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Summary. We tackle a natural problem from distributed
computing, involving time-stamps. Let P"Mp
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N be a set of computing agents or processes which

synchronize with each other from time to time and ex-
change information about themselves and others. The
gossip problem is the following: Whenever a set P-P
meets, the processes in P must decide amongst themselves
which of them has the latest information, direct or indirect,
about each agent p in the system. We propose an algo-
rithm to solve this problem which is finite-state and local.
Formally, this means that our algorithm can be imple-
mented as an asynchronous automaton.
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Introduction

The aim of this paper is to tackle a natural problem from
distributed computing, involving time-stamps. Let P"

Mp
1
, p

2
,2, p

N
N be a set of computing agents or processes

which synchronize with each other from time to time and
exchange information about themselves and others. The
gossip problem is the following: Whenever a set P-P
meets, the processes in P must decide amongst themselves
which of them has the latest information, direct or indirect,
about each agent p in the system.

This is easily accomplished if the agents decide to
‘‘time-stamp’’ every synchronization and pass these time-
stamps along with each exchange of information. This
does not require that all their clocks be synchronized. For
example, each process can use an independent counter.
When a set P-P meets, the processes in P jointly agree
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on a new value for their counters which exceeds the max-
imum of the counter values currently held by them. Thus,
for any process p, the time-stamps assigned to synchroni-
zation events involving p form a strictly increasing se-
quence (albeit with gaps between successive time-stamps).
So, the problem of deciding who has the latest information
about p reduces to that of checking for the largest time-
stamp.

This scheme has the following drawback: as the com-
putation progresses these counter values increase without
bound and most of the agents’ time would be taken up in
passing on large numbers, as opposed to actual gossip.

We propose an algorithm using counters which take
on values from a bounded, finite set. We assign an inde-
pendent counter to each subset of processes which can
potentially synchronize. These counters are updated when
the corresponding sets of processes meet. The update is
performed jointly by the processes which meet.

Since our set of counter values is bounded, time-stamps
have to be reused and, in general, different synchroniza-
tions involving a particular set of processes will acquire the
same time-stamp during a computation. Despite this, our
algorithm guarantees that whenever a set P-P meets,
the processes in P can decide correctly which of them has
the best information about any other agent p in the system.
Thus, in essence, the processes in P may be finite state
machines and yet manage to keep track of the latest
information about other agents. Further, the algorithm
itself does not induce any additional communications.

We formalize the gossip problem and our solution to it
in terms of asynchronous automata. These machines were
first introduced by Zielonka and are a natural generaliz-
ation of finite-state automata for modelling concurrent
systems [30]. An asynchronous automaton consists of
a set of finite-state agents which synchronize to process
their input. Each letter a in the input alphabet R is as-
signed a subset h(a) of processes which jointly update their
state when reading a. The processes outside h(a) remain
unchanged during this move — in fact, they are oblivious to
the occurrence of a.

(Calling these automata asynchronous is misleading.
The automata communicate synchronously. Zielonka used
the term ‘‘asynchronous’’ to emphasize that different com-
ponents of the network can proceed independently while



processing the input. We continue to use this rather inap-
propriate terminology for historical reasons.)

A preview of the algorithm

Our algorithm proceeds by having each process maintain
different levels of information about the rest of the system.
At the primary level, a process p records the latest informa-
tion that it has heard from every other process. Thus, the
primary information of process p regarding process q cor-
responds to the most recent event performed by q which
p is aware of, either directly or indirectly.

The secondary information of a process consists of its
knowledge about the primary information of other pro-
cesses. Thus, for processes p, q and r, p’s secondary in-
formation would refer to events of the form ‘‘the latest that
p knows about what q knows about r’’. Similarly, the
tertiary information of a process consists of its knowledge
about the secondary information of every other process.

Events are identified by labels assigned to them when
they occur — the label of each event is assigned jointly by
all the processes that take part in the event. (An event
involving only one process corresponds to an internal
event.) These labels are best thought of as time-stamps.
The goal of the algorithm is to correctly compare and
update the primary information of all processes which
participate in each synchronization, with the constraint
that only a bounded number of labels are used to time-
stamp events, regardless of the length of the overall
computation.

Let p and q be processes that synchronize. We prove
that p’s primary information about r is more recent (and
therefore better) than q’s primary information about r if
and only if the event corresponding to r recorded in q’s
primary information is also present in p’s secondary in-
formation. In other words, the primary information of
p and q can be compared by just checking for equality of
labels within their primary and secondary information
— we do not have to maintain any order between the labels.
This feature is crucial for designing an algorithm which
uses only a bounded number of time-stamps: reusing
a label will, in general, destroy any a priori order on the set
of labels.

It then follows that we can reuse time-stamps provided
we maintain the following invariant across the system: at
any stage of the computation, if the same label is present in
the primary or secondary information of two different
processes, then the labels actually point to the same event.
In other words, two different instances of the same
time-stamp should never simultaneously be present in the
primary and secondary information of the system. This
invariant is difficult to maintain because the processes
which take part in an event and assign a time-stamp to it
will not, in general, have access to the primary and second-
ary information of all processes across the system. So, they
have no way of knowing precisely which labels are ‘‘in use’’
across the system when the event occurs.

It turns out that tertiary information can be used to
resolve the problem of deciding when a time-stamp can be
reused. We prove that a time-stamp previously assigned by
a process p is currently ‘‘in use’’ — i.e., it currently belongs
to the primary or secondary information of some other

process q — only if it also belongs to the tertiary informa-
tion of p. From this, it follows that labels which are not in
the tertiary information of a process can be reused. Since
the number of events in the tertiary information of each
process is bounded, processes in the system can always
work with a bounded set of labels large enough to permit
each event to be assigned a fresh time-stamp which does
not clash with the set of time-stamps currently ‘‘in use’’
across the system.

As we remarked earlier, our algorithm can be described
as an asynchronous automaton, where each process is
locally a finite-state machine. The automaton that we
construct to solve the gossip problem can be effectively
presented in space polynomial in the number of processes
in the system. This means that the automaton can be
embedded in other distributed algorithms without sacrifi-
cing efficiency.

In this paper, we solve the gossip problem for systems
with multi-party synchronization. Surprisingly, the prob-
lem appears no easier when restricted to systems with
pariwise synchronization. Though systems with pairwise
synchronization are perhaps more representative of ‘‘real
world’’ systems, we have chosen to describe our solution in
the general setting because it has important applications in
theoretical studies of distributed systems based on the
asynchronous automaton model [13, 14, 23].

The technique we describe for analyzing synchronizing
systems is also applicable to more general classes of dis-
tributed systems. For instance, we can adapt our algo-
rithm for maintaining primary, secondary and tertiary
information to solve the gossip problem for ‘‘well be-
haved’’ classes of message-passing systems [21].

The paper is organized as follows. In the next section,
we introduce asynchronous automata and formalize the
gossip problem in terms of these automata. To do this, we
define a natural partial order on events in the system. In
Sect. 2 we introduce ideals and frontiers, both of which
play a crucial role in the rest of the paper. Sections 3 and
4 describe how to maintain, compare and update in a local
manner the latest information about other processes. The
next section puts all these ideas together and formally
describes the ‘‘gossip automaton’’ which solves the prob-
lem we set out to tackle.

Section 6 briefly examines extensions of the basic
gossip automaton and possibilities for optimizing the
construction. We also look at applications of the gossip
automaton in logic and the theory of asynchronous auto-
mata [13, 14, 23, 27].

In the concluding Discussion, we place our results in
perspective. We discuss similarities and differences with
other work on ‘‘gossiping’’ and bounded time-stamps
[1, 2, 3, 5, 8, 9, 12].

1 Preliminaries

LetP be a finite set of processes which synchronize period-
ically and let the set of possible synchronizations permit-
ted in the system be denoted C, where C-(2P!M0N ). So,
each element c3C is a non-empty subset of P. When
c occurs, the processes in c share all information about
their local states and update their states in synchrony.
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We model a computation of the system as a sequence
of communications — that is, a word u3C*. Let u be of
length m. It is convenient to think of u as a function
u : [1 . .m]PC, where for natural numbers i and j, [i . . j]
abbreviates the set Mi, i#1,2, jN if i6j and [i . . j]"0
otherwise. By this convention, the empty word e is denoted
by the unique function 0PC.

Events. With u : [1 . . m]PC, we associate a set of events
E
u
. Each event e is of the form (i, u (i )), where i3[1 . . m]. In

addition, it is convenient to include an initial event denoted
0. Thus, E

u
"M0NXM(i, u(i ) ) D i3[1 . .m]N.

The initial event marks an implicit synchronization of
all the processes before the start of the actual computation.
So, if u is the empty word e, E

u
"M0N.

Usually, we will write E for E
u
. For p3P and e3E, we

write p3e to denote that p3u (i ) when e"(i, u (i) ). Thus,
p3e implies that process p participated in the synchroni-
zation e. For the initial event 0, we define p30 to hold for
all p3P. If p3e, then we say that e is a p-event.

Ordering relations on E. The word u imposes a total order
on events in E : define e(f if e9f and either e"0 or
e"(i, u(i) ), f"( j, u ( j )), and i(j. We write e6f if e"f
or e(f.

However, the temporal order ( does not accurately
reflect the cause and effect relationship between events in
E. Clearly, synchronizations between disjoint sets of pro-
cesses can be performed independently. In particular, if
two such synchronizations occur consecutively in u, they
could also be transposed without affecting the outcome of
the computation. To record information about causality
and independence, we define a partial order k* on E.

To begin with, we observe that each process p orders
the events in which it participates: define ¢

p
to be the

relation

e¢

p
f¢ e(f, p3eW f and for all e(g(f, pNg.

The set of all p-events in E is totally ordered by ¢*
p
, the

reflexive, transitive closure of ¢

p
.

Define e[ f if for some p, e¢

p
f and e k f if e"f or

e[ f. Let k* denote the transitive closure of k. If e k* f
then we say that e is below f.

It is not difficult to see that the causality relation k*
accurately models the cause and effect relationship be-
tween events in E. In particular, all rearrangements of the
letters in u which arise out of permuting adjacent indepen-
dent synchronizations will give rise to isomorphic struc-
tures (E, k*).

Example. Let P"Mp, q, r, sN and C"Ma, b, cN where a"
Mp, qN, b"Mr, sN and c"Mq, r, sN. Figure 1 shows the events
E corresponding to the word bacabba. The dashed box
corresponds to the ‘‘mythical’’ event 0, which we insert at
the beginning for convenience.

In the figure, the arrows between the events denote the
relations ¢

p
,¢

q
,¢

r
and ¢

s
. From these, we can compute

[ and k*. Thus, for example, we have e
1
k* e

4
since

e
1
¢

r
e
3
¢

q
e
4
.

Note that 0 is below every event. Also, for each p3P, the
set of all p-events in E is totally ordered by k* since ¢*

p
is

contained in k*.

Fig. 1. A typical computation of a system of synchronizing processes

The set of events below e is denoted eB. These represent
the only synchronizations in E which are ‘‘known’’ to the
processes in e when e occurs.

¸atest information. Let E be the set of events of the com-
munication sequence u : [1 . .m]PC. The k*-maximum
p-event in E is denoted max

p
(E). max

p
(E ) is the last event

in E in which p has taken part. Since p303E and all
p-events are totally ordered by k*, max

p
(E) is well-

defined.
Let p, q3P. The latest information p has about q in

E corresponds to the k*-maximum q-event in the subset
of events max

p
(E )B. We denote this event by latest

p?q
(E).

Since all q-events are totally ordered by k* and
q30k*max

p
(E ), latest

p?q
(E ) is well-defined.

Example. Continuing with our example, in Fig. 1,
max

p
(E)"e

7
whereas max

s
(E)"e

6
. latest

p?q
(E )"e

7
,

but latest
p?s

(E)"e
3
. On the other hand, latest

s?p
(E)"e

2
.

For any processes p, p@, q3P, the events latest
p?q

(E) and
latest

p{?q
(E ) are both q-events and are thus always compa-

rable with respect to k*. Our goal is to design a scheme
whereby each process p maintains a bounded amount of
information locally, so that whenever a set c-P synchro-
nizes, the processes in c can decide amongst themselves
which of them has heard most recently from every process
in the system. More formally, for every q3P, all the
processes in c should be able to jointly compute which of
the events Mlatest

p?q
(E )N

p|c
is maximum with respect

to k*.
We make precise the notions of bounded and local

information using asynchronous automata.

Asynchronous automata

Distributed alphabet. Let P be a finite set of processes as
before. A distributed alphabet is a pair (R, h) where R is
a finite set of actions and h : RP(2P!M0N ) assigns a non-
empty set of processes to each a3R.

State spaces. With each process p, we associate a finite set
of states denoted S

p
. Each state in S

p
is called a local state.

For P-P, we use S
P

to denote the product <
p|P

S
p
. An

element sl of S
P

is called a P-state. A P-state is also called
a global state. Given sl 3S

P
, and P@-P, we use sl

P{
to

denote the projection of sl onto S
P{

.

139



Asynchronous automaton. An asynchronous automaton
A over (R, h) is of the form (MS

p
N
p|P

, MP
a
N
a|R ,S

0
,S

F
),

where P
a
-Sh(a)]Sh(a) is the local transition relation for a,

and S
0
,S

F
-SP are sets of initial and final global states.

Intuitively, each local transition relation P
a
specifies how

the processes h(a) that meet on a may decide on a joint
move. Processes outside h (a) do not change their state
when a occurs. Thus we define the global transition relation
N-SP]R]SP by sl a

Nsl @ if sl h(a)Pa
sl @h(a) and sl P~h(a)"sl @P~h(a) .

A is called deterministic if the global transition relation
N of A is a function from SP]R to SP and the set of
initial statesS

0
is a singleton. Notice that N is a function

iff each local transition relation P
a
, a3R, is a function

from Sh(a) to Sh(a) . We shall only deal with deterministic
asynchronous automata in this paper.

Runs. Given a word u : [1 . . m]PR, a run of A on u is
a function o : [0 . .m]PSP such that o(0)3S

0
and for

i3[1 . .m], o (i!1) u(i)No (i). If A is deterministic, each
word u gives rise to a unique run which we de-
note o

u
.

The word u is accepted byA if there is a run o ofA on
u such that o (m)3S

F
. ¸ (A), the language recognized by

A, is the set of words accepted byA. In this paper, we will
not look at asynchronous automata as language recog-
nizers. Instead, we shall treat them as devices for locally
computing families of functions.

¸ocally computable functions. Let »al be a set (of
values). A R-indexed family of functions is a set FR"

M f
a
: R*P»alN

a|R . So, FR contains a function f
a

for each
letter a3R.

FR is locally computable if we can find a deterministic
asynchronous automaton A"(MS

p
N
p|P

, MP
a
N
a|R ,S

0
,S

F
)

and a family of local functions GR"Mg
a
: Sh(a)P»alN

a|R ,
such that for each word u : [1 . . m]PR, f

a
(u)"g

a
(sl h(a)),where sl"o

u
(m) and o

u
is the unique run of A over u.

In other words, the processes in h(a) can locally com-
pute the value f

a
(u) for any u3R* by applying the function

g
a

to the (unique) h(a)-state reached by the automaton
after reading u.

Our problem involving the latest information of pro-
cesses in P can now be formalized in terms of asyn-
chronous automata.

Given C-(2P!M0N), let R"McL N
c|C

. The distribution
function h is defined in the obvious way — for each cL 3R,
h(cL )"c. For convenience, henceforth we shall drop the
distinction between a subset c3C and the corresponding
letter cL 3R and refer to both as just c. Thus, we will use
S
c
to denote the set of h (cL )-states and P

c
to denote the

local transition function for cL .
Let u : [1 . .m]PR be a communication sequence and

c-P. For each q3P, we denote by best
c
(u, q) the set of

processes in c which have the most recent information
about q at the end of u — i.e.,

best
c
(u, q)

"Mp3c D ∀p@3c. latest
p{?q

(E
u
) k* latest

p?q
(E

u
)N .

Let »al"(2P!M0N)P. So, each member of »al is
a function from P to non-empty subsets of P. Our goal
is to show that the family of functions Mlatest-

gossip
c
: R*P »alN

c|R is locally computable, where:

∀u3R*.∀c3R. latest-gossip
c
(u) is the function

Mp> best
c
(u, p)N

p|P
.

2 Ideals and frontiers

For the moment, let us fix a communication sequence
u : [1 . .m]PR and the corresponding set of events E.

The main source of difficulty in solving the gossip
problem is the fact that the processes inP need to compute
global information about the communication sequence
u while each process only has access to a local, ‘‘partial’’
view of u. Although partial views of u correspond to
subsets of E, not every subset of E arises from such a par-
tial view. Those subsets of E which do correspond to
partial views of u are called ideals.

Ideals. A set of events I-E is called an order ideal if I is
closed with respect to k* — i.e., e3I and f k* e implies
f3I as well. We shall always refer to order ideals as just
ideals.1

The requirement that an ideal be closed with respect to
k* guarantees that the observation it represents is ‘‘con-
sistent’’ — whenever an event e has been observed, so have
all the events in the computation which necessarily pre-
cede e.

The minimum possible partial view of a word u is the
ideal M0N. This is because of our interpretation of 0 as an
event which takes place before the actual computation
begins. Since 0 lies below every event in E, 03I for every
non-empty ideal I. We shall assume that every ideal we
consider is non-empty.

Clearly the entire set E is an ideal, as is eB for any e3E.
It is easy to see that if I and J are ideals, so are IXJ and
IWJ.

Example. Let us look once again at Fig. 1. M0, e
2
N is an

ideal, but M0, e
2
, e

3
N is not, since e

1
k* e

3
but e

1
N

M0, e
2
, e

3
N. M0, e

1
, e

2
, e

3
, e

5
N is the ideal e

5
B, whereas

M0, e
1
, e

2
, e

3
, e

4
, e

5
N is an ideal which is not of the form eB

for any e3E.

We need to generalize the notion of max
p
(E), the max-

imum p-event in E, to all ideals I-E.

P-views. For an ideal I, the k*-maximum p-event in I is
denoted max

p
(I). The p-view of I is the set I D

p
"max

p
(I )B.

So, I D
p

is the set of all events in I which p can ‘‘see’’. For
P-P, the P-view of I, denoted I D

P
, is Z

p|P
I D

p
, which is

also an ideal. In particular, we have I DP"I.

Example. In Fig. 1, let I denote the ideal M0, e
1
, e

2
, e

3
, e

4
,

e
5
, e

6
N. max

q
(I)"e

4
and hence I D

q
"M0, e

1
, e

2
, e

3
, e

4
N. On

the other hand, though max
r
(I)"e

6
, I D

r
9I; I D

r
"I!Me

4
N.

The joint view I DMq,rN"I"I DP .

1 In the theory of partial orders, order ideals and ideals are distinct
concepts. Ideals are normally assumed to be subsets which are
k*-closed and directed. We shall, however, deal only with order
ideals in this paper and so our terminology should cause no
confusion
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For an ideal I, the views I D
p
and I D

q
seen by two processes

p, q3P are, in general, incomparable. The events in
I where these two views begin to diverge — the frontier of
I D

p
WI D

q
— play a crucial role in our analysis.

Frontiers. Let I be an ideal and p, q, r3P. We say that an
event e is an r-sentry for p with respect to q if e3I D

p
WI D

qand e¢
r
f for some f3I D

q
!I D

p
. Thus e is an event known

to both p and q whose r-successor is known only to q.
Notice that there need not always be an r-sentry for p with
respect to q.

The pq-frontier at I, frontier
pq

(I ) is defined as
follows:

frontier
pq

(I)

"Me3I D&r3P . e is an r-sentry for p with respect to qN

Observe that this definition is asymmetric — in general,
frontier

pq
(I)9frontier

qp
(I).

Example. As before, in Fig. 1, let I denote the ideal
M0, e

1
, e

2
, e

3
, e

4
, e

5
, e

6
N. I D

q
WID

r
"M0, e

1
, e

2
, e

3
N. frontier

rq
(I)

"Me
2
, e

3
N — e

2
is a p-sentry for r with respect to q whereas

e
3

is a q-sentry. On the other hand, frontier
qr

(I )"Me
3
N. e

3is both an r-sentry as well as an s-sentry for q with respect
to r.

As the example demonstrates, an event e3 frontier
pq

(I)
could simultaneously be an r-sentry for p for several differ-
ent processes r. However, it is not difficult to show that for
any process r, there is at most one r-sentry for p with
respect to q.

3 Primary and secondary information

For a word u and processes p, q3P, we have already
defined latest

p?q
(E ), the latest information that p has

about q after u. We now extend this definition to arbitrary
ideals.

Primary information. Let I be an ideal and p, q3P. Then
latest

p?q
(I) denotes the k*-maximum q-event in I D

p
.

So, latest
p?q

(I) is the latest q-event in I that p knows
about.

The primary information of p after I, primary
p
(I), is

the set Mlatest
p?q

(I)N
q|P

. More precisely, primary
p
(I) is

an indexed set of events — each event e"latest
p?q

(I ) in
primary

p
(I) is represented as a triple (p, q, e). As usual, for

P-P, primary
P
(I )"Z

p|P
primary

p
(I ).

As we have already remarked, for all q3P, the set of
q-events in I D

p
is always nonempty, since q303I D

p
. Fur-

ther, since all q-events are totally ordered by ¢*
q

and hence
by k*, the maximum q-event in I D

p
is well-defined. Notice

that latest
p?p

(I )"max
p
(I ).

To compare primary events, processes need to main-
tain additional information. It turns out that it is sufficient
for each process to keep track of all the other processes’
primary information.

Secondary information. The secondary information of p
after I, secondary

p
(I), is the (indexed) set Z

q|P
pri-

mary
q
(latest

p?q
(I )B ). In other words, this is the latest in-

formation that p has in I about the primary information of

q, for each q3P. Once again, for P-P, secondary
P
(I)"

Z
p|P

secondary
p
(I ).

Each event in secondary
p
(I) is of the form

latest
q?r

(latest
p?q

(I)B ) for some q, r3P. This is the latest
r-event which q knows about upto the event latest

p?q
(I).

We abbreviate latest
q?r

(latest
p?q

(I)B) by latest
p?q?r

(I).
Just as we represented events in primary

p
(I ) as triples

of the form (p, q, e), where p, q3P and e3I, we represent
each secondary event e"latest

p?q?r
(I) in secondary

p
(I)

as a quadruple (p, q, r, e).
However, we will often ignore the fact that primary

p
(I)

and secondary
p
(I) are indexed sets of events and treat

them, for convenience, as just sets of events. Thus, for an
event e3I, we shall write e3primary

p
(I) to mean that

there exists a process q3P such that (p, q, e)3primary
p
(I)

— i.e., e"latest
p?q

(I). Similarly, e3secondary
p
(I) will in-

dicate that for some q, r3P, (p, q, r, e)3secondary
p
(I). We

extend this to other set-theoretic operations as well. So, for
instance, if we say e3primary

p
(I )Wsecondary

q
(I ), we

mean that we can find p@, q@, qA3P such that (p, p@, e)3
primary

p
(I) and (q, q@, qA, e)3secondary

q
(I).

Notice that each primary event latest
p?q

(I ) is also
a secondary event latest

p?p?q
(I) (or, equivalently,

latest
p?q?q

(I) ). So, following our convention that
primary

p
(I) and secondary

p
(I ) be treated as sets of events,

we write primary
p
(I )-secondary

p
(I ).

Comparing primary information

Our goal is to compare and update the primary informa-
tion of processes whenever they meet. For this, we need the
following observation regarding the significance of events
lying on frontiers.

Lemma 1. ¸et I be an ideal, p, q3P and e3 frontier
pq

(I)
an r-sentry for p with respect to q. ¹hen e"latest

p?r
(I).

Also, for some r@3P, e"latest
q?r{?r

(I). So, e3primary
p
(I)

Wsecondary
q
(I).

Proof. Since e is an r-sentry, for some f3I D
q
!I D

p
, e¢

r
f.

Suppose that latest
p?r

(I )"e@9e. Since all r-events are
totally ordered by ¢*

r
, we must have e ¢̀

r
e@ (where

¢̀

r
is the transitive closure of the irreflexive relation

¢

r
). However, e¢

r
f as well, so we have e¢

r
f¢*

r
e@.

Since e@3I D
p
, this means that f3I D

p
as well, which is

a contradiction.
Next, we must show that e"latest

p?r{?r
(I) for some

r@3P. We know that there is a path e[ f
1
[2[

max
p
(I), since e3I D

p
. This path starts inside I D

p
WI D

q
.

If this path never leaves I D
p
WI D

q
then max

p
(I )3I D

q
.

Since max
p
(I) is the k*-maximum p-event in I, it must be

the k*-maximum p-event in I D
q
. So, e"latest

q?p?r
(I ) and

we are done.
If this path does leave I D

p
WI D

q
, we can find an event e@

along the path such that ek* e@¢
r{

f @k* max
p
(I), where

e@3I D
p
WI D

q
, f @3I D

p
!I D

q
and r@3e@W f @. In other words, e@

is an r@-sentry for q with respect to p. We know by our
earlier argument that e@"latest

q?r{
(I). It must be the case

that e"latest
r{?r

(e@B). For, if latest
r{?r

(e@B )"eA9e, then
e ¢̀

r
eAk* e@k* max

p
(I). Since eA3I D

p
and e ¢̀

r
eA,

e9latest
p?r

(I), which is a contradiction. So, e"
latest

r{?r
(e@B )"latest

q?r{?r
(I) and we are done. K

141



Our observation about frontier events immediately gives
us a way to compare primary information using both
primary and secondary information.

Lemma 2. ¸et I be an ideal and p, q, r3P. ¸et
e"latest

p?r
(I) and f"latest

q?r
(I). ¹hen e k* f iff e3

secondary
q
(I).

Proof. (=) Suppose e3secondary
q
(I). Then r3e3I D

qand so e k* f3I D
q
by the definition of latest

q?r
(I).

(N) If e"f, e3primary
q
(I)-secondary

q
(I), and there is

nothing to prove. If e9f, then there exists an event e@
such that e¢

r
e@¢*

r
f and so e3I D

p
WI D

q
. We know that

e@3I D
q
!I D

p
, so e is an r-sentry in frontier

pq
(I). But then,

by our previous lemma, e3primary
p
(I )Wsecondary

q
(I)

and we are done. K

Suppose p and q synchronize at an action a after u. At
this point they ‘‘share’’ their primary and secondary in-
formation. For rNMp, qN, if the event latest

p?r
(E

u
) is also

present in q’s set of secondary events secondary
q
(E

u
), both

p and q know that q’s latest r-event latest
q?r

(E
u
) is at least

as recent as latest
p?r

(E
u
). So, after the synchronization,

latest
q?r

(E
ua

) is the same as latest
q?r

(E
u
), whereas p in-

herits this information from q — i.e., latest
p?r

(E
ua

)"
latest

q?r
(E

u
). In this way, for each r3P, p and q locally

update their primary information about r in E
ua

. Clearly
latest

p?q
(E

ua
)"latest

q?p
(E

ua
)"e

a
, where e

a
is the new

event — i.e., E
ua
!E

u
"Me

a
N.

This procedure generalizes to any arbitrary set P-P
which synchronizes after u. The processes in P share their
primary and secondary information and compare this in-
formation pairwise. Using Lemma 2, for each q3P!P
they decide who has the ‘‘latest information’’ about q. Each
process then comes away with the best primary informa-
tion from P.

Once we have compared primary information, updat-
ing secondary information is straightforward. Clearly, if
latest

q?r
(I) is better than latest

p?r
(I), then every secondary

event latest
q?r?r{

(I) must also be better than the corres-
ponding event latest

p?r?r{
(I ). So, secondary information

can be locally updated too. In other words, to consistently
update primary and secondary information, it suffices to
correctly compare primary information, which is achieved
by Lemma 2.

After a synchronization involving P-P, notice that
all processes in P will come away with the same set of
primary and secondary events.

From the preceding argument, it is clear that the new
event belongs to the primary (and hence secondary) in-
formation of the processes which synchronize at that
event. Further, the update procedure reveals that if an
event disappears from the secondary information of all the
processes, it will never reappear as secondary information
at some later stage. This is captured formally in the follow-
ing proposition.

Proposition 3. ¸et u,w3R* such that w"ua for some
a3R. ¸et e

a
denote the new event in w — i.e., E

w
!E

u
"Me

a
N.

¹hen:

— e
a
3primaryP (E

w
).

— primaryP (E
w
)-Me

a
NXprimaryP (E

u
).

— secondaryP (E
w
)-Me

a
NXsecondaryP(E

u
) .

4 Locally updating primary/secondary information

To make Lemma 2 effective, we must make the assertions
‘‘locally checkable’’ — e.g., if e"latest

p?r
(I ), processes

p and q must be able to decide if e3secondary
q
(I).

Recall that e is represented in primary
p
(I ) as a triple

of the form (p, r, e). So, to check if e3secondary
q
(I ), q

has to look for a quadruple of the form (q, r@, rA, e)3
secondary

q
(I), where r@, rA3P. This can be checked locally

provided events in E
u

are labelled unambiguously while
u is being read.

Clearly, labelling each event e as a pair (i, u(i ) ) is
impossible since, in general, there is no agent which can
consistently supply all processes with the ‘‘correct’’ value
of i. Instead, we may naı̈vely assume that events in E

u
are

locally assigned distinct labels — in effect, at each action a,
the processes in a together assign a (sequential) time-stamp
to the new occurrence of a.2 In this manner, the processes
inP can easily assign consistent local time-stamps for each
action which will let them compute the relations ¢*

p
be-

tween events.
The problem with this approach is that we will need an

unbounded set of time-stamps, since u could get arbitrarily
large. Instead we would like a scheme which uses only
a finite set of labels to distinguish events. This means that
several different occurrences of the same action will event-
ually get the same label. Since the update of primary and
secondary information relies on comparing labels, we must
ensure that this reuse of labels does not lead to any
confusion.

However, from Lemma 2, we know that to compare
primary information, we only need to look at the events
which are currently in the primary and secondary sets of
each process. So, it is sufficient if the labels assigned to
these sets are consistent across the system — i.e., if the same
label appears in the current primary or secondary infor-
mation of different processes, the corresponding event is
actually the same.

Notice that we do not need to maintain a global
temporal order on labels across the system. Lemma 2 as-
sures us that to compare events of interest to us, it suffices
to check for equality of labels assigned to the events.

Suppose we have such a labelling on u and we want to
extend this to a consistent labelling on w"ua — i.e., we
need to assign a label to the new a-event. By Proposition 3,
it suffices to use a label which is distinct from the labels of
all the a-events currently in the secondary information of
E
u
. Since the cardinality of secondaryP (E

u
) is bounded,

such a new label must exist. The catch is to detect which
labels are currently in use and which are not.

Unfortunately the processes in a cannot directly see
all the a-events which belong to the secondary informa-
tion of the entire system. An a-event e may be part of
the secondary information of processes outside a — i.e.,
e3secondaryP~a

(E
u
)!secondary

a
(E

u
).

Example. Let P"Mp, q, r, sN and R"Ma, b, c, d, eN where
a"Mp, qN, b"Mq, rN, c"Mr, sN, d"Mp, sN and e"Mq, sN.

2Recall that for each action aL 3R, h (aL )"a, and we use a to denote
both the action and the subset of processes which synchronize at that
action
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Fig. 2. At e
7
, e

1
3secondary

p
(e

7
B), but r and s cannot ‘‘see’’ e

1
in

secondaryMr, sN
(e

7
B)

Figure 2 shows the events E corresponding to the word
cbadecc.

At the end of this word, e
1
"latest

p?q?s
(E). However,

e
1
Nsecondary

s
(E );

secondary
s
(E)"M(s, p, p, e

4
), (s, p, q, e

3
), (s, p, r, e

2
), (s, p, s, e

4
),

(s, q, p, e
4
), (s, q, q, e

5
), (s, q, r, e

2
), (s, q, s, e

5
),

(s, r, p, e
4
), (s, r, q, e

5
), (s, r, r, e

7
), (s, r, s, e

7
),

(s, s,p, e
4
), (s, s,q, e

5
), (s, s, r, e

7
), (s, s, s, e

7
)N.

Since max
r
(E)"max

s
(E), secondary

r
(E)"secondary

s
(E)

when viewed as sets of events. So, e
1
Nsecondary

r
(E) either.

Thus, e
1

is a c-event which belongs to secondaryP (E)!
secondary

c
(E).

To enable the processes in a to know about all a-events in
secondaryP (E

u
), we need to maintain tertiary information.

¹ertiary information. The tertiary information of p after I,
tertiary

p
(I), is the (indexed) set

Z
q|P

secondary
q
(latest

p?q
(I)B ). In other words, this is the

latest information that p has in I about the secondary
information of q, for all q3P. As before, for P-P,
tertiary

P
(I)"Z

p|P
tertiary

p
(I).

Each event in tertiary
p
(I) is of the form

latest
q?r?s

(latest
p?q

(I)B) for some q, r, s3P. We abbrevi-
ate latest

q?r?s
(latest

p?q
(I )B ) by latest

p?q?r?s
(I ). We rep-

resent each event e"latest
p?q?r?s

(I) as a quintuple
(p, q, r, s, e) in tertiary

p
(I). However, for convenience we

will work with tertiary
p
(I) as though it were simply a set of

events, rather than an indexed set, just as we have been
doing with primary and secondary information.

Just as primary
p
(I )-secondary

p
(I ), clearly second-

ary
p
(I)-tertiary

p
(I) since each secondary event

latest
p?q?r

(I) is also a tertiary event latest
p?p?q?r

(I), (or,
equivalently, latest

p?q?q?r
(I ) and so on).

Lemma 4. ¸et I be an ideal and p3P. If e3secondary
p
(I)

then for every q3e, e3 tertiary
q
(I ).

Proof. Let e3secondary
p
(I) and q3e. Concretely, let

e"latest
p?p{?p{{

(I) for some p@, pA3P. We know that
e3I D

p
WI D

q
and there is a path e[ f

1
[2[max

p
(I ) lead-

ing from e to max
p
(I ) which passes through e@"

latest
p?p{

(I).

Suppose this path never leaves I D
p
WI D

q
. Then

max
p
(I)3I D

q
and so max

p
(I )"latest

q?p
(I ). This means

that e3secondary
p
(latest

q?p
(I)B)-tertiary

q
(I) and we

are done.
Otherwise, the path from e to max

p
(I) does leave

I D
p
WI D

q
at some stage.

If e@NI D
p
WI D

q
then for some f, f @3E and some r3P we

have f3I D
p
WI D

q
, f @3I D

p
!I D

q
and ek* f¢

r
f @ k* e@.

This means that f3 frontier
qp

(I ) is an r-sentry and by our
earlier argument we know that f"latest

q?r
(I). So e"

latest
q?r?p{{

(I)"latest
q?q?r?p{{

(I)3 tertiary
q
(I ).

On the other hand, if e@3I D
p
WI D

q
we can find an

r-sentry f3 frontier
qp

(I ) on the path from e@ to max
p
(I), for

some r3P. We once again get f"latest
q?r

(I ) and so
e"latest

q?r?p{?p{{
(I )3 tertiary

q
(I). K

We shall use this lemma in the following form.

Corollary 5. ¸et I be an ideal, p3P and e a p-event in I. If
eNtertiary

p
(I ) then eNprimaryP (I)XsecondaryP (I ).

So, a process p can keep track of which of its labels are ‘‘in
use’’ in the system by maintaining tertiary information.
Each p-event e initially belongs to primary

e
(I ), and hence

to secondary
e
(I) and tertiary

e
(I) as well. (Recall that for an

event e, we also use e to denote the subset of P which
meets at e). As the computation progresses, e gradually
‘‘recedes’’ into the background and disappears from the
primary and secondary sets of the system. Eventually,
when e disappears from tertiary

p
(I), p can be sure that e no

longer belongs to primaryP (I)XsecondaryP(I ).
Since tertiary

p
(I) is a bounded set, p knows that only

finitely many of its labels are in use at any given time. So,
by using a sufficiently large finite set of labels, each new
event can always be assigned an unambiguous label by the
processes which take part in the event.

5 The ‘‘gossip’’ automaton

Using our analysis of primary, secondary and tertiary
information of processes, we can now design a determinis-
tic asynchronous automaton to keep track of the ‘‘latest
gossip’’ — i.e., to consistently update primary information
whenever a set of processes synchronizes. The processes in
the automaton maintain this information in terms of time-
stamps: when an event e occurs, it is assigned a time-stamp
q(e) by the processes which take part in e.

For p3P, a local state of p is defined by three asso-
ciative arrays prim

p
, sec

p
and ter

p
, indexed by P, P]P

and P]P]P respectively. Each entry in these arrays is
a pair of the form SP, lT, where P is a subset of P and l is
a label drawn from a finite set L — it is sufficient for L to
have N3#1 entries, where N is the number of processes
in P.

After reading a word u, each entry SP, lT in the arrays
prim

p
, sec

p
and ter

p
corresponds to the time-stamp q(e)

of some event e3E
u
. We shall show that for all q, r, s3P,

the values stored in prim
p
(q), sec

p
(q, r) and ter

p
(q, r, s)

are, in fact, the time-stamps of the events latest
p?q

(E
u
),

latest
p?q?r

(E
u
) and latest

p?q?r?s
(E

u
), respectively.

The initial state is the global state in which, for each
process p, all entries in prim

p
, sec

p
and ter

p
are set to
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SP,l
0
T, where l

0
is an arbitrary but fixed label fromL. In

other words, the processes jointly assign the time-stamp
q(0)"SP, l

0
T to the initial event 0.

The local transition functions P
a

modify the local
states for processes in a as follows.

(i) When an a-event e
a

occurs, the processes in a first
choose a time-stamp q (e

a
)"Sa, lT such that for some

p3a, Sa, lT does not appear in ter
p
.

(Recall that L has N3#1 labels. Since there are at
most N3 labels in ter

p
for each p, we will always be

able to find an unused label in L to assign to e
a
. In

general, we have to choose Sa, lT in a canonical way.
One possibility is to linearly order the sets P and L.
Let p

a
be the smallest process in a with respect to the

ordering on P. To fix the time-stamp Sa, lT assigned
to e

a
, choose l such that it is the smallest label with

respect to the ordering onLwhich does not appear in
ter

pa
.)

(ii) Let a"Mp
1
, p

2
,2, p

k
N. Corresponding to each pro-

cess rNa, fix a process n
r
3a as follows.

n
r
:"p

1
;

for each i in M2, 3,2, kN do
if the value stored in primnr

(r) appears in sec
pithen n

r
:"p

i
;

od
(iii) For each p3a, update prim

p
, sec

p
and ter

p
in phases.

— First, update Mprim
p
N
p|a

as follows.
For each q3a, prim

p
(q) :"Sa, lT.

For each r3P!a, prim
p
(r) :"primnr

(r).
— Next, update Msec

p
N
p|a

as follows.
For each q, r3P such that q3a,
sec

p
(q, r) :"prim

q
(r).

For each q, r3P such that qNa,
sec

p
(q, r) :"secnq

(q, r).
— Finally, update Mter

p
N
p|a

as follows.
For each q, r, s3P such that q3a,
ter

p
(q, r, s) :"sec

q
(r, s).

For each q, r, s3P such that qNa,
ter

p
(q, r, s) :"ternq

(q, r, s).

We now verify that the arrays maintained by each process
p in the gossip automaton always record the time-stamps
of the primary, secondary and tertiary information of p.

Proposition 6. ¸et u3R*. For all processes p3P, the
values stored in prim

p
, sec

p
and ter

p
after reading u satisfy

the following properties.

— For all q3P, prim
p
(q)"q (latest

p?q
(E

u
) ).

— For all q, r3P, sec
p
(q, r)"q(latest

p?q?r
(E

u
) ).

— For all q, r, s3P, ter
p
(q, r, s)"q (latest

p?q?r?s
(E

u
) ).

Moreover, for all processes p, q3P and events e3
primary

p
(E

u
)Xsecondary

p
(E

u
) and f3primary

q
(E

u
)X

secondary
q
(E

u
), if q (e)"q ( f ) then e"f.

Proof. The proof is by induction on n, the length of u.
(n"0)

The base case is when u is the empty string. We know
that for each p3P, all entries in prim

p
, sec

p
and ter

pare initially set to SP, l
0
T, where SP, l

0
T is the time-stamp

assigned to the initial event 0. Clearly, these values

satisfy all the conditions specified in the statement of the
proposition.
(n'0)

Suppose u"wa. The time-stamp Sa, lT assigned to
the new a-event e

a
in step (i) of the transition does not

appear in ter
p

for some p3a. By the induction hypo-
thesis, the values stored in ter

p
after reading w are the

time-stamps of the corresponding events in tertiary
p
(E

w
).

Lemma 4 then guarantees that no event in primaryP(E
w
)X

secondaryP (E
w
) is time-stamped Sa, lT — if there were

such an event, it would be in the tertiary information
tertiary

q
(E

w
) of every process q3a as a result of which, by

the induction hypothesis, the label Sa, lT would be in
ter

q
after reading w for every q3a.

By the induction hypothesis, we also know that no two
distinct events in primaryP (E

w
)XsecondaryP (E

w
) are as-

signed the same time-stamp. Since primaryP (E
u
)-Me

a
NX

primaryP (E
w
) and secondaryP (E

u
)-Me

a
NXsecondaryP (E

w
)

(Proposition 3), it follows that the time-stamps assigned
to primaryP(E

u
)XsecondaryP(E

u
) are also distinct. In

other words, for all processes p, q3P and events e3
primary

p
(E

u
)Xsecondary

p
(E

u
) and f3primary

q
(E

u
)X

secondary
q
(E

u
), if q (e)"q ( f ) then e"f.

We now have to verify that the updated values in
prim

p
, sec

p
and ter

p
for each p3a are the time-stamps of

the corresponding events in the primary, secondary and
tertiary information of p after u.

By the induction hypothesis, for each p3a, the values
in prim

p
and sec

p
after reading w are the time-stamps

assigned to the corresponding events in primary
p
(E

w
) and

secondary
p
(E

w
) respectively. By the induction hypothesis,

we also know that for all p, q, r, s, s@3P, if the value stored
in prim

p
(r) after reading w is the same as the value stored

in sec
q
(s, s@) after reading w then, in fact, the event

latest
p?r

(E
w
) is the same as the event latest

q?s?s{
(E

w
).

It then follows that for rNa, the process n
r
3a identified

in step (ii) of the transition is one of the processes in
a which has the best primary information about r after
w — by Lemma 2, for p, q3a and rNa, latest

p?r
(E

w
)k*

latest
q?r

(E
w
) iff the event latest

p?r
(E

w
) appears in

secondary
q
(E

w
), which is equivalent to checking that

the time-stamp q (latest
p?r

(E
w
)) stored in prim

p
(r) appears

in sec
q
.

From this, it is easy to see that for all p3a, the up-
dates made to prim

p
, sec

p
and ter

p
in step (iii) ensure that

for all q, r, s3P, prim
p
(q)"q (latest

p?q
(E

u
) ), sec

p
(q, r)"

q(latest
p?q?r

(E
u
)) and ter

p
(q, r, s)"q(latest

p?q?r?s
(E

u
)). K

The gossip automaton does not have any final states, since
we do not need to accept any language. Instead, we define
for each a3R a function g

a
: S

a
P(2P!M0N)P which

checks the arrays prim
p

and sec
p

of each process p in
a and computes for each q3P, the set of processes in
a which have the most recent information about q.

(A small technical point: g
a

must be defined for all
states in S

a
. However, not all combinations of local states

may be ‘‘meaningful’’. We can easily assemble local states
to form an a-state for which the inductive assertions do not
hold, as a result of which our procedure for comparing
primary information breaks down. However, since such
a-states are unreachable, we can ignore this problem
and simply assign a default value to g

a
in these cases —
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for instance, the default value could be the function
Mp> aN

p|P
.)

This immediately yields the result we set out to
establish.

Theorem 7. ¸et (R, h ) be the distributed alphabet cor-
responding to C-(2P!M0N). ¹he family of functions
Mlatest-gossip

c
:R*P(2P!M0N)PN

c|R is locally computable.

¹he size of the gossip automaton

Lemma 8. In the gossip automaton, the local state of each
process p3P can be described using O(N3 logN) bits,
where N"DP D.

Proof. A local state for p consists of the arrays prim
p
, sec

pand ter
p
. We estimate how many bits are required to store

this.
Recall that for any ideal I, each event in primary

p
(I ) is

also present in secondary
p
(I). Similarly, each event in

secondary
p
(I) is also present in tertiary

p
(I). So it suffices to

store just the labels of tertiary events in the array ter
p
. By

fixing an ordering ofP]P]P, these events can be stored
as a list with N3 entries.

Each new event e was assigned a label of the form
SP, lT, where P was the set of processes that participated
in e and l3L.

We have already seen that it suffices to have O(N3)
labels in L. As a result, each label l3L can be written
down using O(logN) bits.

To write down P-P, we need, in general, N bits. This
component of the label is required to guarantee that all
secondary events in the system have distinct labels, since
the setL is common across all processes. However, we do
not really need to use all of P in the label for e to ensure
this property. If we fix a linear order on P, it suffices to
label e by Sp

e
, lT where, among the processes participat-

ing in e, p
e
is the smallest with respect to the ordering onP.

It is easy to verify that Proposition 6 continues to hold
with respect to these modified labels.

Thus, we can modify our automaton so that the pro-
cesses label each event by a pair Sp, lT, where p3P and
l3L. This pair can be written down using O (logN ) bits.
Overall there are N3 such pairs in the array of tertiary
events, so the whole state can be described using
O(N3 logN) bits. K
The preceding lemma implies that the number of local
states of a process could be exponential in N, the number
of processes in the system. In general, this would mean that
we require an exponential amount of space to specify the
entire automaton (though each state can be described
using a polynomial number of bits) since the transition
table of the automaton would have an exponential number
of entries.

However, in this case, we do not need to exhaustively
enumerate the entire state space and transition table to
completely describe the automaton. Since the states are
structured entities and the transition function is presented
as an algorithm which manipulates the data in these struc-
tured states, the gossip automaton can in fact be effectively
presented in space polynomial in N. This ability to build
the gossip automaton efficiently ‘‘on the fly’’ is crucial for
embedding it in other distributed algorithms.

6 Extensions and applications

Beyond tertiary information

The gossip automaton consistently labels all primary and
secondary events. In other words, at any point, distinct
primary and secondary events have distinct time-stamps.
By Lemma 2, this is sufficient to correctly compare and
update primary information.

However, we may want to keep track of events which
are older than secondary events. We can generalize the
definition of secondary and tertiary information and in-
ductively define the k-ary information of a process p with
respect to an ideal I, for any natural number k.

The case k"1 corresponds to primary information.
For k'1, the k-ary information of p after I, k-ary

p
(I), is the

(indexed) set Z
q|P

(k!1)-ary
p
(latest

p?q
(I )B ). In other

words, this is the latest information that p has in I about
the (k!1)-ary information of q, for all q3P.

It is not difficult to see that the argument in Lemma 4
can be extended to yield the following result, proved for-
mally in [15].

Lemma 9. ¸et I be an ideal and p3P. If e3k-ary
p
(I ) then

for every q3e, e3 (k#1)-ary
q
(I).

Together with Lemma 2, this implies that the gossip
automaton can be modified to maintain consistent
time-stamps for all events upto depth k, for any natural
number k.

Optimizing the automaton

If we are only concerned with comparing and updating
primary information, the gossip automaton can be made
more concise. To achieve this, each process maintains its
primary information as a directed graph which reflects the
underlying k*-order between primary events, rather than
storing the information as a simple array of labels as we
have described here. It turns out that processes can
compare and update these primary graphs without re-
course to secondary information. Secondary information
is then required only to ensure that new events get unused
labels. Tertiary information is dispensed with altogether.
This leads to the following result (details can be found
in [15]).

Lemma 10. ¹he gossip automaton can be modified so that
the local state of each process p3P is describable using
O(N2 logN) bits, where N"DP D.

It is important to note that this optimized automaton
consistently labels only primary events. Secondary events
could get inconsistent labels. This becomes relevant when
we come to applications of the gossip automaton.

Further optimizations are possible if the structure
of the alphabet (R, h ) is such that synchronizations
are ‘‘well-behaved’’. One example is when the processes
are located on the vertices of an d-dimensional hyper-
cube (i.e., DP D"2d), with synchronizations taking place
along faces of the hypercube. Once again, details can be
found in [15].
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Applications

Building the gossip automaton is a basic step in tackling
many problems in the theory of asynchronous automata.

Asynchronous automata play an important role in the
theory of distributed systems because of their close
connection to trace theory. Trace theory, initiated by
Mazurkiewicz [19], is a language-theoretic approach to
the study of concurrent systems. Traditionally, formal lan-
guage theory models computations of sequential systems
as strings over an abstract alphabet. Instead, trace theory
describes computations of concurrent systems in terms of
equivalence classes of strings, called traces. All strings in
a trace are equivalent upto permutation of adjacent letters
which belong to an underlying independence relation on
the alphabet. Thus, the different elements of a trace corres-
pond to different sequential observations of the same con-
current computation.

A deep theorem of Zielonka [30] shows that asyn-
chronous automata are a natural distributed machine
model for recognizing trace languages. Zielonka’s original
proof of the connection between these automata and rec-
ognizable trace languages is widely accepted to be difficult
to assimilate. In [23], we show that the gossip automaton
can be used to provide a more structured proof of
Zielonka’s theorem. Overall, the construction we present is
quite similar to the one described in Zielonka’s original
paper. However, we feel that by separating out clearly the
role played by the gossip automaton, our proof is much
easier to digest. (Other new proofs of Zielonka’s theorem
exist [2], but these are based on asynchronous cellular
automata [31], a slightly different — and, in our opinion,
less intuitive — machine model.)

In [13], a determinization construction is presented for
asynchronous automata using a generalization of the clas-
sical subset construction for finite automata. This con-
struction allows us to keep track of the global states which
are currently valid at any stage of a computation by
a non-deterministic asynchronous automaton.

The key problem to be tackled in the determinization
construction is to estimate the amount of information that
can be safely ‘‘forgotten’’ by the subset automaton without
sacrificing global consistency. It turns out that it is suffi-
cient for each process to maintain ‘‘histories’’ upto the level
of secondary events. This is accomplished by using the
gossip automaton presented here to assign consistent
time-stamps to all secondary events. Notice that the opti-
mized gossip automaton of [15] cannot be used in the
determinization construction since it only guarantees con-
sistent time-stamps upto primary events.

In the past few years, there has been a lot of interest in
extending asynchronous automata to process infinite in-
puts. Analogous to Büchi automata on infinite strings,
Gastin and Petit [7] have defined Büchi asynchronous
automata which operate on infinite traces. Although it has
been known for a while that these automata are closed
under complementation for algebraic reasons, the only
direct complementation construction provided so far has
been for Büchi asynchronous cellular automata [24].
Safra’s determinization construction for Büchi automata
[26] has recently been extended to Büchi asynchronous
automata [14]. This provides a natural procedure for

complementing these automata. Once again, the gossip
automaton plays a crucial role in the construction.

Automata on infinite strings have always been closely
linked to logic [28]. This connection holds for Büchi
asynchronous automata as well. Recently, Thiagarajan
[27] has developed an extension of propositional linear-
time temporal logic which is interpreted over infinite
traces rather than infinite linear sequences. This logic
appears to be quite expressive, while remaining decidable
(unlike several other partial-order logics studied in the
literature [18]). The decision procedure for this logic is
automata-theoretic, in the style of Vardi and Wolper [29],
except that it makes use of Büchi asynchronous automata
rather than conventional Büchi automata. The gossip au-
tomaton plays a crucial role in this construction as well. In
fact, this was the original motivation for constructing the
gossip automaton.

Asynchronous communication

In this paper, we have only dealt with synchronous com-
munication. Synchronous communication achieves co-
ordination among independent agents by periodically
permitting subsets of agents to pool information together
to make a decision.

Another standard way for agents to exchange informa-
tion is through message-passing. This mode of exchanging
information is usually referred to as asynchronous com-
munication, since there may be an arbitrary delay between
the time when a message is sent and the time when it is
received.

Synchronous communication is easier to handle, both
from a theoretical standpoint as well as from the point of
view of programming. It is no coincidence that languages
like CCS [20] and CSP [11] which have been developed
for specifying communicating systems assume syn-
chronous communication as the basic means of exchang-
ing information.

However, when agents are widely separated in space,
asynchronous communication is generally the only practi-
cal way of achieving coordination. So, there is a consider-
able body of literature devoted to distributed algorithms
and protocols for asynchronous systems [16].

We have extended our approach to deal with message-
passing systems where the communication medium is re-
liable, subject to certain restrictions on the number of
unacknowledged messages that can be present in the sys-
tem at any given time [21]. This shows that our analysis
based on primary, secondary and tertiary information is
applicable to a much wider range of distributed systems
than the purely synchronous systems discussed in this
paper.

7 Discussion

We now discuss the connections between our results and
other work in related areas.

Studies of ‘‘gossiping’’ in networks have traditionally
focussed on efficiently disseminating a fixed piece of
information (or gossip) from one node to all other nodes
in a network [9]. The main aim is to find an optimal
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sequence of communications to distribute data for a given
network topology.

Israeli and Li [12] introduced the notion of ‘‘bounded
time-stamps’’ and argued that these were fundamental in
solving many problems in distributed systems — notably
that of creating what are called ‘‘atomic registers’’ [17].
Their results have been extended and considerably simpli-
fied by a number of others [3, 5, 6, 8]. However, this line of
work is based on a shared memory model, which is quite
different in spirit from the asynchronous automaton
model. Though it may be possible to formally translate
their results to our framework, we feel that the intuition
underlying their time-stamping algorithms is quite differ-
ent from ours. In general, solutions to time-stamping prob-
lems seem to depend heavily on the underlying model of
a distributed system that is used and it is difficult to
compare such algorithms across models.

More closely connected to our work are the bounded
time-stamping algorithms implemented using asyn-
chronous cellular automata in the study of recognizable
trace languages [1, 2]. The synchronization mechanism of
asynchronous cellular automata is quite different from
that of asynchronous automata. Asynchronous cellular
automata correspond more closely to shared memory sys-
tems than to systems that communicate by direct interpro-
cess communication. Thus, though the overall goal of the
constructions in [1, 2] is closely related to the gossip prob-
lem which we have studied here, the two time-stamping
algorithms appear to be incomparable since they are based
on fundamentally different assumptions about how pro-
cesses interact.

Our definition of locally computable functions is
closely linked to the notion of asynchronous mappings
which is fundamental to the constructions used in [2]. It
would be interesting to formally characterize the class of
locally computable functions and develop a methodology
for automatically synthesizing an asynchronous automa-
ton to compute a given locally computable function, as is
done for asynchronous mappings in [2].

Though our algorithm can be implemented as an asyn-
chronous automaton, it correctly computes the latest gos-
sip function locally for any input word. In other words, the
set of communication sequences generated by the under-
lying system need not be regular. Our algorithm will also
work on sequences generated, for instance, by N com-
municating Turing machines. Thus, any distributed algo-
rithm which needs to keep track of the flow of information
between processes can incorporate the gossip automaton
as a ‘‘background’’ routine. Moreover, since the gossip
automaton can be constructed efficiently ‘‘on the fly’’,
embedding it in another algorithm does not involve a very
significant computational overhead.

Since our algorithm does not add any extra messages
to the underlying computation, it is automatically resilient
to failures — even if some processes stop functioning, our
algorithm will continue to update primary information
correctly for those parts of the system which are still active
in the underlying computation. This in-built fault-toler-
ance is also present in the shared memory time-stamping
protocols of [1, 2, 3, 5, 8, 12] and others.

In an asynchronous automaton, each move is simulta-
neously performed by all participating processes. This

strong atomicity assumption is not crucial for our algo-
rithm. Notice that the label of an event is uniquely fixed by
the primary, secondary and tertiary information of the
participating processes. Thus, we could implement each
multi-way synchronization as a series of synchronous
communications where processes exchange their local in-
formation pairwise and then proceed independently. The
deterministic nature of our algorithm guarantees that each
process which participates in an event will locally choose
the same time-stamp for the new event, since all processes
taking part in the event base their choice of time-stamp on
identical shared information. Similarly, once each process
has collected the primary, secondary and tertiary informa-
tion of every other participating process, it can update its
local information unambiguously. Moreover, it can also
compute the updated information of every other process
which took part in the event.

The construction of the gossip automaton establishes
a non-obvious property for all systems with synchronous
communication. Suppose an agent p

1
has a private vari-

able X which no other agent can modify, and agents
Mp

2
, p

3
,2, p

N
N keep track of the latest value of X that they

have heard of from p
1

(either directly or indirectly). Then,
along any run of the system, bounded time-stamps suffice
for determining which of Mp

2
, p

3
,2, p

N
N have the most

recent value of X. This is important, for example, for crash
recovery. If the system crashes and p

1
fails to come alive

after the crash, the other agents can get together and
synthesize an optimal ‘‘last-known’’ state of p

1
by compar-

ing their information about p
1
.

There are obvious parallels between the notion of
primary, secondary and tertiary information we use in
this paper and the concept of levels of knowledge about
events in a distributed system [10, 25]. It would be
interesting to formally work out how our approach fits
in with knowledge-theoretic techniques for analyzing dis-
tributed systems. As far as we are aware, none of the
work in knowledge theory has addressed the synchroniz-
ing model that we consider here, so establishing a pre-
cise connection between the two approaches is not
straightforward.
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