
Distrib Comput (1996) 9:157 171

�9 Springer-Verlag 1996

Design and analysis of dynamic leader election protocols
in broadcast networks
Jacob Brunekreef 1, Joost-Pieter Katoen 2, Run Koymans 3, Sjouke Mauw 4

1 Programming Research Group, University of Amsterdam, Kruislaan 403, 1098 SJ Amsterdam, The Netherlands
2 Department of Computing Science, University of Twente, P.O. Box 217, 7500 AE Enschede, The Netherlands
3 Philips Research Laboratories, Prof. Holstlaan 4, 5656 AA Eindhoven, The Netherlands
4 Department of Mathematics and Computing Science, Eindhoven University of Technology, P.O. Box 513, 5600 MB Eindhoven,
The Netherlands

Received: September 1993 / Revised: September 1995

Summary. The well-known problem of leader election in
distributed systems is considered in a dynamic context
where processes may participate and crash spontaneously.
Processes communicate by means of buffered broadcast-
ing as opposed to usual point-to-point communication. In
this paper we design a leader election protocol in such
a dynamic context. As the problem at hand is considerably
complex we develop the protocol in three steps. In the
initial design processes are considered to be perfect and
a leader is assumed to be present initially. In the second
protocol, the assumption of an initial leader is dropped.
This leads to a symmetric protocol which uses an (ab-
stract) timeout mechanism to detect the absence of
a leader. Finally, in the last step of the design processes
may crash without giving any notification of other pro-
cesses. The worst case message complexity of all protocols
is addressed. A formal approach to the specification and
verification of the leader election protocols is adopted. The
requirements are specified in a property-oriented way and
the protocols are denoted by means of extended finite state
machines. It is proven using linear-time temporal logic
that the fault-tolerant protocol satisfies its requirements.

Key words: Broadcast network Communication proto-
cols - Finite-state machines - Leader election - Message
complex i ty - Protocol design, specification, and verifica-
tion Temporal logic

1 Introduction

In current distributed systems several functions (or
services) are offered by some dedicated process(es) in the
system. One might think of address assignment and regis-
tration, query coordination in a distributed database sys-
tem, clock distribution, token regeneration after token
loss, initiation of topology updates, load balancing, and so
forth. Usually many processes in the system are potentially
capable to offer such a functionality. However, for consist-

Correspondence to: J. Brunekreef

ency reasons at any time only one process is allowed to
actualy offer the function. Therefore, one process called
the "leader" - must be elected to support that function.
Sometimes it suffices to elect an arbitrary process, but for
other functions it is important to elect the process with the
best capabilities to perform that function. In the latter case
the ranking of processes is application-dependent. For
instance, when using a leader for distributing the clock the
ranking may be based on local clock skews, whereas for
load balancing the ranking may be based on the process'
local load. In this paper we abstract from this and use
ranking on basis of process identities.

In this paper we consider a distributed leader election
(LE) protocol and use ranking of processes on basis of
process identities. Each process has a fixed unique identity
and a total ordering exists on these identities, known to all
processes. We assume a finite number of processes. The
leader is defined as the process with the largest identity
among all participating processes. Realistic distributed
systems are subject to failures. The problem of leader
election thus becomes of practical interest when failures
are anticipated. In this paper, processes behave dynam-
ically - they may participate at arbitrary moments and
stop participating spontaneously without notification to
any other process. Crashed processes may recover at any
time. Thus, a leader has to be elected from a set of pro-
cesses whose elements may change continuously. Pro-
cesses communicate with each other by exchanging mess-
ages via a broadcast network. This network is considered
to be fully reliable. A broadcast message is received by all
processes except the sending process itself. Communica-
tion is asynchronous and order-preserving.

Leader election is a special case of distributed consen-
sus problems. Several impossibility results have been
obained for such problems. For instance, in [14] a number
of orthogonal characteristics is identified by which the
existence of a solution for the distributed consensus prob-
lem is determined. According to this classification our
problem is solvable since we consider order preserving
message delivery, broadcast communication and atomic
send and receive.

158

Due to the complexity of the design of a fault-tolerant
LE protocol the principle of separation of concerns is
applied. That is, we develop a fault-tolerant protocol in
three steps, each step resulting in a LE protocol. We start
with rather strong - and unrealistic - assumptions about
process and system behaviour. In each subsequent step
these assumptions are weakened and a protocol is con-
structed starting from the protocol derived in the previous
step. The steps of our design are as follows. In our initial
design processes are considered to be perfect and a leader
is assumed to be present initially. A process may partici-
pate spontaneously, but once it does it remains to do so
and does not crash. In the second step, the assumption of
an initial leader is dropped. This leads to a fully symmetric
protocol which uses an (abstract) timeout mechanism to
detect the absence of a leader. Finally, in the last step of
our design processes may crash without giving any notifi-
cation to other processes.

Existing designs of LE protocols are mainly focussed
on reducing message and time complexity, scarcely paying
attention to protocol verification, let alone providing a for-
mal approach to verification. However, for the design of
complex communication protocols formal methods are
indispensable. The starting-point of our designs is a re-
quirements specification in linear-time temporal logic.
Temporal logic is an appropriate and expressive language
for specifying properties and behaviours of reactive sys-
tems, like communication protocols, in an abstract way.
As a protocol specification language we adopt extended
finite state machines. The combination of temporal logic
and state-transition diagrams enables a formal verification
of the designed protocols. In [8] such a verification is
carried out for all presented protocols. In this paper we
present the proof of the most sophisticated protocol, the
fault-tolerant protocol.

As efficiency plays an important role in the design
of leader election protocols some complexity results
are given for each protocol presented in this paper. We
focus our analysis on the worst case message com-
plexity which indicates the maximum number of broadcast
messages needed to elect a leader. For N participating
processes the message complexity of our initial protocol
is dT(N 2) broadcast messages, which can be improved
to dT(N) by adopting a tricky way of message buffering.
Using this buffer mechanism the last two protocols have
a message complexity of r and t~(N 2) broadcast
messages, respectively, when no crashing processes are
considered.

The paper is further organized as follows. In section
2 the relation to existing work is presented. The require-
ments specification and design of all three protocols is
presented in section 3. Furthermore, an introduction to the
protocol description language and to linear-time temporal
logic is given in this section. In section 4 it is verified using
temporal logic that the third protocol from section 3 satis-
fies its requirements. The worst case message complexity of
all three protocols is presented in section 5. Finally, in
section 6 some concluding remarks are given and future
work is addressed.

In the rest of this paper, we use the term protocol
as a synonym for similar terms as distributed program,
distributed algorithm, and so forth.

2 Relation to other work

Leader election protocols

The problem of leader election was originally coined by
[31] in the late seventies and various LE protocols have
been developed since then. A broad range of solutions
exists varying in network topology (ring [11, 31, 37],
mesh, complete network [2, 26, 42], and so on), commun-
ication mechanism (asynchronous, synchronous), avail-
able topology information at processes [4, 32], and so
forth.

Only a few LE protocols using broadcast communica-
tion have been treated (see e.g. [20, 24]). A possible
straightforward solution to a broadcast network is to
superimpose a (virtual) topology - like a ring - on it and to
adopt a well-known solution for this topology. However,
most existing solutions are aimed at distributed systems
that are assumed to behave perfectly - no failures are
anticipated and a fixed number of participating processes
is assumed. Moreover, the specific characteristics of broad-
casting are not exploited.

Realistic distributed systems are subject to failures.
Some LE protocols are known that tolerate either com-
munication link failures (see e.g. [1, 41]) or process failures
[12, 13, 20, 23, 24, 34]. In [20] the LE problem with
a similar failure model and using broadcast communica-
tion is considered, however, no ordering between processes
is considered. A number of LE protocols for various differ-
ent kinds of broadcasting (reliable, unordered, ordered
broadcasting) are presented in [24]. The authors of this
paper consider, however, synchronous broadcast mecha-
nisms such that processes reply without any delay, and
consider processes to have synchronized clocks. [23] and
[34] only consider process crashes prior to the start of the
protocol, but no crashes during protocol execution are
taken into account. We consider processes to be able
to crash at any moment of time. In [12, 13] LE protocols
are presented that tolerate transient process failures.
These protocols belong to the category of self-stabilizing
protocols [15, 38].

Specification and verification in temporal logic

Existing LE protocols are mainly focussed on reducing
message and time complexity, scarcely paying attention
to problem specification and protocol verification. To
our knowledge no formal specification of the (dynamic)
LE problem is published elsewhere. In order to correctly
design (and verify!) communication protocols such a
formal specification is indispensable. The specification
and verification techniques we use are well-known for
almost a decade: protocol specification and verification
using a combination of temporal logic [33] and state-
transition diagrams [6] has been applied for a number
of other protocols (see e.g. [28, 21, 40]). However,
the dynamic character of processes combined with a
timeout mechanism so as to detect the absence of a
leader makes the specification and verification more
complex than traditionally considered communication
protocols.

159

Complexity results

Numerous complexity results for LE protocols are known.
We mention only a few and concentrate on worst case
message and time complexity. First, consider point-to-
point networks with N processes participating in the elec-
tion. Early protocols for an unidirectional ring network
[11, 3 I] have a message and time complexity of (9(N 2) and
C(N), respectively. These results have been improved (see
e.g. [37, 30]) to protocols with a message and time com-
plexity of (~(N log N) and O(log N). For complete net-
works a message and time complexity of r log N) and
(9(N) can be reached, see [2, 3, 25, 32]. In [42] a number of
LE protocols for asynchronous complete networks is
given with a message complexity of (9(Nk) and a time
complexity of r with k a constant, log N < k < N.

To elect a leader, the broadcast LE protocols defined in
[24] have a worst case message complexity of r reliable
ordered broadcast messages. On failure of a leader the
election must be repeated involving all remaining pro-
cesses, resulting in an overall message complexity of
(9(N2). They consider synchronised processes and syn-
chronised communication.

3 Design of LE protocols

3.1 Introduction

In this section we describe the communication mechanism
used for our protocols, introduce the protocol description
language, and introduce linear-time temporal logic.

3.1.1 Communication

Processes communicate with each other by exchanging
messages via a broadcast network. A broadcast message
sent by some process p is received instantaneously by all
processes except p itself. There is no need for separate
point-to-point messages to accomplish this. In contrast
with a multi-process rendez-vous in which several
processes synchronize on a common communication,
broadcasting is considered to be asynchronous. Broadcast
messages are buffered by processes, resulting in a so-called
buffered broadcast [17] mechanism. This buffering is
order preserving, in this paper the only form of commun-
ication we consider between processes is broadcasting.
Therefore, we often omit the prefix broadcast in terms like
message, communication, and so on.

It is assumed that the communication network is per-
fect, that is, no duplication, loss or garbling of messages
takes place. In this way we abstract from the design of
a reliable broadcast facility on a faulty broadcast network
and assume the existence of such a protocol. Protocols
that establish a reliable ordered broadcast mechanism
have been treated extensively in literature (see e.g.
[36, 39]). In order to avoid interference of transmissions of
different processes it is assumed that at most one message
may be transmitted via the network at any moment of
time.

The ability of broadcasting communication is often
treated as a special feature of the communication network.

As a result, existing notations for concurrent (and distri-
buted) processes - like CSP [22], Estelle [10], and so on

do not provide a primitive by which a process can
explicitly broadcast a message. Here we consider broad-
casting as part of our description language (see also [17]).

3.1.2 Protocol description language

We denote our protocol by a Finite State Machine (FSM)
diagram [6-1, also called state transition diagram.
Transitions consist of an (optional) guard and zero or
more actions. Depending on the guard a transition is
either enabled or disabled. In a state the process selects
non-deterministically between all enabled transitions, it
performs the actions associated with the selected transition
(in arbitrary order) and goes to the next state. When there
are no enabled transitions the process remains in the same
state. Evaluation of a guard, taking a state transition and
executing its associated actions constitutes a single atomic
event.

A message consists of a message type and one or more
parameters, m(pl , . . . , p ,) denotes a message of type m with
parameters Pl through p,. The sending of this message is
denoted by !!m(pl, ... ,p,). At execution of the send state-
ment by process p, say, the message is buffered instan-
taneously at each process except p. Since broadcasting is
asynchronous, execution of !!m(---) is never delayed due to
unreadiness of a receiving process. (Notice that this means
that a process must always be able to buffer a message
received via the network.) Execution of ??.m(---) by a pro-
cess delays that process until a message of type m is
delivered. Messages sent by !!m(...) can be received only
by ??m(.--), so corresponding input and output actions
must affect the same message type and the same number of
parameters (and the same parameter types). Communica-
tions can be viewed as (possibly delayed) distributed as-
signments, that is, for processes p and q, variables x; and
expressions Ei (0 < i < n) execution of !!m(E1,.. . ,E,) in
p and ??m(xl , . . . ,x ,) in q establishes the multiple assign-
ment xl , x , := E1 ,E, (in q).

Guards are boolean expressions. We allow receive ac-
tions to appear in guards. This part of a guard is true only
when execution of the receive action causes no delay, that
is, when the corresponding message is at the head of the
process' buffer. An absent guard denotes a guard that is
always true.

When in a certain state a message type is at the head of
the buffer for which no corresponding transition is present
this is considered to be an error. This situation is called
unspecified reception and leads to a deadlock of the system.

A process consists of a buffer process taking care of
buffering messages received via the communication net-
work, and a 'main' process. The buffer processes are left
implicit - they operate according to the first-in first-out
principle, and are at any moment of time ready to accept
an input of the network and to offer an earlier received
message to the main process. A main process is denoted by
a FSM and the co-operation of these processes is con-
sidered to be the parallel composition of these FSMs. The
reader should bear in mind that all processes in our system
are equivalent (apart from their identity). Thus the system
is the parallel composition of a number of equivalent

160

FSMs. The individual FSMs co-operate by exchanging
messages in the way described above. The parallel com-
position is based on a fair interleaving semantics where
each process gets its turn infinitely often. Furthermore,
a transition has to be taken eventually when it is continu-
ously enabled ('weak fairness' [33]).

3.1.3 Introduction to temporal logic

For our formulation of the requirements of our protocol
and the subsequent verification that our protocol meets
these requirements we use a first-order temporal logic
based on the temporal operators q / and 5 ~ (see also [33]).
An extensive introduction to the use of temporal logic for
communication protocols can be found in [18].

A temporal formula is constructed from predicates,
boolean operators (such as ~ and A) and temporal oper-
ators like [] (pronounce 'always'), O ('eventually'), q/('un-
til'), ~V ('unless'), O ('next'), �9 ('always in the past'),
�9 ('some time in the past'), ~ ('since') and of ('just'). Let
q) and ~ be arbitrary temporal formulas. We consider the
future (and the past) in a strict sense, that is, the current
moment is excluded. Informally speaking, []q~ means that
qJ will be true at every moment in the future. Oq~ means
that q~ will be true at some moment in the future, and ~0~//~
means that 0 will become true eventually and that q~ will
be true continuously until that moment. ~0~-0 means that
either ~o holds indefinitely or ~o~//0 holds (weak until). O~0
means that +p holds at the next moment in time (our time
domain is discrete since we use sequences, see below). The
temporal operators which refer to the past are informally
defined as follows. �9 means that q~ has been true at every
moment in the past, �9 means that q~ has been true at
some moment in the past, and finally, q~,9~0 means that

has been true at some moment in the past and that q3 has
been true continuously since that moment. Jq~ means that
~0 has just become true. At each moment of time the
predicate true holds. Predicate false equals --1 true.

The formal semantics of our form of temporal logic is
defined by interpreting temporal formulas in a model. We
consider a (possibly infinite) sequence s of states (So, s t , . . . ,
s~,...) starting from the initial state So. A model is a se-
quence s together with a valuation function V assigning
a subset of states to each predicate (giving the states in
which the predicate is true). Given a model (s, V) the
meaning of temporal formulas is defined by a satisfaction
relation (denoted by [=) between the model and the cur-
rent state (represented by its number in s), and a temporal
formula. This satisfaction relation holds if and only if the
formula is true in that state in the model. For s =
(So, S1, . . . , s , , . . .) and q), ~0 arbitrary temporal formulas,
[= is defined as follows:

s, V, n [= P iff Sn �9 V(P) for each predicate P

s, V, n l= -n q) iff s, V, n g= ~o

s , V , n l = q) ^ O iff s , V , n l=q) a n d s , V , n [= O

s, V,n)= ~o~ 0 iff there exists m > n such that
s, V,m]= 0 and s, V,i[= q~ for all
i with n < i < m

s,V, nl--~p~O iff there exists m with 0 < m < n such
that s, V, m 1= O and s, V, i1= ~0 for
all i with m < i < n.

In our requirements (section 3.2.1 below) and our veri-
fication (section 4), all formulas should be interpreted to
hold for all states (i.e. Vn :n > 0). The semantics of the
remaining temporal operators can now be defined for
arbitrary ~0 and ~ as follows:

<>r - true'lop

[3r - ~ O ~ cp

Oq~ =- falseql r#

0(0 = true2gq)

-

Predicate .~r characterizes the initial state (i.e., n = 0) and is
equivalent to �9 As usual the unary operators bind
stronger than the binary ones. The temporal operators 2f,
~//, and ~ bind equally strong and take precedence over
A, V, and ~ . ~ binds weaker than A and v , and
A and v bind equally strong.

3.2 A first stepping stone

In this section we design a leader election protocol assum-
ing that a leader process is present initially and processes
do not crash. We start by defining the precise requirements
of the problem.

3.2.1 Requirements in temporal logic

The formulation of the requirements is as abstract as
possible, that is, without reference to a possible protocol.
In particular we refrain from mentioning certain states of
the protocol. We only use a predicate leader(i) which
represents the fact that the process with identity i is the
current leader. This identity i is part of a finite set ld totally
ordered by < . We use i, j, k to denote elements of ld.

In our requirements we use quantification over Id. By
default, this quantification should be interpreted in a re-
stricted way in the sense that not all identifications are
involved in this quantification (the whole set Id), but only
those identifications corresponding to the processes ac-
tually participating at that moment (so, always a finite
subset of Id). We could have made this explicit by intro-
ducing the set, ~ say, of participating processes and re-
placing V i : . . . by V i � 9 and replacing 3 i : . . . by
3 i �9 N : For ease of notation we have left this intended
form of quantification implicit. In cases where quantifica-
tion over the whole set Id is needed, this is explicitly
indicated.

The requirements for leader election are as follows. The
most basic requirement states that there must always be at
most one leader. Since a change of leadership may take
some time there can be temporarily no leader at all.

P1 Vi, j ~ i:leader(i) => ~ l e a d e r (j) .

If we just take the above requirement we can easily devise
a protocol by just not electing a leader at all. We should
also state that there will be 'enough' leaders in due time.
Because we are working in a framework using a qualitative
notion of time this should be formulated by the liveness
requirement below that there will be infinitely often
a leader (this does not imply that there will be infinitely
many leaders).

P2 (>(qi:leader(i)) .

The last two requirements make sense of the order < on
Id. The idea is that processes with a higher identity have
priority in being elected as leader over processes with
a lower identity. P3 states that a leader in the presence of
a participating process with a higher identity will capitu-
late eventually. We do not state anything about the pos-
sible future leadership of this 'better' process. 1

P3 V i,j > i: leader(i) ^ ~ leader(j) ~ (>--q leader(i).

Observe that j is a participating process. For reasons of
efficiency it is not desirable that a leader eventually capitu-
lates in presence of a 'sleeping' process that may partici-
pate at some unknown time in the future.

The last requirement states that the next leader will be
an improvement over the previous one (i.e., will have
a higher identity).

P4 k/i E ~ , j ~ Id : leader(i) A 0 7 leader(i)

^(>leader(j) ~ i < j ,

where we refer to the last moment of leadership of process
i (first two conjuncts in premise) and the succession of
process j (third conjunct). As process j does not need to
participate at the moment i is a leader, it ranges over Id.

The last two requirements impose constraints on the
capitulation of a leader process and the ordering of its
successor. Note that P4 implies that a process that capitu-
lates once, will not become a leader any more.

3.2.2 A first protocol

In this section we construct a LE protocol starting from
requirements P1 through P4. To keep the design manage-
able it is assumed that a leader is present initially and all
other processes are 'asleep'.

Each process has a fixed unique identity. Initially pro-
cesses only have their own identity at their disposal
(my_id) and have no knowledge of other processes' identi-
ties. The processes that do not yet take part in the election
decide non-deterministically whether to join the elec-
tion or not. Thus, a subset of all processes actually takes
part in the election.

Initially a process does not know the identity of the
leader, and, consequently it can not decide whether it
becomes a leader or not. Once the identity of the leader is
known there are two possible outcomes: the process
should become (the new) leader or not. From the above we
conclude that a process may be in one of the following

161

possible states: candidate, when it does not yet know
whether it will become a leader or not, leader when it
actually is a leader, and defeated when it is defeated.
A process starts in the start state.

Once a process joins the election, that is, when it
becomes a candidate, it transmits its identity my_id by
means of an I(my_id) (Identify) message. On receipt of an
identity a leader compares this identity with its own iden-
tity. In case the received id is larger than its own id the
leader moves to the defeated state (there is a 'better' pro-
cess), and gives the candidate the right of succession by
transmitting the candidate's id with an R-message (Re-
sponse). In the other case, the leader remains leader and
transmits its own id using R(my_id). The actions of a can-
didate on receipt of an identity follow quite straightfor-
ward when it receives an R-message with its own id it
becomes a leader, when it receives an R-message with
a larger id it becomes defeated, and otherwise it remains
a candidate.

There is however a little flaw in the above informally
described protocol: when two (or more) processes are in
the candidate state and one of them causes the leader to
capitulate (i.e., to become defeated) the rest of the candi-
dates may not receive a response of the leader on their
original /-message, remaining candidate forever. The
problem is that the 'old' leader capitulates while the 'new'
leader has already processed (and ignored) the/-messages
of the other candidates, while being a candidate. This
problem is resolved by letting a candidate (re-)transmit its
own id on receipt of an R(id) message with id < my_id.

We thus obtain the following protocol (see Fig 1).
Some notational remarks are in order. States are repre-
sented by rounded boxes and transitions are denoted by
arrows. The operator & should be read as "such that".
Transition labels consist of an optional guard and an
optional set of actions separated by a horizontal straight
line. The initial state is indicated by having a grey color.

We deliberately have chosen to only permit the leader
to deal with succession inquiries - i.e. only on receipt of

1 Note that the assumption thatj is not a leader is already guaranteed
by P1, and could thus in principle be omitted Fig. 1. Finite state machine diagram of Protocol 1

162

a notification of the leader a candidate becomes either
leader or defeated. To accomplish this, messages ori-
ginated by the leader are distinguished from those ori-
ginated in other states. In the setting of this protocol it is
essential that candidates do not become defeated (or, even
worse, leader) on receipt of messages from other candi-
dates; otherwise P2 may be violated. This is exemplified by
the following scenario in which there is only a single
message type. Consider three processes i, j, and k, one of
which is a leader, k, say. Assume i and j do not take part in
the election yet. Let i > j > k. Supposej joins the election
by transmitting its identity. Since i is still in the start state
it ignores j 's id. Before k reacts on the receipt of j 's id,
/ joins the election and transmits its id. On receipt of this
message j becomes defeated. As k capitulates (due to j 's id
received earlier) and as j will not become its successor (due
to i's id) no process is able to grant i the right of succession,
and, consequently, no leader process willl ever be elected.
The problem is that a candidate may not only be forced to
become defeated by the leader process, but also by other
candidates. Therefore, we distinguish between id's origi-
nating from candidates and those submitted by leader
processes. Candidates become either defeated or leader
only on receipt of messages from leaders and they ignore
others. In the above examplej will thus not become defeat-
ed on receipt of i's id.

3.3 A symmetric LE protocol

We now drop the unnatural assumption of a leader being
present initially. In this section we design a LE protocol
starting from the previous protocol in case no leader may
be present initially. Like in the previous section processes
are considered to be perfect and the protocol has to be
consistent with respect to requirements P1 through P4.

Let us first remark that in the current setting Proto-
col 1 does not suffice as it does not satisfy P2 - no leader
will ever be present in case a leader is absent initially. The
problem now is that a candidate must be able to detect the
absence of a leader.

To solve this problem each process is equipped with
a timer and the absence of a leader is notified by means of
a timeout mechanism. A timer is started by the start-timer
action. Typically, timeout operations induce the specifica-
tion of execution times of protocol operations and the
propagation delay of the communication medium. This
tends to a rather complex semantics of timeout operations
and complicates the verification significantly. Therefore,
we adopt an abstract notion of timeout, which defines
what a timeout condition achieves, but not how this is
achieved. That is, it is abstracted from how to implement
timeouts using a kind of (synchronized) clock mechanism.
An identical treatment of timeouts has recently been given
in [19].

A timeout is modeled as an ordinary action and may
appear as (part of) a guard. Timeouts can be used to detect
the establishment of a global condition in a protocol. They
are, therefore, a powerful concept and may be expensive to
implement. However, they drastically simplify the descrip-
tion and verification of protocols with timeout operations,
and suggest a unified approach for implementing timeouts
using real-time clocks.

The idea now is that a process starts its timer when it
becomes a candidate. When receiving a response of the
leader on its initial l(my_id) message the timer plays no
role and the process progresses as in the first protocol. In
absence of a response of a leader, the candidate goes to the
leader state at the occurrence of a timeout. Thus, a timeout
guard must be disabled in case a leader is present. This
leader process might be the leader at the start of the timer,
but might also be a 'fresh' one. Therefore, a timeout guard
is defined to be true (the timer expires) only when a process
has received and processed all responses to its message
sent at starting the timer. This timeout mechanism is
usually called non-premature. A precise characterization of
the timeout mechanism is given in section 4. We thus
obtain the protocol as depicted in Figure 2(a).

Recall that the reason for introducing two different
message types to exchange identities in Protocol 1 was to
avoid the violation of P2. We observe that - due to the
timeout mechanism - this problem does no longer occur.
Therefore, there is no objection against replacing the re-
sponse messages by/-messages. This results in the proto-
col as depicted in Figure 2(b). As a consequence, candi-
dates can now be forced to become defeated by receiving
messages from other candidates. In Protocol 1 a candidate
only reacts to messages sent by the leader.

Some significant simplifications to the latter protocol
can be made. Observe that there are two possible
transitions from the candidate state to the leader state, one
of which may take place when no leader is present (labelled
with a timeout guard). The other transition is enabled on
receipt of an l (m~id) message which is only sent when
a leader capitulates. It is not hard to see that the protocors
correctness is not affected by the removal of this message
transmission. So, in that case a leader moves without any
notification to the defeated state on receipt of a larger
id than its id. This implies that one of the transitions to
the leader state will never be enabled and, hence, may
safely be eliminated. Thus we obtain the protocol depicted
in Figure 3, referred to as "Protocol 2".

3.4 A fault-tolerant LE protocol

In this section we drop the assumption of perfect processes
and revise our earlier designs by considering processes that
cease participation without notifying other processes.
After halting a process does not behave maliciously. This
kind of failures is known as crash faults (see e.g. [16]).
Crashed processes may recover and (re-)join at any time. It
is assumed that recovered processes restart in the start
state. This should not be confused with "self-stabilizing"
systems [-15, 38] where processes may recover in any state.
The number of times a process can crash or recover during
an election is unlimited. A process cannot crash during the
execution of an atomic event.

Recall the requirements as specified in section 3.2.1.
Since the assumptions about process behaviour are now
strongly modified it needs to be checked whether the initial
requirements are still realistic. For instance, it is rather
unrealistic to require P2 bearing in mind that all processes
may crash eventually. We, therefore, first adapt the
requirements to the new context.

163

Fig. 2. Finite state machine diagrams of two derivatives of Protocol 1

Fig. 3. Finite state machine diagram of Protocol 2

3.4.1 Requirements revisited

It is still essential that at any moment of time there is at
most one leader:

Q1 v i , j , i:leader(i) ~ - q l e a d e r (j) .

In order to distinguish between our initial requirements P1
through P4 and the new ones we label new requirements
with Q. Again, quantifications, by default, implicitly range
over the processes actually participating at that moment.
This includes crashed processes.

P2 claims that there (always) will be infinitely often
a leader. As stated above, it is unrealistic to demand P2
since potentially all processes may fail. We therefore claim
that always there will be infinitely often a leader if there
exists a process at some time which will definitely not crash

from then on and for which all better processes have (and
remain) crashed. Predicate dead(i) indicates the fact that
process i has crashed. Formally,

Q2 < > (3 i ~ I d : M (~ d e a d (i) ^ (V j > i :dead(j))))

D ~ (q k :leader(k)).

[]<>P for predicate P states that at any point in the
execution it is true that eventually P will hold.

Quite evidently, a crashed process cannot act as
a leader process (and vice versa).

Q3 V i:--7 (leader(i) ^ dead(i)) .

The next requirement addresses the question in what cir-
cumstances a leader capitulates. Well, a leader should be the
process with the highest identity among all living particip-
ating processes. This implies that a leader should capitu-
late as soon as there is some other (living) process which is
an improvement. However, when this better process crashes
the above claim is too strong. We, therefore, require

Q4 Vi, j > i: leader(i) ^--7 dead(j)

~ leader(i) v ~ d e a d (j) .

When a leader capitulates this may be caused by either the
crash of this process or the fact that there was a better
(living) process. Formally,

Q5 Vi: J ~ l e a d e r (i) ~ dead(i) v 0 (3 i > i : -qdead(j)) .

Both Q4 and Q5 refer to the catipulation of a leader. It
remains to require something about the succession of
leaders. Previously we required that leaders must be suc-
ceeded by better ones. This claim is still valid. However, it
needs a more careful formulation, since, it is invalid in case,
for instance, a leader capitulates by crashing. It, therefore,
seems reasonable to require

Q6 V i E ~ , j ~ I d : l e a d e r (i) ^ ~ l e a d e r (j)

^ ~dead(i)q l l eader (j) ~ i < j .

164

Informally formulated: given some leader process, i say, its
successor, process j, is not less qualified than i provided
that i does not crash in between the leaderships of i and j.
Q6 thus claims nothing about the relation between
a leader and its successor when the leader crashes in the
meanwhile. Furthermore, crashes of other processes do
not have any influence. Notice that a leader may be suc-
ceeded by itself(i.e, i a n d j are not necessarily distinct) as it
may capitulate due to the presence of a better candidate
that crashes before becoming a leader.

The consistency of Q1 Q6 with respect to P1-P4 is
discussed below. In case processes do not crash Q4 boils
down to P3, that is, under the assumption D (V i e l d :

dead(i)) Q4 simply reduces to P3. In a similar way Q2
reduces to P2 as shown below

(>(3 i ~ ld: D (~ dead(i) A (Vj > i: dead(j))))

[]0 (3 k : leader(k))

= { [] (V i E I d : ~ d e a d (i)) }

(>(3 i ~ ld: [] (Vj > i:false))

=~ E2(> (3 k: leader(k))

={}

(>(3 i t l d : i = imax A (Vj: j < imax)A [~(Vj > i:false))

=:, D(>(3 k: leader(k))

= {(Vj > im~x :false) = true}

(>(3 i e ld : i = /max ̂ (Vj : j </max))

=~ lq (> (3 k : leader(k))

= {ld is finite, so imax exists}

(>true ~ f~(>(3k:leader(k))

= {calculus}

(>(3 k :leader(k))

where in the last step we use the fact that all formulas
should be interpreted to hold over all states (see section
3.1.3.).

The relationship between Q6 and P4 is more subtle.
When processes do not crash we derive for Q6:

V i E 2 , j ~ Id: leader(i) ^ (>leader(j)

^-qdead(i)Ollleader(j) ~ i < j

= { [] (V i E l d : ~ d e a d (i)) }

V i ~ 2 , j ~ ld:leader(i) A <~leader(j)

^ trueqlleader(j) =:, i < j

= {trueqlleader(j) = (>leader(j)}

V i E ~ , j ~ ld:leader(i) A (>leader(j) =~ i < j .

In the context of the previous protocols this resulting
requirement, however, allows a leader to capitulate (in
presence of a better candidate, cf. P3), become a leader
again, capitulate (there is still a better candidate), and so
on, in a repetitive way. In case processes do not crash this
is in our opinion not desirable as no real progress is

made: when a leader catipulates due to the presence of
a better candidate one expects that at some time a new
(and better) leader emerges. Therefore, requirement P4 was
introduced. For Protocol 3 this situation is different as
each process, including candidates, may crash spontan-
eously. Thus a leader may capitulate because a better
candidate is noticed, but before this candidate becomes
a leader it crashes. Then it must be allowed that the
capitulated leader becomes a leader again. This justifies
Q6.

3.4.2 Design of a fault-tolerant protocol

We take the previous protocol as a starting point for our
design of a fault-tolerant LE protocol. The crucial point
now is that in absence of a leader after it crashes, a defeated
process might be a valid successor.

So as to involve defeated processes in the election we
consider two cases. First, to avoid a candidate to become
a leader in case a leader crashed and a better defeated
process is present, defeated processes become a candidate
on receipt of an / -message with a smaller id than their own
id thus joining the competition about the leadership and
thus avoiding violation of Q4. Other / -messages are still
ignored when being defeated. It should be observed that
this does not suffice in case a leader crashes, at least one
defeated process is present (that will never crash), and no
candidate will ever appear. In this scenario no leader will
ever be elected, although there is some process that will
never crash. This violates Q2. Therefore, we should have
a mechanism via which defeated processes will rejoin the
election in absence of a leader. Using the fact that the
underlying broadcast facility is reliable, several techniques
can be applied to accomplish this. z Here we abstract from
a specific technique and model this by adding a transition
labelled with an absent guard from defeated to the candi-
date state, such that a defeated process may (re-)join the
election spontaneously by identifying itself and starting its
t imer? We model the fact that processes may crash at
arbitrary times by a possible transition from each possible
state to a new state, named dead state. We denote these
transitions by dotted arrows. The difference between
transitions represented by dotted, respectively solid, ar-
rows should be interpreted as follows. In case of a dotted
arrow the transition is always possible (and hence can be
non deterministically chosen), but not necessary (that is, it
can be ignored indefinitely). On the other hand, a solid
arrow represents a necessary transition, that is, a transition
that eventually has to be taken whenever it is continuously

2 For instance, a leader may transmit on a regular basis "I am here"
messages and in absence of such messages a timeout could expire in
a defeated process, thus forcing it to become starting (or candidate).
Another possibility would be to let a defeated process regularly check
whether a leader is present (see e.g. [20]).
3 It should be noted that we now have two transitions with equiva-
lent actions, one of which has a true guard from the defeated state to
the candidate state. These transitions cannot be combined into
a single transition with a true guard as it would then be no longer
guaranteed that this transition is made on receipt of an /-message
with an identity larger than that of the recipient: a process may then
perform the transition whenever it likes

165

F~ denote that process i is in the start, candidate, dead or
defeated state, respectively. The local buffer of process i is
symbolized by Qi- Assertion SENI)~(m(pl , PM)) is true (in
some state of the state sequence) only when process i ex-
ecutes !!re(p1 , Pn) at leaving that state. Similarly, asser-
tion RCV~(m(pl, . . . ,pn)) is true if and only if guard
??m(p~ ,pM) evaluates to true and the corresponding
transition is taken. For some protocol state guard TO~ for
process i evaluates to true whenever i's timeout occurs and
the corresponding transition is taken.

Fig. 4. Finite state machine diagram of Protocol 3

enabled. Representing crash transitions by solid arrows
would imply that all processes crash eventually which is
rather unnatural. The dotted arrows and solid arrows are
similar to the modal relations ~ , respectively ~ I ~ of
modal transition systems (see e.g. [29]).

Similarly, the fact that processes may recover spontan-
eously after crashing is modeled by a (dotted) transition
from the dead to the start state. This yields the protocol
depicted in Figure 4, called "Protocol 3". For the sake of
brevity, a transition label is omitted when both its asso-
ciated guard and its set of actions are absent. In order to
prevent unspecified receptions (and thus a system dead-
lock), a process in the Dead state is able to consume
messages from its buffer (see Theorem 4.5).

4 Verification by temporal logic

In the previous section we informally motivated our design
decisions. In this section we formally prove that the last
protocol satisfies its requirements Q1 through Q6. We
furthermore, prove that for this protocol unspecified re-
ceptions cannot occur. We do not intend to give a com-
pletely formalized proof. Such a proof is well possible, but
however, requires a formalization of the assumptions,
a transformation of the protocol to our proof formalism
(temporal logic), and so on, which would make the proofs
too much involved. We, therefore, confine ourselves to
presenting only the main ideas of the proof. The correct-
ness of the first two protocols can be proven in a similar
way as the third protocol. These verifications are reported
in [8].

4.1 Notations and conventions

We use the following notations and conventions. The fact
of being a leader, that is, leader(i), is identified with the fact
that process i is in the leader state. To distinguish between
the conceptual notion of being a leader and the internal
protocol states, Li is used to denote that i is in the leader
state of the protocol. Similarly, predicates S~, Ci, D~, and

4.2 Reliable broadcast communication

We first formally define some relevant assumptions about
the broadcast mechanism which we use as underlying
communication facility. Let m, m ~, and m q be unique mess-
ages, that is, both their originator and moment of origina-
tion are unique. (It has been shown in [27] that messages
need to be uniquely identifiable so as to specify commun-
ication mechanisms in temporal logic by axioms like those
below. In this paper we accomplish this by message num-
bering by the sender. As from the context the dependence
on the identity of the sender is explicit, this dependence is
often omitted. In the sequel we use p, q as numbers of
messages.)

The broadcasting mechanism we use is formally
specified as follows.

Assumption 4.1. V i : SENDi(m) =~ O(Vj :I: i : m ~ Qj) .

Assumption 4.2. V i : m ~ Q i ~ o (q j ~= i:SENDj(m)) .

Assumption 4.3. V i,j: SENDi(m p) A OSENDj(m q) ~ (V k ~ i,j:
~ (m p E Qk ^ (>mq E Qk)).

Assumption 4.4. V i , j ~ i: SEN~)i(m ~) ~ --7 SENDj(m q) .

Assumption 4.1 states that messages that are sent are
received instantaneously by all processes, except the
sending process. Note that it also implies that messages are
not lost by the communication network. Assumption 4.2
phrases that messages are not spontaneously generated by
the network, and assumption 4.3 expresses that the net-
work is order-preserving. Assumption 4.4 says that at most
one process may send over the network at a time.

Observe that it immediately follows from axiom 4.2
that a process does not receive its own transmitted mess-
ages. That is, for all unique messages m

(1) V i : m e Q i ~ ll--qSENDi(m) .

The relation between buffering of messages and the actual
processing of messages is given by the following theorem
which states that queued messages will eventually be pro-
cessed. This is, of course, not a property of the broadcast
mechanism, but a desirable property of the protocol. We
provide the proof for Protocol 3. Note that the theorem
implies that no unspecified receptions can occur.

Theorem 4.5. V i : m ~ Qi =~ ~ RCvi(m) .

Proof. As there is only one message type involved, as
corresponding transitions exist for this message type (for
all possible parameter values) in all states, and as processes

166

do not receive their own transmitted messages, it is evident
that all messages can be processed in each state. The fact
that a message will eventually be processed follows from
the (weak) fairness assumption saying that a transition
that is continuously enabled will eventually be taken. []

4.3 The timeout mechanism

The semantics of the t imeout mechanism were informally
defined in section 3.3. In order to facilitate a formal proof
we formalize this semantics. This formalization is essential
so as to prove the invariance of Q1 through Q6.

We characterize in general terms, that is without refer-
ence to the protocol, a 'non-premature ' t imeout in
a broadcast network. A timer is started at the transition of
message m, say. This message has to be received (and
processed) by all its recipients before the timer may expire.
Formally, for all unique messages m ~

Assumption 4.6. V i: SEND i(m p) =~ -9 TOp ~ C~j ~ i: �9 RCVj (raP)).

Strictly speaking, the timeout assertion is associated to m p,
and as m p is unique, the occurrence of the timeout is
considered to be unique. When necessary this dependence
on m p is explicitly indicated by referring to the number of
p of re. As, in general, it is not guaranteed that each process
is capable of processing a message of type m in some state,
we use the ~f" operator instead of the q/ operator. In
absence of unspecified receptions - as in the presented
protocols - we could equally well use the q /opera tor .
Now, however, a timeout may be enabled without forcing
the originator of m ~ to receive and process all replies to m p.
Let r~,,j be a reply to m p transmitted by process j. We
additionally require

Assumption 4.7. Vi: TO p ~ (Vj ~: i: r~p j ~ Qi).

Here it should be mentioned that processing a message
and sending a reply to this message is considered to consti-
tute an atomic event. 4 For the protocol at hand we should
substitute IP(i) and IS(j) (i < j) for m p and rm, j, respective-
ly in assumptions 4.6 and 4.7.

The formal semantics of a non-premature timeout in
broadcasting networks is now defined by assumptions 4.6
and 4.7. Summarizing, according to assumption 4.6 all
processes (except the sender) receive m, process this mess-
age and, if appropriate, send a reply. These replies are
forced to be received and processed by the originator of
m as phrased by assumption 4.7.

4.4 Timeout properties

In the previous section we characterized the non-prema-
ture timeout in a rather general context. For the protocol
at hand we have some properties which hold for the
timeout mechanism. These properties are directly derived
from the protocol specifications. As they are frequently
used in the verification we treat them separately.

4 This implies that a process must reply immediately on processing of
a message and is not allowed to wait arbitrarily long with replying. It
can be verified that the presented protocols conform to this principle

Due to the intrinsic recursive behaviour of Protocol 3,
predicates must be defined carefully. When stating, for
instance, C~ ̂ OTop there is no formal relation between the
two conjuncts: process i may be a candidate for a while,
leave this state and become a candidate again and then
leaving this state on Top. Stating Ci referring to the first
period in the candidate state has no relation at all with
Top. In order to establish such a relation the idea is to refer
to the I(i) message on which process i has become a candi-
date and which must have number p such that it corres-
ponds with the next t imeout of i to occur. 5 Note that it is
possible to refer to the I(i) message on which i has become
a candidate in the temporal logic formalism we use. How-
ever, we also want to refer to the receipt of this message by
some other process. This is not possible in temporal logic,
but is rather straightforward when introducing explicit
labelling of I messages.

We have the following timeout properties. The first one
states that a process can only perform a timeout when
being a candidate.

Property 4.8. V i: ro~ ~ Ci.

Once a process enters the candidate state by transmission
of IP(i) and the corresponding timeout occurs eventually,
that is OTop, it does not leave the candidate state until this
t imeout occurs. Note that this also implies that the process
does not crash in between the transmission and the corres-
ponding timeout.

Property 4.9. V i: SENDi(I~(i)) ^ O C i ^ OTO p ~ Ci~TOp.

Candidate i becomes defeated on receipt of l (j) with i < j:

Property 4.10. V i : C i A (3 j > i:RCVi(I(j))) ~ OFi.

We now state the following lemma which phrases that no
l (j) message is received by process i (i < j) after entering
the candidate state until its t imeout occurs (provided its
timeout occurs at some time).

Lemma 4.11. V i: SENDi(IP(i)) A O C i A ~TOp =:~ ~ (3j > i:
RCVi(I(j)))~TOp.

Proof By contradiction. Assume C~ and OTop. It follows
directly from properties 4.9 and 4.10 that candidate i be-
comes defeated on receipt of I (j) , j > i. Consequently,
no timeout will appear. This contradicts with the
assumption. []

One can now infer from the timeout semantics and the
above lemma that process j can prevent the occurrence of
the timeout of another process, i say, by transmitting I (j)
with i < j , as reply to the receipt of lP(i).

4.5 Protocol verification

We prove the requirements Q1 through Q6 one by one.
The first proof obligation is Q1 and is the hardest to prove.
Therefore, we divide the verification of Q1 into some parts

We remark that another possibility would be to equip the Ci
predicates with a number like the TOf predicates and let the relation-
ship with the lP(i) message on which i has become a candidate
implicit. For the sake of clarity we prefer to give the explicit relation

and give some lemmas that are used later on in proving
this requirement. Let CLFj denote that process j is candi-
date, leader or defeated, and let DSj denote that it is either
dead or start.

The first lemma states that if process j is candidate,
leader, or defeated on processing of message Ig(i) it can
neither be a leader nor perform its timeout at the occur-
rence of zo~'. That is,

Lemma 4.12. V i, j : CLFj A RCVj(I~(i)) ̂ OTO~ ~ [] (TO~ =:~
Lj ^ -7 TO j).

Proof. Let j be a process for which CLFj holds. From the
protocol we infer that on receipt of I(i), either j becomes
defeated in case i > j , or replies with l(j) otherwise.

(2) Vi, j:CLFjARCVj(I(i)) ~ (j < i ~ OFj)

A (j > i =~ SENDj(I(j))).

Process j can prevent the occurrence of WO~' (i < j) by
transmitting I(j) on processing lP(i). This follows from the
timeout properties. Together with (2) this results in

(3) V i,j" CLFj ^ RCVj(F(i)) ̂ OTO[~ j < i .

We thus concentrate, given that i performs TO~' once, on
the case j < i. According to (2) process j becomes defeated
on processing I~(i). It can only become a leader by trans-
mitting Iq(j) on becoming a candidate.

(4) Vj:Cj ~ SSENDj(I(j)).

As process i is still being a candidate, according to prop-
erty 4.9, j is not able to become a leader before i is
becoming a leader - j has to wait for rs reply on lq(j) (see
timeout semantics) and asj < i process i will reply on Iq(j)
(see (2)) thus preventingj to become a leader. In the above
reasoning we only have considered perfect processes, i.e.
processes that do not crash. However, when considering
the crash of process j (i > j) it can be deduced in a similar
way that after revivingj cannot become a leader before i is
becoming a leader. Note that due to property 4.9 process
i does not crash before becoming a leader. So, crashes of
i do not have to be taken into account. []

Lemma 4.13. V i, j: DSj ^ Rcvj(IP(i)) ^ DSj~TO~ =~ [](TO~
DSj).

Proof. Straightforward. []

Lemma 4.14. Vi, j :DSj ^ RCVj(IP(i)) A---1 (OSj~TOi p) :=~
l-l(TO~ =~ ""3 Lj A~3 TOj).

Proof. Let j be a process for which DSj holds at processing
P'(i) and i be a process for which OTO~' holds. It follows
from the protocol that j ignores IP(i) as start and dead
processes ignore all messages.

(5) V i: Si ̂ RCVi(m n) ::~ OSi A --7 SENDi(m q) .

(6) V i : D iARCvi(m p) ~ ODiA~SENDi(m q) .

Consider the case that j has left the start/dead state after
processing IP(i) and before i performs its timeout, that is,

(DSjq/TO/P). According to

(7) Vj:DSjA�9 ~ C)Cj.

167

j has become a candidate and due to (4) must have sent
I(j) in order to do so. According to assumption 4.1 i will
receive this message. As I(j) is not a reply on 1~(i), process
i is not forced to process this message before performing its
timeout. This suggests the following case analysis.

First, consider the case that i processes l(j) prior to its
timeout. According to lemma 4.11 this implies i > j, given
that i will perform its timeout once. Due to (2) i replies with
I(0, and asj is forced to wait for this reply before becoming
a leader it will not be able to perform its timeout (due to
lemma 4.11). In the other case, i processes I(j) after per-
forming its timeout. But then, j cannot be a leader at the
moment i performs its timeout, as it is forced, according to
assumption 4.7, to wait for the reply of i.

When process j crashes in the meanwhile it can be
verified using identical arguments that j cannot become
a leader before i does. []

Lemma 4.15. V i, j : RCVj(/P(i)) ^ OTO~ =~ [] (TO~ ::~ ~ Lj
^ ~ TO A.

Proof. Follows directly from lemmas 4.12, 4.13, and
4.14. []

This lemma is the crux to the proof of the following lemma
which states that when a process performs its timeout, it is
the only process that does so (so, two - or more processes
cannot become a leader simultaneously), and there are no
leader processes.

Lemma 4.16. Vi, j # /:TO/ =~ --3LjA--3TOj .

Proof. Let i be a process for which OTO~' holds. According
to property 4.8 a timeout can only occur being a candidate.
Process i only becomes candidate after sending IP(i) (4).
TO~' is associated with I~(i) and can be performed if and
only if all processes have processed this message (assump-
tion 4.7). The lemma follows now directly from lemma
4.15. []

Theorem 4.17. Vi, j 4: i:Li ~ ~Lj .

Proof. From the protocol we deduce that on occurrence of
a timeout a process becomes a leader immediately

(8) Vi:TOi ~ OLi.

In addition, after just becoming a leader the process must
have performed a timeout:

(9) V i : O J L i ~ TO/ .

As the occurrence of a timeout is the only way to become
a leader (immediately after that) theorem 4.17 reduces to
lemma 4.16. []

Theorem4.18. O(3iEId:R(-aDiA(Vj > i:Dj))) ~ []O(qk:
Lk).

Proof. Consider the process with the maximum id, i' say,
for which O[](~Di, A(Vj > i':Dj)) holds. According to
the premise of Q2 this process exists. The idea of the proof
is to establish that process i' will always become a leader
sooner or later. That is, we prove

(10) OLd,

168

from which we directly deduce Q2. The proof is as follows.
Consider process i' at the moment that all better processes
than i' are crashed for ever, that is, (Vk > i': DDk). Remark
t h a t - although all better processes are crashed process i'
may still have messages originating from these processes in
its buffer, as processes may process buffered messages at
their own pace. Now refer to the moment at which i'
has processed all messages from these processes. That is,
assume

(11) o,r ~ ~ (V k > i ' : m k r Q r ^ D D k) ,

where mR denotes a message originating from process k.
Distinguish between two cases: i' is already a leader, or it is
not. Consider the first case, so Lv holds. From the protocol
description we immediately infer that leaders can only
capitulate by either crashing or receiving an I(k) message
with k larger than their own identity. Formally,

(12) V i : J - 1 L i =~ D i v O (q j > i:RCVi(I(j))) .

Given that i' does not crash there is only one possibility to
capitulate, namely by receiving l(k), k > i'. It is straightfor-
ward to observe that l(k) messages are only transmitted by
process k.

(13) Vi, k:SENDi(I(k)) ~ i = k .

Furthermore, crashed processes do not transmit messages.

(14) Vk:SENDk(m) :=> ~ D k .

Using (11) and the above reasoning it can easily be de-
duced that it is impossible for i' to receive a message I(k),
k > i', and consequently, it is impossible for i' to capitulate.
Thus, we conclude:

(15) Li, A (V k > i ' : D D k ^ m k r Q i ,) ~ D L r .

Secondly, we consider the case that i' is not a leader. Recall
(11). From the protocol we directly infer that processes
that will never crash and are not leader (yet) will become
a candidate once.

(16) V i : D ~ D i A - 1 L i = ~ o r i .

Once, process i' transmits its /-message and becomes
a candidate. As there is no 'better' process that can reply
they are all crashed for ever - it follows from assumptions
4.6 and 4.7 that i' can perform its timeout and becomes
a leader. Using an analogous reasoning as for the first case
we conclude that i' will be a leader indefinitely. []

Theorem 4.19. V i:-1 (L i ^ Di).

ProoJl Trivial. []

Theorem 4.20. Vi, j > i : L i ^ -1Dj ~ O - T L i v O D] .

Proof Assume Lg A--7 Dj ^ j > i. Distinguish between two
cases: D-1 Dj and ~Dj . The interesting case is D ~ Dj. For
this case the theorem reduces to

(17) V i : L i A (~ j > i : D ~ D j) ~ O - i L l .

Using (16) and theorem 4.17 this property holds when the
following property does

(18) V i : L i A (3 j > i : C i ^ D - 1 D j) ~ <~-1Li.

This property is proven as follows. Assume
Li A Ci ^ D ~ D i A j > i. According to (4)j has send l (j) to
become a candidate. This message is processed by i after it
became a leader - otherwise I (j) would have prevented
i of becoming a leader. If i has already capitulated ~ Li
follows directly. In case L~ holds, i capitulates on process-
ing I (j) , j > i, according to (2). []

Theorem 4.21. V i : J - n L i ~ D i v O (3 j > i : ~ D j) .

Proof Let i be a process for which L~ holds. According to
(12) there are only two ways in which i can capitulate. In
case it spontaneously crashes, we have J - 1 L i ~ Di.
Alternatively, it capitulates on receipt of I (j) with j > i.
Due to (13) I (j) can only be transmitted by process j.
Furthermore, crashed processes cannot transmit messages
(due to (14)). Thus, we conclude

(19) V i ,j > i: RCVi(I(j)) => �9 (-1D] A SENDj(I(j))) .

This directly implies

(20) V i : J ~ L i ^ ~ D i =~ 0 (3 j > i : - 1 D j) . []

Theorem 4.22. V i E 22, j e I d : L~ ^ O L j A -1 D f l lL j =:, i < j.

Proof Let process j be the immediate successor of leader
i and assume i does not crash in between the leaderships of
i andj . The proof is by contradiction. Assume i > j . From
the protocol description we immediately infer that

(21) V i : C L F i A [] - 1 D i =~ D C L F i .

So, in case a leader capitulates and does not crash it is
either candidate, leader or defeated. From (3) it follows
that a process cannot become a leader in presence of
a better candidate, leader or defeated process. This implies
that j (j < i) cannot become a leader when i is still in one of
these states. However, according to the premise
Li ^ -1 DflllLj and the above property, this is the case. This
contradicts with j being the successor of i. []

5 Complexity analysis of the protocols

Much work has been devoted in literature on designing
efficient LE protocols. In general, the following complexity
measures are considered: message complexity (the number
of messages needed to elect a leader), time complexity (the
number of time units needed to elect a leader) and bit
complexity (the total number of bits to elect a leader). In
this section we discuss the worst case message complexity
of our protocols in terms of the number of broadcast
messages. For the sake of brevity we only present a de-
tailed analysis of the complexity results of Protocol 1, for
an elaborated analysis of the other protocols we refer to
1-8].

In our protocols all messages are broadcasted, so each
message is received by all processes (except the sender). In
a distributed system where processes spontaneously wake
up, each process at least has to send one (initial) message to
the other processes so as to identify itself, resulting in
a minimum message complexity of t2(N).

For reasons of simplicity a process identity is repre-
sented by a positive natural number.

T h e o r e m 5.1. The worst case message complexity of Proto-
col 1, for N participating processes and process i being the
initial leader, is �89 + 1) - �89 - 3) - 2.

Proof. Let i be the leader and all other processes be in the
start state. In the worst case scenario all processes become
a candidate simultaneously and send their initial/-mess-
age in increasing order (strictly speaking, the order of the
last (N - i - 1)/-messages is irrelevant). Due to the fact
that from all better processes l(i + 1) is processed first,
process i + 1 becomes the next leader on receiving R(i + 1).
This message evokes an/-message from all candidates bet-
ter than i + 1. If these replies are sent with I(i + 2) first,
process i + 2 becomes the next leader. This scenario is
repeated until ultimately process N becomes leader. In each
"round" the number of candidates is reduced by one and
the number of reactions on an R-message is maximal. This
indicates that the above is indeed the worst case scenario.

We now focus our attention on all transitions in which
messages are transmitted and determine the number of
transmitted messages for the worst case scenario. In order
to let all processes become a candidate (N - 1) messages
are needed. Candidate j, j > i, receives (j - 2) R(k) mess-
ages with k < j . Consequently, it replies with (j - 2) I (j)
messages. Leader i must respond to the first (i - 1) I-
messages with R(i) before it capitulates. As subsequent
leaders j capitulate immediately they do not transmit any
R (j) messages. Finally, in order to let readers capitulate
(N - i) messages are needed. Combination of these results
leads to the above result. []

The message complexity can be improved significantly by
the idea of 'smart' buffering. According to this principle,
messages are buffered depending on their parameter: at
each moment of time a process buffer only contains the
/-message (or R-message) with the largest id received so
far, that is, not processed yet. Here, R-messages have prior-
ity over/-messages. In this way a buffer contains at most
one message at a time. Adopting this buffering mechanism
reduces the message complexity to r independent of
the initial leader:

T h e o r e m 5.2. With smart buffering the worst case message
complexity of Protocol 1 is 2N - 2.

Proof. Buffering of several initial/-messages now leads to
a single R-message to the process with the highest id,
which makes this process the new leader and forces the
other processes to the defeated state. The worst case scen-
ario appears when each initial message is separately
answered by an R-message. It does not matter which
process is the initial leader or in which order the processes
send their initial/-message. In this case 2(N - 1) messages
are needed. []

Theorem 5.3. Protocol 2 has a worst case message complex-
ity of 2 N - 1 using 'simple' buffering and of 2 N - 1 using
smart buffering.

Finally, we consider Protocol 3. First we consider an
election without crashing processes. We obtain the follow-
ing results:

169

T h e o r e m 5.4. With perfect processes Protocol 3 has a worst
case message complexity of 2 N - 1 using 'simple' buffering
and of �89 + 1) using smart buffering.

Next, we analyze the complexity in case K processes
crash (0 __< K < N). Many complex scenarios are possible,
dependent on what moment during an election a process
crashes. For simplicity, we assume that crashed processes
do not recover and defeated processes only return spon-
taneously to the candidate state when a leader is actually
absent. The worst case scenario occurs when K processes
crash after the initial election has been completed (i.e.,
process N is leader and all other processes are defeated).

T h e o r e m 5.5. When at most K (0 < K < N) processes
crash during the election the worst case message complexity
of Protocol 3 is ~K 3 - � 8 9 2 + (�89 2 - ~) K using smart
buffering.

6 C o n c l u s i o n s

In this paper we have designed and specified a series of
dynamic leader election (LE) protocols in broadcast net-
works, and verifed a fault-tolerant protocol. From this
extensive case study in protocol design, specification, and
verification we make the following remarks.

We started our design by formally capturing the proto-
col requirements. Rather surprisingly, no such precise

and abstract problem specification for dynamic LE
currently exists in literature. When considering the proto-
col's correctness that is even more remarkable as a formal
problem specification is indispensable for a formal verifi-
cation.

Linear-time temporal logic was used so as to express
the requirements and to perform the verification. The
formalism turned out to be very convenient for specifying
the requirements in a rather abstract way. Due to the
dynamic character of processes it is not straightforward to
give such a specification in, for instance, a process alge-
braic formalism without aiming at a particular protocol
(see also [9]).

The protocols are constructed in a step-wise fashion
starting from the formal requirements. The step-wise ap-
proach aids not only in the clarity and conciseness of the
protocols, but also - and more important in reasoning
about them ('separation of concerns'). Due to our experi-
ence wc believe that this is a feasible approach for the
design of complex, dynamic communication protocols. We
believe that we would not have ended up with the current
concise and lucid fault-tolerant protocol without this
approach.

The use of temporal logic for the specification and
verification of communication protocols is well-known for
a decade (see e.g. [28, 21, 40]). This case study shows
- once more that this technique combined with the state
transition approach is very convenient. In fact, we have
shown that these techniques are also applicable when
designing a new protocol whereas most case studies focus
on already existing protocols with commonly agreed re-
quirements. Furthermore, the dynamic character of pro-
cesses makes the problem considerably more complex

170

than tradit ionally verified protocols. By the use of abstract
t imeouts the protocol could be verified in a similar way as
a protocol wi thout timeouts.

Ideally, detailed proofs of complex protocols are
required in which each step of the p roof is formalized and
for which informal arguments are minimized. Such de-
tailed proofs are well possible in our f ramework and re-
quire a formalizat ion of the assumptions, translation of the
protocols into the p roof formalism, and so on. The proofs
in this paper consti tute a useful stepping-stone towards
such a detailed proof. Obta in ing a completely formalized
proof is considered to be an interesting subject for further
research.

For the development and analysis of the LE protocols
in this paper we also applied techniques from algebraic
process theory [5] and we made use of simulation tools for
process algebra [35]. This is reported in [7, 9].

In the first instance the construct ion of protocols was
aimed at correctness with respect to the requirements and
minimizing the number of transitions - rather than opti-
mizing their efficiency. As efficiency, though, plays an
impor tant role in the field of LE protocols we analyzed the
protocols ' worst case message complexity, that is, the max-
imum number of messages needed to elect a leader. Dur ing
this analysis the use of protocol simulation facilities 1-35]
was of considerable help. With the aid of these tools it
turned out that the in t roduct ion of an alternative buffering
mechanism reduces the message complexity significantly.

A possible (and interesting) extension to the LE prob-
lem is to consider identities that may change during opera-
tion as opposed to fixed identities. We remark that the final,
fault-tolerant protocol is also applicable in this context.

This case study shows the usefulness of manual verifi-
cat ion for a non-trivial pro tocol problem and is helpful in
gaining experience of how such a verification is best con-
ducted. Applicat ion to other protocols must show how
useful this information turns out to be.

Acknowledgements. The authors gratefully acknowledge Jan Bergstra
(Univ. of Amsterdam & Univ. of Utrecht) for initiating and stimulat-
ing our fruitful cooperation. We are also grateful to Jan Friso Groote
(Univ. of Utrecht) for his assistance during the beginning of our
work. Henk Eertink (Univ. of Twente), Ruurd Kuiper (Univ. of
Eindhoven), Yat Man Lau (Philips Research), and Marnix Vlot
(Philips Research) are kindly acknowledged for commenting on parts
of a draft version of this paper. The comments of the anonymous
referees have strongly improved the presentation of the paper.

References

1. Abu-Amara HH: Fault-tolerant distributed algorithm for elec-
tion in complete networks. IEEE Trans Comput 37:449-453 (1988)

2. Afek Y, Gafni E: Time and message bounds for election in
synchronous and asynchronous complete networks. SIAM
J Comput 20:376-394 (1991)

3. Attiya H: Constructing efficient election algorithms from efficient
traversal algorithms. In: van Leeuwen J (ed) Distributed algo-
rithms. Lect Notes Comput Sci, vol 312. Springer, Berlin Heidel-
berg New York 1987, pp 337 344

4. Attiya H, van Leeuwen J, Santoro N, Zaks S: Efficient elections
in chordal ring networks. Algorithmica 4:437 446 (1989)

5. Baeten JCM, Weijland WP: Process algebra. Cambridge Tracts
in Theoretical Computer Science, vol 18, Cambridge University
Press 1990

6. von Bochmann G: Finite state description of communication
protocols. Comput Networks 2:361 372 (1978)

7. Brunekreef J J: On modular algebraic protocol specification.
PhD thesis, University of Amsterdam, The Netherlands 1995

8. Brunekreef JJ, Katoen J-P, Koymans RLC, Mauw S: Design and
analysis of dynamic leader election protocols in broadcast net-
works. Memoranda Informatica 93-43, Department of Computer
Science, University of Twente, The Netherlands (1993)

9. Brunekreef J J, Katoen J-P, Koymans RLC, Mauw S: Algebraic
specification of dynamic leader election protocols in broadcast
networks. In: Ponse A, Verhoef C, van Vlijmen SFM (eds) Alge-
bra of communicating processes. Workshops in Computing,
Springer, Berlin Heidelberg New York 1994, pp 338-357

10. Budkowski S, Dembinski P: An introduction to Estelle: a speci-
fication language for distributed systems. Comput Networks
ISDN Syst 14:3-23 (1987)

11. Chang E, Roberts R: An improved algorithm for decentralized
extrema-finding in circular configurations of processors. Com-
mun ACM 22:281-283 (1979)

12. Dolev S, Optimal time self stabilization in dynamic systems. In:
Schiper A (ed) Distributed algorithms. Lect Notes Comput Sci,
vo1725. Springer, Berlin Heidelberg New York 1993, pp 160 173

13. Dolev S, Israeli A, Moran S: Uniform dynamic self-stabilizing
leader election. In: Toueg S et al (eds) Distributed algorithms.
Lect Notes Comput Sci, vol 579. Springer, Berlin Heidelberg
New York 1992, pp 167-180

14. Dolev D, Dwork C, Stockmeyer L: On the minimal synchronism
needed for distributed consensus. J ACM 34:77-97 (1987)

15. Dijkstra EW: Self-stabilizing systems in spite of distributed con-
trol. Commun ACM 17:634-644 (1974)

16. Fisher M J: A theoretician's view of fault-tolerant distributed
computing. In: Simons B, Spector A (eds) Fault-tolerant distrib-
uted computing. Lect Notes Comput Sci, vol 448. Springer,
Berlin Heidelberg New York 1991, pp 1-9

17. Gehani NH: Broadcasting sequential processes. IEEE Trans
Softw Eng 10:343 351 (1984)

18. Gotzhein R: Temporal logic and its applications a tutorial.
Comput Networks ISDN Syst 24:203 218 (1992)

19. Gouda MG: Protocol verification made simple: a tutorial. Corn-
put Networks ISDN Syst 25:969-980 (1993)

20. Gusella R, Zatti S: An election algorithm for a distributed clock
synchronization program. In: Proc 6th IEEE Int Conf on Dis-
tributed Computing Systems (1986), pp 364-371

21. Hailpern BT, Owicki SS: Modular verification of computer com-
munication protocols. IEEE Trans Commun 31:56-68 (1983)

22. Hoare CAR: Communicating sequential processes. Prentice-
Hall, Englewood Cliffs 1985

23. Itai A, Kutten S, Wolfstahl Y, Zaks S: Optimal distributed
t-resilient election in complete networks. IEEE Trans Softw Eng
16:415-420 (1990)

24. King C-T, Gendreau TB, Ni LM: Reliable election in broadcast
networks. J Parallel Distrib Comput 7:521-540 (1989)

25. Korach E, Kutten S, Moran S: A modular technique for the
design of efficient distributed leader finding algorithms. ACM
Trans Prog Lang Syst 12:84-101 (1990)

26. Korach E, Moran S, Zaks S: Tight lower and upper bounds for
some distributed algorithms for a complete network of proces-
sors. In: Proc ACM Symp Principles Distributed Comput (1984),
pp 199 207

27. Koymans RLC: Specifying message passing systems requires
extending temporal logic. In: Banieqbal Bet al (eds) Proc Collo-
quium on Temporal Logic and Specification. Lect Notes Corn-
put Sci, vol 398. Springer, Berlin Heidelberg New York 1989,
pp 213 223

28. Lamport L: Specifying concurrent program modules. ACM
Trans Prog Lang Syst 5:190-222 (1983)

29. Larsen KG, Thomsen B: A modal process logic. In: Proc IEEE
Symposium on Logic in Computer Science (1988), pp 203-210

30. van Leeuwen J, Tan RB: An improved upperbound for distrib-
uted election in bidirectional rings of processors. Distrib Comput
2:149-160 (1987)

171

31. LeLann, G: Distributed systems towards a formal approach.
In: Gilchrist B (ed) Information Processing (vol. 77) (IFIP).
North-Holland, Amsterdam 1977, pp 155 160

32. Loui MC, Matsushita TA, West DB: Election in a complete
network with a sense of direction. Inf Process Lett 22:185-187
(1986) (correction in Inf Process Letters 28:327 (1988))

33. Manna Z, Pnueli A: The temporal logic of reactive and concur-
rent systems - Specification. Springer, Berlin Heidelberg New
York 1992

34. Masuzawa T, Nishikawa N, Hagihara K. Tokura N: Optimal
fault-tolerant distributed algorithms for election in complete
networks with a global sense of direction. In: Bermond J-C,
Raynal M (eds) Distributed algorithms. Lect Notes Comput Sci.
vo1392, Springer, Berlin Heidelberg New York 1989, pp 171 182

35. Mauw S, Veltink G: A process specification formalism. Fund Inf
VIII: 85 139 (1990)

36. Melliar-Smith PM, Moser LE, Agrawala V: Broadcast protocols
for distributed systems. IEEE Trans Parallel Distrib Syst 1:
17 25 (1990)

37. Peterson GL: An O(nlogn) unidirectional algorithm for the
circular extrema problem. ACM Trans Program Lang Syst 4:
758-762 (1982)

38. Schneider M: Self-stabilization. ACM Comput Surv 25:45-67
(1993)

39. Schneider FB, Gries D, Schlichting RD: Fault-tolerant broad-
casts. Sci Comput Program 4:1 16 (1984)

40. Shasha DE, Pnueli A, Ewald W: Temporal verification of carrier-
sense local area network protocols. In: Proc ACM Symposium
on Principles of Programming Languages (1984), pp 54 65

41. Shrira L, Goldreich O: Electing a leader in a ring with link
failures. Acta Inf 24:79 91 (1989)

42. Singh G: Etficient distributed algorithms for leader election in
complete networks. In: Proc 1 lth IEEE Int Conf on Distributed
Computing Systems (1991), pp 472 479

Jacob Brunekreef is a lecturer in computer science at the Univer-
sity of Amsterdam. He received his M.S. in electronics in 1975 from
the University of Twente and his Ph.D. in computer science in 1995
from the University of Amsterdam. His research focuses on formal
specification and validation of concurrent systems like communica-
tion protocols, industrial architectures, etc.

Joost-Pieter Katoen received his M.S. in computer science from
the University of Twente in 1987, and is currently researcher at the
computer science department of the same university. At the Ein-
dhoven University of Technology he finished a two-year postgradu-
ate course in 1989 on information and communication technology.
From 1990 till 1992 he was a research scientist at Philips Research
Laboratories Eindhoven. His main research interests are commun-
ication protocols, especially formalisms for their specification, verifi-
cation and design, and performance evaluation of distributed sys-
tems.

Ron Koymans is a research scientist at Philips Research Laborat-
ories Eindhoven since 1989. He received his M.S. in mathematics and
computer science from the University of Utrecht in 1982. From 1983
till 1989 he was a researcher, the first two years at the University of
Nijmegen and the next four years at the Eindhoven University of
Technology where he received his Ph.D. in computer science in 1989.
His current research interests include modal and temporal logics,
foundations of real-time distributed computing, protocol analysis
and design, and automatic test generation.

Sjouke Mauw is a lecturer at the Eindhoven University of Techno-
logy, The Netherlands. His research focuses on formal specification
and verification of concurrent systems. He designed the specification
language PSF, which is based on process algebra and algebraic
specifications. Being associate rapporteur for the International Tele-
communication Union (ITU), he is responsible for the formalization
of Message Sequence Charts. This is a graphical specification lan-
guage recommended by the ITU. He received his M.S. in mathemat-
ics in 1985 and Ph.D. in computer science in 1991, both from the
University of Amsterdam.

