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Summary. The well-known problem of leader election in 
distributed systems is considered in a dynamic context 
where processes may participate and crash spontaneously. 
Processes communicate by means of buffered broadcast- 
ing as opposed to usual point-to-point communication. In 
this paper we design a leader election protocol in such 
a dynamic context. As the problem at hand is considerably 
complex we develop the protocol in three steps. In the 
initial design processes are considered to be perfect and 
a leader is assumed to be present initially. In the second 
protocol, the assumption of an initial leader is dropped. 
This leads to a symmetric protocol which uses an (ab- 
stract) timeout mechanism to detect the absence of 
a leader. Finally, in the last step of the design processes 
may crash without giving any notification of other pro- 
cesses. The worst case message complexity of all protocols 
is addressed. A formal approach to the specification and 
verification of the leader election protocols is adopted. The 
requirements are specified in a property-oriented way and 
the protocols are denoted by means of extended finite state 
machines. It is proven using linear-time temporal logic 
that the fault-tolerant protocol satisfies its requirements. 

Key words: Broadcast network Communication proto- 
cols - Finite-state machines - Leader election - Message 
complex i ty -  Protocol design, specification, and verifica- 
tion Temporal logic 

1 Introduction 

In current distributed systems several functions (or 
services) are offered by some dedicated process(es) in the 
system. One might think of address assignment and regis- 
tration, query coordination in a distributed database sys- 
tem, clock distribution, token regeneration after token 
loss, initiation of topology updates, load balancing, and so 
forth. Usually many processes in the system are potentially 
capable to offer such a functionality. However, for consist- 
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ency reasons at any time only one process is allowed to 
actualy offer the function. Therefore, one process called 
the "leader" - must be elected to support that function. 
Sometimes it suffices to elect an arbitrary process, but for 
other functions it is important to elect the process with the 
best capabilities to perform that function. In the latter case 
the ranking of processes is application-dependent. For  
instance, when using a leader for distributing the clock the 
ranking may be based on local clock skews, whereas for 
load balancing the ranking may be based on the process' 
local load. In this paper we abstract from this and use 
ranking on basis of process identities. 

In this paper we consider a distributed leader election 
(LE) protocol and use ranking of processes on basis of 
process identities. Each process has a fixed unique identity 
and a total ordering exists on these identities, known to all 
processes. We assume a finite number of processes. The 
leader is defined as the process with the largest identity 
among all participating processes. Realistic distributed 
systems are subject to failures. The problem of leader 
election thus becomes of practical interest when failures 
are anticipated. In this paper, processes behave dynam-  
ically - they may participate at arbitrary moments and 
stop participating spontaneously without notification to 
any other process. Crashed processes may recover at any 
time. Thus, a leader has to be elected from a set of pro- 
cesses whose elements may change continuously. Pro- 
cesses communicate with each other by exchanging mess- 
ages via a broadcast  network. This network is considered 
to be fully reliable. A broadcast message is received by all 
processes except the sending process itself. Communica- 
tion is asynchronous and order-preserving. 

Leader election is a special case of distributed consen- 
sus problems. Several impossibility results have been 
obained for such problems. For instance, in [14] a number 
of orthogonal characteristics is identified by which the 
existence of a solution for the distributed consensus prob- 
lem is determined. According to this classification our 
problem is solvable since we consider order preserving 
message delivery, broadcast communication and atomic 
send and receive. 
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Due to the complexity of the design of a fault-tolerant 
LE protocol the principle of separation of concerns is 
applied. That is, we develop a fault-tolerant protocol in 
three steps, each step resulting in a LE protocol. We start 
with rather strong - and unrealistic - assumptions about 
process and system behaviour. In each subsequent step 
these assumptions are weakened and a protocol is con- 
structed starting from the protocol derived in the previous 
step. The steps of our design are as follows. In our initial 
design processes are considered to be perfect and a leader 
is assumed to be present initially. A process may partici- 
pate spontaneously, but once it does it remains to do so 
and does not crash. In the second step, the assumption of 
an initial leader is dropped. This leads to a fully symmetric 
protocol which uses an (abstract) timeout mechanism to 
detect the absence of a leader. Finally, in the last step of 
our design processes may crash without giving any notifi- 
cation to other processes. 

Existing designs of LE protocols are mainly focussed 
on reducing message and time complexity, scarcely paying 
attention to protocol verification, let alone providing a for- 
mal approach to verification. However, for the design of 
complex communication protocols formal methods are 
indispensable. The starting-point of our designs is a re- 
quirements specification in linear-time temporal logic. 
Temporal logic is an appropriate and expressive language 
for specifying properties and behaviours of reactive sys- 
tems, like communication protocols, in an abstract way. 
As a protocol specification language we adopt extended 
finite state machines. The combination of temporal logic 
and state-transition diagrams enables a formal verification 
of the designed protocols. In [8] such a verification is 
carried out for all presented protocols. In this paper we 
present the proof of the most sophisticated protocol, the 
fault-tolerant protocol. 

As efficiency plays an important role in the design 
of leader election protocols some complexity results 
are given for each protocol presented in this paper. We 
focus our analysis on the worst case message com- 
plexity which indicates the maximum number of broadcast 
messages needed to elect a leader. For N participating 
processes the message complexity of our initial protocol 
is dT(N 2) broadcast messages, which can be improved 
to dT(N) by adopting a tricky way of message buffering. 
Using this buffer mechanism the last two protocols have 
a message complexity of r and t~(N 2) broadcast 
messages, respectively, when no crashing processes are 
considered. 

The paper is further organized as follows. In section 
2 the relation to existing work is presented. The require- 
ments specification and design of all three protocols is 
presented in section 3. Furthermore, an introduction to the 
protocol description language and to linear-time temporal 
logic is given in this section. In section 4 it is verified using 
temporal logic that the third protocol from section 3 satis- 
fies its requirements. The worst case message complexity of 
all three protocols is presented in section 5. Finally, in 
section 6 some concluding remarks are given and future 
work is addressed. 

In the rest of this paper, we use the term protocol 
as a synonym for similar terms as distributed program, 
distributed algorithm, and so forth. 

2 Relation to other work 

Leader election protocols 

The problem of leader election was originally coined by 
[31] in the late seventies and various LE protocols have 
been developed since then. A broad range of solutions 
exists varying in network topology (ring [11, 31, 37], 
mesh, complete network [2, 26, 42], and so on), commun- 
ication mechanism (asynchronous, synchronous), avail- 
able topology information at processes [4, 32], and so 
forth. 

Only a few LE protocols using broadcast communica- 
tion have been treated (see e.g. [20, 24]). A possible 
straightforward solution to a broadcast network is to 
superimpose a (virtual) topology - like a ring - on it and to 
adopt a well-known solution for this topology. However, 
most existing solutions are aimed at distributed systems 
that are assumed to behave perfectly - no failures are 
anticipated and a fixed number of participating processes 
is assumed. Moreover, the specific characteristics of broad- 
casting are not exploited. 

Realistic distributed systems are subject to failures. 
Some LE protocols are known that tolerate either com- 
munication link failures (see e.g. [1, 41]) or process failures 
[12, 13, 20, 23, 24, 34]. In [20] the LE problem with 
a similar failure model and using broadcast communica- 
tion is considered, however, no ordering between processes 
is considered. A number of LE protocols for various differ- 
ent kinds of broadcasting (reliable, unordered, ordered 
broadcasting) are presented in [24]. The authors of this 
paper consider, however, synchronous broadcast mecha- 
nisms such that processes reply without any delay, and 
consider processes to have synchronized clocks. [23] and 
[34] only consider process crashes prior to the start of the 
protocol, but no crashes during protocol execution are 
taken into account. We consider processes to be able 
to crash at any moment of time. In [12, 13] LE protocols 
are presented that tolerate transient process failures. 
These protocols belong to the category of self-stabilizing 
protocols [15, 38]. 

Specification and verification in temporal logic 

Existing LE protocols are mainly focussed on reducing 
message and time complexity, scarcely paying attention 
to problem specification and protocol verification. To 
our knowledge no formal specification of the (dynamic) 
LE problem is published elsewhere. In order to correctly 
design (and verify!) communication protocols such a 
formal specification is indispensable. The specification 
and verification techniques we use are well-known for 
almost a decade: protocol specification and verification 
using a combination of temporal logic [33] and state- 
transition diagrams [6] has been applied for a number 
of other protocols (see e.g. [28, 21, 40]). However, 
the dynamic character of processes combined with a 
timeout mechanism so as to detect the absence of a 
leader makes the specification and verification more 
complex than traditionally considered communication 
protocols. 
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Complexity results 

Numerous complexity results for LE protocols are known. 
We mention only a few and concentrate on worst case 
message and time complexity. First, consider point-to- 
point networks with N processes participating in the elec- 
tion. Early protocols for an unidirectional ring network 
[11, 3 I] have a message and time complexity of (9(N 2) and 
C(N), respectively. These results have been improved (see 
e.g. [37, 30]) to protocols with a message and time com- 
plexity of (~(N log N) and O(log N). For  complete net- 
works a message and time complexity of r  log N) and 
(9(N) can be reached, see [2, 3, 25, 32]. In [42] a number of 
LE protocols for asynchronous complete networks is 
given with a message complexity of (9(Nk) and a time 
complexity of r with k a constant, log N < k < N. 

To elect a leader, the broadcast LE protocols defined in 
[24] have a worst case message complexity of r reliable 
ordered broadcast messages. On failure of a leader the 
election must be repeated involving all remaining pro- 
cesses, resulting in an overall message complexity of 
(9(N2). They consider synchronised processes and syn- 
chronised communication. 

3 Design of LE protocols 

3.1 Introduction 

In this section we describe the communication mechanism 
used for our protocols, introduce the protocol description 
language, and introduce linear-time temporal logic. 

3.1.1 Communication 

Processes communicate with each other by exchanging 
messages via a broadcast network. A broadcast message 
sent by some process p is received instantaneously by all 
processes except p itself. There is no need for separate 
point-to-point messages to accomplish this. In contrast 
with a multi-process rendez-vous in which several 
processes synchronize on a common communication, 
broadcasting is considered to be asynchronous. Broadcast 
messages are buffered by processes, resulting in a so-called 
buffered broadcast [17] mechanism. This buffering is 
order preserving, in this paper the only form of commun- 
ication we consider between processes is broadcasting. 
Therefore, we often omit the prefix broadcast in terms like 
message, communication, and so on. 

It is assumed that the communication network is per- 
fect, that is, no duplication, loss or garbling of messages 
takes place. In this way we abstract from the design of 
a reliable broadcast facility on a faulty broadcast network 
and assume the existence of such a protocol. Protocols 
that establish a reliable ordered broadcast mechanism 
have been treated extensively in literature (see e.g. 
[36, 39]). In order to avoid interference of transmissions of 
different processes it is assumed that at most one message 
may be transmitted via the network at any moment of 
time. 

The ability of broadcasting communication is often 
treated as a special feature of the communication network. 

As a result, existing notations for concurrent (and distri- 
buted) processes - like CSP [22], Estelle [10], and so on 

do not provide a primitive by which a process can 
explicitly broadcast a message. Here we consider broad- 
casting as part of our description language (see also [17]). 

3.1.2 Protocol description language 

We denote our protocol by a Finite State Machine (FSM) 
diagram [6-1, also called state transition diagram. 
Transitions consist of an (optional) guard and zero or 
more actions. Depending on the guard a transition is 
either enabled or disabled. In a state the process selects 
non-deterministically between all enabled transitions, it 
performs the actions associated with the selected transition 
(in arbitrary order) and goes to the next state. When there 
are no enabled transitions the process remains in the same 
state. Evaluation of a guard, taking a state transition and 
executing its associated actions constitutes a single atomic 
event. 

A message consists of a message type and one or more 
parameters, m(pl , . . . , p , )  denotes a message of type m with 
parameters Pl through p,. The sending of this message is 
denoted by !!m(pl, ... ,p,). At execution of the send state- 
ment by process p, say, the message is buffered instan- 
taneously at each process except p. Since broadcasting is 
asynchronous, execution of !!m( --- ) is never delayed due to 
unreadiness of a receiving process. (Notice that this means 
that a process must always be able to buffer a message 
received via the network.) Execution of ??.m( --- ) by a pro- 
cess delays that process until a message of type m is 
delivered. Messages sent by !!m( ... ) can be received only 
by ??m(.--), so corresponding input and output actions 
must affect the same message type and the same number of 
parameters (and the same parameter types). Communica- 
tions can be viewed as (possibly delayed) distributed as- 
signments, that is, for processes p and q, variables x; and 
expressions Ei (0 < i < n) execution of !!m(E1,.. . ,E,) in 
p and ??m(xl , . . . ,x , )  in q establishes the multiple assign- 
ment xl . . . .  , x , :=  E1 . . . .  ,E,  (in q). 

Guards are boolean expressions. We allow receive ac- 
tions to appear in guards. This part of a guard is true only 
when execution of the receive action causes no delay, that 
is, when the corresponding message is at the head of the 
process' buffer. An absent guard denotes a guard that is 
always true. 

When in a certain state a message type is at the head of 
the buffer for which no corresponding transition is present 
this is considered to be an error. This situation is called 
unspecified reception and leads to a deadlock of the system. 

A process consists of a buffer process taking care of 
buffering messages received via the communication net- 
work, and a 'main' process. The buffer processes are left 
implicit - they operate according to the first-in first-out 
principle, and are at any moment of time ready to accept 
an input of the network and to offer an earlier received 
message to the main process. A main process is denoted by 
a FSM and the co-operation of these processes is con- 
sidered to be the parallel composition of these FSMs. The 
reader should bear in mind that all processes in our system 
are equivalent (apart from their identity). Thus the system 
is the parallel composition of a number of equivalent 
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FSMs. The individual FSMs co-operate by exchanging 
messages in the way described above. The parallel com- 
position is based on a fair  interleaving semantics where 
each process gets its turn infinitely often. Furthermore, 
a transition has to be taken eventually when it is continu- 
ously enabled ('weak fairness' [33]). 

3.1.3 Introduction to temporal logic 

For  our formulation of the requirements of our protocol 
and the subsequent verification that our protocol meets 
these requirements we use a first-order temporal logic 
based on the temporal operators q / and  5 ~ (see also [33]). 
An extensive introduction to the use of temporal logic for 
communication protocols can be found in [18]. 

A temporal formula is constructed from predicates, 
boolean operators (such as ~ and A ) and temporal oper- 
ators like [] (pronounce 'always'), O ('eventually'), q/( 'un- 
til'), ~V ('unless'), O ('next'), �9 ('always in the past'), 
�9 ('some time in the past'), ~ ('since') and of ('just'). Let 
q) and ~ be arbitrary temporal formulas. We consider the 
future (and the past) in a strict sense, that is, the current 
moment is excluded. Informally speaking, []q~ means that 
qJ will be true at every moment in the future. Oq~ means 
that q~ will be true at some moment in the future, and ~0~//~ 
means that 0 will become true eventually and that q~ will 
be true continuously until that moment. ~0~-0 means that 
either ~o holds indefinitely or ~o~//0 holds (weak until). O~0 
means that +p holds at the next moment in time (our time 
domain is discrete since we use sequences, see below). The 
temporal operators which refer to the past are informally 
defined as follows. �9 means that q~ has been true at every 
moment in the past, �9 means that q~ has been true at 
some moment in the past, and finally, q~,9~0 means that 

has been true at some moment in the past and that q3 has 
been true continuously since that moment. Jq~ means that 
~0 has just become true. At each moment of time the 
predicate true holds. Predicate false equals --1 true. 

The formal semantics of our form of temporal logic is 
defined by interpreting temporal formulas in a model. We 
consider a (possibly infinite) sequence s of states (So, s t , . . . ,  
s~,...) starting from the initial state So. A model is a se- 
quence s together with a valuation function V assigning 
a subset of states to each predicate (giving the states in 
which the predicate is true). Given a model (s, V) the 
meaning of temporal formulas is defined by a satisfaction 
relation (denoted by [= ) between the model and the cur- 
rent state (represented by its number in s), and a temporal 
formula. This satisfaction relation holds if and only if the 
formula is true in that state in the model. For s = 
(So, S1, . . . , s , ,  . . .) and q), ~0 arbitrary temporal formulas, 
[= is defined as follows: 

s, V, n [= P iff Sn �9 V(P) for each predicate P 

s, V, n l= -n q) iff s, V, n g= ~o 

s , V ,  n l = q ) ^ O  iff s , V ,  n l=q)  a n d s ,  V , n [ = O  

s, V,n)= ~o~ 0 iff there exists m > n such that 
s, V,m]= 0 and s, V,i[= q~ for all 
i with n < i < m 

s,V, nl--~p~O iff there exists m with 0 < m < n  such 
that s, V, m 1= O and s, V, i1= ~0 for 
all i with m < i < n. 

In our requirements (section 3.2.1 below) and our veri- 
fication (section 4), all formulas should be interpreted to 
hold for all states (i.e. Vn :n  > 0). The semantics of the 
remaining temporal operators can now be defined for 
arbitrary ~0 and ~ as follows: 

<>r - true'lop 

[3r - ~ O ~  cp 

Oq~ =- falseql  r# 

0(0 = true2gq) 

- 

Predicate .~r characterizes the initial state (i.e., n = 0) and is 
equivalent to �9 As usual the unary operators bind 
stronger than the binary ones. The temporal operators 2f, 
~//, and ~ bind equally strong and take precedence over 
A, V, and ~ .  ~ binds weaker than A and v ,  and 
A and v bind equally strong. 

3.2 A first stepping stone 

In this section we design a leader election protocol assum- 
ing that a leader process is present initially and processes 
do not crash. We start by defining the precise requirements 
of the problem. 

3.2.1 Requirements in temporal logic 

The formulation of the requirements is as abstract as 
possible, that is, without reference to a possible protocol. 
In particular we refrain from mentioning certain states of 
the protocol. We only use a predicate leader(i) which 
represents the fact that the process with identity i is the 
current leader. This identity i is part of a finite set ld  totally 
ordered by < .  We use i, j, k to denote elements of ld. 

In our requirements we use quantification over Id. By 
default, this quantification should be interpreted in a re- 
stricted way in the sense that not all identifications are 
involved in this quantification (the whole set Id), but only 
those identifications corresponding to the processes ac- 
tually participating at that moment (so, always a finite 
subset of Id). We could have made this explicit by intro- 
ducing the set, ~ say, of participating processes and re- 
placing V i : . . .  by V i � 9  and replacing 3 i : . . .  by 
3 i �9 N : .... For ease of notation we have left this intended 
form of quantification implicit. In cases where quantifica- 
tion over the whole set Id is needed, this is explicitly 
indicated. 

The requirements for leader election are as follows. The 
most basic requirement states that there must always be at 
most one leader. Since a change of leadership may take 
some time there can be temporarily no leader at all. 

P1 Vi,  j ~ i:leader(i) => ~ l e a d e r ( j )  . 



If we just take the above requirement we can easily devise 
a protocol by just not electing a leader at all. We should 
also state that there will be 'enough' leaders in due time. 
Because we are working in a framework using a qualitative 
notion of time this should be formulated by the liveness 
requirement below that there will be infinitely often 
a leader (this does not imply that there will be infinitely 
many leaders). 

P2 (>(qi:leader(i)) .  

The last two requirements make sense of the order < on 
Id. The idea is that processes with a higher identity have 
priority in being elected as leader over processes with 
a lower identity. P3 states that a leader in the presence of 
a participating process with a higher identity will capitu- 
late eventually. We do not state anything about the pos- 
sible future leadership of this 'better' process. 1 

P3 V i,j  > i: leader(i) ^ ~ leader(j) ~ (>--q leader(i). 

Observe that j is a participating process. For  reasons of 
efficiency it is not desirable that a leader eventually capitu- 
lates in presence of a 'sleeping' process that may partici- 
pate at some unknown time in the future. 

The last requirement states that the next leader will be 
an improvement over the previous one (i.e., will have 
a higher identity). 

P4 k/i E ~ ,  j ~ Id : leader(i) A 0 7  leader(i) 

^(>leader( j )  ~ i < j , 

where we refer to the last moment of leadership of process 
i (first two conjuncts in premise) and the succession of 
process j (third conjunct). As process j does not need to 
participate at the moment i is a leader, it ranges over Id. 

The last two requirements impose constraints on the 
capitulation of a leader process and the ordering of its 
successor. Note that P4 implies that a process that capitu- 
lates once, will not become a leader any more. 

3.2.2 A first protocol 

In this section we construct a LE protocol starting from 
requirements P1 through P4. To keep the design manage- 
able it is assumed that a leader is present initially and all 
other processes are 'asleep'. 

Each process has a fixed unique identity. Initially pro- 
cesses only have their own identity at their disposal 
(my_id) and have no knowledge of other processes' identi- 
ties. The processes that do not yet take part in the election 
decide non-deterministically whether to join the elec- 
tion or not. Thus, a subset of all processes actually takes 
part in the election. 

Initially a process does not know the identity of the 
leader, and, consequently it can not decide whether it 
becomes a leader or not. Once the identity of the leader is 
known there are two possible outcomes: the process 
should become (the new) leader or not. From the above we 
conclude that a process may be in one of the following 
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possible states: candidate, when it does not yet know 
whether it will become a leader or not, leader when it 
actually is a leader, and defeated when it is defeated. 
A process starts in the start state. 

Once a process joins the election, that is, when it 
becomes a candidate, it transmits its identity my_id by 
means of an I(my_id) (Identify) message. On receipt of an 
identity a leader compares this identity with its own iden- 
tity. In case the received id is larger than its own id the 
leader moves to the defeated state (there is a 'better' pro- 
cess), and gives the candidate the right of succession by 
transmitting the candidate's id with an R-message (Re- 
sponse). In the other case, the leader remains leader and 
transmits its own id using R(my_id). The actions of a can- 
didate on receipt of an identity follow quite straightfor- 
ward when it receives an R-message with its own id it 
becomes a leader, when it receives an R-message with 
a larger id it becomes defeated, and otherwise it remains 
a candidate. 

There is however a little flaw in the above informally 
described protocol: when two (or more) processes are in 
the candidate state and one of them causes the leader to 
capitulate (i.e., to become defeated) the rest of the candi- 
dates may not receive a response of the leader on their 
original /-message, remaining candidate forever. The 
problem is that the 'old' leader capitulates while the 'new' 
leader has already processed (and ignored) the/-messages 
of the other candidates, while being a candidate. This 
problem is resolved by letting a candidate (re-)transmit its 
own id on receipt of an R(id) message with id < my_id. 

We thus obtain the following protocol (see Fig 1). 
Some notational remarks are in order. States are repre- 
sented by rounded boxes and transitions are denoted by 
arrows. The operator & should be read as "such that". 
Transition labels consist of an optional guard and an 
optional set of actions separated by a horizontal straight 
line. The initial state is indicated by having a grey color. 

We deliberately have chosen to only permit the leader 
to deal with succession inquiries - i.e. only on receipt of 

1 Note that the assumption thatj is not a leader is already guaranteed 
by P1, and could thus in principle be omitted Fig. 1. Finite state machine diagram of Protocol 1 
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a notification of the leader a candidate becomes either 
leader or defeated. To accomplish this, messages ori- 
ginated by the leader are distinguished from those ori- 
ginated in other states. In the setting of this protocol it is 
essential that candidates do not become defeated (or, even 
worse, leader) on receipt of messages from other candi- 
dates; otherwise P2 may be violated. This is exemplified by 
the following scenario in which there is only a single 
message type. Consider three processes i, j, and k, one of 
which is a leader, k, say. Assume i and j  do not take part in 
the election yet. Let i > j  > k. Supposej  joins the election 
by transmitting its identity. Since i is still in the start state 
it ignores j 's  id. Before k reacts on the receipt of j 's  id, 
/ joins the election and transmits its id. On receipt of this 
message j becomes defeated. As k capitulates (due to j 's  id 
received earlier) and as j  will not become its successor (due 
to i's id) no process is able to grant i the right of succession, 
and, consequently, no leader process willl ever be elected. 
The problem is that a candidate may not only be forced to 
become defeated by the leader process, but also by other 
candidates. Therefore, we distinguish between id's origi- 
nating from candidates and those submitted by leader 
processes. Candidates become either defeated or leader 
only on receipt of messages from leaders and they ignore 
others. In the above examplej  will thus not become defeat- 
ed on receipt of i's id. 

3.3 A symmetric LE protocol 

We now drop the unnatural assumption of a leader being 
present initially. In this section we design a LE protocol 
starting from the previous protocol in case no leader may 
be present initially. Like in the previous section processes 
are considered to be perfect and the protocol has to be 
consistent with respect to requirements P1 through P4. 

Let us first remark that in the current setting Proto- 
col 1 does not suffice as it does not satisfy P2 - no leader 
will ever be present in case a leader is absent initially. The 
problem now is that a candidate must be able to detect the 
absence of a leader. 

To solve this problem each process is equipped with 
a timer and the absence of a leader is notified by means of 
a timeout mechanism. A timer is started by the start-timer 
action. Typically, timeout operations induce the specifica- 
tion of execution times of protocol operations and the 
propagation delay of the communication medium. This 
tends to a rather complex semantics of timeout operations 
and complicates the verification significantly. Therefore, 
we adopt an abstract notion of timeout, which defines 
what a timeout condition achieves, but not how this is 
achieved. That is, it is abstracted from how to implement 
timeouts using a kind of (synchronized) clock mechanism. 
An identical treatment of timeouts has recently been given 
in [19]. 

A timeout is modeled as an ordinary action and may 
appear as (part of) a guard. Timeouts can be used to detect 
the establishment of a global condition in a protocol. They 
are, therefore, a powerful concept and may be expensive to 
implement. However, they drastically simplify the descrip- 
tion and verification of protocols with timeout operations, 
and suggest a unified approach for implementing timeouts 
using real-time clocks. 

The idea now is that a process starts its timer when it 
becomes a candidate. When receiving a response of the 
leader on its initial l(my_id) message the timer plays no 
role and the process progresses as in the first protocol. In 
absence of a response of a leader, the candidate goes to the 
leader state at the occurrence of a timeout. Thus, a timeout 
guard must be disabled in case a leader is present. This 
leader process might be the leader at the start of the timer, 
but might also be a 'fresh' one. Therefore, a timeout guard 
is defined to be true (the timer expires) only when a process 
has received and processed all responses to its message 
sent at starting the timer. This timeout mechanism is 
usually called non-premature. A precise characterization of 
the timeout mechanism is given in section 4. We thus 
obtain the protocol as depicted in Figure 2(a). 

Recall that the reason for introducing two different 
message types to exchange identities in Protocol 1 was to 
avoid the violation of P2. We observe that - due to the 
timeout mechanism - this problem does no longer occur. 
Therefore, there is no objection against replacing the re- 
sponse messages by/-messages. This results in the proto- 
col as depicted in Figure 2(b). As a consequence, candi- 
dates can now be forced to become defeated by receiving 
messages from other candidates. In Protocol 1 a candidate 
only reacts to messages sent by the leader. 

Some significant simplifications to the latter protocol 
can be made. Observe that there are two possible 
transitions from the candidate state to the leader state, one 
of which may take place when no leader is present (labelled 
with a timeout guard). The other transition is enabled on 
receipt of an l (m~id)  message which is only sent when 
a leader capitulates. It is not hard to see that the protocors 
correctness is not affected by the removal of this message 
transmission. So, in that case a leader moves without any 
notification to the defeated state on receipt of a larger 
id than its id. This implies that one of the transitions to 
the leader state will never be enabled and, hence, may 
safely be eliminated. Thus we obtain the protocol depicted 
in Figure 3, referred to as "Protocol 2". 

3.4 A fault-tolerant LE protocol 

In this section we drop the assumption of perfect processes 
and revise our earlier designs by considering processes that 
cease participation without notifying other processes. 
After halting a process does not behave maliciously. This 
kind of failures is known as crash faults (see e.g. [16]). 
Crashed processes may recover and (re-)join at any time. It 
is assumed that recovered processes restart in the start 
state. This should not be confused with "self-stabilizing" 
systems [-15, 38] where processes may recover in any state. 
The number of times a process can crash or recover during 
an election is unlimited. A process cannot crash during the 
execution of an atomic event. 

Recall the requirements as specified in section 3.2.1. 
Since the assumptions about process behaviour are now 
strongly modified it needs to be checked whether the initial 
requirements are still realistic. For  instance, it is rather 
unrealistic to require P2 bearing in mind that all processes 
may crash eventually. We, therefore, first adapt the 
requirements to the new context. 
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Fig. 2. Finite state machine diagrams of two derivatives of Protocol 1 

Fig. 3. Finite state machine diagram of Protocol 2 

3.4.1 Requirements revisited 

It is still essential that at any moment of time there is at 
most one leader: 

Q1 v i ,  j , i:leader(i) ~ - q l e a d e r ( j ) .  

In order to distinguish between our initial requirements P1 
through P4 and the new ones we label new requirements 
with Q. Again, quantifications, by default, implicitly range 
over the processes actually participating at that moment. 
This includes crashed processes. 

P2 claims that there (always) will be infinitely often 
a leader. As stated above, it is unrealistic to demand P2 
since potentially all processes may fail. We therefore claim 
that always there will be infinitely often a leader if there 
exists a process at some time which will definitely not crash 

from then on and for which all better processes have (and 
remain) crashed. Predicate dead(i) indicates the fact that 
process i has crashed. Formally, 

Q2 < > ( 3 i ~ I d : M ( ~ d e a d ( i ) ^ ( V j  > i :dead(j)) ) )  

D ~ ( q  k :leader(k)).  

[]<>P for predicate P states that at any point in the 
execution it is true that eventually P will hold. 

Quite evidently, a crashed process cannot act as 
a leader process (and vice versa). 

Q3 V i:--7 (leader(i) ^ dead(i)) . 

The next requirement addresses the question in what cir- 
cumstances a leader capitulates. Well, a leader should be the 
process with the highest identity among all living particip- 
ating processes. This implies that a leader should capitu- 
late as soon as there is some other (living) process which is 
an improvement. However, when this better process crashes 
the above claim is too strong. We, therefore, require 

Q4 Vi,  j > i: leader(i) ^--7 dead( j )  

~ leader(i) v ~ d e a d ( j )  . 

When a leader capitulates this may be caused by either the 
crash of this process or the fact that there was a better 
(living) process. Formally, 

Q5 Vi: J ~ l e a d e r ( i )  ~ dead(i) v 0 ( 3 i  > i : -qdead( j ) )  . 

Both Q4 and Q5 refer to the catipulation of a leader. It 
remains to require something about the succession of 
leaders. Previously we required that leaders must be suc- 
ceeded by better ones. This claim is still valid. However, it 
needs a more careful formulation, since, it is invalid in case, 
for instance, a leader capitulates by crashing. It, therefore, 
seems reasonable to require 

Q6 V i E ~ , j ~ I d : l e a d e r ( i )  ^ ~ l e a d e r ( j )  

^ ~dead( i )q l l eader ( j )  ~ i < j . 



164 

Informally formulated: given some leader process, i say, its 
successor, process j, is not less qualified than i provided 
that i does not crash in between the leaderships of i and j. 
Q6 thus claims nothing about the relation between 
a leader and its successor when the leader crashes in the 
meanwhile. Furthermore,  crashes of other processes do 
not have any influence. Notice that a leader may be suc- 
ceeded by itself(i.e, i a n d j  are not necessarily distinct) as it 
may capitulate due to the presence of a better candidate 
that crashes before becoming a leader. 

The consistency of Q1 Q6 with respect to P1-P4  is 
discussed below. In case processes do not crash Q4 boils 
down to P3, that is, under the assumption D ( V i e l d :  

dead(i)) Q4 simply reduces to P3. In a similar way Q2 
reduces to P2 as shown below 

(>(3 i ~ ld: D ( ~  dead(i) A (Vj > i: dead(j)))) 

[ ]0 (  3 k : leader(k ) ) 

= { [ ] ( V i E I d : ~ d e a d ( i ) ) }  

(>(3 i ~ ld:  [] (Vj > i:false)) 

=~ E2(> (3 k: leader(k)) 

={} 

(>(3 i t  l d : i  = imax A (Vj: j  < imax)A [~(Vj > i:false)) 

=:, D(>(3 k: leader(k)) 

= {(Vj > im~x :false) = true} 

(>(3 i e ld : i  = /max ̂  (Vj : j  </max)) 

=~ lq (> ( 3 k : leader( k ) ) 

= {ld is finite, so imax exists} 

(>true ~ f~(>(3k:leader(k)) 

= {calculus} 

(>(3 k :leader(k)) 

where in the last step we use the fact that all formulas 
should be interpreted to hold over all states (see section 
3.1.3.). 

The relationship between Q6 and P4 is more subtle. 
When processes do not crash we derive for Q6: 

V i E 2 ,  j ~ Id: leader(i) ^ (>leader(j) 

^-qdead(i)Ollleader(j) ~ i < j 

= { [ ] ( V i E l d : ~ d e a d ( i ) ) }  

V i ~ 2 ,  j ~ ld:leader(i) A <~leader(j) 

^ trueqlleader(j) =:, i < j 

= {trueqlleader(j) = (>leader(j)} 

V i E ~ , j  ~ ld:leader(i) A (>leader(j) =~ i < j .  

In the context of the previous protocols this resulting 
requirement, however, allows a leader to capitulate (in 
presence of a better candidate, cf. P3), become a leader 
again, capitulate (there is still a better candidate), and so 
on, in a repetitive way. In case processes do not crash this 
is in our opinion not desirable as no real progress is 

made: when a leader catipulates due to the presence of 
a better candidate one expects that at some time a new 
(and better) leader emerges. Therefore, requirement P4 was 
introduced. For Protocol 3 this situation is different as 
each process, including candidates, may crash spontan- 
eously. Thus a leader may capitulate because a better 
candidate is noticed, but before this candidate becomes 
a leader it crashes. Then it must be allowed that the 
capitulated leader becomes a leader again. This justifies 
Q6. 

3.4.2 Design of a fault-tolerant protocol 

We take the previous protocol as a starting point for our 
design of a fault-tolerant LE protocol. The crucial point 
now is that in absence of a leader after it crashes, a defeated 
process might be a valid successor. 

So as to involve defeated processes in the election we 
consider two cases. First, to avoid a candidate to become 
a leader in case a leader crashed and a better defeated 
process is present, defeated processes become a candidate 
on receipt of an / -message  with a smaller id than their own 
id thus joining the competition about  the leadership and 
thus avoiding violation of Q4. Other / -messages  are still 
ignored when being defeated. It should be observed that 
this does not suffice in case a leader crashes, at least one 
defeated process is present (that will never crash), and no 
candidate will ever appear. In this scenario no leader will 
ever be elected, although there is some process that will 
never crash. This violates Q2. Therefore, we should have 
a mechanism via which defeated processes will rejoin the 
election in absence of a leader. Using the fact that the 
underlying broadcast facility is reliable, several techniques 
can be applied to accomplish this. z Here we abstract from 
a specific technique and model this by adding a transition 
labelled with an absent guard from defeated to the candi- 
date state, such that a defeated process may (re-)join the 
election spontaneously by identifying itself and starting its 
t imer? We model the fact that processes may crash at 
arbitrary times by a possible transition from each possible 
state to a new state, named dead state. We denote these 
transitions by dotted arrows. The difference between 
transitions represented by dotted, respectively solid, ar- 
rows should be interpreted as follows. In case of a dotted 
arrow the transition is always possible (and hence can be 
non deterministically chosen), but not necessary (that is, it 
can be ignored indefinitely). On the other hand, a solid 
arrow represents a necessary transition, that is, a transition 
that eventually has to be taken whenever it is continuously 

2 For instance, a leader may transmit on a regular basis "I am here" 
messages and in absence of such messages a timeout could expire in 
a defeated process, thus forcing it to become starting (or candidate). 
Another possibility would be to let a defeated process regularly check 
whether a leader is present (see e.g. [20]). 
3 It should be noted that we now have two transitions with equiva- 
lent actions, one of which has a true guard from the defeated state to 
the candidate state. These transitions cannot be combined into 
a single transition with a true guard as it would then be no longer 
guaranteed that this transition is made on receipt of an /-message 
with an identity larger than that of the recipient: a process may then 
perform the transition whenever it likes 
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F~ denote that process i is in the start, candidate, dead or 
defeated state, respectively. The local buffer of process i is 
symbolized by Qi- Assertion SENI)~(m(pl . . . .  , PM)) is true (in 
some state of the state sequence) only when process i ex- 
ecutes !!re(p1 . . . .  , Pn) at leaving that state. Similarly, asser- 
tion RCV~(m(pl, . . . ,pn)) is true if and only if guard 
??m(p~ .. . .  ,pM) evaluates to true and the corresponding 
transition is taken. For  some protocol state guard TO~ for 
process i evaluates to true whenever i's timeout occurs and 
the corresponding transition is taken. 

Fig. 4. Finite state machine diagram of Protocol 3 

enabled. Representing crash transitions by solid arrows 
would imply that all processes crash eventually which is 
rather unnatural. The dotted arrows and solid arrows are 
similar to the modal relations ~ ,  respectively ~ I ~  of 
modal transition systems (see e.g. [29]). 

Similarly, the fact that processes may recover spontan- 
eously after crashing is modeled by a (dotted) transition 
from the dead to the start state. This yields the protocol 
depicted in Figure 4, called "Protocol 3". For the sake of 
brevity, a transition label is omitted when both its asso- 
ciated guard and its set of actions are absent. In order to 
prevent unspecified receptions (and thus a system dead- 
lock), a process in the Dead state is able to consume 
messages from its buffer (see Theorem 4.5). 

4 Verification by temporal logic 

In the previous section we informally motivated our design 
decisions. In this section we formally prove that the last 
protocol satisfies its requirements Q1 through Q6. We 
furthermore, prove that for this protocol unspecified re- 
ceptions cannot occur. We do not intend to give a com- 
pletely formalized proof. Such a proof is well possible, but 
however, requires a formalization of the assumptions, 
a transformation of the protocol to our proof formalism 
(temporal logic), and so on, which would make the proofs 
too much involved. We, therefore, confine ourselves to 
presenting only the main ideas of the proof. The correct- 
ness of the first two protocols can be proven in a similar 
way as the third protocol. These verifications are reported 
in [8]. 

4.1 Notations and conventions 

We use the following notations and conventions. The fact 
of being a leader, that is, leader(i), is identified with the fact 
that process i is in the leader state. To distinguish between 
the conceptual notion of being a leader and the internal 
protocol states, Li is used to denote that i is in the leader 
state of the protocol. Similarly, predicates S~, Ci, D~, and 

4.2 Reliable broadcast  communication 

We first formally define some relevant assumptions about 
the broadcast mechanism which we use as underlying 
communication facility. Let m, m ~, and m q be unique mess- 
ages, that is, both their originator and moment of origina- 
tion are unique. (It has been shown in [27] that messages 
need to be uniquely identifiable so as to specify commun- 
ication mechanisms in temporal logic by axioms like those 
below. In this paper we accomplish this by message num- 
bering by the sender. As from the context the dependence 
on the identity of the sender is explicit, this dependence is 
often omitted. In the sequel we use p, q as numbers of 
messages.) 

The broadcasting mechanism we use is formally 
specified as follows. 

Assumption 4.1. V i : SENDi(m ) =~ O(Vj :I: i : m ~ Qj) . 

Assumption 4.2. V i : m ~ Q i  ~ o ( q j  ~= i:SENDj(m)) . 

Assumption 4.3. V i,j: SENDi(m p) A OSENDj(m q) ~ (V k ~ i,j: 
~ ( m  p E Qk ^ (>mq E Qk)). 

Assumption 4.4. V i , j  ~ i: SEN~)i(m ~) ~ --7 SENDj(m q) . 

Assumption 4.1 states that messages that are sent are 
received instantaneously by all processes, except the 
sending process. Note that it also implies that messages are 
not lost by the communication network. Assumption 4.2 
phrases that messages are not spontaneously generated by 
the network, and assumption 4.3 expresses that the net- 
work is order-preserving. Assumption 4.4 says that at most 
one process may send over the network at a time. 

Observe that it immediately follows from axiom 4.2 
that a process does not receive its own transmitted mess- 
ages. That  is, for all unique messages m 

(1) V i : m e Q i  ~ ll--qSENDi(m) . 

The relation between buffering of messages and the actual 
processing of messages is given by the following theorem 
which states that queued messages will eventually be pro- 
cessed. This is, of course, not a property of the broadcast 
mechanism, but a desirable property of the protocol. We 
provide the proof for Protocol 3. Note that the theorem 
implies that no unspecified receptions can occur. 

Theorem 4.5. V i : m ~ Qi =~ ~ RCvi(m) . 

Proof. As there is only one message type involved, as 
corresponding transitions exist for this message type (for 
all possible parameter values) in all states, and as processes 
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do not receive their own transmitted messages, it is evident 
that all messages can be processed in each state. The fact 
that a message will eventually be processed follows from 
the (weak) fairness assumption saying that a transition 
that is continuously enabled will eventually be taken. []  

4.3 The timeout mechanism 

The semantics of the t imeout mechanism were informally 
defined in section 3.3. In order to facilitate a formal proof  
we formalize this semantics. This formalization is essential 
so as to prove the invariance of Q1 through Q6. 

We characterize in general terms, that is without refer- 
ence to the protocol, a 'non-premature '  t imeout in 
a broadcast network. A timer is started at the transition of 
message m, say. This message has to be received (and 
processed) by all its recipients before the timer may expire. 
Formally, for all unique messages m ~ 

Assumption 4.6. V i: SEND i(m p) =~ -9 TOp ~ C~j ~ i: �9 RCVj (raP)). 

Strictly speaking, the timeout assertion is associated to m p, 
and as m p is unique, the occurrence of the timeout is 
considered to be unique. When necessary this dependence 
on m p is explicitly indicated by referring to the number of 
p of re. As, in general, it is not guaranteed that each process 
is capable of processing a message of type m in some state, 
we use the ~f" operator  instead of the q/ operator. In 
absence of unspecified receptions - as in the presented 
protocols - we could equally well use the q /opera tor .  
Now, however, a timeout may be enabled without forcing 
the originator of m ~ to receive and process all replies to m p. 
Let r~,,j be a reply to m p transmitted by process j. We 
additionally require 

Assumption 4.7. Vi: TO p ~ (Vj ~: i: r~p j ~ Qi). 

Here it should be mentioned that processing a message 
and sending a reply to this message is considered to consti- 
tute an atomic event. 4 For  the protocol at hand we should 
substitute IP(i) and IS( j )  (i < j )  for m p and rm, j, respective- 
ly in assumptions 4.6 and 4.7. 

The formal semantics of a non-premature timeout in 
broadcasting networks is now defined by assumptions 4.6 
and 4.7. Summarizing, according to assumption 4.6 all 
processes (except the sender) receive m, process this mess- 
age and, if appropriate,  send a reply. These replies are 
forced to be received and processed by the originator of 
m as phrased by assumption 4.7. 

4.4 Timeout properties 

In the previous section we characterized the non-prema- 
ture timeout in a rather general context. For  the protocol 
at hand we have some properties which hold for the 
timeout mechanism. These properties are directly derived 
from the protocol specifications. As they are frequently 
used in the verification we treat them separately. 

4 This implies that a process must reply immediately on processing of 
a message and is not allowed to wait arbitrarily long with replying. It 
can be verified that the presented protocols conform to this principle 

Due to the intrinsic recursive behaviour of Protocol 3, 
predicates must be defined carefully. When stating, for 
instance, C~ ̂  OTop there is no formal relation between the 
two conjuncts: process i may be a candidate for a while, 
leave this state and become a candidate again and then 
leaving this state on Top. Stating Ci referring to the first 
period in the candidate state has no relation at all with 
Top. In order to establish such a relation the idea is to refer 
to the I(i) message on which process i has become a candi- 
date and which must have number  p such that it corres- 
ponds with the next t imeout of i to occur. 5 Note that it is 
possible to refer to the I(i) message on which i has become 
a candidate in the temporal logic formalism we use. How- 
ever, we also want to refer to the receipt of this message by 
some other process. This is not possible in temporal logic, 
but is rather straightforward when introducing explicit 
labelling of I messages. 

We have the following timeout properties. The first one 
states that a process can only perform a timeout when 
being a candidate. 

Property 4.8. V i: ro~ ~ Ci. 

Once a process enters the candidate state by transmission 
of IP(i) and the corresponding timeout occurs eventually, 
that is OTop, it does not leave the candidate state until this 
t imeout occurs. Note that this also implies that the process 
does not crash in between the transmission and the corres- 
ponding timeout. 

Property 4.9. V i: SENDi(I~(i)) ^ O C  i ^ OTO p ~ Ci~TOp. 

Candidate i becomes defeated on receipt of l ( j )  with i < j: 

Property 4.10. V i : C i A ( 3 j  > i:RCVi(I(j))) ~ OFi. 

We now state the following lemma which phrases that no 
l ( j )  message is received by process i (i < j)  after entering 
the candidate state until its t imeout occurs (provided its 
timeout occurs at some time). 

Lemma 4.11. V i: SENDi(IP(i)) A O C  i A ~TOp =:~ ~ (3j > i: 
RCVi(I(j)))~TOp. 

Proof  By contradiction. Assume C~ and OTop. It follows 
directly from properties 4.9 and 4.10 that candidate i be- 
comes defeated on receipt of I ( j ) ,  j > i. Consequently, 
no timeout will appear. This contradicts with the 
assumption. [] 

One can now infer from the timeout semantics and the 
above lemma that process j can prevent the occurrence of 
the timeout of another process, i say, by transmitting I ( j )  
with i < j ,  as reply to the receipt of lP(i). 

4.5 Protocol verification 

We prove the requirements Q1 through Q6 one by one. 
The first proof  obligation is Q1 and is the hardest to prove. 
Therefore, we divide the verification of Q1 into some parts 

We remark that another possibility would be to equip the Ci 
predicates with a number like the TOf predicates and let the relation- 
ship with the lP(i) message on which i has become a candidate 
implicit. For the sake of clarity we prefer to give the explicit relation 



and give some lemmas that are used later on in proving 
this requirement. Let CLFj denote that process j is candi- 
date, leader or defeated, and let DSj denote that it is either 
dead or start. 

The first lemma states that if process j is candidate, 
leader, or defeated on processing of message Ig(i) it can 
neither be a leader nor perform its timeout at the occur- 
rence of zo~'. That  is, 

Lemma 4.12. V i, j :  CLFj A RCVj(I~(i)) ̂  OTO~ ~ [ ]  (TO~ =:~ 
Lj ^ -7  TO j). 

Proof. Let j be a process for which CLFj holds. From the 
protocol we infer that on receipt of I(i), either j becomes 
defeated in case i > j ,  or replies with l( j)  otherwise. 

(2) Vi, j:CLFjARCVj(I(i)) ~ (j < i ~ OFj) 

A ( j  > i =~ SENDj(I(j))). 

Process j can prevent the occurrence of WO~' (i < j )  by 
transmitting I(j) on processing lP(i). This follows from the 
timeout properties. Together with (2) this results in 

(3) V i,j" CLFj ^ RCVj(F(i)) ̂  OTO[ ~ j < i .  

We thus concentrate, given that i performs TO~' once, on 
the case j < i. According to (2) process j becomes defeated 
on processing I~(i). It can only become a leader by trans- 
mitting Iq(j) on becoming a candidate. 

(4) Vj:Cj ~ SSENDj(I(j)). 

As process i is still being a candidate, according to prop- 
erty 4.9, j is not able to become a leader before i is 
becoming a leader - j  has to wait for rs reply on lq(j) (see 
timeout semantics) and asj  < i process i will reply on Iq(j) 
(see (2)) thus preventingj to become a leader. In the above 
reasoning we only have considered perfect processes, i.e. 
processes that do not crash. However, when considering 
the crash of process j (i > j)  it can be deduced in a similar 
way that after revivingj cannot become a leader before i is 
becoming a leader. Note that due to property 4.9 process 
i does not crash before becoming a leader. So, crashes of 
i do not have to be taken into account. [] 

Lemma 4.13. V i, j: DSj ^ Rcvj(IP(i)) ^ DSj~TO~ =~ [](TO~ 
DSj). 

Proof. Straightforward. []  

Lemma 4.14. Vi, j :DSj  ^ RCVj(IP(i)) A---1 (OSj~TOi p) :=~ 
l-l(TO~ =~ ""3 Lj  A~3 TOj). 

Proof. Let j  be a process for which DSj holds at processing 
P'(i) and i be a process for which OTO~' holds. It follows 
from the protocol that j ignores IP(i) as start and dead 
processes ignore all messages. 

(5) V i: Si ̂  RCVi(m n) ::~ OSi A --7 SENDi(m q) . 

(6) V i : D  iARCvi(m p) ~ ODiA~SENDi(m q) .  

Consider the case that j has left the start/dead state after 
processing IP(i) and before i performs its timeout, that is, 

(DSjq/TO/P). According to 

(7) Vj:DSjA�9 ~ C)Cj. 
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j has become a candidate and due to (4) must have sent 
I(j) in order to do so. According to assumption 4.1 i will 
receive this message. As I(j) is not a reply on 1~(i), process 
i is not forced to process this message before performing its 
timeout. This suggests the following case analysis. 

First, consider the case that i processes l( j)  prior to its 
timeout. According to lemma 4.11 this implies i > j, given 
that i will perform its timeout once. Due to (2) i replies with 
I(0, and asj  is forced to wait for this reply before becoming 
a leader it will not be able to perform its timeout (due to 
lemma 4.11). In the other case, i processes I(j) after per- 
forming its timeout. But then, j cannot be a leader at the 
moment i performs its timeout, as it is forced, according to 
assumption 4.7, to wait for the reply of i. 

When process j crashes in the meanwhile it can be 
verified using identical arguments that j cannot become 
a leader before i does. [] 

Lemma 4.15. V i, j : RCVj(/P(i)) ^ OTO~ =~ [ ]  (TO~ ::~ ~ Lj 
^ ~ TO A. 

Proof. Follows directly from lemmas 4.12, 4.13, and 
4.14. [] 

This lemma is the crux to the proof of the following lemma 
which states that when a process performs its timeout, it is 
the only process that does so (so, two - or more processes 
cannot become a leader simultaneously), and there are no 
leader processes. 

Lemma 4.16. Vi, j # /:TO/ =~ --3LjA--3TOj . 

Proof. Let i be a process for which OTO~' holds. According 
to property 4.8 a timeout can only occur being a candidate. 
Process i only becomes candidate after sending IP(i) (4). 
TO~' is associated with I~(i) and can be performed if and 
only if all processes have processed this message (assump- 
tion 4.7). The lemma follows now directly from lemma 
4.15. []  

Theorem 4.17. Vi, j 4: i:Li ~ ~Lj .  

Proof. From the protocol we deduce that on occurrence of 
a timeout a process becomes a leader immediately 

(8) Vi:TOi ~ OLi. 

In addition, after just becoming a leader the process must 
have performed a timeout: 

(9) V i : O J L i  ~ TO/ . 

As the occurrence of a timeout is the only way to become 
a leader (immediately after that) theorem 4.17 reduces to 
lemma 4.16. []  

Theorem4.18. O(3iEId:R(-aDiA(Vj > i:Dj))) ~ [ ]O(qk:  
Lk). 

Proof. Consider the process with the maximum id, i' say, 
for which O[](~Di, A(Vj > i':Dj)) holds. According to 
the premise of Q2 this process exists. The idea of the proof 
is to establish that process i' will always become a leader 
sooner or later. That is, we prove 

(10) OLd, 
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from which we directly deduce Q2. The proof is as follows. 
Consider process i' at the moment that all better processes 
than i' are crashed for ever, that is, (Vk > i': DDk). Remark 
t h a t -  although all better processes are crashed process i' 
may still have messages originating from these processes in 
its buffer, as processes may process buffered messages at 
their own pace. Now refer to the moment at which i' 
has processed all messages from these processes. That is, 
assume 

(11) o,r ~ ~ ( V k  > i ' : m k r Q r ^ D D k ) ,  

where mR denotes a message originating from process k. 
Distinguish between two cases: i' is already a leader, or it is 
not. Consider the first case, so Lv holds. From the protocol 
description we immediately infer that leaders can only 
capitulate by either crashing or receiving an I(k) message 
with k larger than their own identity. Formally, 

(12) V i : J - 1 L  i =~ D i v O ( q  j > i:RCVi(I(j)) ) . 

Given that i' does not crash there is only one possibility to 
capitulate, namely by receiving l(k), k > i'. It is straightfor- 
ward to observe that l(k) messages are only transmitted by 
process k. 

(13) Vi,  k:SENDi(I(k)) ~ i = k .  

Furthermore, crashed processes do not transmit messages. 

(14) Vk:SENDk(m ) :=> ~ D  k . 

Using (11) and the above reasoning it can easily be de- 
duced that it is impossible for i' to receive a message I(k), 
k > i', and consequently, it is impossible for i' to capitulate. 
Thus, we conclude: 

(15) Li, A ( V k  > i ' : D D k ^ m k r Q i , )  ~ D L r .  

Secondly, we consider the case that i' is not a leader. Recall 
(11). From the protocol we directly infer that processes 
that will never crash and are not leader (yet) will become 
a candidate once. 

(16) V i : D ~ D i A - 1 L i  = ~  o r  i . 

Once, process i' transmits its /-message and becomes 
a candidate. As there is no 'better' process that can reply 
they are all crashed for ever - it follows from assumptions 
4.6 and 4.7 that i' can perform its timeout and becomes 
a leader. Using an analogous reasoning as for the first case 
we conclude that i' will be a leader indefinitely. [] 

Theorem 4.19. V i:-1 (L i ^ Di). 

ProoJl Trivial. [] 

Theorem 4.20. Vi,  j > i : L i ^  -1Dj  ~ O - T L i v O D ] .  

Proof  Assume Lg A--7 Dj ^ j  > i. Distinguish between two 
cases: D-1 Dj and ~Dj .  The interesting case is D ~  Dj. For  
this case the theorem reduces to 

(17) V i : L i A ( ~ j  > i : D ~ D j )  ~ O - i L l .  

Using (16) and theorem 4.17 this property holds when the 
following property does 

(18) V i : L i A ( 3 j  > i : C i ^ D - 1 D  j) ~ <~-1Li. 

This property is proven as follows. Assume 
Li A Ci ^ D ~  D i A j > i. According to (4)j has send l ( j ) to 
become a candidate. This message is processed by i after it 
became a leader - otherwise I ( j )  would have prevented 
i of becoming a leader. If i has already capitulated ~ Li 
follows directly. In case L~ holds, i capitulates on process- 
ing I ( j ) , j  > i, according to (2). []  

Theorem 4.21. V i : J - n L i  ~ D i v O ( 3 j  > i : ~ D j )  . 

Proof  Let i be a process for which L~ holds. According to 
(12) there are only two ways in which i can capitulate. In 
case it spontaneously crashes, we have J - 1 L i  ~ Di. 
Alternatively, it capitulates on receipt of I ( j )  with j > i. 
Due to (13) I ( j )  can only be transmitted by process j. 
Furthermore, crashed processes cannot transmit messages 
(due to (14)). Thus, we conclude 

(19) V i ,j  > i: RCVi(I(j)) => �9 (-1D] A SENDj(I(j))) . 

This directly implies 

(20) V i : J ~ L i ^ ~ D i  =~ 0 ( 3 j  > i : - 1 D j ) .  [] 

Theorem 4.22. V i E 22, j e I d : L~ ^ O L j A -1 D f l lL  j =:, i < j. 

Proof  Let process j be the immediate successor of leader 
i and assume i does not crash in between the leaderships of 
i andj .  The proof is by contradiction. Assume i > j .  From 
the protocol description we immediately infer that 

(21) V i : C L F i A [ ] - 1 D i  =~ D C L F i .  

So, in case a leader capitulates and does not crash it is 
either candidate, leader or defeated. From (3) it follows 
that a process cannot become a leader in presence of 
a better candidate, leader or defeated process. This implies 
that j  ( j  < i) cannot become a leader when i is still in one of 
these states. However, according to the premise 
Li ^ -1 DflllLj and the above property, this is the case. This 
contradicts with j being the successor of i. [] 

5 Complexity analysis of the protocols 

Much work has been devoted in literature on designing 
efficient LE protocols. In general, the following complexity 
measures are considered: message complexity (the number 
of messages needed to elect a leader), time complexity (the 
number of time units needed to elect a leader) and bit 
complexity (the total number of bits to elect a leader). In 
this section we discuss the worst case message complexity 
of our protocols in terms of the number of broadcast 
messages. For  the sake of brevity we only present a de- 
tailed analysis of the complexity results of Protocol 1, for 
an elaborated analysis of the other protocols we refer to 
1-8]. 

In our protocols all messages are broadcasted, so each 
message is received by all processes (except the sender). In 
a distributed system where processes spontaneously wake 
up, each process at least has to send one (initial) message to 
the other processes so as to identify itself, resulting in 
a minimum message complexity of t2(N). 



For reasons of simplicity a process identity is repre- 
sented by a positive natural number. 

T h e o r e m  5.1. The worst case message complexity of Proto- 
col 1, for N participating processes and process i being the 
initial leader, is �89 + 1) - �89 - 3) - 2. 

Proof. Let i be the leader and all other processes be in the 
start state. In the worst case scenario all processes become 
a candidate simultaneously and send their initial/-mess- 
age in increasing order (strictly speaking, the order of the 
last (N - i - 1)/-messages is irrelevant). Due to the fact 
that from all better processes l(i + 1) is processed first, 
process i + 1 becomes the next leader on receiving R(i + 1). 
This message evokes an/-message from all candidates bet- 
ter than i + 1. If these replies are sent with I(i + 2) first, 
process i +  2 becomes the next leader. This scenario is 
repeated until ultimately process N becomes leader. In each 
"round" the number of candidates is reduced by one and 
the number of reactions on an R-message is maximal. This 
indicates that the above is indeed the worst case scenario. 

We now focus our attention on all transitions in which 
messages are transmitted and determine the number of 
transmitted messages for the worst case scenario. In order 
to let all processes become a candidate (N - 1) messages 
are needed. Candidate j, j > i, receives ( j  - 2) R(k) mess- 
ages with k < j .  Consequently, it replies with ( j  - 2) I ( j )  
messages. Leader i must respond to the first ( i -  1) I- 
messages with R(i) before it capitulates. As subsequent 
leaders j capitulate immediately they do not transmit any 
R ( j )  messages. Finally, in order to let readers capitulate 
(N - i) messages are needed. Combination of these results 
leads to the above result. [] 

The message complexity can be improved significantly by 
the idea of 'smart' buffering. According to this principle, 
messages are buffered depending on their parameter: at 
each moment of time a process buffer only contains the 
/-message (or R-message) with the largest id received so 
far, that is, not processed yet. Here, R-messages have prior- 
ity over/-messages. In this way a buffer contains at most 
one message at a time. Adopting this buffering mechanism 
reduces the message complexity to r independent of 
the initial leader: 

T h e o r e m  5.2. With smart buffering the worst case message 
complexity of Protocol 1 is 2N - 2. 

Proof. Buffering of several initial/-messages now leads to 
a single R-message to the process with the highest id, 
which makes this process the new leader and forces the 
other processes to the defeated state. The worst case scen- 
ario appears when each initial message is separately 
answered by an R-message. It does not matter which 
process is the initial leader or in which order the processes 
send their initial/-message. In this case 2(N - 1) messages 
are needed. [] 

Theorem 5.3. Protocol 2 has a worst case message complex- 
ity of 2 N - 1 using 'simple' buffering and of 2 N -  1 using 
smart buffering. 

Finally, we consider Protocol 3. First we consider an 
election without crashing processes. We obtain the follow- 
ing results: 
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T h e o r e m  5.4. With perfect processes Protocol 3 has a worst 
case message complexity of 2 N - 1 using 'simple' buffering 
and of �89 + 1) using smart buffering. 

Next, we analyze the complexity in case K processes 
crash (0 __< K < N). Many complex scenarios are possible, 
dependent on what moment during an election a process 
crashes. For simplicity, we assume that crashed processes 
do not recover and defeated processes only return spon- 
taneously to the candidate state when a leader is actually 
absent. The worst case scenario occurs when K processes 
crash after the initial election has been completed (i.e., 
process N is leader and all other processes are defeated). 

T h e o r e m  5.5. When at most K (0 < K < N) processes 
crash during the election the worst case message complexity 
of Protocol 3 is ~K 3 - � 8 9  2 + (�89 2 - ~ ) K  using smart 
buffering. 

6 C o n c l u s i o n s  

In this paper we have designed and specified a series of 
dynamic leader election (LE) protocols in broadcast net- 
works, and verifed a fault-tolerant protocol. From this 
extensive case study in protocol design, specification, and 
verification we make the following remarks. 

We started our design by formally capturing the proto- 
col requirements. Rather surprisingly, no such precise 

and abstract problem specification for dynamic LE 
currently exists in literature. When considering the proto- 
col's correctness that is even more remarkable as a formal 
problem specification is indispensable for a formal verifi- 
cation. 

Linear-time temporal logic was used so as to express 
the requirements and to perform the verification. The 
formalism turned out to be very convenient for specifying 
the requirements in a rather abstract way. Due to the 
dynamic character of processes it is not straightforward to 
give such a specification in, for instance, a process alge- 
braic formalism without aiming at a particular protocol 
(see also [9]). 

The protocols are constructed in a step-wise fashion 
starting from the formal requirements. The step-wise ap- 
proach aids not only in the clarity and conciseness of the 
protocols, but also - and more important in reasoning 
about them ('separation of concerns'). Due to our experi- 
ence wc believe that this is a feasible approach for the 
design of complex, dynamic communication protocols. We 
believe that we would not have ended up with the current 
concise and lucid fault-tolerant protocol without this 
approach. 

The use of temporal logic for the specification and 
verification of communication protocols is well-known for 
a decade (see e.g. [28, 21, 40]). This case study shows 
- once more that this technique combined with the state 
transition approach is very convenient. In fact, we have 
shown that these techniques are also applicable when 
designing a new protocol whereas most case studies focus 
on already existing protocols with commonly agreed re- 
quirements. Furthermore, the dynamic character of pro- 
cesses makes the problem considerably more complex 
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than tradit ionally verified protocols.  By the use of  abstract  
t imeouts the protocol  could be verified in a similar way as 
a protocol  wi thout  timeouts. 

Ideally, detailed proofs of complex protocols  are 
required in which each step of the p roof  is formalized and 
for which informal arguments  are minimized. Such de- 
tailed proofs are well possible in our  f ramework and re- 
quire a formalizat ion of  the assumptions,  translation of  the 
protocols  into the p roof  formalism, and so on. The proofs 
in this paper  consti tute a useful stepping-stone towards  
such a detailed proof. Obta in ing  a completely formalized 
proof  is considered to be an interesting subject for further 
research. 

For  the development  and analysis of the LE protocols  
in this paper  we also applied techniques from algebraic 
process theory [5] and we made  use of  simulation tools for 
process algebra [35]. This is reported in [7, 9]. 

In the first instance the construct ion of protocols  was 
aimed at correctness with respect to the requirements and 
minimizing the number  of  transitions - rather than opti- 
mizing their efficiency. As efficiency, though,  plays an 
impor tant  role in the field of LE protocols  we analyzed the 
protocols '  worst  case message complexity, that  is, the max- 
imum number  of messages needed to elect a leader. Dur ing 
this analysis the use of  protocol  simulation facilities 1-35] 
was of considerable help. With  the aid of these tools it 
turned out  that  the in t roduct ion of an alternative buffering 
mechanism reduces the message complexity significantly. 

A possible (and interesting) extension to the LE prob-  
lem is to consider identities that  may  change during opera- 
tion as opposed to fixed identities. We remark that the final, 
fault-tolerant protocol  is also applicable in this context. 

This case study shows the usefulness of manual  verifi- 
cat ion for a non-trivial pro tocol  problem and is helpful in 
gaining experience of how such a verification is best con- 
ducted. Applicat ion to other  protocols  must  show how 
useful this information turns out  to be. 
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