
Distrib. Comput. (1999) 12: 75–90

c© Springer-Verlag 1999

Characterization of a sequentially consistent memory
and verification of a cache memory by abstraction?
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Abstract. The contribution of the paper is two-fold. We give
a set of properties expressible as temporal logic formulas
such that any system satisfying them is a sequentially con-
sistent memory, and which is sufficiently precise such that
every reasonable concrete system that implements a sequen-
tially consistent memory satisfies these properties.

Then, we verify these properties on a distributed cache
memory system by means of a verification method, based on
the use of abstract interpretation which has been presented
in previous papers and so far applied to finite state systems.
The motivation for this paper was to show that it can also be
successfully applied to systems with an infinite state space.

This is a revised and extended version of [Gra94].

1 Introduction

We propose to verify the distributed cache memory pre-
sented in [ABM93] and [Ger94] by using the verification
method proposed in [BBLS92,LGS+94,CGL94,Lon93]. This
method, based on the principle of abstract interpretation
[CC77], proposes to verify a set of∀ctl∗ [SG90] formulas
on a composed program as follows: define an appropriate
abstract program, obtained compositionally from the given
program, and verify the required properties on it. Our way
of computing abstract programs is similar to that proposed
in [CGL94, Lon93, Cri95], but

– in the opposite to most other approaches, our approach
allows to deal with arbitrary data types,

– our abstractions are harder to obtain, but possibly much
more precise as the “standard” abstractions proposed in
[Cri95] as they are property oriented,

– our concept of compositionality is different from that
proposed in [Lon93] or in [Pnu85].

We construct a global abstraction of the system by com-
posing abstractions of its components, whereas the usually
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compositionality consists in deducing properties of the com-
posed system from properties of its components under some
hypotheses on its environment – which must be proven to
hold. The abstractions of components not directly involved
in the property play the same role as the hypotheses on the
environment, except that their correctness is obtained “by
construction”. An abstraction of each component is obtained
applying the principle of abstract interpretation by means of
a relation% relating the domain of its variables and the do-
main of the set of some abstract variables.

In [GL93, Loi94] is described a tool allowing to ver-
ify finite state systems in a fully automatic way by using
this method. Here, we show that the same method is also
tractable for infinite state systems. In fact, if – depending on
the formula one wants to verify – for each componentPi one
can guess an appropriate abstraction relation%i, verification
becomes often a relatively simple task as

– the corresponding finite state abstract program is reason-
ably easy to obtain,

– the verification of the properties on the abstract program
can be fully automatized.

Despite the fact that∀ctl∗ contains alsolivenessproperties,
this method does in general not support directly the verifi-
cation of liveness properties as they often do not hold on
finite abstractions. Here, we succeed to verify the liveness
property of the cache memory by applying variants of the
induction rules given in [Pnu85, JPR94] which allow under
some fairness assumptions to reduce a liveness property to
a set of safety properties.
In Sect. 2, we recall all the ingredients we need for our
verification method:

– a simple program formalism similar to that used e. g.,
in [Pnu86],

– a method to compute abstract programs, which consists
in defining for each operator occurring in the program a
correspondingabstract operator,

– the temporal logicCtl∗ and its fragments, used for the
description of properties,

– the preservation results allowing to deduce the validity
of a property on the concrete program from its validity
on the abstract program which include compositional-
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ity results allowing to compute an abstract program by
composing abstractions of its components.

We illustrate all the definitions and results on a small buffer
example. In Sect. 3, we give a set of temporal logic formu-
las guaranteeing that, whenever a system satisfies all these
properties, it is a “sequentially consistent memory” [Lam79].
This set of properties has been chosen in such a way that
most reasonable implementations of sequentially consistent
memories will satisfy it. In Sect. 4, we verify this set of prop-
erties on the distributed cache memory system. It turns out
that, using our method, this verification is almost as simple
as the verification of the tiny buffer, as we can use almost the
same abstract types and corresponding operations, and this
is the most time consuming part of the verification process.

2 A verification method using abstraction

2.1 A program description formalism

We adopt a simple program formalism which is not meant
as a real programming language but which is sufficient to
illustrate our method. A system is a parallel composition of
basic programs of the form

Name : P

Variables : x1 : Tx1 , ..., xn : Txn

Transitions : (̀1) action1(x1, ..., xn, x′
1, ..., x

′
n)

...
(`p) actionp(x1, ..., xn, x′

1, ..., x
′
n)

Initial States : Init(x1, ..., xn)

whereP is an identifier used to refer to the program in a
composition expression,xi are variables of typeTxi

– defin-
ing its set of possible values – andLP = {`1, ..., `p} is a set
of program labels. Eachactioni is an expression with free
variables in the set of program variables and the correspond-
ing set of primed variables which for each state variable
x contains a variablex′ with the same type asx. As e.g.
in [Pnu86, Lam94],actioni represents a transition relation
on the set of valuations of the program variables by interpret-
ing the valuations ofXP = (x1, ..., xn) as the statebefore,
and the valuations ofX ′

P = (x′
1, ..., x

′
n) as the stateafter the

transition. For any set of variablesY = {y1, ..., yk} ⊆ X,
we denote its set of valuations byTY = Ty1 ×...×Tyk

.

Semantics. A program P defines a transition system
SP =(QP , RP ) where

– QP = TXP
is the set of states,

– RP ⊆ QP ×QP is a transition relation defined by
RP = {(q, q′) | ∃i . actioni(q, q′)}.

The predicateInit defines the set of initial states. It is used
in the formulas specifying the program: they are in general
of the formInit⇒φ – whereφ is a temporal logic formula
– as we are only interested in properties of reachable states.

Variables representing inputs need not to be distinguished
as they are not treated in a particular manner. However,
we indicate in programs the variables which are meant as
inputs as this makes them easier to read. We also indicate
sometimes which variables are shared with other programs

and which ones are used only locally, even if in the model,
for simplicity, all variables are interpreted as global.

Labels are used to name “events” or “actions”. If`i is
the label ofactioni and (v, v′) a pair of valuations such that
actioni(v, v′) evaluates to true, then the transition from state
v to statev′ is called an event̀i. If e is the valuation of the
“input” variables extracted fromv, then we call this event
also`i(e). Events are used for the expression of properties.

Example 1. An infinite lossy buffer.The following program
represents an unbounded buffer taking as input elementse of
some data typeelem. The eventpush(e) enterse (if it has
never been entered yet) into the buffer or arbitrarily “loses”
it, andpop(e) takese out of the buffer if it is its first element.

Name: Lossy buffer

Variables: e : elem (Input)
E : set of elem

(already occurred eventspush(e))
B : buffer of elem

Transitions: (push(e)) allowed(e, E, E′)
∧(append(B, e, B′) ∨unch(B))

(pop(e)) first(B, e)
∧tail(B, e, B′)
∧unch(E)

Initial States: empty(B)

At any moment the value of variableE contains the
elementse ∈ elem such thatpush(e) has already oc-
curred before, and for all elementse and setsE andE′,
allowed(e, E,E′) is true if e /∈ E andE′ = E ∪ {e}. This
guarantees that the eventpush(e) can occur at most once in
every execution sequence. All other predicates have the in-
tuitive meanings:append(B, e,B′) holds if the bufferB′ is
obtained by appending elemente at the end of the bufferB;
tail(B, e,B′) holds if B′ is obtained by eliminatinge from
B if e is its first element (first(B, e) holds);empty(B) is true
if B is the empty buffer.unch(Y ), whereY = (y1, ...yk) is a
tuple of program variables is a shorthand for

∧k
i=1(y′

i = yi),
that means it holds if all variables inY have the same value
in the actual and in the next state.

We use predicates of the formappend(B,e,B′) instead of
B′ = Append(B,e) whereAppend is a function, as abstract
operations are in general non deterministic. This is the same
way of representing operations which has been proposed
in [MP91, CGL94, Lam94].

Composed programs.In [GL93] results for more general par-
allel composition operators are given, but here we need only
composition obtained by interleaving of the actions of the
composed programs. IfP1 andP2 are programs defined on a
tuple of state variablesX1, respectivelyX2, thenP1 |||P2 is
the parallel composition ofP1 andP2 defining the transition
systemS=(TX1∪X2, R) where

R = RP1 ∧unch(X2−X1) ∨ RP2 ∧unch(X1−X2)

Each transition ofP1 |||P2 is either a transition ofP1 which
leaves all variables not declared inP1 unchanged or a tran-
sition of P2 which leaves all variables not declared inP2
unchanged.
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2.2 Abstract programs

Let P be a program on the set of variablesX, and letXA

be a set of abstract variables, defining a set of abstract states
TXA

. Then, a relation% ⊆ TX×TXA
which is total onTX , is

called an abstraction relation (fromTX to TXA
). For the ease

of expression of properties, we suppose that% is represented
by a predicate on concrete and abstract variables denoted
%(X,XA). Furthermore, the abstraction relations we use in
practice, are often (total) functions% : TX 7→ TXA

. In this
case, we denote forv ∈ TX by %(v) the (unique) value
vA ∈ TXA

such that%(v, vA) holds.

Definition 1. (Abstract programs) Let, in addition to the
above conventions,PA be a program defined onXA. PA is
an abstraction, or more precisely a%-abstractionof P , if for
every actionact ofP , there exists an actionactA ofPA (with
the same label), such that

∀v, v′ ∈ TX . act(v, v′) ⇒ ∃vA, v
′
A ∈ TXA

.
%(v, vA)∧%(v′, v′

A)∧actA(vA, v
′
A)

and (1)
∀v ∈ TX . init(v) ⇒ ∃vA ∈ TXA

. %(v, vA)
∧initA(vA).

This condition ensures that% defines a simulation in the
sense of [Mil71] between the transition systems associated
with the concrete and the abstract program.

Remark. Obviously, it is in principle sufficient, that the
above conditions hold only in those statesv ∈ TX which
are reachable, which means that whenever one has a known
invariant of the system, the conditions need only be checked
on the states satisfying this invariant. For states outside this
invariant, nothing is required. If one has a “desired” invari-
ant (a property to be proved) of the system, a usual method
consists in considering a trivial set of successors (such as
true) of the states outs ide this desired invariant. This sim-
plifies the definition and respects the conditions above.

For the verification of programs composed of several
parallel components, it is interesting to compute an abstract
program compositionally, i. e., as a parallel composition
of abstract component programs. From a more general re-
sult [LGS+94], we deduce the following, sufficient for the
verification of the distributed cache memory system.

Proposition 2. (compositionality of abstraction) Let
%i(Xi, Xi

A) be abstraction functions represented by predi-
cates on concrete and abstract variables. Let the program
P i

A be a%i-abstraction ofP i for i ∈ {1,2}. If the predicate
%1 ∧ %2 represents a total function% : TX1∪X2 7→ TX1

A
∪X2

A
,

thenP 1
A |||P 2

A is a %-abstraction ofP 1 |||P 2.

Computation of abstract programs in practice.The idea of
abstract interpretation [CC77] is to interpret everyfunction
on concrete values used in the program by a corresponding
abstract functionon the abstract values, and then to ana-
lyze the so obtained simpler abstract model instead of the
concrete one.
Consider the programProgA obtained by replacing every
basic predicateop (such astail, first,...) on the concrete

variables by a predicateopA on abstract variablesXA sat-
isfying (1). If the expressions inProg are negation free (as
it is the case in the lossy buffer), thenProgA is in fact a
%-abstraction ofProg.

Our intention is to define for any predicateop – de-
pending in general only on a small subset of the concrete
variables – an abstract predicate on the “corresponding”,
hopefully also small, set of abstract variables. Also, in or-
der to be able to verify interesting properties onProgA, the
abstract predicate should be “reasonably close” to the “opti-
mal” abstract predicate which is defined by the requirement

∀vA, v
′
A ∈ TXA

. ( opA(vA, v
′
A) ⇒

∃v, v′ ∈ TX . %(v, vA) ∧ %(v′, v′
A) ∧ op(v, v′) ) (2)

This approach makes no sense for arbitrary abstraction rela-
tions. We are interested in abstraction relations relating each
variable of typeTx to a single abstract variable of typeTA

x ,
such that, e.g. each occurrence of expressionfirst(e,B) in
the concrete program can be replaced by an expression of
the formfirstA(eA,BA) in the abstract program whereeA

is a variable of some type “abstract element”,BA a variable
of some type “abstract buffer” andfirstA is a predicate
satisfying condition (1). That means, given a set of abstract
variables, we are interested in abstraction functions such that

∀(v1, ..., vn) ∈ TX . %(v) = (%1(vk1), ..., %p(vkp
))

wherep is the cardinality ofXA and the indiceski are all
different. That means that ifn = p, every abstract variable
is related to exactly one concrete variable. Otherwise, i.e., if
p < n, there exist concrete variables related to no abstract
variable; these variables are calledexistentially abstracted
variables. For the verification of the cache memory, we use
also an abstraction function mapping the values of a pair of
variables (a,d) onto the value of a single variablee, but in
this case, the two variables represented by a single abstract
one are such that (almost) all predicates depend on both or
on none of them.

The use of such an abstraction function allows to con-
struct an abstract program in a very simple way: Each vari-
able x : Tx of the concrete program is either eliminated
(existentially abstracted) or it is declared of an abstract
type TA

x instead of the concrete typeTx. Then, each ba-
sic predicateopTx,Ty,...(x, y, ....) is replaced by a predicate

op
T A

x ,T A
y ,...

A (x, y, ....) depending on the same variables as the
concrete predicate except the existentially abstracted ones.
All these predicates must satisfy condition (1) which is sim-
plified as it depends only on the (few) concrete variables oc-
curring in predicateop and the corresponding abstract vari-
ables.

The guess of appropriate abstract types and the definition
of abstract predicates is the only part of our verification
method which in general cannot be automatized. The abstract
predicates defined by condition (1) or (2) make reference to
existentially quantified concrete variables. These quantifiers
must be eliminated in order to explicitly construct the finite
abstract model. If all concrete types are finite, this can always
be done automatically [Loi94, Lon93].

Notice also, that for agiven“guess” of an abstract pred-
icate, the verification of condition (1) is often easy if% is a
function.
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In the domain of protocol verification, the used data
structures are “messages” on which no operations are carried
out, “memories” or “registers” in which data can be stored,
integers which are mostly used as counters or constant pa-
rameters, and “buffers” with the usual operationsappend,
tail, first,.. as in our example. As furthermore the proper-
ties to be verified are often similar, for the verification of
many algorithms similar abstract types and corresponding
operations (with adaptations to each particular case) may be
used.

Example 2.An abstract lossy buffer. To illustrate the idea,
consider again the lossy buffer of Example 1. In order to
show that it has the property of “order preservation” (see
Example 3), it is sufficient to show order preservation for
arbitrary two elementse1, e2 ∈ elem. To show order preser-
vation fore1, e2, all the information we need about the value
of the variableB is, if and in which order, it contains the
elementse1 and e2. Similarly, for the input variablee we
only need to distinguish if its value ise1, e2 or any other
value. Concerning the value ofE determinating which events
push(e) are still allowed, we only need to know if the event
push(e1), respectivelypush(e2), is still possible or not. In
general, all the abstract types for the typeelem that we
need, distinguishn particular elements ofelem and merge
all others in a single abstract value. Suppose that we want
to distinguish the elementse obs = {e1, ..., en} ⊆ elem, we
use as abstract type for variables of typeelem:

elemA = {0}∪abs elem whereabs elem = {1, ..., n}
where the concrete typeelem and the abstract typeelemA

are related by

∀e ∈ elem . %e obs
elem(e) =

{
0 if e 6∈ e obs
i if e = ei (∈ e obs)

We denote by%e obs
elem also the pointwise extension of this

function to a function from sets, sequences, ... containing
concrete elements, to sets, sequences, ... where the concrete
elements are replaced by the corresponding abstract ones.

The choice of the abstract typeelemA, determines the
abstract types used for sets and buffers in an obvious way: as
abstract type for variables of type “set of elem” we use the
type “set of abs elem”, where the concrete and the abstract
types are related by

∀E ∈ set of elem .
%e obs

set (E) = {%e obs
elem(e) | e ∈ E} ∩ abs elem

We use abstract sets subsets ofabs elem and not ofelemA

as the property to be verified depends only on information
concerning distinguished elements. Finally, we use as ab-
stract type for variables of typebuffer of elem

bufferKA of elemA = (sequencesK of abs elem) ∪ {⊥}
consisting of the sequences of abstract elements of length
less or equal to some constantK which has to be chosen
depending on the program under study. The element⊥ rep-
resents all buffers such that their restriction to elements in
e obs – denotedB|e obs – is of length greater thanK. We de-
note the empty sequence byε and the concatenation symbol
of sequences by•. Concrete and abstract buffers are related
by

∀B ∈ buffer of elem . %e obs,K
buffer (B) =


ε if length(B|e obs) = 0
%e obs

elem(B|e obs) if 1 ≤ length(B|e obs) ≤ K
⊥ if length(B|e obs) > K

Thus, the abstract buffer 1•2 represents all concrete buffers
containing any number of non-distinguished elements and
the distinguished elementse1, e2, exactly once, ande2 before
e1.
It remains to define abstract predicates for all the basic predi-
cates used in the concrete buffer program, such asallowed,
append, tail, unch, depending on the abstract types cho-
sen for their parameters. The following abstract predicates
satisfy condition (1). The proofs are omitted, but they are
simple.

The abstract predicate associated withunch is obviously
unch itself (where all the existentially abstracted variables
are omitted). For the other predicates occurring in the lossy
buffer, we have,

∀eA ∈ elemA ∀EA, EA
′ ∈ set of abs elem

∀BA, B
′
A ∈ bufferK of abs elem:

allowedA(eA, EA, EA
′) = (eA = 0) ∧ (EA

′ ≡ EA)
∨ (eA /= 0) ∧ (eA 6∈ EA) ∧ (eA ∈ EA

′)

appendK
A (BA, eA, B

′
A) = (eA = 0) ∧ (BA = B′

A) ∨
(eA /= 0) ∧ ((length(BA) < K) ∧ (B′

A = eA •BA) ∨
(length(BA) = K) ∧ (B′

A = ⊥) )

tailA(BA, eA, B
′
A) = (BA = ⊥) ∨ (eA = 0)

∧(BA = B′
A) ∨ (eA /= 0) ∧ (BA = B′

A • eA)

emptyA(BA) = (BA = ε)

firstA(BA, eA) = (BA = ⊥) ∨ (eA = 0)
∨ (eA /= 0) ∧ ∃B′

A . (BA = B′
A • eA)

The concrete predicatetail defines a function, whereas the
corresponding abstract predicate cannot be a function on the
given abstract domain:tailA(⊥,1, B′

A) must, in order to
satisfy condition (1), hold forB′

A = ⊥ and for all values of
B′

A with length equalK, as after the concrete tail operation
on a concrete buffer related with⊥ the obtained concrete
buffer may containK or more thanK elements ine obs.
Here, we have chosen an approximation allowing any value
for B′

A. According to the remark after Defintion 1, this is is
a reasonable choice as the value of variableB should never
become⊥. All other abstract predicates are optimal in the
sense of condition (2) with respect to the chosen abstraction
function %.

Using a typeabs elem = {1,2} and elemA = {0} ∪
abs elem and all the above definitions, the program

Name : Abstract lossy buffer
Variables : e : elemA (input)

E : set of abs elem
B : buffer2 of abs elem

Transitions: (push(e)) allowedA(e, E, E′)
∧(append2

A(B, e, B′) ∨ unch(B))
(pop(e)) first2

A(B, e) ∧ tailA(B, e, B′)
∧ unch(E)

Init : emptyA(B)
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represents a%-abstraction of the lossy buffer where

∀e ∈ elemA ∀E ∈ set of abs elem ∀b ∈ buffer2

of abs elem

%(e, E,B) = (%e obs
elem(e), %e obs

set (E), %e obs,2
buffer (B))

This abstract program represents a transition system with at
most 60 states on which any property can easily be verified.

The abstraction for the choicee obs = ∅, i.e., elemA =
{0} defines an existential abstraction for all variables, and all
the abstract predicatesappendK

A , ... are equivalent totrue as
eA /= 0 can never hold; the corresponding abstract program
is the program “Chaos” which can produce any event at any
moment and which is obviously not very interesting for the
verification of properties. The abstraction function defined
by

%(e, E,B) = (%e obs
elem(e), %e obs

set (E))

for e obs containing at least one element, defines an existen-
tial abstraction only for the variableB. The abstract program
obtained for this abstraction function has no variableB; the
corresponding abstract predicateappendex

A – which has a
single parameter of typeelemA – is equivalent totrue, and
analogously for the other predicates having variableB as
parameter. This abstract program can be used to verify that
for e ∈ e obs, the actionpush(e) can be executed at most
once in any execution sequence.

In [CGL94] a similar method is proposed and in [Lon93]
particular abstraction schemes are proposed for bounded in-
tegers and operations on them.

2.3 Temporal logic

It remains to recall the definition of temporal logic. Here
we restrict ourselves to subsets ofCtl∗ [EH83] for the ex-
pression of properties. The preservation results in [LGS+94]
are given for subsets of the more powerful branching time
µ-calculus [Koz83] augmented by past time modalities.µ-
calculus andCtl∗ can express both branching time and lin-
ear time properties;µ-calculus by using nested fixed points
andCtl∗ by using explicitly stateand path formulas. Our
tool presented in [GL93,Loi94] only deals with state formu-
las; however formulas with nested fixed points are in general
not very intuitive, so we prefer here for readability reasons
to stick toCtl∗ even if it is less expressive.

Definition 3. Ctl∗ is the set of state formulas given by the
following definition.

1. Let P be a set of atomic (a) state respectively (b) path
formulas.

2. If φ and ψ are (a) state respectively (b) path formulas
thenφ ∧ ψ, φ ∨ ψ and ¬φ are (a) state respectively (b)
path formulas.

3. If φ is a path formula thenAφ andEφ are state formulas.
4. If φ and ψ are (a) state or (b) path formulas thenXφ,
φUψ andφWψ are path formulas.

U is a “strong until” andW a “weak until” operator, a
sequence satisfiesφWψ if φ holds as long no state satisfy-
ing ψ has been encountered, andφUψ expresses the same

property and moreover the obligation that such a state sat-
isfying ψ exists. That means thatU and W are related as
follows: φWψ = ¬(¬ψU¬(φ ∨ ψ)) and, as usual, we use
also the abbreviationsφ1⇒φ2 denoting implication,Fφ de-
noting trueUφ (expressing “eventually”φ) andGφ denoting
φWfalse (expressing “always”φ).

Ctl is the subset ofCtl∗ obtained by allowing in all
rules only the choice (a) whereasPtl is the subset obtained
by allowing only the choice (b) and restricting Rule 3 by al-
lowing only the path quantifierA. ∀ctl and∀ctl∗ [SG90]
are the subsets ofCtl respectivelyCtl∗ obtained by al-
lowing negations only on atomic formulas and restricting
Rule 3 by allowing only the universal path quantifierA; that
means thatPtl is contained in∀ctl∗.

The semantics ofCtl∗ is defined overKripke structures
of the form M = (S,I ) whereS=(Q,R) is a transition
system andI : P 7→ 2Q is a function interpreting the
propositional variables ofP as sets of states ofS.

Definition 4. A path in a transition systemS=(Q,R) is an
infinite sequence of statesπ = q1q2... such that for every
n ≥ 1, R(qn, qn+1). We denote byπn thenth state of pathπ
and byπn the suffix ofπ starting inπn.

Definition 5. LetM = (S,I ) be a Kripke structure,q ∈ Q
and π a path inS. Then the satisfaction ofCtl∗ formulas
onM is defined inductively as follows.

1. Letp ∈ P . Then,
q |=M p if and only if q ∈ I (p) and π |=M p if and

only if π0 ∈ I (p).
2. Letφ andψ be (a) state respectively (b) path formulas.

Then,
(a) q |=M ¬φ if and only ifq 6 |=M φ,

q |=M φ ∧ ψ if and only ifq |=M φ andq |=M ψ,
q |=M φ ∨ ψ if and only ifq |=M φ or q |=M ψ.

(b) analogous by replacingq by π
3. Letφ be a path formula. Then,
q |=M Aφ if and only if for every pathπ starting in q,

π |=M φ
q |=M Eφ if and only if there exists a pathπ starting in

q such thatπ |=M φ.
4. Letφ andψ be (a) state respectively (b) path formulas.

Then,
(a) π |=M Xφ if and only ifπ1 |=M φ,

π |=M φUψ if and only if ∃n ∈ N . (πn |=M ψ
and∀k < n . πk |=M φ),
π |=M φWψ if and only if ∀n ∈ N . ((∀k ≤
n . πk |=M ¬ψ) impliesπn |=M φ).

(b) the same definition obtained by replacing in (a) all
statesπi by sequencesπi.

We say thatM |= φ if q |=M φ for all states ofM .
From the more general results given in [LGS+94] we obtain
the following proposition concerning preservation of prop-
erties of∀ctl∗. This proposition uses the notion of consis-
tency that we define first.

Definition 6. Let M = (S,I ) be a Kripke structure, and
% ⊆ Q×QA an abstraction relation, whereQA is some ab-
stract set of states. We say that% is consistentwith I for a
set of propositional variablesP ′ ⊆ P if

∀p ∈ P
′ . (Im[%−1] ◦ Im[%] ◦ I )(p) ⊆ I (p)
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whereIm[%] : 2Q 7→ 2QA is the image function of%, as-
sociating with any set of concrete states the set of abstract
states related via% with one of its elements. Consistency
expresses the fact that for any atomic propositionp ∈ P

′,
the set of abstract statesIm[%](I (p)) represents no state
in I (p), which means in particular thatIm[%](I (p)) and
Im[%](I (p)), used as abstract interpretations of the formu-
las p, respectively¬p, have an empty intersection.

Proposition 7. (Preservation of∀ctl∗)
LetProg be a program,% an abstraction relation from the set
of states ofProg into some abstract set of states, andProgA

a %-abstraction ofProg. Let beφ ∈ ∀ctl∗, P the set of
atomic propositions inφ and I an interpretation function
mappingP into sets of states ofSProg. If % is consistent with
I for the set of propositions inP occurring non negated in
φ, then

(SProgA
, Im[%] ◦ I ) |= φ ⇒ (SProg,I ) |= φ

This proposition expresses that, ifφ ∈ ∀ctl∗ holds on
a %-abstraction of the programProg by translating the
interpretations of all atomic propositions occurring in the
formula by Im[%] into predicates on the abstract set of
states, and if all these predicates are consistent with%,
then we can deduce thatφ holds onProg. Consistency is
not needed for predicates that occur only negated inφ as
Im[%−1](Im[%](I (p))) ⊆ I (p) holds always. We conclude
that, if φ holds onProgA using the abstract interpretation
Im[%](I (p)) of ¬p, then a stronger property thanφ us-
ing the concrete interpretationI (p) of ¬p holds onProg.
In particular, for the verification of a formula of the form
init⇒φ, init need not to be consistent with%.

Example 3.Suppose that we want to show that the buffer
of Example 1 has the property oforder preservation– that
means elements are taken out in the same order in which
they are put into the buffer. This property can be expressed
using atomic propositions in

P = {init, enable(push(x)), after(push(x)),
enable(pop(x)), after(pop(x)) | x ∈ elem}

by the following parameterized formula – that is aCtl∗ for-
mula containing globally universally quantified rigid
variables1.

∀e′, e ∈ elem . init
⇒ A( [¬after(push(e))W after(push(e′))]
⇒ [¬enable(pop(e))W after(pop(e′))] )

This formula can be transformed into a∀ctl formula in
which only the propositions of the formafter(push(e)) and
after(pop(e′)) occur non negated. The transformation into
an∀ctl∗ formula is immediate, due to the fact that for every
operator there exists a dual one; in order to see that they are
also in∀ctl one can use a result given in [EH83].

In order to verify that the concrete buffer has the property
of order preservation, it is sufficient to verify this property
on the (finite) Kripke structure associated with the abstract
buffer, provided that all the atomic propositions occurring

1 a rigid variable or parameter never changes during the execution of a
program

non negated in the property are consistent (see Definition 6)
with the abstraction relation% relating the concrete and the
abstract program.

How to define interpretations of atomic propositions
for a program

– The predicateinit is interpreted as the predicate defining
the set of initial states of the program.

– An atomic proposition of the formenable(`) is inter-
preted as a predicate on program variables representing
the set of states in which event` is possible. Such a
predicate is “∃X ′ . action`(X,X ′)” if ` is just a label
and “∃X ′ . actionl(X,X ′)[E/Y ]” if ` = l(E) wherel is
a label andE a valuation of the vector of input variables
Y .

– An atomic proposition of the formafter(`) is interpreted
as a predicate on program variables representing the sets
of states in which̀ has just occurred. In order to make
this predicate expressible as a predicate on program vari-
ables, one has in general to introduce a new boolean
variable after ` for every propositionafter(`) ∈ P

which is set totrue whenever an event labeled` occurs
and tofalse by all other events (by appropriate oper-
ations set true and set false). The so obtained pro-
gram is equivalent to the original one as the values of
the original variables do not depend of this new vari-
able (after ` is added by superposition as defined in
Unity [CM88]). In the sequel, we suppose that for every
predicateafter(`) ∈ P such a variable is defined, but
we do not mention it explicitly in order to keep the pro-
grams simple. Usually, the setP of atomic propositions
associated with a property is rather small such that just
a few boolean variables have to be added.

Consistency.In the given example, the abstraction relation is
not consistent with the interpretationI (init) = empty(B) as
Im[%](empty(B)) = emptyA(B), but Im[%−1](emptyA(B))
represents much more states thanempty(B) as it repre-
sents all states in whichB contains any amount of non-
distinguished elements. However, this is not a problem as in
the property under study the atomic propositioninit occurs
negated in the equivalent∀Ctl∗ formula.

The only atomic propositions of the property under study
that occur non negated are of the formafter(`). It is easy to
obtain the consistency of such a predicate by not abstracting
the variableafter `; that meansafter ` has in the abstract
program the same type as the concrete one, and the abstract
versions of the operationsset true andset false are identi-
cal to the concrete versions. That is, the abstraction function
is the identity.

Now it is easy to verify each instance of the formula
above on the Kripke structure associated with the abstract
buffer program by instantiatinge1 for e and e2 for e′. It is
clear that for each paire, e′ ∈ elem this leads exactly to the
same abstract transition relation and abstract interpretation of
atomic propositions. That means thate1 ande2 represent an
arbitrary pair of data values, and the verification of a single
abstract property on a single abstract system is sufficient in
order to prove the above set of formulas.
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3 Abstract specification
of a sequentially consistent memory

3.1 Characterization by a set of properties

In order to use the method presented in the previous sec-
tion to verify that the distributed cache memory defined
in [ABM93] is a “sequentially consistent memory” [Lam79],
we need a characterization of this property in terms of a set
of formulas of∀ctl.

Consider a system withobservableevents of the form
readi(a, d) and writei(a, d) and may be other (internal)
events – where the indexi indicates the processPi per-
forming the event,a is the address of a memory location
and d a data element. The setindex defining the size of
the system is an integer interval of the form [1..N ]. Such
a system is a sequentially consistent memory if any of its
computation sequences, projected on observable events, can
be reordered – by respecting the order of the events with
the same index – into a computation sequence of a central
memory – that means a sequence in whichreadi(a, d) is
only possible if the lastwrite event concerning locationa
is of the formwritej(a, d) for some indexj.

For the exact characterization of this property – by using
only observable, and not implementation dependent internal
event names – one needs full second order logic, whereas
we want to restrict ourselves to a set of propositional but pa-
rameterized temporal logic formulas which can be evaluated
by model checking on a finite abstract model. Therefore, our
characterization is necessarily stronger than required. For our
convenience, we suppose that every pair of the form (a, d)
can occur at most once as parameter of somewrite event.
This assumption can be made without loss of generality as it
is equivalent to adding (by superposition) an integer variable
associating with eachwrite event a unique index.

In implementations of a sequentially consistent memory
(as the one we study here), a considerable amount of time
may elapse, between the occurrence of the eventwritei(a, d)
and the moment in whichreadi(a, d) is allowed; ifwritei

events occur too often, some of the elements that have been
written may never be readable inPi (because they are “over-
written” before they are “available”). This makes the ex-
pression in terms of temporal logic difficult. However, sup-
pose that for a given concrete system we can identify aux-
iliary predicatesavaili(a, d) – the interpretation of which
depends on the concrete system under study – which are
weaker thanenable(readi(a, d)) (C1) but such that each
eventwritej(a, d) is eventually followed by a state in which
availi(a, d) holds (C3), and – ifreadi(a, d) becomes possi-
ble in some future – from that moment on, untilavaili(a, d)
becomes “false forever”, events of the formreadi(a, d′) for
d /= d′ are impossible (C2). Then, the expression of “sequen-
tially consistent with a central memory” becomes possible.

In the sequel, instead of “availi(a, d) holds”, we write
sometimes “(a, d) is available in processPi”.

Proposition 8. (Properties guaranteeing sequential consis-
tency)
Let S be a transition system andP the set of predicates

P = {init, enable(readi(a, d)), after(readi(a, d)),
enable(writei(a, d)),

after(writei(a, d))}i:index,(a,d):address×datum

with the interpretationI defined as explained in the previous
section. If it is possible to define an interpretationI aux for
the set of predicates

P aux = {availi(a, d)}i:index,(a,d):address×datum

such thatM = (S,I ∪ I aux) satisfies the following set
of properties, then the program generating modelM is a
sequentially consistent memory.

(C1) ∀(a, d) ∈ address×datum ∀i ∈ index
init ⇒ AG(enable(readi(a, d)) ⇒ availi(a, d))

(C2) ∀(a, d), (a, d′) ∈ address×datum . d /= d′ ∀i ∈ index
init ⇒ AG((availi(a, d) ∧ EF(enable(readi(a, d)))
⇒ A[¬availi(a, d′)W AG (¬availi(a, d)) ])

(C3) ∀(a, d) ∈ address×datum ∀i, k ∈ index
init ⇒ AG[after(writek(a, d))
⇒ AF(availi(a, d)) ]

(S1) ∀(a, d) ∈ address×datum ∀i ∈ index
init ⇒ AG[ after(writei(a, d))
⇒ A(¬enable(readi)W availi(a, d)) ]

(S2) ∀(a, d) ∈ address×datum ∀i ∈ index
init ⇒ A(¬availi(a, d)W

∨
k:index

after(writek(a, d)) )

(S3) ∀(a, d), (a′, d′) ∈ address×datum .
d /= d′ ∀i, k ∈ index
init ⇒ A( [¬after(writek(a, d))W

after(writek(a′, d′)) ] ⇒
[¬availi(a, d)W availi(a′, d′) ] )

(S4) ∀(a, d), (a′, d′) ∈ address×datum .
d /= d′ ∀i, k ∈ index
init ⇒ A( [¬availi(a, d)W (availi(a′, d′)

∧¬availi(a, d) )] ⇒
[¬availk(a, d)W availk(a′, d′)] )

First a few remarks oncerning the choice of appropriate pred-
icatesavaili(a, d). In a central memory,readj(a, d) is en-
abled immediately afterwritei(a, d), that meansavaili(a, d)
andenable(readi(a, d)) (the central memory holds datumd
at addressa) coincide. We will show that the distributed
memory system that we want to verify satisfies the set of
properties given above if we chooseavaili(a, d) to be “the
cache memory of processPi holds datumd at addressa”;
for this choice, the condition (C1) is trivially satisfied in the
system under study (given in Sect. 4.1).

Property (S1) expresses the requirement that in every
processPi as soon as an eventwritei(a, d) has occurred,
readi events are impossible until (a, d) becomes available.
This requirement looks very strong. However, the weaker
and more intuive requirement that, afterwritei(a, d) only
eventsreadi(a) are forbidden until (a, d) is available in
Pi, is not sufficient. Suppose thatP1 reads (a, d1), then
(a′, d′

1), then (a, d2) and then (a′, d′
2) which guarantees by

(S4) and (C2) that in all processes, (a, d1) is available be-
fore (a, d2) and analogously for the primed pairs. If in pro-
cessP2, write2(a, d2) is followed by read2(a′, d′

1) and in
processP3, write3(a′, d′

2) is followed byread3(a, d1), then
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these sequences cannot be merged and completed into a se-
quence of a central memory, but the system may satisfy
all the above properties except that (S1) is replaced by the
proposed weaker property.

Property (S2) expresses that in processPi (a, d) cannot
become available beforewritek(a, d) has occurred for some
index k. This property is quite natural but could be weak-
ened; what we need to express in order to guarantee sequen-
tial consistency is only that whenever (a, d) is available in
Pi, then (a, d) must be written at some moment (earlier or
later) by somePk, and only if it is written byPi it cannot
be later. However, most concrete systems implementing a
sequentially consistent memory satisfy property (S2).

Property (S3) expresses that thewritek events become
available in Pi in a compatible order, i.e., whenever
writek(a′, d′) occurs beforewritek(a, d), then (a, d) can-
not become available inPi before (a′, d′); they may become
available at the same moment, except if the premise of (C2)
holds.

Property (S4) expresses that in any pair of processes
pairs (a, d) become available in a compatible order; that
means ifavaili(a, d) holds strictly beforeavaili(a′, d′), then
availj(a, d) andavailj(a′, d′) may become true at the same
moment but not in the opposite order.

Both (S3) and (S4) have the intended meaning only be-
cause of (C3). For example an execution sequence, in which
processP1 reads (a′, d′

1) then (a, d1) and then (a, d2), pro-
cessP2 reads (a′, d′

1) then (a′, d′
2) and then (a, d1), and pro-

cessP3 reads (a, d2) and then (a′, d′
1), can obviously not be

merged and completed to a sequence of a central memory,
but may be completed to a sequence satisfying all the above
properties except (C3). In fact, pairwise compatibility of the
order in which pairs (a, d) become available (required by
(S3) and (S4)) implies global compatibility only then, when
all pairs (a, d) which are read by some process become ef-
fectively available at some moment in all processes and not
only in those in which a correspondingread event occurs
(as required by (C1)).

However, despite the fact that the original abstract spec-
ification does not contain any liveness condition, a liveness
property (slightly weaker than (C3)) is necessary in order
to obtain a sufficient temporal logic characterization of a
sequentially consistent memory. Notice that all the above
formulas can easily be translated into∀ctl formulas.

3.2 Proof of the correctness of this characterization

It remains to be shown that every system satisfying the re-
quirement of Proposition 8 is a sequentially consistent mem-
ory. In order to do so, we show that the sequence of ob-
servable events associated with an arbitrary computation se-
quenceπ of a system satisfying properties (C1) to (S4), is
a sequence of a sequentially consistent memory; that is, it
can be finitely reordered respecting the order of the events
of each individual process into a sequenceπseq of central
memory.

In order to do so, we define for all indicesi the sequence
πi of observable events of processPi in π – that means,
πi is the sequence of events of the formwritei(a, d) and
readi(a, d) occurring in the order defined byπ. We define

also a sequenceOWE, defining the order ofwrite events
in πseq. Let

A = {(a, d) | ∃k.writek(a, d) ∈ π}

be the set of pairs (a, d) occurring as the parameter of some
write event in π. Notice that, due to property (S1), this
is in fact exactly the set of pairs (a, d) occurring as the
parameter ofany event inπ. Property (C3) guarantees that
for all indicesi ∈ [1..N ],

≤i= {((a, d), (a′, d′)) ∈ A2 |
first occurrence ofavaili(a, d) is not after
first occurrence ofavaili(a′, d′) in π}

is a preorder onA. Denote by<i the corresponding strict
relation (which is not necessarily an order onA as there
may exist unordered pairs (a, d), (a′, d′) such that (a, d) ≤i

(a′, d′) ∧ (a′, d′) ≤i (a, d) holds). Property (S4) guarantees
that for all pairs of indices these preorders arecompatible
in the sense that

∀i, k . <i ∩ >k= ∅ or equivalently<i⊆≤k

This guarantees that≤′ =
⋂ ≤k is a preorder onA and

its corresponding strict relation is<′ =
⋃
<k. If <′ is not

an order, then extend<′ to an order< by ordering all un-
ordered pairs according to the order of the corresponding
write events in the sequenceπ. LetOWE be the sequence
of elements ofA defined by< starting with the smallest
element. Thus,OWE contains each pair (a, d) ∈ A exactly
once.

Using these definitions, build a (possibly infinite) se-
quenceπseq in which write events occur in the order de-
fined byOWE, that is by<, by means of the following
procedure.

πseq := ε; ∀a ∈ address . lw(a) := ε; nw := first(OWE);

b := true;
while b do

b := false;
for i := 1 to N do

if ∃a . first(πi) = readi(a, lw(a)) then
“ πseq := append(πseq , first(πi));

b := true; πi := tail(πi) ”;
if first(πi) = writei(nw)

∧∀j.readj (nw.a, lw(nw.a)) /∈ πj then
“ πseq := append(πseq , first(πi));

b := true; πi := tail(πi);
lw(nw.a) := nw.d; OWE := tail(OWE);

nw := first(OWE) ”
endfor

endwhile
if ∃i.¬empty(πi) then “error state” else “correct termination”;

At any moment, for any addressa, lw(a) contains the last
datum that has been written on addressa, andnw contains
the first element ofOWE which defines the nextwrite
event to be appended toπseq. That means, at any moment,
any sequenceπi can only containwritei(a, d) events such
thatnw ≤ (a, d). We denote bynw.a andnw.d respectively
the address and the data part of the pairnw.

At any moment, “the next event to be appended toπseq”
is one that satisfies one of the following two conditions:



Characterization of a sequentially consistent memory 83

(a) it is of the formwritei(nw) and there remains no event
of the formreadj(nw.a, lw(nw.a)) in πj , (i.e. they have
already been appended toπseq and eliminated fromπj).

(b) or it is of the formreadj(a, lw(a)) for somea.

Naturally, there may be several events satisfying one of these
conditions, onewrite and severalread events. Notice that
the conditions (a) and (b) remain true until the corresponding
events are appended toπseq. This guarantees – together with
the fact that the algorithm looks at all sequencesπi in a
round Robin manner – that every event satisfying (a) or (b)
is appended toπseq after a finite number of steps.
Whenever the procedure does not terminate, this means that
it never gets stuck and continues forever to produce longer
and longer prefixes of the infinite sequenceπseq.
What we have to show is that, under the condition that all
properties of Proposition 8 hold,

(1) at any moment, (the prefix so far constructed of)πseq

is a sequence of a central memory consistent with the
order of the events in eachπi,

(2) the procedure cannot terminate in the error state, that
means, as long as there are still non-empty sequences
πi (containing events not yet appended toπseq), there
exists at least one sequenceπi such that its first event
satisfies either condition (a) or (b).

(3) The (infinite) sequenceπseq is a finite reordering of the
sequence of observable events associated withπ, that
means, every event of everyπi is appended toπseq after
a finite number of steps of the algorithm.

Proof of (1).At any moment, the prefix ofπseq so far con-
structed is a sequence of a sequentially consistent memory
because during the whole execution of the algorithm, an
eventreadi(a, d) can only be appended to the sequenceπseq

if the most recentwrite event inπseq concerning addressa
is of the formwritej(a, d) for some indexj. It is trivial to
observe that the above algorithm appends each event ofπ at
most once toπseq and in an order consistent with the order
of the events in eachπi.

Proof of (2).We want to show that it is not possible that the
procedure can terminate in the error state because the first
elements of all sequencesπi satisfy neither condition (a) nor
(b). That means that,

– eitherOWE is empty – there are no morewrite events
to be appended toπseq – but there is at least one event
of the formreadi(a, d) not satisfying condition (b), i.e.
such thatd /= lw(a)

– or the (unique) event of the formwritej(nw) occurring
in π, which is the nextwrite event to be appended to
πseq, is preceded by events not satisfying condition (b)

– or condition (a) is not satisfied because in some sequence
πk there exist still events of the formreadk(nw.a,
lw(nw.a)) preceded by events not satisfying condition
(b).

Let us show that the first case is not possible. Asnw is the
greatest element ofOWE and the lastwrite event concern-
ing addressa is of the formwritek(a, lw(a)), we have nec-
essarily (a, d) < (a, lw(a)). In this case we callreadi(a, d)

an “old” event. But there cannot be any old events inπi as
the algorithm allows to updatelw(a) only if all events of
the formreadk(a, lw(a)) are eliminated fromπk.

Let us now show that the second case is impossible.
Notice that the unique eventwritej(nw) occurring inπ is
still in πj as the pairnw has exactly one occurrence in
OWE and as soon aswritej(nw) is appended toπseq, nw
is updated. Let us consider all events that could occur inπj

beforewritej(nw) and block the procedure.

– If writej(nw) is preceded by an event of the form
writej(a, d) in πi and therefore also inπ, this implies
on one hand by a remark made just after the definition
of the algorithm thatnw < (a, d) (*). On the other hand,
the fact thatwritej(a, d) occurs beforewritej(nw) im-
plies by property (S3) (a, d) ≤′ nw. The definition of
< implies that (a, d) < nw either because (a, d) <k nw
for somek or because of the above supposed order of
the correspondingwrite events. This is in contradiction
with (*).

– If writej(nw) is preceded by an event of the form
readj(a, d) which cannot be appended toπseq, then
(a, lw(a)) ≤′ (a, d) as oldread events are not possible.
This implies that
– either d = lw(a), implying that readj(a, d) satisfies

condition (b).
– or d /= lw(a) and (a, lw(a)) < (a, d). As thewrite

events occur inπseq in the order defined byOWE
andwrite(a, lw(a)) is the most recentwrite event
concerning addressa beforewritej(nw), we deduce
that write(a, d) cannot occur beforewritej(nw) in
πseq and thereforenw ≤j (a, d) (**). This means
that,

• either (a, d) = nw which is clearly in contradic-
tion with (C1) and (S1) saying that (a, d) cannot
be read before it has been written.

• or (a, d) /= nw. In this case, the fact that
readj(a, d) occurs (strictly) beforewritej(nw)
in π implies by properties (S2) and (C1) that
(a, d) <j nw contradicting (**).

It remains to be shown that the third case is impossi-
ble, i.e., that events of the formreadj(a, d) where (a, d) =
(nw.a, lw(nw.a)) cannot be preceded by events not satisfy-
ing condition (b). Notice thata = nw.a and property (C2)
imply (a, d) <j nw (***) as the eventreadj(a, d) occurs in
π.

– If readj(a, d) is preceded inπ by writej(a′, d′), then
this implies on one hand, exactly as in the second
case, thatnw ≤j (a′, d′), which with (***) implies,
(a, d) <j (a′, d′) (****). On the other hand, the fact that
writej(a′, d′) occurs beforereadj(a, d) implies by prop-
erty (S1) that (a′, d′) ≤j (a, d) which contradicts (****).

– If readj(a, d) is preceded inπ by readj(a′, d′), then as
in the second case
– eitherd′ = lw(a′) implying thatreadj(a′, d′) satisfies

condition (b).
– or nw ≤j (a′, d′) by the same argument as in the

second case. However, the fact thata = nw.a implies
by (C1) and (C2) that a soon asavailj(nw) holds,
the eventreadj(a, d) is not possible anymore, and
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on the other handnw ≤ (a′, d′) implies by (C1) that
readj(a′, d′) cannot occur beforeavailj(nw) holds,
making the above order ofread events impossible.

That means that the procedure cannot terminate in the error
state, as either there exists always at least one event satisfy-
ing (a) or (b) that can be consumed or all the sequencesπi

are empty and the algorithm terminates correctly.

Proof of (3). If all the sequencesπi are finite and the pro-
cedure terminates (correctly),πseq is necessarily a finite re-
ordering ofπ. It remains to be shown that, also if the pro-
cedure never terminates, at any moment, the first element
of each sequenceπi will be appended toπseq after a finite
number of steps of the algorithm.

By definition ofOWE, the parameter (a, d) of any event
occurring inπi occurs at some (finite) position ofOWE.

First, we show that at any moment the first element
nw of OWE can be consumed after a finite number of
steps appendingread events toπseq. From the proof of (2)
we deduce that the only possibility that condition (b) does
not hold forwritej(nw) after a finite number of steps, is
that there exists an infinite number of events of the form
readk(nw.a, lw(nw.a)) in π. However, the existence inπ
of an infinite number ofreadk(nw.a, lw(nw.a)) events im-
plies thatπ satisfies the propertyGF(enable(readi(nw.a,
lw(nw.a)))) which by (C1) implies GF(availi(nw.a,
lw(nw.a))). As nw occurs after (nw.a, lw(nw.a)) in OWE,
property (C2) implies that in any process,nw can only
become available when (nw.a, lw(nw.a)) has become un-
available forever, which due toGF(availi(nw.a, lw(nw.a)))
means thatnw can never become available, in contradiction
with the fact thatnw occurs inOWE. This implies that, if
for some pair (a, d) there exists an infinite number ofread
events inπ, thenOWE cannot contain a pair of the form
(a, d′) occurring after (a, d) showing that the above situation
is impossible.

This implies that the first element ofOWE becomes
always consumable – and therefore consumed – after a fi-
nite number of steps. This guarantees – using the fact that
the procedure cannot terminate before all sequencesπi are
empty – that at any moment, if the first event of a sequence
πi has parameter (a, d), then, after a finite number of steps,
the value of the variablenw becomes (a, d), and either con-
dition (a) or (b) will hold for this event and it will be ap-
pended toπseq after another finite number of steps.
This terminates the proof of (3) and therefore that of Propo-
sition 8. �

4 Verification of a distributed cache memory

4.1 Definition of the concrete system

In our program formalism, the cache memory proposed
by [ABM93] can be described as a system of the form
P1 |||P2 ... |||Pn where each processPi is defined as follows:

Name : Pi

Variables : Input: a : address, d : datum

local : Ei : set of address×datumi,
(already occurredwritei events)
Ci : memory of address×
(datum ∪ {ε})
(local cache memory)
Outi : buffer of address×
datumi

shared: M : memory of address×
(datum ∪ {ε}) (global memory)
Ink : buffer of (address×
datum)×Bool, k : index

Transitions :
(writei(a, d)) allowed((a, d), Ei, E′

i)
∧append(Outi, (a, d), Out′i)
∧unch(Ci, M , In 1, ..., Inn)

(readi(a, d)) holds(Ci, (a, d)) ∧ empty(Outi)
∧empty true(In i)
∧unch(Ei, Ci, Outi, M , In 1, ..., Inn)

(mwi(a, d)) first(Outi, (a, d))
∧tail(Outi, (a, d), Out′i)
∧ update(M , (a, d), M ′) ∧ ∀k ∈ index.
append(Ink, ((a, d), i = k), In ′

k)
∧ unch(Ei, Ci)

(cui(a, d)) ∃b ∈ Bool . (first(In i, ((a, d), b))
∧tail(In i, ((a, d), b), In ′

i))
∧ update(Ci, (a, d), C′

i)
∧unch(Ei, Outi, M , {Inj , j /= i})

(mri(a, d)) holds(Ci, (a, ε)) ∧ holds(M , (a, d))
∧¬isin(In i, (a, d))
∧ append(In i, ((a, d), false), In ′

i)
∧unch(Ei, Ci, Outi, M , {Inj , j /= i})

(cli(a)) clear(Ci, a, C′
i)

∧unch(Ei, Outi, M , In 1, ..., Inn)
Init : ∀a ∈ address . (holds(Ci, (a, ε))

∧holds(M , (a, ε)) )
∧ empty(Outi) ∧ empty(In i)

The predicatesappend, tail, first, allowed and empty
are defined as in Example 1, where the typeelem is re-
placed by the typeaddress×datum, respectively (address×
datum)×Bool. Let B be a possible value of variableIn i.
Then,empty true(B) holds if B contains no element with
boolean parametertrue, that means

empty true(B) = empty(B|(address×datum)×{true})

The predicateisin(B, e) for e ∈ address×datum, evaluates
to true if there exists some boolean valueb such that the pair
(e, b) is somewhere inB.
memory of address× (datum ∪ {ε}) is a data type rep-
resenting a memory with address spaceaddress. If M is
such a memory and (a, d) ∈ address×(datum ∪ {ε}), the
predicateholds(M, (a, d)) expresses the fact thatM con-
tains datumd at addressa; it has furthermore the property
that∀a ∈ address there exists exactly oned ∈ datum∪{ε}
such thatholds(M, (a, d)) is true. The predicatesupdate and
clear are defined by

update(M, (a, d),M ′) ≡ holds(M ′, (a, d)) ∧ ∀b ∈ address.

(b /= a ⇒ (holds(M, (b, d′)) ≡ holds(M ′, (b, d′))) )

clear(M,a,M ′) ≡ holds(M ′, (a, ε)) ∧ ∀b ∈ address.

(b /= a ⇒ (holds(M, (b, d′)) ≡ holds(M ′, (b, d′))) )
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The only differences between our system and the one de-
scribed in [Ger94] concerns

– the fact that each pair (a, d) can be the parameter of at
most onewrite event. The way we obtain this, is by
defining the typedatum as

⋃
i datumi, such that each

process “signs” the data it writes, and by using in each
process a variableEi of type set of address×datumi

containing all the pairs (a, d) such that the event
writei(a, d) has already occurred, as in the example of
the buffer.

– The additional condition¬isin(In i, (a,d)) in the ac-
tion mri(a,d) which is very reasonable in practice as
otherwise too frequentmri events may fill the buffersIn i

and delay the treatment of thewrite events waiting in
buffer Outi. Here, we add this condition to be able to
use a simple abstraction of the buffersIn i, similar to
the one presented in Sect. 2. We will also show how to
verify the system without this restriction.

4.2 Construction of abstract systems

We verify the parameterized formulas of Proposition 8 on
different abstract systems. Our aim is not necessarily to find
the smallest abstract system that can be used for the verifica-
tion of each formula, but we want to use, whenever possible,
the already predefined abstractions in order to show that the
application of the method is simple.

Definition of abstract types and predicates.We use the
same abstract typeselemA, set of abs elem and bufferKA
of abs elem and (almost) the same abstract predicates as for
the verification of the lossy buffer, despite the fact that the
variables in the cache memory system are not exactly of the
same type as the variables of the lossy buffer.

Let us defineelem = address× (datum ∪ {ε}) and
elemi = address×datumi. As before, given a set of pairs
e obs = {(a1, d1), ..., (an, dn)} ⊆ elem, where we suppose
that∀k ∈ {1, ...n} . dk /= ε, we use as abstract type forelem
the type

elemA = {0} ∪ abs elem for abs elem = {1, ..., n}
and relate the concrete and the abstract type by%e obs

elem.
The cache memory uses also a data typememory. Each

variable of typememory is either existentially abstracted
(i.e., omitted in the corresponding abstract program) or re-
placed by a variable of typeset of abs elem, and

∀M ∈ memory of elem . %e obs
mem(M ) =

{%e obs
elem(a, d)| holds(M, (a, d))} ∩ abs elem}

Then, it is obvious to define abstract predicates

holdsA(MA, eA) = (eA = 0) ∨ (eA ∈ MA)
clearA(MA, eA,M

′
A) = (eA = 0) ∧ ((MA = M ′

A)
∨∃eA′.(M ′

A = MA−{eA′}))
∨(eA /= 0) ∧ (M ′

A = MA−{eA})

For the definition of the abstract predicateupdateA we need
an auxiliary predicate on abstract elements,
same addr(eA, eA′) that evaluates totrue if its arguments
are related via%e obs

elem with concrete pairs with the same ad-
dress. Using this auxiliary predicate, we can define

updateA(MA, eA,M
′
A) =(eA = 0)

∧(
(MA = M ′

A)
∨∃eA′.(M ′

A = MA−{eA′})
)

∨(eA /= 0) ∧ (
M ′

A = MA ∪ {eA}
−{eA′ ∈ MA | same addr(eA′, eA)})

Notice that foreA = 0, the operationsupdateA and clearA
are the same.

For existentially abstracted memories, the abstract pred-
icatesholdsex

A , clearex
A , ... evaluate totrue independently of

the value of the argument of typeelemA.
In the processesPi occur different types of sets and of

buffers: variablesEi of type set of elemi, variablesOuti
of type buffer of elemi, and variablesIn i of type buffer of
elem×Bool.

Each variableEi is either existentially abstracted or re-
placed by a variable of typeset of abs elem which is re-
lated with the concrete type via%e obs

set (the same function as
for the lossy buffer). However, aseA ∈ abs elem may or
may not be related to somee ∈ elemi (it is always related
to somee ∈ elem), we have to define abstract predicates
allowedi

A(eA, EA, EA
′) depending on the indexi or more

precisely on the the fact ifeA represents some pair inelemi

or not. For this reason we need auxiliary predicatesdati on
abstract elements defined by

dati(eA) = ∃e ∈ elem . (%e obs
elem(e) = eA)∧(e ∈ elemi)

Then, the abstract predicate forallowed can be defined as

allowedi
A(eA, EA, EA

′) = dati(eA)
∧allowedA(eA, EA, EA

′)

where allowedA is the predicate defined for the abstract
lossy buffer. For existentially abstracted variablesEi, we
need abstract predicates defined analogously, that is,

allowedex,i
A (eA) = dati(eA) ∧ allowedex(eA)

= dati(eA)

Similarly, each variableOuti is either existentially ab-
stracted or replaced by a variable of typebufferKA of elemA,
related with the concrete type via%e obs,K

buffer ; For these ab-
stract buffers we need abstract predicates forappend and
first depending on the predicatesdati:

appendK,i
A (BA, eA, B

′
A) = dati(eA)

∧appendK
A (BA, eA, B

′
A)

firstiA(BA, eA) = dati(eA) ∧ firstA(BA, eA)
appendex,i

A (eA) = dati(eA)
firstex,i

A (eA) = dati(eA)

The abstract predicates fortail andempty do not depend on
dati and we can use the abstract predicatestailA, emptyA,...
defined for the lossy buffer.

The variablesIn i are all of the same typebuffer of
elem× Bool, and in the corresponding abstract buffers
we cannot merge ((a, d), true) and ((a, d), false) for a pair
(a, d) ∈ e obs into a single abstract value without losing
the preservation of the properties we want to verify – what
we lose is in particular the consistency for the predicates
enable(readi(a, d)). Therefore, we define a slightly differ-
ent abstract type
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bufferK of abs elem×Bool
= (sequenceK of abs elem×Bool) ∪ {⊥}

where the concrete and the abstract buffers are related by

∀B ∈ buffer of elem×Bool . %e obs,K
buf×Bool(B) =


ε if length(Obs) = 0
%e obs

elem(Obs) if 1 ≤ length(Obs) ≤ K
⊥ if length(Obs) > K

whereObs = B|e obs×Bool. The different associated abstract

predicates, such asappend×Bool,K
A , ... can be defined by

an obvious systematic modification of the definitions given
for the lossy buffer. In the processesPi occur also pred-
icates empty true and isin. The abstract predicates for
empty true can easily be defined by

empty true×Bool
A (BA) = (BA|abs elem×{true} = ε)

empty true×Bool,ex
A = true

The predicateisin occurs negated inPi. Therefore, we need,
instead of an abstract predicate forisin, an abstract predicate
for ¬isin satisfying condition (2) of Sect. 2.2:

not isin×Bool
A (BA, eA) = (BA = ε) ∨ (BA = ⊥)∨
∃eA, b, B1

A, B
2
A . (BA =B1

A • (eA, b) •B2
A)

not isin×Bool,ex
A (eA) = true

Now, if we restrict ourselves to the abstraction functions and
corresponding abstract types and predicates already defined,
an abstract cache memory system is completely defined by

– its declaration part, where for each variable occurring in
the concrete program we have the choice to omit it (ex-
istential abstraction) or to use the abstract type induced
by the choice of the abstract type of the variableelem.

– the concrete sete obs or alternatively the auxiliary predi-
catessame addr anddati which contain already all the
useful information ofe obs.

This determines completely the abstract predicate to be used
for every occurrence of a concrete predicate in the program.

We define for each property of Proposition 8 one or sev-
eral abstract systems.

Definition of abstract systems.Each instance of the proper-
ties to be verified involves only events of a few processes
concerning at most two different pairs inaddress×datum.
However, even if the property involves only events of a few
processes, it is not necessarily correct to verify the property
on the system consisting only of the concerned processes
as influences of all other processes may get lost using this
approach. It is allowed to verify a property on the abstract
system obtained by replacing all other processes by the pro-
cessChaos, but on this abstraction, the property under con-
sideration does only hold if it holds in an (almost) arbitrary
environment; for example, the eventmwj(a, d) of a chaotic
processPj may allowholds(Ci, (a, d)) to become true be-
fore any eventwritek(a, d) has occurred and therefore inval-
idate property (S2). For the verification of the cache mem-
ory system under study, it is sufficient in the processes “not
concerned with the property” to keep some information on
global variables and to forget about all local variables. In

practice, for global variables, the same abstract type is cho-
sen in all processes.

Abstract system for property (S1).Each instance of prop-
erty (S1) involves only events of a single processPi con-
cerning a single pair (a, d). Intuitively, (S1) is guaranteed
by the fact that in processPi after the occurrence of an
eventwritei(a, d), readi events are impossible at least un-
til (a, d) has traversed the buffersOuti and In i and has
become available, that is, datumd has been written at ad-
dressa in the cache memoryCi. That means that we need
to observe the cacheCi and all variables which may cause
enable(readi(a, d)) to hold. That is the buffersOuti and
In i but also the global memoryM which affectsIn i and
therefore alsoCi via the actionmri. It is not necessary to
observe the buffersOutj for j /= i: for d ∈ datumi the ac-
tion mwj will never push (a, d) into In i as it is not pushed
into the bufferOutj by actionwritej . The same holds for
the abstract actionmwj due to the definition of the pred-
icate firstex,j

A (eA). That means we need to distinguish a
single pair inaddress×datumi and define consequently the
abstract element typeelem1

A which is completely defined by

abs elem = {1}
∀eA, eA′ ∈ elem1

A . same addr(eA, eA′) = true
∀j ∈ index∀eA ∈ elem1

A . datj(eA) = (j = i) ∨ (eA = 0)

The fact that we do not want to abstract existentially from the
central memory and from all variables with indexi, but from
the local variables of all other processes, leads to the fol-
lowing abstract programs – by choosing everywhereK = 1,
the number of elements inabs elem.

Name : P 1
iA

Variables : abstract input: e : elem1
A

local : Ei, Ci : set of abs elem
Outi : buffer1A of

abs elem
shared: M : set of abs elem

In i : buffer1A of
(abs elem×Bool)

Transitions:
(writei(e)) allowedi

A(e, Ei, E′
i)

∧append1,i
A (Outi, e, Out′i)

∧unch(Ci, M , In i)

(readi(e)) holdsA(Ci, e) ∧ emptyA(Outi)
∧empty true×Bool

A (In i)
∧unch(Ei, Ci, Outi, M , In i)

(mwi(e)) first1,i
A (Outi, e) ∧ tailA(Outi, e, Out′i)

∧updateA(M , e, M ′)
∧ append×Bool,1

A (In i, (e, true), In ′
i)

∧ unch(Ci, Ei)

(cui(e)) ∃b ∈ Bool . first×Bool,1
A (In i, (e, b))

∧tail×Bool
A (In i, (e, b), In ′

i)
∧updateA(Ci, e, C′

i) ∧ unch(Ei, Outi, M )

(mri(e)) holdsA(M , e) ∧ not isin×Bool
A (In i, e)

∧append×Bool,1
A (In i, (e, false), In ′

i)
∧unch(Ei, Ci, Outi, M )

(cli(e)) clearA(Ci, e, C′
i) ∧ unch(Ei, Outi, M , In i)

Init : (Ci = ∅) ∧ (M = ∅) ∧ emptyA(Outi)
∧empty×Bool

A (In i)
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Name : P 1,ex
jA for all indicesj /= i

Variables : abstract input: e : elem1
A

shared: M : set of abs elem
In i : buffer1A of

(abs elem×Bool)

Transitions :
(writej (e)) datj (e) ∧ unch(M , In i)

(readj (e), cuj (e), clj (e)) unch(M , In i)

(mrj (e)) holds(M , e) ∧ unch(M , In i)

(mwj (e)) first1,j,ex
A (e)

∧append×Bool,1
A

(In i, (e, false), In ′
i)

∧updateA(M , e, M )

Init : (M = ∅) ∧ empty×Bool
A (In i)

We have already eliminated all abstract operations that are
equivalent totrue, such asappend1,j,ex

A , updateex
A ,.... No-

tice thatmwj(1) can never be executed asfirst1,i,ex
A (1) =

datj(1) = false.
For all indicesj /= i, the programsP 1,ex

jA define the
same transition relation (they depend on the same set of
variables) which implies that also the parallel composition
of an arbitrary number of these processes represents the
same transition relation as a single one. Therefore, the sys-
temP 1

iA |||P 1,ex
jA is equivalent toP 1,ex

1A ||| ... |||P 1
iA ||| ... |||P 1,ex

nA
which means that it is an abstraction for an arbitrary instance
of a cache memory system.

Abstract systems for property (S2).Property (S2) expresses
that any event readi(a, d) is preceded by an event
writek(a, d) for some k. We verify a stronger property,
saying that∀k ∀(a, d) ∈ elemk, readi(a, d) is preceded by
writek(a, d). Thus, in order to define an appropriate abstract
system, we distinguish a single element (a, d) ∈ elemk, and
we need a nonexistential abstraction for two processesPi

andPk, whereas all other processes can be “existentially”
abstracted.

As for (S1), we observe the global memory and buffer
In i, for processPi we observe the cacheCi, but neitherOuti
nor Ei as (a, d) /∈ elemi; for processPk, we observeEk

and Outk, but neitherCk nor Ink, as we are not interested
in the events depending on the values of these variables.
We could also existentially abstract fromEk, but we use
a nonexistential abstraction of this variable, as this allows
us to reuse the definition of this abstract process for the
verification of other properties.

The abstract system for the verification of property (S2)
is completely defined by the abstract element typeelem2

A

defined by

abs elem = {1}
∀eA, eA′ ∈ elem2

A . same addr(eA, eA′) = true
∀j ∈ index∀eA ∈ elem2

A . datj(eA) = (j = k) ∨ (eA = 0)

and by the declaration parts of all abstract processes.

Name : P 2
iA

Variables : abstract input: e : elem2
A

local : Ci : set of abs elem
shared: M : set of abs elem

In i : buffer1A of
(abs elem×Bool)

Name : P 2
kA

Variables : abstract input: e : elem2
A

local : Ek : set of abs elem
Outk : buffer1A of

abs elem
shared: M : set of abs elem

In i : buffer1A of
(abs elem×Bool)

Name : P 2,ex
jA for all indicesj /∈ {i, k}

Variables : abstract input: e : elem2
A

shared: M : set of abs elem
In i : buffer1A of

(abs elem×Bool)

P 2
iA is like P 1

iA where the predicate defining action for
writei(e) is replaced bytrue and that of actionmwi(e) by
dati(e)∧unch(..), whereasP 2

kA is like P 1
iA where the actions

readk, cuk, mrk andclk are simplified.
The processesP 2,ex

jA define almost the same process

as P 1,ex
A , and as before, the abstract system defined by

P 2
iA |||P 2

kA |||P 2,ex
jA defines an abstraction of a concrete sys-

tem with an arbitrary number of processes.
This abstract system allows to verify property (S2) for

k /= i; for k = i, it can be verified on the abstract system
constructed for the verification of (S1).

Abstract systems for properties (S3) and (C2).Property (S3)
expresses due to (C3) that thewritek events become avail-
able in any processPi in an order compatible with their
occurrence. For its verification, we need to observe events
concerning two pairs (a1, d1), (a2, d2) ∈ elemk. We can use
the almost the same abstract system as for the verification of
property (S2); the only difference is that we use a different
abstract element typeelem3a

A defined by

abs elem = {1,2}
∀j ∈ index . datj(eA) = (j = k) ∨ (eA = 0)
same addr(eA, eA′) = (eA = 0)∨(eA′ = 0)∨(eA = eA′)

That means, we consider abstract elements related to con-
crete pairs with different addresses written by the samePk.
In order to verify property (S3) also for pairs with the same
address we need also the abstract system for typeelem3b

A

which is aselem3a
A except thatsame addr is defined by

same addr(eA, eA′) = true.

These two abstract systems allow to verify property (S3) for
any k /= i. In order to verify it also fork = i, we can use
the same abstract system as defined for the verification of
property (S1) where we definee of typeelem3a

A , respectively
elem3b

A . That means that for the exhaustive verification of
property (S3), we need four different abstract systems.
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The abstract systems defined for typeselem3b
A , that is for

a sete obs containing elements with the same address can
also be used to verify property (C2).

Abstract systems for property (S4).In presence of properties
(C3) and (S3), property (S4) expresses that allwrite events
issued by two different processesPk1 andPk2, become avail-
able in any two processesPi1 andPi2 in a compatible order.
For its verification we observe events concerning two pairs
(a1, d1) ∈ elemk1 and (a2, d2) ∈ elemk2 wherek1 /= k2. We
define typeselem4a

A (and elem4b
A ) differing from the types

elem3a
A (elem3b

A ) only by the definition of the predicates
datj :

∀j ∈ index . datj(eA) = (j = k1) ∧ (eA = 1)
∨(j = k2) ∧ (eA = 2) ∨ (eA = 0)

We define a system where four processes are not existen-
tially abstracted; processesP 4

k1A
, P 4

k2A
are defined exactly

asP 2
kA and processesP 4

i1A
, P 4

i2A
are defined asP 2

iA except

that variablee is of typeelem4a
A (respectivelyelem4b

A ).
This allows to verify property (S4) if the indicesk1, k2,

i1, i2 are all different for the two cases where that the two
observed data elements have the same address or not. We
must also verify (S4) in the casesk1 = i1 and/ork2 = i2.
For this, we need abstract systems in which we replace the
pair of processes (P 4

k1A
, P 4

i1A
) (and/or (P 4

k2A
, P 4

i2A
)) by a

single processP 4
i1A

(and/orP 4
i2A

) which are likeP 1
iA except

that variablee is of different type; that means that for the
exhaustive verification of property (S4) we need six different
abstract systems.

Here, we have defined for each property the smallest
(most abstract) systems – with respect to the predefined ab-
stract types and operations – that still allows to verify it. The
systems defined for the verification of (S3) and those for the
verification of (S4) are uncomparable (in the sense of ab-
straction), and are therefore all necessary – at least without
using additional symmetry arguments allowing to eliminate
some of them. However, all the abstract systems defined for
the verification of (S1) and (S2) are abstractions of one of
the systems defined for the verification of (S3) or (S4) and
need not to be built.

Verification of properties on abstract systems usingCae-
sar/Aldebaran.
By Proposition 7, the satisfaction of the properties of Propo-
sition 8 of one of the abstract systems allows to deduce their
satisfaction on the given concrete system if we can show
consistency for all atomic propositions used non negated in
the positive normal form of the formulas expressing these
properties. In the positive normal forms occur only predi-
cates of the formafter(`) andavail(a, d) non negated for
which consistency is obvious.

That means that the above defined abstract systems allow
to verify sequential consistency for the particular system in
which the actionmri(a, d) is only allowed if (a, d) is not
yet somewhere inIn i. In order to verify the system with-
out this restriction, we need a more complex abstraction for
variablesIn i: without this restriction,In i may contain for
any pair (a, d) an arbitrary number of triplets of the form
((a, d), false) which means that using the above defined ab-
straction relations, we cannot choose a finiteK without los-

ing the satisfaction of properties we are interested in. But
even if we let (i, false) to represent an arbitrary number
of consecutive occurrences of ((a, d), false) in the concrete
buffer restricted to elements ine obs, this is not sufficient:
there may be arbitrary alternations of occurrences of dif-
ferent triplets with boolean parameterfalse. However, what
we need for the verification of the above properties, is that
((a, d), true) occurs inIn i always before ((a, d), false), and
also that an arbitrary amount of elements ((a, d), false) after
((a, d), true) cannot falsify the properties. That means, we
can use exactly the same abstract type as before, but use a
different abstraction function relating the concrete and the
abstract type, and consequently, different abstract predicates
append×Bool,K,alt

A , tail×B,K,alt
A , ...

∀B ∈ buffer of elem×Bool .
%e obs,K,alt

buf×Bool (B) =

ε if length(Obs) = 0
%e obs

elem(Obs) if 1 ≤ length(Obs) ≤ K
⊥ if length(Obs) > K

whereObs is B|e obs×{true}∪{(e,false) | (e∈e obs)∧(e,true)/∈B)} where
furthermore all occurrences but the first one of elements of
the form (e, false) are eliminated. The corresponding abstract
predicates forfirst, empty andempty true are unchanged,
the abstract predicate forappend can be defined by

append×Bool,K,alt
A (B, (e, b), B′) =


b = true∧ append×Bool,K

A (B, (e, b), B′) ∨
b = false∧ ∃b′.isin(B, (e, b′)) ∧B = B′ ∨
b = false∧ 6 ∃b′.isin(B, (e, b′)) ∧B′ = (e, false) •B

The abstract predicate fortail applied to a pair (e, true)
eliminates this element, but it may also insert (e, false) at
any position inB.

We have used the toolCaesar/Aldebaran
[FGM+92] in order to build all the necessary abstract systems
and to verify the properties on them.Caesar/Aldebaran
verifies systems described inLotos [BB88]. In Lotos,
data types and all operations and predicates on them are de-
scribed in form of abstract data types, whereas the control
part is described by a process algebra term.Lotos allows
only local variables, but has a very powerful notion of syn-
chronization by means of rendez-vous, allowing exchange
of and agreement on values between an arbitrary number of
processes: we define an additional processMEMORY that
synchronizes with processPj on the eventsmwj andmrj
and updates the global memoryM . All processes synchro-
nize on all eventsmwi and each process updates its own
local variableIn by appending the right pair (e, b). All other
actions are local to some process. This allows to define eas-
ily all the necessary abstract systems by modifying the type
definitions of the concrete system given as aLotos pro-
gram:

– For efficiency reasons, we use instead of a single process
typeP as in the concrete system, four different process
types corresponding to
– processP 1

iA with all variables, which is almost iden-
tical to the concrete processP

– processP 2
iA, without variablesE andOut,

– processP 2
kA without variablesC and In , and finally
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– processP ex
jA which has only input variables

All these process types are obtained by simplifying the
concrete process type by eliminating all the predicates
depending only on eliminated variables.

– We define a typeelemA for each abstract element type
defined earlier in this section. It includes also the defi-
nition of the predicatessame addr anddatj and of the
constantK.

– For the abstract memories, sets, and buffers – which are
parameterized by the type of elements they can contain
– we need a single definition (for each corresponding
concrete type) which is also parametrized just by the type
of elements it can contain. InLotos, type definitions
include also the definitions of all associated predicates
by means of sets of conditional equations. The abstract
predicates are in general obtained from the corresponding
concrete one by adding equations concerning the special
values, such as abstract input 0 or abstract buffer⊥.
The definition of abstract operations in terms of abstract
data types makes the proof that they are abstractions of
the concrete operations very easy.

Verification of Property (C3).As we have already mentioned,
our verification does in general not allow to verify liveness
properties directly: there exists no finite abstraction of the
cache memory system that verifies (C3). Under the hypoth-
esis that the system is fair with respect to the eventsmwi

andcui – a hypothesis that is made in the original descrip-
tion in [ABM93] – one can deduce (C3) due to the proof
rules given in [JPR94] from the satisfaction of the following
safety properties. Notice that these proof rules are given for
a linear framework, but its adaptation to the branching time
framework is straightforward.

– after(writei(a, d)) ⇒ in(Outi, (a, d))
– position(Outi,1, (a′, d′)) ⇒ enable(mwi(a′, d′))
– ∀n > 1 . position(Outi, n, (a, d)) ∧ enable(mwi(a′, d′))

⇒ AX (position(Outi, n, (a, d)) ∧ enable(mwi(a′, d′))
∨after(mwi(a′, d′)) ∧ position(Outi, n−1, (a, d)))

– enable(mwi(a, d)) ⇒ AX (enable(mwi(a, d))
∨after(mwi(a, d)) ∧ in(In j , (a, d))

– position(In i,1, (a′, d′)) ⇒ enable(cui(a′, d′))
– ∀n > 1 . position(In j , n, (a, d)) ∧ enable(cui(a′, d′))

⇒ AX (position(In j , n, (a, d)) ∧ enable(cui(a′, d′)) ∨
after(cui) ∧ position(In j , n−1, (a, d)))

– enable(cuj(a, d)) ⇒ AX (enable(cuj(a, d))
∨after(cuj(a, d)) ∧ avail(a, d))

where in and position are predicates with obvious mean-
ings.

All these safety properties can be verified using finite
abstractions.

5 Discussion

What has been achieved? A first impression could be that
this verification of a cache memory looks much like a hand-
written proof. However, it is quite different: starting right
from the beginning, it is in fact rather lengthy to define all
the abstract types, abstraction relations and corresponding
abstract predicates, even in order to verify a trivial buffer
program. However, having done this once, in order to ver-
ify the much more complex cache memory system, we can

reuse these definitions – for some of them by means of slight
modifications – and have to come up with a few new defini-
tions concerning the data typememory that was not used in
the buffer program, Also, the definitions concerning abstract
memories are already much easier to obtain using analogous
reasonings. In fact, there are many examples of systems, for
which we have to verify similar properties and which use
similar data structures and operations on them, such that the
same (or at least similar) abstract types and operations can
be used. The abstract sets, buffers and memories given here
are certainly not sufficient to build convenient abstractions
for any system involving these data types but in many cases,
the convenient abstractions can be obtained by slight modi-
fications of the abstractions used here. In any case, it should
be very useful to collect such definitions in a “library”. A
similar approach has been followed by P. and R. Cousot and
more recently by D. Long concerning abstractions of inte-
gers and operations on them. In [DF95] a very interesting
extension of our method has been proposed which allows to
avoid to restart the whole process again if a property does
not hold using the initially used abstract definitions.

The fact that for the verification of an individual property
a large part of the system can be abstracted existentially is
often necessary in order to obtain tractable global models. If
the system is too large or the property is “too global” one can
often get results by decomposing the property, depending on
the particular system under study, as this has been proposed,
e. g. by B. Kurshan [Kur94].

For the verification of the cache memory, an additional
complexity comes from the fact that we also have to define
the set of formulas to be verified as the original abstract
specification is not given in these terms. We believe that
this set of properties is interesting by itself as it can be
used for the verification of other systems supposed to im-
plement sequentially consistent memories. The advantage of
this characterization is also that it can easily be modified in
order to obtain weaker or stronger specifications which are
frequently used in real implementations. This adaptability
implies also that the fact that our characterization is slightly
stronger than required is not a problem.

Another point which makes an abstract specification
given as a set of properties so attractive, is the fact that the
modification of a single property does not require to redo the
whole verification process. Our method is also incremental
with respect to modifications of the program, as long as they
allow to use the same or at least very similar abstract types
and operations, as we have seen when we modified the action
mri(a, d) in the cache memory. That means that exactly the
time consuming and difficult part of the verification process
need not to be redone. In the case that the obtained abstract
program is not already identical to the previous one, only
the part of the verification process that can be automatized,
i.e. the reconstruction of a model and the verification of the
properties on it, must be redone.
Note at the moment of edition: time passing showed that
the general approach presented is very useful in different
domains. Since the development of tools like the Invari-
ant Checker [GS97] and InVesT [BLO98] the kind of ab-
stractions used without formal proofs in this paper, can be
computed algorithmicallyjust from the specification of the
finite abstract domain and the abstraction relation%. Also
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the use of the logical characterization of sequential consis-
tency turned out to be very useful as it allows the use of
very small abstract domains.
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