choice of the abstract ty@em!“.’ determl_nes the B’y with length equalk, as after the concrete tail operation
abstract types used for sets and buffers in an obvious way: 85" 5 concrete buffer related with the obtained concrete
abstract type for variables of typeét of elem” we use the p e may containk or more thank elements ine.obs.
type “set of abs.elem”, where the concrete and the abstract Here, we have chosen an approximation allowing any value
types are related by for B',. According to the remark after Defintion 1, this is is

VE € set of elem . a reasonable choice as the value of varidblghould never
0%903(E) = {0922 (e) | e € E} Nabselem become.L. All other abstract predicates are optimal in the

sense of condition (2) with respect to the chosen abstraction
We use abstract sets subsetsibfelemn and not ofelem 4 function o.

as the property to be verified depend§ only on information Using a typeabselem = {1,2} and elemy = {0} U
concerning distinguished elements. Finally, we use as abz. ciem and all the above definitions, the program
stract type for variables of typeuffer of elem

buffer of elem = (sequences™ of abselem) U { L} \N/:r?;ilés : éb;t;::los(iszpzltj)ﬁer

consisting of the sequences of abstract elements of length E : set of abselem

less or equal to some constakit which has to be chosen B : buffef’ of abs.clem

depending on the program under study. The elemergp- Transitions: push(€)) allowed , (e E,E’)

resents all buffers such that their restriction to elements ir /\@Pgendi(&e» B’) v uncH{(B))
e.obs — denotedB, .., — is of length greater thai. We de- (pop(®)) izﬁf}tc?((s)’ &) N tail 4(B,&B)
note the empty sequence bynd the concatenation symbol _

of sequences by. Concrete and abstract buffers are related "™ empty 4 (8)

by

Characterization of a sequentially consistent memory

represents a-abstraction of the lossy buffer where

Ve € elema VE € set of abselem Vb € buffer

of abselem

ole, E, B) = (o500

em

(€), 0557 (B), e *(B))

This abstract program represents a transition system with at

79

property and moreover the obligation that such a state sat-
isfying ¢ exists. That means th&t andW are related as
follows: oW = —(—-yU—(¢ V ¥)) and, as usual, we use
also the abbreviationg;= ¢, denoting implicationf¢ de-
notingtrueU¢ (expressing “eventuallyd) andG¢ denoting
¢Wfalse (expressing “always?).

CrtL is the subset of2TL* obtained by allowing in all

most 60 states on which any property can easily be verifiedrules only the choice (a) whereRgL is the subset obtained

The abstraction for the choiceobs = 0, i.e., elem 4 =
{0} defines an existential abstraction for all variables, and al
the abstract predicatespendX , ... are equivalent térue as

by allowing only the choice (b) and restricting Rule 3 by al-
lowing only the path quantifief. VcrL andvVerL* [SGO0]
are the subsets df'TL respectivelyCTL* obtained by al-

ea # 0 can never hold; the corresponding abstract programowing negations only on atomic formulas and restricting
is the program “Chaos” which can produce any event at anyRule 3 by allowing only the universal path quantifierthat

moment and which is obviously not very interesting for the
verification of properties. The abstraction function defined
by

ole, B, B) = (eGiom(e), 057 (E))
for e.obs containing at least one element, defines an existe
tial abstraction only for the variabB. The abstract program
obtained for this abstraction function has no variabjehe
corresponding abstract predicaippend$’ — which has a
single parameter of typelem 4 — is equivalent tdrue, and
analogously for the other predicates having variaBl@as
parameter. This abstract program can be used to verify th
for e € eobs, the actionpush(e) can be executed at most
once in any execution sequence.

In [CGL94] a similar method is proposed and in [Lon93]

particular abstraction schemes are proposed for bounded in-

tegers and operations on them.

2.3 Temporal logic

It remains to recall the definition of temporal logic. Here
we restrict ourselves to subsets@fL* [EH83] for the ex-
pression of properties. The preservation results in [L®I$

are given for subsets of the more powerful branching time

p-calculus [Koz83] augmented by past time modalities.
calculus andCTL* can express both branching time and lin-
ear time propertiesu-calculus by using nested fixed points
and CtL* by using explicitly stateand path formulas. Our
tool presented in [GL93,L0i94] only deals with state formu-

las; however formulas with nested fixed points are in general
not very intuitive, so we prefer here for readability reasons

to stick toCTL* even if it is less expressive.

Definition 3. CTL* is the set of state formulas given by the
following definition.

1. Let” be a set of atomic (a) state respectively (b) path
formulas.

2. If ¢ and ¢ are (a) state respectively (b) path formulas
theno Ay, ¢ V1 and —¢ are (a) state respectively (b)
path formulas.

3. If ¢ is a path formula the\ ¢ andE¢ are state formulas.

4. If ¢ andy are (a) state or (b) path formulas thexe,
oU1yp and pW+) are path formulas.

U is a “strong until” andW a “weak until” operator, a
sequence satisfie8Wv if ¢ holds as long no state satisfy-
ing ¥ has been encountered, anty expresses the same

means thaPTL is contained invcTL*.

The semantics of TL* is defined oveKripke structures
of the form M = (5,.7) where S=(Q, R) is a transition
system and7 : & — 29 is a function interpreting the

nPropositional variables of” as sets of states df.

Definition 4. A pathin a transition systent =(Q, R) is an
infinite sequence of states = ¢;¢2... such that for every
n > 1, R(gn, qn+1). We denote byt,, the nth state of pathr
and byz™ the suffix ofr starting in,,.

A‘t)efinition 5. Let M = (S,.7) be a Kripke structureq € Q

and = a path inS. Then the satisfaction afTL* formulas
on M is defined inductively as follows.

1. Letp € &. Then,
q Em pifandonly ifg € 7 (p) andn FEp p if and
only if mg € .7 (p).
2. Let¢ andy be (a) state respectively (b) path formulas.
Then,
(@) ¢ Ex —¢ if and only ifq £ o,
q Em oAy ifandonly ifq FEy ¢ andg Fa 4,
q FEm ¢V yifandonlyifq Fy ¢ org Eu .
(b) analogous by replacing by 7
3. Let¢ be a path formula. Then,
q Fm Ao if and only if for every pathr starting in g,
T Fm ¢
q Em Eg if and only if there exists a path starting in
g such thatr Fpr ¢.
4. Lety andy be (a) state respectively (b) path formulas.
Then,
(@) 7 Eam X¢ifand only ifry Epr o,
m Em oUy ifand only if3n € A7 . (7w, Epm ¥
andvVk <n.mp Fum o),
T Fm oW if and only if Vo €
n. T ’:]u —‘1/)) impliesm, ':M (;5)
(b) the same definition obtained by replacing in (a) all
statesr; by sequences’.

We say thatVl E ¢ if ¢ Eas ¢ for all states ofM.

From the more general results given in [L{&8] we obtain
the following proposition concerning preservation of prop-
erties of VerL*. This proposition uses the notion of consis-
tency that we define first.

Definition 6. Let M = (S,.7) be a Kripke structure, and
0 C @ x Q4 an abstraction relation, wheré€) 4 is some ab-
stract set of states. We say thats consistenwith .7 for a
set of propositional variables”’ C & if

vp e . (Imlo™*] o Im[o] 0 7)(p) € -7 (p)

N (k<

80

where Im[g] : 2¢ — 294 is the image function op, as-

S. Graf

non negated in the property are consistent (see Definition 6)

sociating with any set of concrete states the set of abstraatith the abstraction relatiop relating the concrete and the

states related via with one of its elements. Consistency
expresses the fact that for any atomic propositioa "',
the set of abstract statdsn[](.7 (p)) represents no state
in .7 (p), which means in particular thatm[o](.7 (p)) and

Im[o](:-7 (p)), used as abstract interpretations of the formu-

las p, respectively-p, have an empty intersection.

Proposition 7. (Preservation of/cTL*)

Let Prog be a programp an abstraction relation from the set
of states ofProg into some abstract set of states, aRtdog 4

a p-abstraction ofProg. Let be¢ € Vcrr*, & the set of
atomic propositions inp and .7 an interpretation function
mapping>’ into sets of states &fp,..,. If ¢ is consistent with
.7 for the set of propositions is” occurring non negated in
¢, then

(SProgA7Im[Q] 0’7) ': (b = (SProgyg) ': (b

This proposition expresses that, ¢f € VYcTL* holds on

a p-abstraction of the progranProg by translating the
interpretations of all atomic propositions occurring in the
formula by I'm[g] into predicates on the abstract set of
states, and if all these predicates are consistent wijth
then we can deduce that holds on Prog. Consistency is
not needed for predicates that occur only negated ias
Im[o~Y(Im[o](.Z (p))) C .7 (p) holds always. We conclude
that, if ¢ holds onProg 4 using the abstract interpretation
Im[o](Z (p)) of —p, then a stronger property thah us-
ing the concrete interpretatio# (p) of —p holds onProg.

In particular, for the verification of a formula of the form
init=¢, init need not to be consistent with

Example 3.Suppose that we want to show that the buffer
of Example 1 has the property ofder preservation- that

abstract program.

How to define interpretations of atomic propositions
for a program

— The predicaténit is interpreted as the predicate defining
the set of initial states of the program.

— An atomic proposition of the formenable(f) is inter-
preted as a predicate on program variables representing
the set of states in which eve#itis possible. Such a
predicate is 3X’ . action,(X, X’)" if £ is just a label
and ‘9X’ . action)(X, X)[E/Y]" if £=1(F)wherel is
a label andF a valuation of the vector of input variables
Y.

— An atomic proposition of the form fter(¢) is interpreted
as a predicate on program variables representing the sets
of states in whick¥ has just occurred. In order to make
this predicate expressible as a predicate on program vari-
ables, one has in general to introduce a new boolean
variable a fter_¢ for every propositiona fter(f) € &
which is set totrue whenever an event labelédccurs
and to false by all other events (by appropriate oper-
ations set_true and set_false). The so obtained pro-
gram is equivalent to the original one as the values of
the original variables do not depend of this new vari-
able @fter_¢ is added by superposition as defined in
Unity [CM88]). In the sequel, we suppose that for every
predicatea fter(¢) € & such a variable is defined, but
we do not mention it explicitly in order to keep the pro-
grams simple. Usually, the set of atomic propositions
associated with a property is rather small such that just
a few boolean variables have to be added.

means elements are taken out in the same order in which))] o
they are put into the buffer. This property can be expresse§onsistencyin the given example, the abstraction relation is

using atomic propositions in

2 = {init, enable(push(x)), a fter(push(x)),
enable(pop(z)), after(pop(x)) | € elem}

by the following parameterized formula — that i€a.* for-
mula containing globally universally quantified rigid
variables.

Ve' e € elem . init
= A([-after(push(e))W after(push(e’))]
= [—enable(pop(e))W after(pop(e))])

This formula can be transformed intovaTL formula in
which only the propositions of the formfter(push(e)) and
after(pop(e’)) occur non negated. The transformation into
anvcrrL* formula is immediate, due to the fact that for every

operator there exists a dual one; in order to see that they arg

also invcTL one can use a result given in [EH83].

In order to verify that the concrete buffer has the property

of order preservation, it is sufficient to verify this property
on the (finite) Kripke structure associated with the abstrac
buffer, provided that all the atomic propositions occurring

not consistent with the interpretaticri(init) = empty(B) as
Im[o)(empty(B)) = empty(B), but Im[o™)(empty(B))
represents much more states thanpty(B) as it repre-
sents all states in whicB contains any amount of non-
distinguished elements. However, this is not a problem as in
the property under study the atomic propositiarit occurs
negated in the equivaleiCtL* formula.

The only atomic propositions of the property under study
that occur non negated are of the foarfer(f). It is easy to
obtain the consistency of such a predicate by not abstracting
the variablea fter_¢; that means: fter ¢ has in the abstract
program the same type as the concrete one, and the abstract
versions of the operationgt_true andset_false are identi-
cal to the concrete versions. That is, the abstraction function
is the identity.

Now it is easy to verify each instance of the formula
ove on the Kripke structure associated with the abstract
buffer program by instantiating, for e ande; for ¢’. It is
clear that for each pair, ¢’ € elem this leads exactly to the
same abstract transition relation and abstract interpretation of

tomic propositions. That means thatande, represent an
arbitrary pair of data values, and the verification of a single

1 a rigid variable or parameter never changes during the execution of AbStract property on a single abstract system is sufficient in

program

order to prove the above set of formulas.

Characterization of a sequentially consistent memory 81

3 Abstract specification after(write;(a, d))}iindes,(a,dyaddressxdatum

of a sequentially consistent memory with the interpretation” defined as explained in the previous

section. If it is possible to define an interpretatiéf,,,,. for
the set of predicates

In order to use the method presented in the previous sec,, . = {avail;(a, d)}iinder (a,dyaddressxdatum

tion to verify that the distributed cache memory defined ' L i

in [ABMO3] is a “sequentially consistent memory” [Lam79], Such thatM = (5,.7 U .7 ,,,) satisfies the following set
we need a characterization of this property in terms of a sePf Properties, then the program generating modél is a

3.1 Characterization by a set of properties

of formulas ofvcoTL. sequentially consistent memory.
Consider a system witbbservableevents of the form (c1) v(q,d) € address x datum Vi € index
read;(a,d) and write;(a,d) and may be other (internal) init = AG(enable(read;(a,d)) = avail;(a,d))

events — where the indek indicates the proces®; per-

forming the eventg is the address of a memory location (C2) V(a,d), (a,d’) € addressxdatum .d # d' Vi € index
and d a data element. The sétdex defining the size of init = AG((avail;(a,d) N EF(enable(read;(a, d)))
the system is an integer interval of the form.[{]. Such = Al-avail;(a, d)W AG (-avail;(a, d)) 1)

a system is a sequentially consistent memory if any of its . ,
computation sequences, projected on observable events, ck3) V(a,d) € address x datum Vi, k € index
be reordered — by respecting the order of the events with init = AGlafter(writex(a, d))

the same index — into a computation sequence of a central = AF(availi(a, d))]

memory — tha_t means a sequence in Wh;i@hdi(a,d)_ is (S1) Y(a, d) € address x datum Vi € index
only possible if the lastvrite event concerning location init = AG[after(write;(a,d))

is of the formwrite;(a, d) fc_)r some ind_exj. _ — A(—enable(read))W availi(a, d))]
For the exact characterization of this property — by using

only observable, and not implementation dependent internalS2) V(a, d) € address x datum Vi € index

event names — one needs full second order logic, whereas init = A(-availi(a,)W V,.indes

we want to restrict ourselves to a set of propositional but pa- after(writeg(a, d)))

rameterized temporal logic formulas which can be evaluated

by model checking on a finite abstract model. Therefore, oufS3) V(a,d), (d’, d’) € address x datum .

characterization is necessarily stronger than required. Forour ~ d # d' Vi, k € index

convenience, we suppose that every pair of the foznal)(init = A([-af te?“(l{)ritek,(a>/d))W
can occur at most once as parameter of samée event. after(uriteg(a’,d)] =
This assumption can be made without loss of generality as it [-availi(a, AW avail;(a’,d’)])

is equivalent to adding (by superposition) an integer variable(s4) Y(a, d), (a', d') € address x datum
associating with eachrite event a unique index. d 7ﬁ)d’ ,Vz I;: € index '

In implementations of a sequentially consistent memory S . a
(as the one we study here), a considerable amount of ime ~ "* = Al E\ﬁava”f;?’dc)i;/\;] (Ci’;”li(a d)
may elapse, between the occurrence of the eweite;(a, d) [;avlg; ’(5’ DW availy(a’, d)])
and the moment in whichead;(a, d) is allowed:; if write; kA% kA
events occur too often, some of the elements that have begrirst a few remarks oncerning the choice of appropriate pred-
written may never be readable It) (because they are “over- icatesavail;(a, d). In a central memoryread;(a, d) is en-
written” before they are “available”). This makes the ex- abled immediately aftewrite;(a, d), that meansvail;(a, d)
pression in terms of temporal logic difficult. However, sup- and enable(read;(a, d)) (the central memory holds datuih
pose that for a given concrete system we can identify auxat address:) coincide. We will show that the distributed
iliary predicatesavail;(a,d) — the interpretation of which memory system that we want to verify satisfies the set of
depends on the concrete system under study — which argroperties given above if we chooseail;(a, d) to be “the
weaker thanenable(read;(a, d)) (C1) but such that each cache memory of process holds datumd at address:”;
eventwrite;(a, d) is eventually followed by a state in which for this choice, the condition (C1) is trivially satisfied in the
avail;(a, d) holds (C3), and — if-ead;(a, d) becomes possi- system under study (given in Sect. 4.1).
ble in some future — from that moment on, untilail;(a, d) Property (S1) expresses the requirement that in every
becomes falseforever”, events of the formead;(a,d’) for processP, as soon as an eventrite;(a, d) has occurred,

d # d’ are impossible (C2). Then, the expression of “sequeny.¢qd; events are impossible untik(d) becomes available.
tially consistent with a central memory” becomes possible. This requirement looks very strong. However, the weaker
In the sequel, instead ofatail;(a,d) holds”, we write. and more intuive requirement that, after-ite;(a,d) only

sometimes ‘¢, d) is available in proces#;". eventsread;(a) are forbidden until ¢, d) is available in
P;, is not sufficient. Suppose thd®; reads ¢,d;), then
(a’,d}), then @,dz) and then ¢, d,) which guarantees by
(S4) and (C2) that in all processes, {;) is available be-
fore (a, d») and analogously for the primed pairs. If in pro-
2’ = {init, enable(read;(a, d)), after(read;(a, d)), cessP,, writea(a, dyp) is followed by ready(a’, d;) and in
enable(write;(a, d)), processPs, writes(a’, d5) is followed byreads(a, d1), then

Proposition 8. (Properties guaranteeing sequential consis-
tency)
Let S be a transition system and’ the set of predicates

82

S. Graf

these sequences cannot be merged and completed into a s#so a sequenc®W E, defining the order ofvrite events
qguence of a central memory, but the system may satisfyn m.,. Let
all the above properties except that (S1) is replaced by the

proposed weaker property.

Property (S2) expresses that in procésga, d) cannot
become available beforerite,(a, d) has occurred for some
index k. This property is quite natural but could be weak-

A =A{(a,d) | Ik.writex(a,d) € 7}

be the set of pairsa(d) occurring as the parameter of some
write event inx. Notice that, due to property (S1), this

ened; what we need to express in order to guarantee sequeis- in fact exactly the set of pairsz(d) occurring as the

tial consistency is only that whenevar, () is available in
P;, then @, d) must be written at some moment (earlier or
later) by someP;, and only if it is written byP; it cannot

parameter ofiny event inw. Property (C3) guarantees that
for all indicesi € [1..N],

be later. However, most concrete systems implementing a <:= {((a,d), (¢, d")) € . 4? |

sequentially consistent memory satisfy property (S2).

Property (S3) expresses that theite, events become
available in P; in a compatible order, i.e., whenever
writeg(a’, d") occurs beforewritei(a,d), then g, d) can-
not become available iR; before ¢’, d’); they may become
available at the same moment, except if the premise of (C2
holds.

Property (S4) expresses that in any pair of processe
pairs @,d) become available in a compatible order; that
means ifavail;(a, d) holds strictly beforewail;(a’, d’), then
avail;(a, d) andavail;(a’, d") may become true at the same
moment but not in the opposite order.

Both (S3) and (S4) have the intended meaning only be-

cause of (C3). For example an execution sequence, in whic
processP; reads ¢/, d;) then @, d;) and then ¢, dz), pro-
cessP; reads ¢/, dy) then ¢/, d5) and then ¢, d1), and pro-
cessP; reads §, dz) and then ¢/, d;), can obviously not be

merged and completed to a sequence of a central memor,

first occurrence ofiwail;(a, d) is not after
first occurrence ofwail;(a’,d’) in 7}

is a preorder on-4. Denote by<; the corresponding strict
relation (which is not necessarily an order o# as there

ay exist unordered pairs,(d), (a’,d’) such that ¢, d) <;
a',d) N (d,d) <; (a,d) holds). Property (S4) guarantees
that for all pairs of indices these preorders acenpatible
in the sense that

Vi, k. <; N >,=0 or equivalently <;C<

This guarantees that’ = () <, is a preorder on-4 and

fis corresponding strict relation is’ = |J <. If <" is not

an order, then extend’ to an order< by ordering all un-
ordered pairs according to the order of the corresponding
write events in the sequenee Let OW E be the sequence

’f elements of 4 defined by< starting with the smallest

but may be completed to a sequence satisfying all the abovglément. ThusDW E contains each paie(d) € .4 exactly

properties except (C3). In fact, pairwise compatibility of the
order in which pairs d, d) become available (required by
(S3) and (S4)) implies global compatibility only then, when

all pairs @, d) which are read by some process become ef-

once.
Using these definitions, build a (possibly infinite) se-

guencer,., in which write events occur in the order de-

fined by OWE, that is by <, by means of the following

fectively available at some moment in all processes and noprocedure.

only in those in which a correspondingad event occurs
(as required by (C1)).

However, despite the fact that the original abstract spec
ification does not contain any liveness condition, a liveness
property (slightly weaker than (C3)) is necessary in order
to obtain a sufficient temporal logic characterization of a
sequentially consistent memory. Notice that all the above
formulas can easily be translated intotL formulas.

3.2 Proof of the correctness of this characterization

It remains to be shown that every system satisfying the ret
guirement of Proposition 8 is a sequentially consistent memt

ory. In order to do so, we show that the sequence of ob

servable events associated with an arbitrary computation se

guencer of a system satisfying properties (C1) to (S4), is

Tseq = €, Va € address.lw(a) =€, nw = first(OWE);

| b =true;
| while b do
P b :=false
fori:=1toN do
if Ja. first(m;) = read;(a,lw(a)) then
“ Tseq = append(Tseq, first(m;));
b = true; mw; = tail(m;) ",
if first(m;) = write;(nw)
AVj.readj(nw.a,lw(nw.a)) ¢ m; then
“ Tseq = append(Tseq, first(m;));
b = true; m; = tail(m;);
lw(nw.a) = nw.d;, OWE = tail(OW E),
nw = first(OWE) "
endfor
endwhile
if Ji.—empty(m;) then “error state” else “correct termination”;

At any moment, for any address [w(a) contains the last

a sequence of a sequentially consistent memory; that is, idatum that has been written on address&ndnw contains
can be finitely reordered respecting the order of the eventshe first element ofOW E which defines the nextrite

of each individual process into a sequencg, of central
memory.

In order to do so, we define for all indicéshe sequence
m; of observable events of proces$} in m — that means,
m; is the sequence of events of the formrite;(a,d) and
read;(a,d) occurring in the order defined by. We define

event to be appended ta.,. That means, at any moment,
any sequence; can only containwrite;(a, d) events such
thatnw < (a, d). We denote byiw.a andnw.d respectively
the address and the data part of the pair.

At any moment, “the next event to be appended jg”
is one that satisfies one of the following two conditions:

Characterization of a sequentially consistent memory 83

(a) itis of the formwrite;(nw) and there remains no event an “old” event. But there cannot be any old eventsrjras
of the formread;(nw.a, lw(nw.a)) in 7;, (i.e. they have the algorithm allows to updatlv(a) only if all events of
already been appendedtg., and eliminated fronr;). the formready(a,lw(a)) are eliminated fromy.
(b) or it is of the formread;(a, lw(a)) for somea. Let us now show that the second case is impossible.
Notice that the unique eventrite;(nw) occurring inw is
&till in m; as the pairnw has exactly one occurrence in
OW E and as soon asrite;(nw) is appended torg.,, nw
9s updated. Let us consider all events that could occur;in
beforewrite;(nw) and block the procedure.

Naturally, there may be several events satisfying one of thes
conditions, onewrite and severatead events. Notice that
the conditions (a) and (b) remain true until the correspondin
events are appended#g.,. This guarantees — together with
the fact that the algorithm looks at all sequenegsin a
round Robin manner — that every event satisfying (a) or (b) — If write;j(nw) is preceded by an event of the form
is appended tar,., after a finite number of steps. writej(a,d) in m; and therefore also imr, this implies
Whenever the procedure does not terminate, this means that on one hand by a remark made just after the definition
it never gets stuck and continues forever to produce longer of the algorithm thabw < (a, d) (*). On the other hand,
and longer prefixes of the infinite sequencg,. the fact thatwrite;(a, d) occurs beforavrite;(nw) im-
What we have to show is that, under the condition that all plies by property (S3)d,d) <’ nw. The definition of
properties of Proposition 8 hold, < implies that ¢, d) < nw either becausen(d) <x nw
for somek or because of the above supposed order of
the correspondingyrite events. This is in contradiction
with (*).
If writej(nw) is preceded by an event of the form
read;(a,d) which cannot be appended to,,, then
(a,lw(a)) <’ (a,d) as oldread events are not possible.
This implies that
— eitherd = lw(a), implying thatread;(a, d) satisfies
condition (b).
—or d # lw(a) and @,lw(a)) < (a,d). As thewrite
events occur inr,., in the order defined bpWE
and write(a, lw(a)) is the most recentvrite event
concerning address beforewrite;(nw), we deduce
that write(a, d) cannot occur beforevrite;(nw) in

Proof of (1). At any moment, the prefix of,., so far con- Tseq @Nd thereforenw <; (a,d) (**). This means
structed is a sequence of a sequentially consistent memory that,

because during the whole execution of the algorithm, an e either @, d) = nw which is clearly in contradic-
eventread;(a, d) can only be appended to the sequengg tion with (C1) and (S1) saying that(d) cannot

if the most recenturite event inr., concerning address be read before it has been written.

is of the formwrite;(a, d) for some indexj. It is trivial to e or (a,d) # nw. In this case, the fact that
observe that the above algorithm appends each eventabf read;(a,d) occurs (strictly) beforavrite;(nw)
most once tars., and in an order consistent with the order in 7 implies by properties (S2) and (C1) that
of the events in each;. (a,d) <; nw contradicting (**).

(1) at any moment, (the prefix so far constructed «of),
is a sequence of a central memory consistent with the
order of the events in eacty, _

(2) the procedure cannot terminate in the error state, that
means, as long as there are still non-empty sequences
m; (containing events not yet appendedstg,), there
exists at least one sequencgsuch that its first event
satisfies either condition (a) or (b).

(3) The (infinite) sequence,,, is a finite reordering of the
sequence of observable events associated wijtthat
means, every event of evety is appended ta,,, after
a finite number of steps of the algorithm.

s . It remains to be shown that the third case is impossi-
Proof of (2).We want to show that it is not possible that the '!e, ie., that events of the formead, (a, d) where ¢, d) =

procedure can terminate in the error state because the fir%) T }) cannat be preceded by events not satisfy-
elements of all sequences satisfy neither condition (a) nor %% tWAnW-a . prec y
(b). That means that ing condition (b). Notice that: = nw.a and property (C2)

imply (a,d) <; nw (***) as the eventread;(a, d) occurs in
— eitherOW FE is empty — there are no moterite events .
to be appended ta,., — but there is at least one event
of the formread;(a, d) not satisfying condition (b), i.e.
such thatd # lw(a)
— or the (unique) event of the formrite;(nw) occurring
in 7, which is the nextwrite event to be appended to) N .
Tseqs IS preceded by events not satisfying condition (b) write;(a ’ﬁ) oceurs feforeeadﬁ(aﬁd) |mpl|de_s bygﬁp'
— or condition (a) is not satisfied because in some sequence erty (S1) t at@ d) <5 (a, ?l) whic contr/a |/cts ().
7, there exist still events of the formead;(nw.a, = If read,;(a, d) is preceded inr by read;(a’, d'), then as

e i” in the second case
é;u)(nw.a)) preceded by events not satisfying condition _ eitherd’ = lw(a’) implying thatread; (a/, d') satisfies

condition (b).

— If read;(a,d) is preceded inr by write;(a’,d’), then
this implies on one hand, exactly as in the second
case, thathw <; (d’,d’), which with (***) implies,
(a,d) <; (¢/,d") (****). On the other hand, the fact that

Let us show that the first case is not possible.rAsis the
greatest element W E' and the lastvrite event concern-
ing address: is of the formwritey(a, lw(a)), we have nec-
essarily @,d) < (a,lw(a)). In this case we caltead;(a, d)

—ornw <; (¢/,d') by the same argument as in the
second case. However, the fact that nw.a implies
by (C1) and (C2) that a soon agail;(nw) holds,
the eventread;(a, d) is not possible anymore, and

84 S. Graf

on the other hanadw < (a’,d") implies by (C1) that

i Name : P;
read;(a’,d") cannot occur beforevail,;(nw) holds, Variables © Inout - add 4 dat
making the above order ofead events impossible. anaples . Input & adaress, d . datum
local : E; : set of address x datum;,
already occurredvrite; events
(alread dori)
That means that the procedure cannot terminate in the error C; : memory of addressx
state, as either there exists always at least one event satisfy- (datum U {e})
ing (a) or (b) that can be consumed or all the sequenges (local cache memory)

Out; : buffer of addressx
datum;
shared: M : memory of addressx
(datum U {€}) (global memory)
o Ing : bufferof (addressx
Proof of (3). If all the sequences; are finite and the pro- datum) x Bool, k : index
cedure terminates (correctlyj,., is necessarily a finite re- Transitions :

ordering ofr. It remains to be shown that, also if the pro- | (rite;(a,d)) allowed((a, d),E;, E))

are empty and the algorithm terminates correctly.

cedure never terminates, at any moment, the first element Aappend(Out;, (a, d), Out))

of each sequence; will be appended tor,., after a finite Aunch(C;, M, Iny, ..., Iny)

number of steps of the algorithm. (read;(a, d)) holds(C;, (a, d)) A empty(Out;)
By definition of OW E, the parametera(d) of any event Aempty_true(In;)

occurring inm; occurs at some (finite) position 6iW E. AUNch(E;, C;, Out;, M, Iny, ..., Iny)
First, we show that at any moment the first element| (mw;(a,d)) first(Outy, (a, d))

nw of OWE can be consumed after a finite number of Atail(Out;, (a, d), Out;)

steps appendingead events tor,.,. From the proof of (2) A update(M, (@,d),M’) AVE € indez.

append(lnkv ((a7 d)7 1= k)v In;;)

we deduce that the only possibility that condition (b) does A unch(E;. C))

not hold for write;(nw) after a finite number of steps, is

that there exists an infinite number of events of the form| (%@ d) i’; e'z(]frfél((a(fé; Slf)(l:']ni;)()(& . 0))
ready(nw.a, lw(nw.a)) in . However, the existence in A Z;dat:(ci,’(a,7d)ic’~i)

of an infinite number of-eady(nw.a, lw(nw.a)) events im- AunchE;, Out;, M, {In, j # i})
plies thatr satisfies the propert@sF(enable(read;(nw.a, (mri(a, d)) holds(Cs, (a, €)) A holds(M, (a, d))
lw(nw.a)))) which by (C1) implies GF(avail;(nw.a, A—isin(In;, (a, d))

lw(nw.a))). As nw occurs afterfqw.a, lw(nw.a)) in OWE, A append(In;, ((a, d), fals@, In’)
property (C2) implies that in any processw can only AUnch(E;, C;, Out;, M, {In;, j # i})
become available whem.a, lw(nw.a)) has become un- (cl;(a)) clear(C;,a,C?)

available forever, which due BF(avail;(nw.a, lw(nw.a))) Aunch(E;, Out;, M, Ing, ..., Iny)
means thahw can never become available, in contradiction| nit: Va € address . (holds(C;;, (a,€))

Aholds(M, (a, €)))

with the fact thathw occurs inOW E. This implies that, if A empty(OUL) A empty(in,)

for some pair ¢, d) there exists an infinite number oéad

events inm, thenOW E cannot contain a pair of the form The predicatesippend, tail, first, allowed and empty

(a,d") occurring after ¢, d) showing that the above situation are defined as in Example 1, where the typgem is re-

is impossible. placed by the typeddressxdatum, respectively ¢ddressx
This implies that the first element @W E becomes datum) x Bool. Let B be a possible value of variabla;.

always consumable — and therefore consumed — after a fifhen, empty_true(B) holds if B contains no element with

nite number of steps. This guarantees — using the fact thdioolean parametdrue, that means

the procedure cannot terminate before all sequencese

empty — that at any moment, if the first event of a sequence €mpty-true(B) = empty(B(addressxdatum){true})

m; has parametei(d), then, after a finite number of steps,

the value of the variablew becomesd, d), and either con-

dition (a) or (b) will hold for this event and it will be ap-

pended tor,, after another finite number of steps.

This terminates the proof of (3) and therefore that of Propo

sition 8. O

The predicatésin(B, ¢) for e € addressxdatum, evaluates

to trueif there exists some boolean valaisuch that the pair

(e, b) is somewhere iB.

memory 0f address x (datum U {e}) is a data type rep-

resenting a memory with address spaekiress. If M is

such a memory andu(d) € address x (datum U {e}), the

predicateholds(M, (a, d)) expresses the fact that/ con-

tains datumd at address; it has furthermore the property

4 Verification of a distributed cache memory thatVa € address there exists exactly oné e datumU{c}
such thatolds(M, (a, d)) is true. The predicatagpdate and
clear are defined by

4.1 Definition of the concrete system

update(M, (a,d), M) = holds(M’, (a,d)) A Vb € address.

. (b#a = (holds(M,(b,d")) = holds(M', (b,d"))))
In our program formalism, the cache memory proposed , ,
by [ABM93] can be described as a system of the form clear(M,a, M’) = holds(M’, (a, €)) AVb € address.
P1|| P ... || P, where each proceds is defined as follows: (b#a = (holds(M,(b,d")) = holds(M', (b,d"))))

Characterization of a sequentially consistent memory 85

The only differences between our system and the one de-
scribed in [Ger94] concerns

update (Mo, e4, M}y) =(ex = 0)
AN(Ma = M})
\/HGA/.(MA = MA—{eA’}))
V(ea ?f 0)A (MA =MsU {eA}
—{ea’ € M4 | same,addr(eA’,eA)})

— the fact that each pain(d) can be the parameter of at
most onewrite event. The way we obtain this, is by
defining the typedatum as|J,; datum;, such that each
process “signs” the data it writes, and by using in each
process a variabl&; of type set of address x datum;
containing all the pairs a(d) such that the event
write;(a, d) has already occurred, as in the example of
the buffer.

— The additional condition—isin(In;, (a,d)) in the ac-
tion mr;(a,d) which is very reasonable in practice as bu
otherwise too frequent.r; events may fill the bufferl;
and delay the treatment of therite events waiting in
buffer Out;. Here, we add this condition to be able to
use a simple abstraction of the buffdrs;, similar to
the one presented in Sect. 2. We will also show how to
verify the system without this restriction.

Notice that fore4 = 0, the operationsipdate , andclear 4
are the same.

For existentially abstracted memories, the abstract pred-
icatesholdsST, clearS?, ... evaluate tdrue independently of
the value of the argument of typgéem 4.

In the processe®; occur different types of sets and of
ffers: variablesE; of type set of elem;, variablesOut;

of type buffer of elem;, and variablesn; of type buffer of
elem x Bool.

Each variableE; is either existentially abstracted or re-
placed by a variable of typeet of abselem which is re-
lated with the concrete type vigt-5>* (the same function as
for the lossy buffer). However, as, € abselem may or
may not be related to somec elem; (it is always related
to somee € elem), we have to define abstract predicates
allowed’y(ea, Ea, Ex") depending on the index or more

We verify the parameterized formulas of Proposition 8 onPrecisely on the the fact &, represents some pair tem;

different abstract systems. Our aim is not necessarily to find! not. For this reason we need auxiliary predicaies on

the smallest abstract system that can be used for the verificg-bStraCt elements defined by

tion of each formula, but we want to use, whenever possible,
the already predefined abstractions in order to show that the

4.2 Construction of abstract systems

dat;(ea) = Je € elem . (05°%(e) = ea) A(e € elem)

em

application of the method is simple.

Definition of abstract types and predicated¥/e use the
same abstract typesdem,, set of abselem and buffef

Then, the abstract predicate fallowed can be defined as

allowedy (ea, Ea, Ex") = dat;(ea)
Nallowed 4(ea, Ea, E4")

of abs.elem and (almost) the same abstract predicates as for ,))
the verification of the lossy buffer, despite the fact that theWhere allowed,, is the predicate defined for the abstract
variables in the cache memory system are not exactly of th&PSSy buffer. For existentially abstracted variables we

same type as the variables of the lossy buffer.

Let us defineelem = address x (datum U {e}) and
elem; = address x datum;. As before, given a set of pairs
e.obs = {(a1, dy), ..., (an,dn)} C elem, where we suppose
thatVk € {1,..n} . di. # ¢, we use as abstract type faem
the type

elem s = {0} U abselem for abselem = {1,...,n}

and relate the concrete and the abstract type%fy:.
The cache memory uses also a data typenory. Each
variable of typememory is either existentially abstracted

(i.e., omitted in the corresponding abstract program) or re-

placed by a variable of typeet of abselem, and

VM € memory of elem . %205 (M) =

{0522 (a, d)| holds(M, (a,d))} N abs.elem}

elem

Then, it is obvious to define abstract predicates

hOldSA(MA, ea) =(ea =0)V (ea € My)

clear ,(Ma,ea, M) = (ea = 0) A (M4 = M)
Ve (M} = Ma—{ea’}))
V(ea 7 0) A (Mg = Ma—{ea})

For the definition of the abstract predicaigdate , we need
an auxiliary predicate on abstract
same_addr(eas, e4”) that evaluates tarue if its arguments
are related viap®°b®

elem

dress. Using this auxiliary predicate, we can define

with concrete pairs with the same ad-

need abstract predicates defined analogously, that is,

allowed<" (ea) = dat;(ea) A allowed®* (ea)
=dat;(eq)

Similarly, each variabléut; is either existentially ab-
stracted or replaced by a variable of tyhnﬂa‘fef of elem 4,
related with the concrete type vie;2>™*; For these ab-
stract buffers we need abstract predicatesdgpend and
first depending on the predicatést;:

appendf’i(BA, ea, B)) = dat;(ea)

Nappend’ (Ba, ea, By)
dat;(ea) N first 4(Ba,ea)
dat;(ea)

dat;(ea)

f'irsti‘(BA, e4) =
appendSy*(ea) =

firsty""(ea) =

The abstract predicates faril andempty do not depend on
dat; and we can use the abstract predicaigs,, empty 4, ...
defined for the lossy buffer.

The variablesin; are all of the same typéuffer of
elem x Bool, and in the corresponding abstract buffers
we cannot merge ¢ d), true) and (g, d), false for a pair
(a,d) € eobs into a single abstract value without losing

elements, the preservation of the properties we want to verify — what
we lose is in particular the consistency for the predicates

enable(read;(a, d)). Therefore, we define a slightly differ-
ent abstract type

86 S. Graf

buffer® of abs.elem x Bool practice, for global variables, the same abstract type is cho-
= (sequence™ of abselem x Bool) U {1} sen in all processes.

where the concrete and the abstract buffers are related by Abstract system for property (S1fach instance of prop-

e obs, K : erty (S1) involves only events of a single procd3scon-
VB € buffer of elem x Bool . 0, pon(B) = cerning a single paira(d). Intuitively, (S1) is guaranteed

€ if length(Obs) =0 by the fact that in proces®; after the occurrence of an
05°%5(0bs) if 1 < length(Obs) < K eventwrite;(a, d), read; events are impossible at least un-
L if length(Obs) > K til (a,d) has traversed the buffe®ut; and In; and has

i) become available, that is, datwinhas been written at ad-
whereObs = B obexoot- The different associated abstract gress, in the cache memorg;. That means that we need
predicates, such aSppendZBOOl’K, ... can be defined by to observe the cachg; and all variables which may cause
an obvious systematic modification of the definitions givenenable(read;(a, d)) to hold. That is the buffer©ut; and
for the lossy buffer. In the processé$ occur also pred- In; but also the global memoriyl which affectsin; and
icates empty_true and isin. The abstract predicates for therefore alscC; via the actionmr;. It is not necessary to

empty_true can easily be defined by observe the buffer®ut; for j # i: for d € datum,; the ac-
<Bool _ _ tion mw; will never push ¢, d) into In; as it is not pushed
empty-truey " (Ba) = (Bajabs clemx{true} =€) into the bufferOut; by actionwrite;. The same holds for
empty_true P = true the abstract actiomw; due to the definition of the pred-

icate fz'rstff’j(eA). That means we need to distinguish a

The predicatésin occurs negated ir;. Therefore, we need, ™ A .
single pair inaddressxdatum; and define consequently the

instead of an abstract predicate fein, an abstract predicate

for —isin satisfying condition (2) of Sect. 2.2: abstract element typdem’; which is completely defined by
not_isin?°(Ba,ea) = (Ba =€)V (Ba = L)V abs.elem = {1}
Jea, b, By, B% . (Ba=DBY e (ea,b) ® B3) Vea,ea' € elemk . same_addr(ea, es’) = true
not,isini‘Bwl’m(eA) = true Vj € indexVea € elem’; . datj(ea) = (j =) V (ea = 0)

Now, if we r_estrict ourselves to the abst_raction functions "’.dehe fact that we do not want to abstract existentially from the
corresponding abstract types and predicates already definedaqirq memory and from all variables with indibut from

an abstract cache memory system is completely defined bynq |oc4 variables of all other processes, leads to the fol-

— its declaration part, where for each variable occurring inloWing abstract programs — by choosing everywhkre 1,
the concrete program we have the choice to omit it (ex-the number of elements imbs.clem.
istential abstraction) or to use the abstract type induced Name : P,
by the choice of the abstract type of the variablem.

— the concrete setobs or alternatively the auxiliary predi-

Variables : abstract input e: elemlA

_ : local : E;,C; : set of abselem
catessame_addr anddat; which contain already all the out; : buffery, of
useful information ofe_obs. abselem
. . . shared: M : set of abselem

This determines completely the abstract predicate to be used In; : buffer, of
for every occurrence of a concrete predicate in the program. (abs.elem x Bool)
We define for each property of Proposition 8 one or sev4{ Tansitions:
eral abstract systems. (write;(€)) allowed;l(e, E;,E})
N . A dLioout;, e, out’
Definition of abstract system&ach instance of the proper- AZK&%,ANE) 2
3l k) 3

ties to be verified involves only events of a few processes

concerning at most two different pairs ildress x datum. (read () iOstz‘(ii’e)x/l\gfff g;?f‘O“‘i)
However, even if the property involves only events of a few Aﬁﬁﬁé?egut M. In;)
processes, it is not necessarily correct to verify the property
on the system consisting only of the concerned processes (mwi(®)) nupdate (M. 6. M)

as influences of all other processes may get lost using this A“(Z)pi;;‘xsa’oz,’l(m (e, true), In’)
approach. It is allowed to verify a property on the abstract A unci'(Ci,AEi) T
system obtained by replacing all other processes by the prg
cessChaos but on this abstraction, the property under con-
sideration does only hold if it holds in an (almost) arbitrary
environment; for example, the evemtw;(a, d) of a chaotic
processP; may allow holds(C;, (a, d)) to become true be-
fore any eventuritey(a, d) has occurred and therefore inval-
idate property (S2). For the verification of the cache mem-
ory system under study, it is sufficient in the processes “no I(Sft(e)) (o =)~ (M = 0) A ety (OUL:)
concerned with the property” to keep some information on ' /\ez,rn_ptyxBool(Tn N P
global variables and to forget about all local variables. In A ‘

first'(Out;, €) A tail ,(Out;, e, Out})

" (cui(®) 3b € Bool . firstCoMY(n,, (e,b)
Atail Bl (in;, (e, b),In%)
Aupdate ,(C;, €, C;) AunchE;, Out;, M)
(mr;(e) holds ,(M, €) A notisinﬁBool(lni, €)
NappendP°HX(In;, (e falsg, In%)
AuncHE;, C;, Out;, M)
clear ,(C;, € C}) A unchE;, Out;, M, Iny)

Characterization of a sequentially consistent memory 87

Name : P].lf” for all indices;j # i Name : P2,
Variables : abstract input e: elem?, Variables : abstract input e elem?
shared M : set of abselem local: C; : set of abselem
In; : buﬁer}q of shared: M : set of abselem
(abselem x Bool) In; : buffer of
Transitions - (abs.elem x Bool)
(write;(€)) dat;(€) A unchM, In;)
(read;(e), cu;(€),clj(€) unchM,In;) Name : P2,
(mr;(8)) holds(M, €) A unch(M, In;) Variables : abstract input e: elem?
(mw;(©)) fiT‘St;’j’em(e) local : gk : S.e;; Offf ai&e]{em
/\appendilBOOl’l utéC : lu er, o
. ’ aoseilem
9\21 7(1(27t£a|(sl\? ’ Ien,lv)l) shared: M : set of abselem
paateatil, In; : buffer, of
. abs.elem x Bool
Init : M =0)A emptinBOOl(lni) ()
o . Name : Pﬁf" for all indicesj ¢ {3, k}
We 'have already eliminated all albstract operations that arg variaples : abstract input e clem?,
equivalent totrue, such asappend ;”““, updateSt,.... No- shared M : set of abselem
tice thatrnw;(1) can never be executed disrst’;"*"(1) = In; : buffery of
datj(l) =false (abs.elem x Bool)

For all indicesj # 4, the programsP-:" define the s o 1 . - .
sametransition relation (they depend on the same set of Pia s like Py where the predicate defining action for

. TR o ite;(€) is replaced bytrue and that of actionnw;(e) by
variables) which implies that also the parallel composition " "% I S

of an arl?)itrary nun?ber of these procgsses repregents thdeatée)Auncr(“)’ whder;easP,f,A IS I“ﬁ.PélA where the actions
same transition relation as a single one. Therefore, the sysT-ea ks Clik, Mg ANCCH Are Simpined.

Lew : . 1 1, The processes”? " define almost the same process
tem Pl || ;" is equivalent taPy || .. || PEy || .. [| Pg” Lo P JA p.
which means that it is an abstraction for an arbitrary instancés P,~", and as before, the abstract system defined by
of a cache memory system. P2 I P2, sz;fz defines an abstraction of a concrete sys-

tem with an arbitrary number of processes.

This abstract system allows to verify property (S2) for
Abstract systems for property (SByoperty (S2) expresses ;. + ;. for = j, it can be verified on the abstract system

that any eventread;(a,d) is preceded by an event cqongirycted for the verification of (S1).
writeg(a,d) for some k. We verify a stronger property,

saying thatvk V(a, d) € elemy, read;(a,d) is preceded by Abstract systems for properties (S3) and ((pperty (S3)

writey(a, d). Thus, in order to define an appropriate abstractexpresses due to (C3) that theite, events become avail-

system, we distinguish a single elememtd) € elem;, and able in any proces$’ in an order compatible with their

we need a nonexistential abstraction for two procegges occurrence. For its verification, we need to observe events

and P, whereas all other processes can be “existentially’concerning two pairsag, di), (a2, d2) € elem;,. We can use

abstracted. the almost the same abstract system as for the verification of
As for (S1), we observe the global memory and buffer property (S2); the only difference is that we use a different

In;, for process’; we observe the cacl&;, but neithelOut; abstract element typeiemi{z defined by

nor E; as @,d) ¢ elem;; for processP;, we observeE, _

and Outy, but neitherC,, nor Iny,, as we are not interested ~ abselem ={1.2} = _

- : : Vj € index . dat;i(ea) =(j = k) V (ea =0)

in the events depending on the values of these variables. NI S _

We could also existentially abstract frofy,, but we use same-addr(ea, ea’) = (ea = 0)V(ea” = 0)V(ea = ea”)

a nonexistential abstraction of this variable, as this allowsThat means, we consider abstract elements related to con-

us to reuse the definition of this abstract process for thesrete pairs with different addresses written by the sdtpe

verification of other properties. In order to verify property (S3) also for pairs with the same
The abstract system for the verification of property (S2)address we need also the abstract system for typa®’

;5 gomdplgtdy defined by the abstract element typen% which is aselem® except thatsame_addr is defined by
efined by

same_addr(es, eq’) = true.

abs.elem = {1} These two abstract systems allow to verify property (S3) for
any k # 4. In order to verify it also fork = i, we can use
the same abstract system as defined for the verification of
property (S1) where we defireof type elemfﬁ, respectively
elem®. That means that for the exhaustive verification of
and by the declaration parts of all abstract processes. property (S3), we need four different abstract systems.

Vea,ea' € elemi\ . same_addr(ea, es’) = true
Vj € indexVes € elemi .dat;j(ea) = (G =k)V(ea =0)

88 S. Graf

The abstract systems defined for typésn®’, thatis for ing the satisfaction of properties we are interested in. But
a seteobs containing elements with the same address careven if we let {, false) to represent an arbitrary number
also be used to verify property (C2). of consecutive occurrences ofi((), falsg in the concrete
buffer restricted to elements inobs, this is not sufficient:
there may be arbitrary alternations of occurrences of dif-

issued by two different processs and P become avail- ferent triplets with boolean parametiaise However, what
a by P €5, and P, . we need for the verification of the above properties, is that
able in any two processd3, and P;, in a compatible order. ((a, d), true) occurs inln, always before (, d), fals®), and

For its verification we observe events concerning two pairs :
(a1, ds) € elemy, and @iz, do) € elemy, whereks 7 kp. We also that an arbitrary amount of elements, (), false after

i a Abe aer 2 ((a, d),true) cannot falsify the properties. That means, we
de“”i typeSel;la)mA (andelem’y) differing from the types can yse exactly the same abstract type as before, but use a
elem’y’ (elemy’) only by the definition of the predicates different abstraction function relating the concrete and the

Abstract systems for property (S4).presence of properties
(C3) and (S3), property (S4) expresses thatalite events

dat;: abstract type, and consequently, different abstract predicates
. . . XBool,K,alt . xB,K,alt
Vi € index . dat;(ea) = (j = k1) A (ea = 1) append , , tail’y b
V(i =k2) Aea =2)V (ea = 0) VB € bufferof elem x Bool .

We define a system where four processes are not existen- oy ppon (B) =
tially abstracted; processes} ,, P, , are defined exactly € if length(Obs) =0
as PZ, and processe®; ,, P , are defined a$’?, except 052b5(Obs) if 1 < length(Obs) < K
that variablee is of typeelem’’ (respectivelyelem?). 1 if length(Obs) > K

This allows to verify property (S4) if the indicds, &>, .
i1, 1o are all different for the two cases where that the twoWht%reObs IS fﬁ‘&ObSX{"ue}U{(evfa'Ee) \t({zﬁ&??s)?(e’“ue)ﬁ)} IW heret ¢
bt i have th same adrss 1 no (e S SSTEnes Bt e T e emnte o
must also verify (S4) in the casds = i, and/ork; = iz, redicateéfoy‘irst empt ande.m ty_true a[r)e uncr?an ed
For this, we need abstract systems in which we replace the = <> redi;:ate]:‘ Y y anybe defined b ged,
pair of processesH} ., P ,) (andlor @ ,, P2,)) by a P appen y

single proces$} , (and/orP? ,) which are likeP}!, except append BV (B (e, b), B') =

that vari_ablee i_s of.diﬁerent type; that means th’;lt f(_)r the b=true A appendZBool,K(37 (e,b), B') V
exhaustive verification of property (S4) we need six different b = falseA 3 .isin(B, (e,) A B = B’ V

abstract systems. b =falser AV .isin(B, (e,b')) A B’ = (e, false) » B

Here, we have defined for each property the smallest
(most abstract) systems — with respect to the predefined alFhe abstract predicate fawil applied to a pair €, true)
stract types and operations — that still allows to verify it. The eliminates this element, but it may also inserifélse at
systems defined for the verification of (S3) and those for theany position inB.
verification of (S4) are uncomparable (in the sense of ab- We have used the toolCAESAR/ALDEBARAN
straction), and are therefore all necessary — at least withoJFGM*92] in order to build all the necessary abstract systems
using additional symmetry arguments allowing to eliminateand to verify the properties on theftAESAR/ ALDEBARAN
some of them. However, all the abstract systems defined foverifies systems described inoros [BB88]. In LoTos,
the verification of (S1) and (S2) are abstractions of one ofdata types and all operations and predicates on them are de-
the systems defined for the verification of (S3) or (S4) andscribed in form of abstract data types, whereas the control
need not to be built. part is described by a process algebra telroTos allows
only local variables, but has a very powerful notion of syn-
chronization by means of rendez-vous, allowing exchange
of and agreement on values between an arbitrary number of
Erocesses: we define an additional proceHESMORY that

Verification of properties on abstract systems us{iige-
SAR/ALDEBARAN.

By Proposition 7, the satisfaction of the properties of Propo-
sition 8 of one of the abstract systems allows to deduce thei ynchronizes with procesg; on the eventsnw,; and mr;
satisfaction on the given concrete system if we can show, 4 updates the global mémolw. All process]es synchjro-
consistgr)cy for all atomic propositions used non n_egated ir?1ize on all eventsnw; and each process updates its own
the positive normal form of the formulas expressing thes€, o) yariablein by appending the right paie(5). All other
properties. In the positive normal forms occur only predi- 5 inns are local to some process. This allows to define eas-
cates of the formufter(() andavail(a, d) non negated for i 5| the necessary abstract systems by modifying the type

which consistency is obvious. definiti :
. efinitions of the concrete system given ag.@aros pro-
That means that the above defined abstract systems allo@’ram' y g P

to verify sequential consistency for the particular system in

which the actionmr;(a, d) is only allowed if @, d) is not — For efficiency reasons, we use instead of a single process
yet somewhere inn;. In order to verify the system with- type P as in the concrete system, four different process
out this restriction, we need a more complex abstraction for types corresponding to

variablesln;: without this restriction,ln; may contain for - processPilA with all variables, which is almost iden-
any pair @,d) an arbitrary number of triplets of the form tical to the concrete proced3

((a, d), falsg which means that using the above defined ab- — processP?,, without variablesE and Out,

straction relations, we cannot choose a firfifevithout los- — processP;, without variablesC andIn, and finally

Characterization of a sequentially consistent memory 89

— processP;; which has only input variables reuse these definitions — for some of them by means of slight
All these process types are obtained by simplifying themodifications — and have to come up with a few new defini-
concrete process type by eliminating all the predicatedions concerning the data typeemory that was not used in
depending only on eliminated variables. the buffer program, Also, the definitions concerning abstract
— We define a typellem 4 for each abstract element type memories are already much easier to obtain using analogous
defined earlier in this section. It includes also the defi-reasonings. In fact, there are many examples of systems, for
nition of the predicatesame_addr anddat; and of the which we have to verify similar properties and which use
constantK. similar data structures and operations on them, such that the
— For the abstract memories, sets, and buffers — which areame (or at least similar) abstract types and operations can
parameterized by the type of elements they can contaibbe used. The abstract sets, buffers and memories given here
— we need a single definition (for each correspondingare certainly not sufficient to build convenient abstractions
concrete type) which is also parametrized just by the typdor any system involving these data types but in many cases,
of elements it can contain. IhoTos, type definitions the convenient abstractions can be obtained by slight modi-
include also the definitions of all associated predicatedications of the abstractions used here. In any case, it should
by means of sets of conditional equations. The abstracbe very useful to collect such definitions in a “library”. A
predicates are in general obtained from the correspondingimilar approach has been followed by P. and R. Cousot and
concrete one by adding equations concerning the speciahore recently by D. Long concerning abstractions of inte-
values, such as abstract input O or abstract buffer gers and operations on them. In [DF95] a very interesting
The definition of abstract operations in terms of abstractextension of our method has been proposed which allows to
data types makes the proof that they are abstractions advoid to restart the whole process again if a property does
the concrete operations very easy. not hold using the initially used abstract definitions.
Verification of Property (C3)As we have already mentioned, The fact that for the verification of an individual property
our verification does in general not allow to verify liveness a large part of the system can be abstracted existentially is
properties directly: there exists no finite abstraction of theoften necessary in order to obtain tractable global models. If
cache memory system that verifies (C3). Under the hypoththe system is too large or the property is “too global” one can
esis that the system is fair with respect to the events; often get results by decomposing the property, depending on
andcu; — a hypothesis that is made in the original descrip-the particular system under study, as this has been proposed,
tion in [ABM93] — one can deduce (C3) due to the proof e. g. by B. Kurshan [Kur94].
rules given in [JPR94] from the satisfaction of the following For the verification of the cache memory, an additional
safety properties. Notice that these proof rules are given focomplexity comes from the fact that we also have to define
a linear framework, but its adaptation to the branching timethe set of formulas to be verified as the original abstract
framework is straightforward. specification is not given in these terms. We believe that
,) this set of properties is interesting by itself as it can be
— after(uritei(a, d)) = n(OUt;,(a,d)) = used for th(f V(frification of other s?/stgms supposed to im-
— position(OUt;, 1,(d’,d')) = enable(muwi(d’, d)), ' plement sequentially consistent memories. The advantage of
= Vn > 1. position(Out;, n, (a, d)) \ enable(mw;(a’, d)) thig characterization is also that it can easily be modified in
= AX(position(Out;, n, (a,d)) N enable(mwi(a’,d)) orqer to obtain weaker or stronger specifications which are
Vafter(mw;(a’,d’)) A position(Out;, n—1, (a, d)))

frequently used in real implementations. This adaptability
— enable(mwi(a, d)) = AX(enable(mwi(a, d)) implies also that the fact that our characterization is slightly
Vafter(mw;(a, d)) A in(In;, (a, d))

o stronger than required is not a problem.
— position(In;, 1, (a’, d')) = enable(cui(a’, ') , Agother poinq[which makeg an abstract specification
= Vn > 1. position(In;, n, (a, d)) A enable(cu;(a’, d)) given as a set of properties so attractive, is the fact that the
= AX(position(In;, n, (a, d)) A enable(cui(a’,d)) V' modification of a single property does not require to redo the
after(cus) A position(In;, n—1, (a, d))) whole verification process. Our method is also incremental
— enable(cu;(a, d) = AX(enable(cu;(a, d)) with respect to modifications of the program, as long as they
Vafter(cuj(a, d)) A avail(a, d)) allow to use the same or at least very similar abstract types
wherein and position are predicates with obvious mean- and operations, as we have seen when we modified the action

ings. mr;(a, d) in the cache memory. That means that exactly the
All these safety properties can be verified using finite fime consuming and difficult part of the verification process
abstractions. need not to be redone. In the case that the obtained abstract
program is not already identical to the previous one, only
5 Discussion the part of the verification process that can be automatized,

i.e. the reconstruction of a model and the verification of the
What has been achieved? A first impression could be thaproperties on it, must be redone.
this verification of a cache memory looks much like a hand-Note at the moment of edition:time passing showed that
written proof. However, it is quite different: starting right the general approach presented is very useful in different
from the beginning, it is in fact rather lengthy to define all domains. Since the development of tools like the Invari-
the abstract types, abstraction relations and correspondingnt Checker [GS97] and InVesT [BLO98] the kind of ab-
abstract predicates, even in order to verify a trivial buffer stractions used without formal proofs in this paper, can be
program. However, having done this once, in order to ver-computed algorithmicallyust from the specification of the
ify the much more complex cache memory system, we carfinite abstract domain and the abstraction relatiomlso

90

the use of the logical characterization of sequential consis{cs97]
tency turned out to be very useful as it allows the use of
very small abstract domains.

[JPR94]

Acknowledgmentsl would like to thank the anonymous referees for point-

ing out several errors, in particular the fact that the initial characterization[Koz83]
of sequential consistency was not sufficient, Amir Pnueli for giving me

some ideas how to get a satisfactory solution and Dennis Dams and Josekurg89]
Sifakis for many fruitful discussions.

References

[Kur94]

[ABM93] Y. Afek, G. Brown, M. Meritt: Lazy caching. ACM Transac-

[BB88]

[BBLS92]

[BLO9S]

[cc77]

[CGL94]

[cmss]

[Crig5]

[DF95]

[EH83]

[FGM*92]

[Ger94]

[GLO3]

[Gra94]

tions on Programming Languages and Systems, 15(1), 1993

T. Bolognesi, E. Brinksma: Introduction to the 1ISO specification [
languageLOTOS. ISDN, 14(1):25-29 (1988)

A. Bouajjani, S. Bensalem, C. Loiseaux, J. Sifakis: Property
preserving simulations. In: Workshop on Computer-Aided Ver-
ification (CAV), Montréal. LNCS 630, 1992

S. Bensalem, Y. Lakhnech, S. Owre: Computing Abstractions
of Infinite State Systems Compositionally and Automatically.
In Proceedings of CAV'98, volume 1427 of LNCS, June 1998
P. Cousot, R. Cousot: Abstract interpretation: a unified lat-
tice model for static analysis of programs by construction or
approximation of fixpoints. In 4th POPL, 1977

E.M. Clarke, O. Grumberg, D.E. Long: Model checking and [Lon93]
abstraction. ACM Transactions on Programming Languages

and Systems, 16(5):1512—-1542 (1994) [MPo1]
K. M. Chandy, J. Misra: Parallel Program Design. Reading,

MA: Addison-Wesley 1988 .

R. Cridlig: Semantic Analysis of Shared-Memory Concurrent [Mil71]
Languages using Abstract Model-Checking. In: Symposium on
Partial Evaluation and Program Manipulation, La Jolla, Cali-
fornia, June 1995

J. Dingel, Th. Filkorn: Model checking for infinite state systems
using data abstraction, assumption-committment style reasoning
and theorem proving. In: Proc. of 7th CAV 95,dge. LNCS

939, Berlin Heidelberg New York: Spinger 1995 [Prusé]
E. A. Emerson, J. Y. Halpern: ‘Sometimes’ and ‘not never’
revisited: On branching versus linear time. In 10th ACM Sym-
posium on Principles of Programming Languages (POPL 83),
1983 also in Journal of ACM , 33:151-178

J.Cl. Fernandez, H. Garavel, L. Mounier, A. Rasse, C. Ro-
driguez, J. Sifakis: A tool box for the verification of lotos
programs. In 14th International Conference on software Engi-
neering, 1992

R. Gerth: Introduction to sequential consistency and the lazy
caching algorithm. Distrib Comput 12: 57-59 (1999)

Lam79]

[Lam94]

LGS 94]

[Loi94]

[Pnu85]

[SG90]

S. Graf

S. Graf, H. Saidi: Construction of Abstract State Graphs with
PVS. In: Proceedings of CAV’'97, Haifa, volume 1254 of LNCS,
June 1997

B. Jonsson, A. Pnueli, C. Rump: Proving refinement using
transduction. Distrib Comput 12: 129-149 (1999)

D. Kozen: Results on the propositionalcalculus. In: Theo-
retical Computer Science. Amstersdam: North-Holland 1983
R.P. Kurshan: Analysis of discrete event coordination. In:
REX Workshop on Stepwise Refinement of Distributed Sys-
tems, Mook. LNCS 430, Berlin Heidelberg New York: Spinger
1989

R.P. Kurshan: Computer-Aided Verification of Coordinating
processes, the automata theoretic approach. Princeton Series in
Computer Science. Princeton University Press, 1994

L. Lamport: How to make a multiprocessor that correctly exe-
cutes multiprocess programs. IEEE Transactions on Computers,
C-28:690-691, 1979

L. Lamport: The temporal logic of actions. ACM Transactions
on Programming Languages and Systems, 16(3), 1994

C. Loiseaux, S. Graf, J. Sifakis, A. Bouajjani, S. Bensalem:
Property preserving abstractions for the verification of concur-
rent systems. Formal Methods in System Design, \Vol. 6, Iss 1,
January 1995

C. Loiseaux: \&rification symbolique de programmesactifs

a l'aide d’abstractions. PhD thesis, February 1994

D. E. Long: Model checking, abstraction and compositional
verification. Phd thesis, Carnegie Mellon University, July 1993
Z. Manna, A. Pnueli: The temporal Logic of reactive and con-
current systems, Vol 1: Specification. Berlin Heidelberg New
York: Spinger 1991

R. Milner: An algebraic definition of simulation between pro-
grams. In: Proc. Second Int. Joint Conf. on Artificial Intelli-
gence, pp 481-489. BCS, 1971

A. Pnueli: In transition from global to modular temporal rea-
soning about programs. In: Logics and Models for Concurrent
Systems. NATO, ASI Series F, Vol. 13, Berlin Heidelberg New
York: Spinger 1985

A. Pnueli: Specification and development of reactive systems.
In: Conference IFIP, Dublin. Amsterdam: North-Holland 1986
G. Shurek, O. Grumberg: The Modular Framework of
Computer-aided Verification: Motivation, Solutions and Evalu-
ation Criteria. In: Conference on Automatic Verification (CAV),
Rutgers, NJ. LNCS 531, Berlin Heidelberg New York: Spinger
1990

S. Graf, C. Loiseaux: A tool for symbolic program verification Susanne Grafreceived the PhD degree in 1984 on “Branching time tem-
and abstraction. In: Conference on Computer Aided Verification poral logics for specification and verification of distriouted programs” from
CAV 93, Heraklion Crete. LNCS 697, Berlin Heidelberg New the Institut National Polytechnique de Grenoble. Currently, she is @herg

York: Spinger 1993

Recherche CNRS at the Laboratoire VERIMAG in Grenoble, France. Her

S. Graf: Verification of a distributed cache memory by using current main research interest are efficient methods for the verification of
abstractions. In Conf. on Computer Aided Verification CAV'94, distributed systems, including as well model-based methods as combination
Stanford. LNCS 818, Berlin Heidelberg New York: Spinger of algorithmic and deductive methods.

1994

