
Distributed Computing (2023) 36:253–275
https://doi.org/10.1007/s00446-022-00437-7

Stochastic coordination in heterogeneous load balancing systems

Guy Goren1 · Shay Vargaftik2 · Yoram Moses1

Received: 11 November 2021 / Accepted: 25 August 2022 / Published online: 12 October 2022
© The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2022

Abstract
Current-day data centers and high-volume cloud services employ a broad set of heterogeneous servers. In such settings,
client requests typically arrive at multiple entry points, and dispatching them to servers is an urgent distributed systems
problem. This paper presents an efficient solution to the load balancing problem in such systems that improves on and
overcomes problems of previous solutions. The load balancing problem is formulated as a stochastic optimization problem,
and an efficient algorithmic solution is obtained based on a subtle mathematical analysis of the problem. Finally, extensive
evaluation of the solution on simulated data shows that it outperforms previous solutions. Moreover, the resulting dispatching
policy can be computed very efficiently, making the solution practically viable.

Keywords Distributed load balancing · Heterogeneous load balancing · Stochastically coordinated dispatching · Parallel
server model

1 Introduction

Load balancing in modern computer clusters is a challenging
task. Unlike in the traditional parallel server model where
all client requests arrive through a single centralized entry
point, today’s cluster designs are distributed [6,14,17,48]. In
particular, they involve many dispatchers that serve as entry
points to client requests and distribute these requests among
a multitude of servers. The dispatchers’ goal is to distribute
the client requests in a balanced manner so that no server
is overloaded or underutilized. This is particularly challeng-
ing due to two system design attributes: (1) the dispatchers
must take decisions immediately upon arrival of requests, and
independently from each other. This requirement is critical to
adhere to the high rate of incoming client requests and to the
extremely low required response times [11,46]. Indeed, even
a small sub-second addition to response time in dynamic
content websites can lead to a persistent loss of users and
revenue [34,49]; (2) today’s systems are heterogeneous with

B Guy Goren
sgoren@campus.technion.ac.il

Shay Vargaftik
shayv@vmware.com

Yoram Moses
moses@ee.technion.ac.il

1 Technion, Haifa, Israel

2 VMware Research, Palo Alto, USA

different servers containing different generations of CPUs,
various types of acceleration devices such as GPUs, FPGAs,
andASICs,with varying processing speeds [12,13,25,27,37].
This paper presents a new load balancing solution for dis-
tributed dispatchers in heterogeneous systems.

Most previous works on distributed cluster load balanc-
ing focused either on homogeneous systems or on systems
in which dispatchers have limited information about server
queue-lengths. In contrast, in today’s heterogeneous systems
the dispatchers (e.g., high-performance production L7 load
balancers such as HAProxy [55] and NGINX [21]) typically
have access to abundant queue-length information.

A series of recent works have shown that popular
“join-the-shortest-queue (JSQ)”-based load-balancing poli-
cies behave poorly when the dispatchers’ information is
highly correlated [24,40,58,64]. In particular, such policies
suffer from so-called “herd behavior,” in which different dis-
patchers concurrently recognize the same set of less loaded
servers and forward all their incoming requests to this set.
The queue-lengths of the servers in this small set then
grow rapidly, causing excessive processing delays, increased
response times, and even dropped jobs. In severe cases, herd-
ing may even result in servers stalling and crashing.

Herding has been dubbed the “finger of death” in [39].
In order to avoid it, both in recent theory works [58,64] and
in modern state-of-the-art production deployments [20,54],
researchers introduced load balancing policies that break
symmetry among the dispatchers via a random subsampling

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s00446-022-00437-7&domain=pdf
http://orcid.org/0000-0003-2158-161X
http://orcid.org/0000-0002-0982-7894
http://orcid.org/0000-0001-5549-1781

254 G. Goren et al.

of queue-length information. Even large cloud service com-
panies such as Netflix report making use of such limited
queue-size information policies to avoid suffering fromdetri-
mental herd behavior effects [39,51]. They choose to do so
despite the potential for degraded resource utilization and
worse response times.

The better-information/worse-performance paradox man-
ifested by herding was recently addressed for load balancing
in homogeneous systems (in which servers are all equally
powerful) by [24]. They demonstrated that the tradeoff
between more accurate information and herding is not inher-
ent. Rather, herding stems from the fact that currently
employed dispatching techniques do not account for the
fact that multiple dispatchers operate concurrently in the
system. Based on this observation, they suggested a solu-
tion in which the dispatchers’ policies address the presence
and concurrent operation of multiple dispatchers by employ-
ing stochastic coordination (Sect. 1.1). While their solution
provides superior performance in homogeneous systems, it
performs poorly in heterogeneous systems, since it does not
account for variation in server service rates.

Our work generalizes the approach of [24] and obtains
an efficient load-balancing policy based on stochastic coor-
dination for the more challenging heterogeneous case. We
initially expected that mild adjustments to the scheme of
[24] for homogeneous systems would yield similarly effec-
tive policies for the heterogeneous case. That turned out not
to be the case. The generalization required overcoming non-
trivial hurdles at the level of mathematical analysis, of the
algorithmic treatment, and at the conceptual level. The solu-
tion that we obtained has several features that the policy
presented in [24] does not have. In both cases, a randomized
load-balancing policy is designed based on the solution of a
stochastic optimization problem. In the homogeneous case,
[24] have shown that this solution can be formulated in terms
of a closed-form formula that can be efficiently computed in
real-time by the dispatchers. In contrast, explicitly comput-
ing the solution obtained for the heterogeneous case requires
exponential time. Even obtaining an approximate solution
using standard optimization techniques requires cubic time,
which is not feasible for dispatchers to perform.Using a novel
analysis of the optimization problem in the heterogeneous
case, we show that the search for an optimal solution can
be made in an extremely efficient manner, which results in
a practically feasible algorithm. We thus obtain a novel pol-
icy, we term stochastically coordinated dispatching (SCD)
that greatly improves over existing load-balancing policies
for heterogeneous systems, and is essentially as easy to com-
pute as the simplest policies are.

To evaluate the performance of SCDwe implemented it as
well as 10 other algorithms (including both traditional tech-
niques and recent state-of-the-art ones) in C++. Extensive
evaluation results indicate that SCD consistently outperforms

all tested techniques over different systems, heterogeneity
levels andmetrics. For example, at high loads, SCD improves
the 99th percentile delay of client requests bymore than a fac-
tor of 2 in comparison to the second-best policy, and by more
than an order of magnitude compared to the heterogeneity-
oblivious solution in [24]. In terms of computational running
time,SCD is competitivewith currently employed techniques
(e.g., JSQ). For example, even in a system with 100 servers,
SCD requires only a few microseconds on a single CPU core
to make dispatching decisions. Finally, our results are repro-
ducible. Our SCD implementation is available on GitHub
[23].

1.1 Related work

In a traditional computer cluster with a centralized design
and a single dispatcher that takes all the decisions, a cen-
tralized algorithm such as JSQ, that assigns each arriving
request to the currently shortest queue, offers favorable
performance and strong theoretical guarantees [15,61,63].
However, in a distributed design, where each dispatcher
independently follows JSQ, the aforementioned herding phe-
nomenon occurs [39,51,58,64]. As a result, both researchers
and system designers often resort to traditional techniques
that were originally designed either for centralized systems
with a single dispatcher or for systems based on limited queue
state information. For example, in the power-of-d-choices
policy (denoted JSQ(d)) [36,41,59], when requests arrive,
a dispatcher samples d servers uniformly at random and
employs JSQ considering only the d sampled servers. This
policy alleviates the herding phenomenon for sufficiently low
d values since it is only with a low probability that different
dispatchers will sample the same good server(s) at a given
point in time. However, low d values often come at the price
of longer response times and low resource utilization [16],
whereas herding does occur for higher d values. Moreover,
in heterogeneous systems, JSQ(d) may even result in insta-
bility1 for any d value strictly below the number of servers.

Recently, to account for server heterogeneity, shortest-
expected-delay (SED) policieswere proposed. These policies
operate similarly to JSQ and JSQ(d) but, instead of rank-
ing servers according to their queue-lengths, servers are
compared according to their normalized queue-lengths, i.e.,
their queue length divided by their processing capacity.
This way, a job is sent not to the server with the short-
est queue but to the server with the shortest expected wait
time. Indeed these policies were shown to outperform their

1 A queue is unstable when its size can grow with no bound. A load
balancing system is unstable if at least one of its queues is unsta-
ble. Instability in heterogeneous load balancing systems usually occurs
when the faster queues are constantly idling because they do not receive
enough requests, whereas slower servers receive toomany requests, and
their queues continue to grow.

123

Stochastic coordination in heterogeneous… 255

heterogeneity-unaware JSQ-based counterparts in hetero-
geneous systems (for homogeneous systems these policies
coincide) [18,19,28,50]. However, in a setting with multi-
ple, distributed dispatchers, the SED policies suffer from the
same herding phenomenons.

The first dispatching policy that was designed specif-
ically for the multi-dispatcher case, called join-the-idle-
queue (JIQ) [34,42,52,53,56], was originally introduced by
Microsoft [35]. In JIQ, a dispatcher sends requests only to
idle servers. If there are no idle servers, the requests are
forwarded to randomly chosen ones. JIQ significantly out-
performs JSQ(d) when the system operates at low loads.
However, its performance quickly deteriorates when the load
increases and the dispatching approaches a random one. In
fact, as is the case with JSQ(d), the JIQ policy may exhibit
instability in the presence of high loads [4,65]. A recent work
[18] considered an improvement to JIQ that accounts for
server heterogeneity by adapting the server sampling proba-
bilities to account for their processing rate. While this policy
restores stability when the load is high, it is significantly
outperformed by policies such as SED and even JSQ when
queue-length information is available [64].

Recent state-of-the-art techniques include the local-short-
est-queue (LSQ) [58] and the local-estimation-driven (LED)
[64] policies. They address the limitations of both JSQ(d)

and JIQ by maintaining a local array of server queue-lengths
at each dispatcher. Each dispatcher updates its local array
by randomly choosing servers and querying them for their
queue-length. Consequently, the dispatchers have different
views of the server queue-lengths. However, the performance
of LSQ and LED depends on the dispatchers’ local arrays
beingweakly correlated.When the dispatchers’ queue length
information is even partially correlated, both LSQ and LED
incur herding [24].

As discussed in the Introduction, the seemingly paradox-
ical herding behavior was recently addressed in the case
of homogeneous systems in [24]. Specifically, that work
introduced the tidal-water-filling policy (denoted TWF). In
TWF, the dispatching policy of a dispatcher is defined by
the probabilities at which it sends each arriving request to
each server. The main idea that enables utilizing accurate
server queue-lengths information without incurring herding
relies on stochastic coordination of the dispatchers — i.e.,
setting these probabilities such that all the dispatchers’ deci-
sions combined result in a balanced state. Nevertheless, TWF
does not account for server service rates. Consequently, its
performance significantly degrades in a heterogeneous sys-
tem, resulting in reduced resource utilization and excessively
long response times. This hinders the applicability of TWF
to modern computer clusters.

A related line of work dealing with load balancing chal-
lenges in distributed systems is based on the balls-into-bins
model [1], including extensions to dynamic or heteroge-

neous settings (e.g., [5,7]). In the balls-into-bins model, it is
often possible to obtain more precise theoretical guarantees.
Indeed, common approaches include regret minimization
(e.g., [31]) and adaptive techniques (e.g., [33]). Nevertheless,
this model is not aligned with our model (e.g., we consider
multiple dispatchers, stochastic arrivals at each dispatcher
and stochastic departures at each server). As a result, their
analysis does not apply in our model, and vice versa.

A seminal work deals with parallel accesses of CPUs to
memory regions by trying to minimize collisions [29]. Their
solutions rely on hash functions to prevent memory accesses
frombecoming the bottleneck for systemperformance. In our
setting, using hash functions resembles random allocation
which is known to be sub-optimal.

Another related line of work concerns static load balanc-
ing, where the goal is to assign jobs to servers in a distributed
manner to optimize some balance metric and with a minimal
number of communication rounds among the participants
(usually in the CONGEST or LOCALmodel) [3,10,26]. This
model is not aligned with ours since we consider dynamic
systems with the demand for immediate and independent
decision making among the dispatchers to sustain the high
incoming rate of client requests and the demand for low
latency. In particular, in our model, the dispatchers do not
interact.2

2 Model

We consider a system with a set S of n servers and a set
D of m dispatchers. The system operates over discrete and
synchronous rounds t ∈ N. Each server s ∈ S has its own
FIFO queue3 of pending client requests. We denote by qs(t)
the number of client requests at server’s s queue at the begin-
ning of round t . We assume that the values of qs(t) for all
servers s are available in round t to all dispatchers, for all
t ∈ N. Each round consists of three phases:

1. Arrivals. Each dispatcher d ∈ D has its own stochastic,
independent and unknown client request arrival process.
We use a(d)(t) ∈ N to denote the number of new client
requests that exogenously arrive at dispatcher d in the first
phase of round t .

2 In practice, any communication among the distributed dispatch-
ers introduces additional processing and, more importantly, possibly
unpredictable network delay. Therefore, the dispatchers’ high rate of
incoming jobs makes interaction among them highly undesirable and
even not feasible, especially when the dispatchers are not co-located
(i.e., not on the same machine). As a result, assuming that dispatchers
do not interact is standard practice in our L7 cluster load balancing
model [20,24,34,52–54,58,60,64].
3 FIFO stands for first-in-first-out. Namely, client requests at each
server are processed in the order at which they arrive at the queue.
The order among client requests that arrive at the same time is arbitrary.

123

256 G. Goren et al.

2. Dispatching. In the second phase of a round, each
dispatcher immediately and independently chooses a des-
tination server for each received request and forwards the
request to the chosen server queue for processing. We
denote by ā(d)

s (t) the number of requests dispatcher d
forwards to server s in the second phase of round t , and
by ās(t) = ∑

d∈D ā(d)
s (t) the total number of requests

server s receives from all dispatchers.
3. Departures. During the third phase, each server per-

forms work and possibly completes requests. Completed
requests immediately depart from the system. We denote
by cs(t) the number of requests that server s can com-
plete during the third phase of round t , provided it has
that many requests to process. We assume that cs(t) is
determined by an unknown independent stochastic pro-
cess. We only assume that each server has some inherent
expected time invariant processing rate (i.e., speed), and
denote E[cs(t)] = μs .

Note that any processing system must adhere to the require-
ment that, on average, the sum of server processing rates
must be sufficient to accommodate the sum of arriving client
requests. We mathematically express this additional demand
in context when appropriate. Finally, we use the terms job
and client request interchangeably.

3 Solving the dispatching problem

Our goal is to devise an algorithm that leads to short response
times and high resource utilization. In this section, we define
a notion of an “ideal” assignment for an online dispatching
algorithm. Intuitively, the quality of a dispatching assign-
ment can be assessed by comparing it with the ideal one. A
key element in our distributed solution will be solving an
optimization problem whose goal is to approximate the ideal
assignment as closely as possible.

3.1 Ideally balanced assignment

For each round t we are given the current sizes of the
queues at the servers

(
q1(t), . . . , qn(t)

)
and the arrivals at

the dispatchers
(
a(1)(t), . . . , a(m)(t)

)
, and we need to com-

pute an assignment of the incoming jobs to the servers(
ā1(t), . . . , ān(t)

)
. (From here on, we omit the round nota-

tion t when clear from context.) We would like to distribute
the incoming jobs in a manner that balances the load, which
we think of as the amount of work that each server has
after the assignment. Since servers have different process-
ing rates μs , the load on a server s does not correspond to
the number of jobs qs + ās in its queue (at the end of the
round). Rather, the load is taken to be qs+ās

μs
, i.e., the expected

amount of time it would take s to process the jobs that are

(a) (b)

Fig. 1 Illustrating the difference between balancing the number of
jobs and balancing the workload at the servers. An example with 4
servers with rates [5, 2, 1, 1] (from left to right), 7 queued jobs at the
servers [2, 1, 3, 1] and 7 new arrivals. An ideally balanced assignment is
[4.875, 1.75, 0, 0.375], which differs from [1.5, 2.5, 0.5, 2.5] that bal-
ances the number of jobs per server

in its queue. (See Figure 1 for illustration.) In general, no
assignment that would completely balance the load among
all servers will necessarily exist, since server queue-lengths
may vary considerably at the start of a round. We can, how-
ever, aim at minimizing the difference between the load of
the most loaded and the least loaded servers. If the units of
incoming work were continuous, this would be achieved by
an assignment {ās}s∈S that solves:

maxmin
s∈S

qs + ās
μs

s.t.
∑

s∈S
ās =

∑

d∈D
a(d) and ∀s ∈ S : ās ≥ 0.

(1)

We call an assignment that satisfies Eq. (1) an ideally bal-
anced assignment (iba for short), and the value of the target
function the ideal workload (iwl). An illustrative example
for an iba is presented in Figure 1b. The iba is an idealized
goal in the sense that it is not always possible to achieve.
This is because jobs are discrete and cannot be split among
different servers. Therefore, a realistic load balancing algo-
rithm should strive to assign jobs in a manner that is as close
as possible to the iba by some distance measure (e.g., the
Euclidean norm).

In a centralized dispatching system (with a single dis-
patcher) minimizing the Euclidean norm distance from the
iwl can be achieved in a straightforward manner. The dis-
patcher sends each job to the server that is expected to
process it the earliest. Namely, to the server with the cur-
rentlyminimal qs+1

μs
. It then updates the server’s queue length

and moves on to the next job. In a distributed dispatching
system (i.e., with multiple dispatchers), however, the solu-
tion is considerably more complex. In particular, finding the
best approximation to the iba in systems with multiple dis-
patchers requires exact coordination among the dispatchers.
However, dispatchersmustmake immediate and independent
decisions. They have no time to communicate and so such
exact coordination is impossible.

123

Stochastic coordination in heterogeneous… 257

Following [24], we deal with the need to coordinate
dispatchers’ decisions while keeping them independent by
randomizing their decisions. In essence, a dispatcher com-
putes a probability distribution P = [p1, . . . , pn] in each
round. Each job’s destination is then drawn according to
P , thus making the decisions independent. The probabili-
ties in P take into consideration both server loads and what
other dispatchers might draw. In [24], the authors name
this approach stochastic coordination. The main challenge
in stochastic coordination is identifying the right probabili-
ties, and computing them.

We now turn our focus to computing the ideal workload
(iwl). Note that the iwl determines the iba (= {ās}s∈S) since
for all s ∈ S:

ās = μs · max

{
qs
μs

, iwl

}

− qs . (2)

We develop an algorithm that computes the iwl in a hetero-
geneous system. The pseudocode appears in Algorithm 1.
Roughly speaking, it works as follows. It starts with the cur-
rent state of the system and iteratively assigns work that
increases the minimal load, i.e., min qs+ās

μs
until it reaches

the iwl. At each iteration, unassigned work is assigned to the
least loaded servers until they reach the closest higher load.
The algorithm returns when no unassigned work remains.
Moreover, ComputeIdealWorkLoad is efficient. That is,
it runs in O(n) time, if the values of qs

μs
at the servers are pre-

sorted (otherwise, the algorithm’s complexity is dominated
by the task of sorting these n values). In the algorithm and
henceforth, we often use ‘a’ as a shorthand for the total sum
of arrivals: a �

∑

d∈D
a(d).

3.2 Distributed load balancing as a Stochastic
optimization problem

Our distributed load balancing algorithmwill be based on the
solution to a stochastic optimization problem. The first step
in the statement of the optimization problem is to define an
appropriate error function that we seek to minimize. A job
assignment is measured against the ideally balanced assign-
ment (iba). Assume that at each time slot t we are given the
arrivals

(
a(1), . . . , a(m)

)
in the current round, 4 and we know

the current sizes of the queues at the servers
(
q1, . . . , qn

)
.

We can deduce the ideal workload (iwl) of a centralized iba
algorithm at that point (see Algorithm 1). Intuitively, a large
deviation from the iwl in server s corresponds either to large
job delays and slow response times (for a higher load than
ideal), or lesser resource utilization (for a lower load than

4 We relax the assumption that the entire vector of arrivals is available
in Sect. 5.

ideal). Since we seek to avoid long delay tails and wasted
server capacities, the error for a large deviation from the iwl
should be higher than the error for several small deviations.
On the other hand, minimizing the worst-case assignment,
that is, focusing toomuchon theworst possible deviation, can
damage the mean performance. We measure the distance a
solution offers from the ideal solution in terms of the L2 norm
(squared distances). This balances the algorithm’s mean and
worst-case performance and, moreover, is amenable to for-
mal analysis. Thus, the individual error of server s is defined
by

Algorithm 1: Computing the ideal workload.

1 Function ComputeIdealWorkLoad(S, {qs}s∈S , {μs}s∈S ,
a):

2 S≥iwl ← S; μtot ← 0; l ← a
3 r ← argmins∈S≥iwl

qs
μs

4 iwl ← qr/μr
5 while l > 0 do
6 μtot ← μtot + μr
7 S≥iwl ← S≥iwl\{r}
8 if S≥iwl = ∅ then
9 return iwl + l

μtot

10 r ← argmins∈S≥iwl
qs
μs

11 � ← qr
μr

− iwl

12 if � · μtot ≥ l then
13 return iwl + l

μtot

14 l ← l − � · μtot
15 iwl ← iwl + �

errors �
(
qs + ās

μs
− iwl

)2

. (3)

Finally, to account for the variability in processing power, a
server’s error is weighted by multiplying it by the server’s
processing speed. For example, an error of +1 in the work-
load of a server with a processing rate of μs = 10 results in
10 jobs that will now wait for an expected extra round. The
same +1 error for a server with μs = 1 affects only a single
job. The resulting total error of an assignment {ā1, . . . , ān}
is

error =
∑

s∈S
μs · errors

=
∑

s∈S
μs

(
qs + ās

μs
− iwl

)2

=
∑

s∈S

(qs + ās − μs ·iwl)2

μs
.

(4)

123

258 G. Goren et al.

Recall that we employ randomness to determine job
destinations. Therefore, an assignment {ās}s∈S and the cor-
responding error are random variables. In particular, we
seek the probabilities P � [p1, . . . , pn] that minimize
the expected error function given the current queue lengths
[q1, . . . , qn] and the new arrivals [a(1), . . . , a(m)]. Formally,

argmin
P

E[error]

= argmin
P

E

[
∑

s∈S

(
ās + (qs − μs iwl)

)2

μs

]

= argmin
P

(
∑

s∈S
E

[
ā2s
μs

]

+ 2
∑

s∈S
E

[
ās · (qs − μs iwl)

μs

]

+
∑

s∈S
E

[
(qs − μs iwl)2

μs

])

.

(5)

In the error function only the values of {ās} are affected by
P . Therefore, we can drop all additive constants and take the
expectation on the {ās} terms only. This yields the simplified
form

argmin
P

E[error] = argmin
P

(
∑

s∈S

1

μs
E[ā2s]

+ 2
∑

s∈S

qs − μs iwl

μs
E[ās]

)

.

(6)

Since job destinations are drawn independently according to
P we have that ās is a binomial random variable with

E[ās] = ps
∑

d∈D
a(d) = aps, and

E[ā2s] = a · ps(1 − ps) + a2 p2s .

(7)

Plugging the above in Eq. (6) yields

argmin
P

E[error]

= argmin
P

(
∑

s∈S

1

μs
(aps−ap2s+a2 p2s)

+ 2
∑

s∈S

qs−μs iwl

μs
· aps

)

= argmin
P

(

a(a−1)
∑

s∈S

1

μs
p2s

+ a
∑

s∈S

2(qs − μs iwl) + 1

μs
· ps

)

.

(8)

When a = 1 the first term is eliminated, and we obtain:

argmin
P

E[error]

= argmin
P

∑

s∈S

2(qs − μs iwl) + 1

μs
· ps

= argmin
P

∑

s∈S

(
2qs + 1

μs
− 2iwl

)

· ps

(9)

The solution is to divide the probabilities among the servers
that have the minimal value of 2qs+1

μs
. (The division can be

arbitrary; any division of probabilities will do.)
We turn to the general case in which a > 1. Dividing

the target function at Eq. (8) by a, we obtain a constrained
optimization problem with the following standard form.

minimize
P

f (P) = (a−1)
∑

s∈S

1

μs
· p2s

+
∑

s∈S

2(qs − μs iwl) + 1

μs
· ps

subject to
∑

s∈S
ps − 1 = 0,

ps ≥ 0 ∀s ∈ S.

(10)

Using the solution P = [p1, . . . , pn] to the above problem
yields an optimal greedy online algorithm, in which the best
stochastic per-round decisions are made. Interestingly, an
optimal P can contain positive probabilities even to servers
that are above the iwl. This is in stark contrast to [24], where,
underlying the formal analysis is the basic assumption that
servers that have a current load of more than the iwl5 should
have 0 probability of receiving any jobs. Figure 2b provides
an illustrative example of what an optimal P is expected to
yield. This example shows an optimal P inwhich a server that
is above the iwl receives a positive probability of ≈ 0.221
(i.e., ≈ 1.55

7).
The optimization problem in Eq. (10) is convex quadratic

with affine constraints and has a non-empty set of feasi-
ble solutions. Known general algorithms computing exact
solutions to this problem incur an exponential in n (worst
case) time complexity. Using well-established algorithms for
quadratic programming such as the interior-pointmethod and
the ellipsoid method [9], it is possible to compute approx-
imate solutions in �(n3). However, this is still not good
enough to be used for dispatching in the high-volume set-
tings that we are targeting.

5 The work of [24] uses a term called water-level. In the special case
of homogeneous systems, the water level coincides with the iwl.

123

Stochastic coordination in heterogeneous… 259

Fig. 2 An example of a system
with one fast (μ = 10) server,
and 8 slower servers (μ = 1).
The system state is 9 jobs
queued at the fast server, empty
queues at the remaining servers,
and 7 incoming jobs

(a) (b)

4 Deriving a computationally efficient
solution

Real-time load balancing systems are reluctant to deploy
algorithms that might incur exponential time complexity.
Even reaching an approximate solution, by näively applying
generic approximation-algorithms, might become impracti-
cal for systems with a few hundred servers. Thus, we seek a
specialized solution that considers our specific problem. As
wewill show, it is possible to identify particular properties of
our optimization problemEq. (10), and utilize them to design
a highly efficient algorithm.

4.1 The probable set and its ordering

Recall that a = 1 corresponds to a single job entering the
system in the current round. In this case, no coordination
between dispatchers is necessary, and indeed, as we have
shown, the dispatching problem can be solved in a straight-
forward manner. The distributed problem arises only when
a > 1, in which case we need to solve the optimization prob-
lem of Eq. (10). The Lagrangian function corresponding to
Eq. (10) is

L(P,�) = (a − 1)
∑

s∈S

1

μs
· p2s

+
∑

s∈S

2(qs − μs iwl) + 1

μs
· ps

−
∑

s∈S
�s ps + �0(

∑

s∈S
ps − 1),

(11)

where �0 is the Lagrange multiplier that corresponds to the
equality constraint and {�s}s∈S correspond to the inequality
constraints. Since the problem is convex with affine con-
straints, the Karush-Kuhn-Tucker (KKT) [30,32] theorem
states that the following conditions are necessary and suf-
ficient for P∗ = [p∗

1, . . . , p
∗
n] to be an optimal solution. For

all s ∈ S:

(Stationarity)
∂L

∂ ps
(p∗

s) = 0 = 2(a−1)
1

μs
p∗
s

+ 2(qs−μs iwl)+1

μs
−�s+�0

(Primal feasibility)
∑

s∈S
p∗
s −1 = 0, p∗

s ≥ 0

(Dual feasibility) �s ≥ 0

(Complementary slackness) p∗
s �s = 0

(12)

From Stationarity we can deduce that

p∗
s = −2(qs − μs iwl) − 1 + μs�s − μs�0

2(a − 1)
. (13)

We call the set of servers with positive probabilities in the
optimal solution the probable set and denote it by S+. For-
mally the probable set is S+ � {s ∈ S | p∗

s > 0}. As
we shall see, S+ plays an important role in our derivations.
In particular, the Complementary slackness condition from
Eq. (12) implies that �s = 0 for every s ∈ S+. Thus,

p∗
s = −2(qs−μs iwl)−1−μs�0

2(a−1)
, ∀s ∈ S+. (14)

We use the Primal feasibility condition from Eq. (12)
together with Eq. (14) to obtain

1 =
∑

s∈S
p∗
s =

∑

s∈S+
p∗
s

=
∑

s∈S+

−2(qs − μs iwl) − 1 − μs�0

2(a − 1)
,

(15)

from which we can isolate �0

�0 =
2

∑

s∈S+
(μs iwl−qs) − ∑

s∈S+
1−2(a−1)

∑

s∈S+
μs

. (16)

The KKT conditions enabled us to derive Eq. (14) and
Eq. (16), which show that identifying S+ provides an ana-
lytical solution to our optimization problem Eq. (10). (By
first calculating �0 and then each of the positive probabili-
ties.) Hence, finding an optimal solution reduces to finding
the probable set. This result is a complementary instance
of the generic active set method for quadratic programming
[47]. However, the active set method provides, in general,
a worst case running-time complexity of 2n . And while
for the specific instance of the problem with μs = μ for
all servers (i.e., an homogeneous system) we can derive

123

260 G. Goren et al.

Algorithm 2: Find probabilities in O(n2) time.

1 Function ComputeProbabilities(S, {qs}s∈S , {μs}s∈S , a,
iwl):

2 O ← ∅; val∗ ← ∞
3 ps ← 0 ∀s ∈ S
4 while S\O
= ∅ do
5 r ← argmins∈S\O 2qs+1

μs

6 O ← O ∪ r /* O is the candidate for S+
*/

7 �0 ← 2
∑

s∈O(μs iwl−qs)−∑
s∈O 1−2(a−1)∑

s∈O μs

/* according to Eq. (16) */
8 for s ∈ O do
9 ps ← −2(qs−μs iwl)−1−μs�0

2(a−1) /* according to

Eq. (14) */
10 if ps < 0 then
11 go to line 4 /* the solution is

infeasible; continue to next r */

12 val ← (a − 1)
∑

s∈O 1
μs

· p2s + ∑
s∈O

2(qs−μs iwl)+1
μs

· ps
/* according to Eq. (10) */

13 if val < val∗ then
14 val∗ ← val
15 P∗ ← {ps}s∈S
16 return P∗

S+ = {s ∈ S | qs
μs

< iwl} analytically, the example in
Figure 2b shows that this is no longer true in the general,
heterogeneous, case.

Instead of derivingS+ analytically,we turn tofind an algo-
rithmic solution. A trivial algorithm is to examine each of the
2n possible subsets of servers. For each candidate subset: first
calculate�0 according to Eq. (16)— this guarantees that the
sumof probabilities is 1, then testwhether all the probabilities
are indeed positive, and finally calculate the objective func-
tion. Clearly, its exponential computation complexity renders
this method infeasible. To overcome the exponential nature
of searching in a domain of size 2n , we must reduce the size
of the domain we search in. Lemma 1 formulates a property
of the objective function in Eq. (10) that holds the key to
reducing the size of the search.

Lemma 1 Let r be a server in the probable set S+. For every
server u in the set S, if 2qr+1

μr
≥ 2qu+1

μu
then u is in S+ as

well.

Proof Let r and u satisfy the assumption that 2qr+1
μr

≥ 2qu+1
μu

,
and let P∗ = {p∗

1, . . . , p
∗
n} be the optimal solution for

Eq. (10). Assume by contradiction that p∗
r > 0 but p∗

u = 0.
We show that there exists a feasible solution P that obtains a
lower value of the objective function, thus contradicting the
optimality of P∗. Specifically, we show that for the positive
constant

z = min

{
μu(2qr + 1) − μr (2qu + 1) + 2μrμu p∗

r

(a − 1)(μr + μu)
, p∗

r

}

,

any 0 < ε < z and a different solution P = {p1, . . . , pn}
with pu = ε, pr = p∗

r −ε, and ps = p∗
s for all other servers,

it holds that P is a better feasible solution than P∗.
First, we show that P is feasible. Since P∗ is feasible, it

holds that
∑

s∈S p∗
s = 1, and 0 ≤ p∗

s ≤ 1 for all s ∈ S.
Accordingly, for P it similarly holds that

∑

s∈S
ps =

∑

s∈S\{r ,u}
p∗
s + pr + pu =

∑

s∈S
p∗
s − ε + ε = 1.

The condition 0 ≤ ps ≤ 1 trivially follows from P∗’s feasi-
bility and the fact that 0 < ε < p∗

r ≤ 1.
Now we show that the new solution P obtains in a lower

objective function’s value (i.e., by Eq. (10)) than the optimal
solution P∗, leading to a contradiction.

Denote diff � f (P∗) − f (P). We now turn to show that
diff > 0. By Eq. (10) we have

diff =
(

(a − 1)
∑

s∈S

1

μs
· (p∗

s)
2

+
∑

s∈S

2(qs − μs iwl) + 1

μs
· p∗

s

)

−
(

(a − 1)
∑

s∈S

1

μs
· p2s

+
∑

s∈S

2(qs − μs iwl) + 1

μs
· ps

)

=
∑

s∈S

(
a − 1

μs
(p∗

s)
2 + 2(qs − μs iwl) + 1

μs
p∗
s

)

−
∑

s∈S

(
a − 1

μs
p2s + 2(qs − μs iwl) + 1

μs
ps

)

.

Next, we split each summation term to a sum over S \ {r , u}
and a sum over {r , u}

diff =
∑

s∈S\{r ,u}

(
a − 1

μs
(p∗

s)
2 + 2(qs − μs iwl) + 1

μs
p∗
s

)

+
∑

s∈{r ,u}

(
a − 1

μs
(p∗

s)
2 + 2(qs − μs iwl) + 1

μs
p∗
s

)

−
∑

s∈S\{r ,u}

(
a − 1

μs
p2s + 2(qs − μs iwl) + 1

μs
ps

)

−
∑

s∈{r ,u}

(
a − 1

μs
p2s + 2(qs − μs iwl) + 1

μs
ps

)

,

123

Stochastic coordination in heterogeneous… 261

and since ps = p∗
s for every server in S \ {r , u}, the sums

over those sets cancel out. Thus, we obtain

diff =
∑

s∈{r ,u}

(
a − 1

μs
(p∗

s)
2 + 2(qs − μs iwl) + 1

μs
p∗
s

)

−
∑

s∈{r ,u}

(
a − 1

μs
p2s + 2(qs − μs iwl) + 1

μs
ps

)

=
∑

s∈{r ,u}

(
a − 1

μs

(
(p∗

s)
2 − p2s

)

+2(qs − μs iwl) + 1

μs
(p∗

s − ps)

)

=
(
a − 1

μr

(
(p∗

r)
2 − p2r

)

+2(qr − μr iwl) + 1

μr
(p∗

r − pr)

)

+
(
a − 1

μu

(
(p∗

u)
2 − p2u

)

+2(qu − μu iwl) + 1

μu
(p∗

u − pu)

)

.

We replace (p∗
r − pr) and (pu − p∗

u) by ε. Similarly, we
replace

(
(p∗

r)
2 − p2r

)
by (2p∗

r ε − ε2), and
(
(p∗

u)
2 − p2u

)
by(−ε2

)
and obtain

diff =
(
a − 1

μr

(
2p∗

r ε − ε2
)

+ 2(qr − μr iwl) + 1

μr
· ε

)

+
(
a − 1

μu

(
−ε2

)
+ 2(qu − μu iwl) + 1

μu
(−ε)

)

= ε

(
2(qr−μr iwl)+1

μr
− 2(qu−μu iwl)+1

μu
+ 2p∗

r

)

− ε2
(
a − 1

μr
+ a − 1

μu

)

= ε

(
2qr+1

μr
−2qu+1

μu
+2p∗

r

)

︸ ︷︷ ︸
x

−ε2
(
a−1

μr
+a−1

μu

)

︸ ︷︷ ︸
y

.

Since 2qr+1
μr

≥ 2qu+1
μu

and p∗
r > 0, it must hold that x > 0.

It must also be true that y > 0 since all μ-s are positive and
we consider only a > 1. We therefore obtain that 0 < x

y =
μu(2qr+1)−μr (2qu+1)+2μrμu p∗

r
(a−1)(μr+μu)

. Hence, there exists 0 < ε <

min{ xy , p∗
r }, for which it holds that

diff = εx − ε2y = ε(x − εy) > ε(x − x

y
y) = 0.

Therefore, solutions exist that are both feasible and result
in a lower objective function value than that of the optimal
solution — a contradiction. This concludes the proof.
�

Lemma 1 imposes a very strict constraint on the structure
of the probable set S+:

Corollary 1 Let si1, si2 , . . . , sin be a listing of the servers inS
in non-decreasing sorted order of 2qs+1

μs
. Moreover, denote

S j = {si1, . . . , si j } for j = 1, . . . , n. Then S+ = S j for
some j ≤ n.

Corollary 1 allows us to find the optimal probabilities in poly-
nomial time. To be precise, both sorting S and computing the
iwl take O(n log n) time. So we are left with computing for
each of the n subsets S j : (1) whether it satisfies that all prob-
abilities are non-negative, and (2) What the value of the
subset’s objective function is. Steps (1) and (2) can be imple-
mented in O(n) time complexity each. Finally, we extract the
subset with the minimal objective function value from those
that respect (1). This can be done in O(n2) complexity, as
presented in Algorithm 2.

4.2 n log n complexity

Given an already sorted data structure, the quadratic com-
plexity ofAlgorithm2 is caused by the�(n) cost per iteration
of the calculation in line 7, the for loop in lines 8-11, and
the summation in line 12. Since the outcome of an itera-
tion depends on the results of past iterations, we can employ

Algorithm 3: Find probabilities in O(n log n) time;
O(n) given the servers’ ordering.

1 Function ComputeProbabilities(S, {qs}s∈S , {μs}s∈S , a,
iwl):

2 O ← ∅; val∗ ← ∞
3 �0,n ← −2(a − 1); �0,d ← 0
4 v1 ← 0; v2 ← 0
5 while S\O
= ∅ do
6 r ← argmins∈S\O 2qs+1

μs

7 O ← O ∪ r
8 �0,n ← �0,n + 2(μr iwl − qr) − 1
9 �0,d ← �0,d + μr

10 �0 ← �0,n
�0,d

/* according to Eq. (15) */

11 if 2iwl − 2qr+1
μr

< �0 then
12 Continue /* the solution is

infeasible; go to line 6 */

13 v1 ← v1 + μr
4(a−1)

14 v2 ← v2 + (2(qr−μr iwl)+1)2

4μr (a−1)

15 val ← v1�
2
0 − v2 /* according to Eq. (10)

*/
16 if val < val∗ then
17 val∗ ← val
18 �∗

0 ← �0

19 P∗ ←
{
max{0, −2(qs−μs iwl)−1−μs�

∗
0

2(a−1) }
}

s∈S
/* according to Eq. (14) */

20 return P∗

123

262 G. Goren et al.

a dynamic programming approach and design an algorithm
with an O(n) complexity given the data is presorted, and
O(n log n) otherwise. The pseudocode inAlgorithm3 imple-
ments this. We next explain the necessary steps in deriving
this algorithm.

Replacing the calculation of �0 in line 7 of Algorithm
2 by an O(1) computation per iteration is quite straightfor-
ward. We simply calculate the enumerator and denominator
sums separately, and then divide them. Each sum is com-
puted by adding the current element to the sum from the
previous iteration. The for loop in lines 8-11 of Algorithm 2
tests whether the computed probabilities are indeed non-
negative. Since the denominator is a positive constant, it is
sufficient to test the enumerator for each server in O. That
is, whether it holds that −2(qs−μs iwl)−1−μs�0 ≥ 0. The
rates μs of the servers are positive. Therefore, dividing by
μs and rearranging yields

iwl − �0 ≥ 2qs + 1

μs
. (17)

In turn, observe that Eq. (17) holds for all servers in O iff
it holds for the server with the highest 2qs+1

μs
value in O,

which is server r in each iteration. We thus replace the �(n)

complexity for loop of lines 8-11 in Algorithm 2 by this
single O(1) complexity test.

Next, we address the summation in line 12 of Algorithm 2
which computes the value of the objective function f (P)

from Eq. (10). Since P contains �(n) elements, computing
P costs �(n) time. However, we can make the computation
of P more efficient by using the following Lemma.

Lemma 2 The objective function in Eq. (10) satisfies

f (P) = �2
0

∑

s∈S+

μs

4(a − 1)
︸ ︷︷ ︸

v1

−
∑

s∈S+

(2(qs − μs iwl) + 1)2

4μs(a − 1)
︸ ︷︷ ︸

v2

.

Proof By combining Eq. (14), which expresses the positive
optimal probabilities as a function of �0, into the objective
function of Eq. (10) we obtain

f (P(�0))

= (a−1)
∑

s∈S+

1

μs

(−2(qs−μs iwl)−1−μs�0

2(a−1)

)2

+
∑

s∈S+

2(qs−μs iwl)+1

μs
·−2(qs−μs iwl)−1−μs�0

2(a−1)

=
∑

s∈S+

1

4μs(a−1)
·
(
(2(qs−μs iwl)+1)2+(μs�0)

2

+2(2(qs−μs iwl)+1)μs�0
)

+
∑

s∈S+

−(2(qs−μs iwl)+1)2−(2(qs−μs iwl)+1)μs�0

2μs(a−1)

=
∑

s∈S+

(2(qs−μs iwl)+1)2

4μs(a−1)
+ �2

0

∑

s∈S+

μs

4(a−1)

+ �0

∑

s∈S+

2(2(qs−μs iwl)+1)

4(a−1)

−
∑

s∈S+

(2(qs−μs iwl)+1)2

2μs(a−1)

− �0

∑

s∈S+

(2(qs−μs iwl)+1)

2(a−1)

= �2
0

∑

s∈S+

μs

4(a − 1)
︸ ︷︷ ︸

v1

−
∑

s∈S+

(2(qs − μs iwl) + 1)2

4μs(a − 1)
︸ ︷︷ ︸

v2

.

This concludes the proof.
�
Lemma 2 enables us to compute v1 and v2 in O(1) oper-

ations per iteration, and reduce the �(n) cost of line 12 in
Algorithm 2 to O(1). It follows that Algorithm 3 runs in
O(n log n).

4.3 Linear complexity

The complexity of Algorithm 3 is dominated by sorting. For
reducing the solution’s complexity further, we must remove
the need for sorting both in Algorithms 1 and 3. To do so we
use the median-of-medians approach [8]. 6 The correctness
of the approach for computing the iwl is straight forward
and it only remains to adapt the algorithm. Roughly, we seek
the first server whose load would be equal or above the iwl
(or that none exists). By using the median-of-medians algo-
rithm to divide each sub-problem by≈ 2, and using previous
calculations when moving to a more loaded server, we can
compute the iwl in linear time. The pseudocode is presented
in Algorithm 4.

Besides the iwl calculation, Algorithm 3 also relies on
the servers being sorted to efficiently identify the probable
set S+. Thus, to prove the correctness of the median-of-
medians approach here, we need to show that there is a sense

6 In essence, the median-of-medians approach relies on a sense of
monotonicity. That is, for a given problem, the existence of a rela-
tion “≤” between possible solutions such that for a possible solution x
wecan identify (in linear time) if the optimal solution x∗ satisfies x∗ ≤ x
or x ≤ x∗. Moreover, the approach is iterative and the identification
problem must monotonically decrease in size by a constant factor at
each iteration.

123

Stochastic coordination in heterogeneous… 263

Algorithm 4: Computing the ideal workload.

1 Function ComputeIdealWorkLoad(S, {qs}s∈S , {μs}s∈S ,
a):

2 T ← S; μ∗
tot ← 0; l∗ ← 0

3 iwl ← 0
4 while T
= ∅ do
5 r ← argmedians∈T qs

μs

6 Tupto ←
{
s ∈ T | qs

μs
≤ qr

μr

}

7 l ← l∗ +
(
qr
μr

− iwl
)

μ∗
tot + ∑

s∈Tupto

(
qr
μr

− qs
μs

)
μs

8 μtot ← μ∗
tot + ∑

s∈Tupto

μs

9 if l = a then
10 return qr

μr

11 else if l > a then
12 T ← Tupto \ {r}
13 else
14 iwl ← qr

μr

15 T ← T \ Tupto
16 l∗ ← l
17 μ∗

tot ← μtot

18 return iwl + a−l∗
μ∗
tot

of monotonicity in the choice of S+. More precisely, using
the same notation as in Corollary 1, we additionally denote
by val[j] the value in line 16 of Algorithm 3 (line 13 of
Algorithm 2) during the j th iteration. Similarly, we denote
by�[j] the value in line 11 ofAlgorithm3 during the j th iter-
ation. The monotonicity requirement formally translates to
S j ,S j ′ with j < j ′ satisfying the following two conditions:
(1) val[j] ≥ val[j ′], and (2) that if �0[j] > 2iwl − 2qi j +1

μi j

then �0[j ′] > 2iwl − 2qi j ′ +1

μi j ′
. The first part trivially holds

since adding degrees of freedom to the possible assignment
can only benefit us. I.e., an assignment to S j ′ where only the
servers in S j have positive probabilities while the rest are
fixed to 0 is still possible, hence, an optimal solution is at
least as good as that. It remains to show that the second part
also holds. To that end we will use the following lemma.

Lemma 3 If a
b≥ c

d and b, d >0, then a
b≥ a+c

b+d≥ c
d .

Proof Simple arithmetic shows that

a

b
= a(b + d)

b(b + d)
= a

b + d
· b + d

b
= a

b + d
·
(

1 + d

b

)

= a

b + d
+

ad
b

b + d
≥ a

b + d
+ c

b + d
= a + c

b + d
.

Similarly,

c

d
= c(b + d)

d(b + d)
= c

b + d
· b + d

d
= c

b + d
·
(

1 + b

d

)

= c

b + d
+

cb
d

b + d
≤ c

b + d
+ a

b + d
= a + c

b + d
.

The claim follows.
�
Lemma 4 Let j, j ′ ∈ {1, . . . , n} denote the j th and j ′th
servers in the listing of S according to the non-decreasing
order of 2qs+1

μs
. If �0[j] > 2iwl− 2q j+1

μ j
, then for all j ′ > j

it holds that �0[j ′] > 2iwl − 2q j ′+1
μ j ′

.

Proof In accordance with the previous notations, we denote
by �n[j] and �d [j] the values of �0,n and �0,d in the j th

iteration of Algorithm 3 at lines 9 and 10 respectively. Let j
be the first index at which �0[j] > 2iwl − 2q j+1

μ j
. That is,

we get an infeasible solution at line 12 of Algorithm 3. For
j + 1 we have that

�0[j + 1] =�n[j + 1]
�d [j + 1]

=
a

︷ ︸︸ ︷
�n[j]+

c
︷ ︸︸ ︷
2μ j+1iwl − (2q j+1 + 1)

�d [j]︸ ︷︷ ︸
b

+μ j+1
︸ ︷︷ ︸

d

.

Case 1: Suppose c
d ≥ a

b . Then from Lemma 3 it follows that
�d [j + 1] ≥ �d [j]. Moreover, the non-decreasing order
satisfies 2iwl − 2q j+1

μ j
≥ 2iwl − 2q j+1+1

μ j+1
. Consequently,

�0[j + 1] ≥ �d [j] > 2iwl − 2q j + 1

μ j

≥ 2iwl − 2q j+1 + 1

μ j+1
,

and �0[j + 1] results in an infeasible solution as well.
Case 2: Suppose a

b > c
d . Then by Lemma 3 we get that

�0[j + 1] >
2μ j+1iwl − (2q j+1 + 1)

μ j+1

= 2iwl − 2q j+1 + 1

μ j+1
,

and �0[j + 1] results in an infeasible solution as well.
We have shown that if �0[j] results in an infeasible solu-

tion than�0[j +1] also results in an infeasible solution. The
claim follows by induction.
�
With Lemma 4 proven, we can employ the median-of-
medians approach to design Algorithm 5.

We have shown an algorithm that computes the dispatch-
ing probabilities in linear time complexity. Linear complexity
is also theoretically optimal, since each server must be
assigned a probability and it is possible for probabilities to

123

264 G. Goren et al.

Algorithm 5: Find probabilities in O(n) time

1 Function ComputeProbabilities(S, {qs}s∈S , {μs}s∈S , a,
iwl):

2 T ← S �∗
0,n ← −2(a − 1); �∗

0,d ← 0
3 while T
= ∅ do
4 r ← argmedians∈T 2qs+1

μs

5 Tupto ←
{
s ∈ T | 2qs+1

μs
≤ 2qr+1

μr

}

6 �0,n ← �∗
0,n + ∑

s∈Tupto

(
2(μs iwl − qs) − 1

)

7 �0,d ← �∗
0,d + ∑

s∈Tupto

μs

8 �0 ← �0,n
�0,d

9 if 2iwl − 2qr+1
μr

< �0 then
/* infeasible; try smaller */

10 T ← Tupto \ r
11 else

/* feasible; try larger */
12 T ← T \ Tupto
13 �∗

0,n ← �0,n

14 �∗
0,d ← �0,d

15 �∗
0 ← �∗

0,n
�∗

0,d

16 P∗ ←
{
max{0, −2(qs−μs iwl)−1−μs�

∗
0

2(a−1) }
}

s∈S return P∗

be unique. However, our simulations in Sect. 7.3 show that
for the system sizes we are interested in, Algorithm 3 runs
faster. This is due to both constant factors, as well as due
to sorting being �(n log n) only in the worst case. In fact,
since the data structures containing the servers according to
the sorted orders are already sorted according to the previous
round, the worst case complexity may be very rare. Clearly,
in larger systems the asymptotic behavior will prevail and
Algorithm 5 will be faster. Also, it is possible to acceler-
ate Algorithm 5’s average running time by computing an
approximate median via sub-sampling instead of computing
the exact one. Intuitively, a run of this variant is faster with
high probability, since its expected time complexity is linear
with a smaller constant and a strong concentration around its
mean. But, for the context of this work we continue with the
approach based on sorting.

5 Putting it all together

We now show how the algorithms from Sections 3 and 4,
which compute the iwl and the optimal probabilities, can
be employed in the complete dispatching procedure given in
Algorithm 6. The complexity of an individual dispatcher’s
computation in any given round is O(n log n), and it is dom-
inated by the sorting of n values in lines 2 and 3. If the
sorted order is available to both ComputeIdealWorkLoad
and ComputeProbabilities, their running time is reduced

to O(n). This is useful since (1) a designer may imple-
ment a sorted data structure in various ways according to
what benefits her specific system’s characteristics, and (2) if
queue-length information is available before the job arrivals,
the server ordering can be precomputed, further improving
the online complexity.

Algorithm 6: StochasticallyCoordinatedDis-
patching (SCD) Procedure.
input: S, {μs}s∈S

1 for each round t = 1, 2, . . . do
2 Update queue-lengths {qs}s∈S
3 S1 ← Sort S according to qs

μs

4 S2 ← Sort S according to 2qs+1
μs

5 upon receiving jobs a(d) do
6 Estimate a by aest,d

7 iwl ← ComputeIdealWorkLoad
(

S1, {qs}s∈S , {μs}s∈S , aest,d
)

8 P ← ComputeProbabilities
(
S2, {qs}s∈S ,

{μs}s∈S , aest,d , iwl
)

9 for each job in a(d) do
10 draw a server s according to P
11 send the job to server s

5.1 Estimating the arrivals

While the derivation of the optimal probabilities assumed
knowledge of the arrivals {a(1), . . . , a(m)}, a dispatcher d
only knows its own arrivals, i.e., a(d). Nevertheless, we note
that the optimal probabilities depend only on the total number
a �

∑

d∈D
a(d) of jobs that arrive, and not on the individual

values a(d). We are thus left with estimating a. There are
numerous optional methods for estimating a (e.g., assuming
that it is the maximal capacity of the system, ML estimators,
etc.). Following a simple and elegant approach taken in [24],
we have dispatcher d estimate a by assuming that everyone
else is receiving the same number of jobs as d:

aest,d = m · a(d). (18)

With this, Algorithm 6 is fully defined and can be imple-
mented.

One reason why such an estimation scheme is effective
is because the average estimation of the dispatchers exactly
equals the total arrivals. That is,

1

m

∑

d∈D
aest,d = 1

m

∑

d∈D
ma(d) =

∑

d∈D
a(d) = a. (19)

123

Stochastic coordination in heterogeneous… 265

Consequently, if some dispatchers overestimate the iwl and
therefore assign smaller probabilities to less loaded servers,
then other dispatchers underestimate the iwl and increase
these probabilities. Roughly speaking, these deviations com-
pensate for one another. In Sect. 7 we show how this
simplistic estimation technique results in consistent state-
of-the-art performance across many systems and metrics.

5.2 Stability

A formal guarantee for dispatching algorithms that is often
considered desirable in the literature is called stability (see
Sect. 6). Under mild assumptions on the stochastic nature of
the arrival and service processes, stability ensures that the
servers’ queue-lengths will not grow unboundedly so long
as the arrivals do not surpass all servers’ total processing
capacity.

Accordingly, in Sect. 6, we make the appropriate formal
definitions and prove that SCD is stable. Moreover, our sta-
bility proof holds not only when applying the estimation
technique inEq. (18), but also applies for any estimation tech-
nique in which 1 ≤ aest,d < ∞. Intuitively, this is because
for aest,d = 1, our policy behaves similarly to SED, and as
aest,d → ∞ it approaches weighted-random. However, with
any reasonable estimation (and in particular the one in Eq.
(18) that we employ), the SCD procedure finds the best of
both worlds. It eliminates the herding phenomenon incurred
by SED, while also sending sufficient work to the less loaded
servers, unlike the load oblivious weighted-random.

6 Detailed proof of strong stability

This section could be skipped at a first reading.
In line with standard practice [24,58,64], we make

assumptions on the arrival and departure processes that make
the system dynamics amenable to formal analysis. In partic-
ular, we assume, for all dispatchers d ∈ D,

{
a(d)(t)

}∞
t=0

is an i .i .d. process and,

E[a(d)(0)] = λd , E[(a(d)(0))2] = σd .

(20)

Likewise, for all servers s ∈ S

{cs(t)}∞t=0 is an i .i .d. process,

E[cs(0)] = μs and E[(cs(0))2] = ϕs .
(21)

Namely, for both the arrival and departure processes, we
make the standard assumption that they are i .i .d. and have a

finite variance.We remark that the assumption that the arrival
processes at the dispatchers are independent is made for ease
of exposition and can be dropped by one skilled at the art at
the cost of a more involved presentation (e.g., [58]).

Intuitively, our goal is to prove that if, on average, the total
arrivals at the system are below the total processing capacity
of all servers, then the expected queue-lengths at the servers
are bounded by a constant.Wenext present the required terms
to formalize this intuition.
Admissibility. We assume the total expected arrival rate to
the system is admissible. Formally, it means that we assume
that there exists an ε > 0 such that

∑
s μs − ∑

d λd = ε.
We prove that for any multi-dispatcher heterogeneous

system with admissible arrivals our dispatching policy is
strongly stable. Our proof follows similar lines to the strong
stability proof in [24]. The key difference is that we account
for server heterogeneity. This makes the proof somewhat
more involved. We next formally define the well-established
strong stability criterion of interest. Strong stability is a
strong form of stability for discrete-time queuing systems.
Similarly to [24,58,64], since we assume that the arrival and
departure processes has a finite variance, this criterion also
implies throughput optimality and other strong theoretical
guarantees that may be of interest (see [22,44,45] for details).

Definition 1 (Strong stability) A load balancing system is
said to be strongly stable if for any admissible arrival rate it
holds that

lim sup
T→∞

1

T

T−1∑

t=0

∑

s∈S
E

[
qs(t)

]
< ∞ .

Now, we are ready to formalize the queue dynamics. Let
ās(t) = ∑

d∈D ā(d)
s (t) be the total number of arrivals at

server s and round t . Then, the recursion describing the queue
dynamics of server s over rounds is given by

qs(t + 1) = max{0, qs(t) + ās(t) − cs(t)} . (22)

Squaring both sides of Eq. (22), rearranging, dividing by the
server’s processing capacity and omitting terms yields,

1

μs

(
qs(t + 1)

)2 − 1

μs

(
qs(t)

)2

≤ 1

μs

(
ās(t)

)2 + 1

μs

(
cs(t)

)2

− 2qs(t)

μs

(
cs(t) − ās(t)

)
.

(23)

123

266 G. Goren et al.

Summing Eq. (23) over the servers yields

∑

s∈S

1

μs

(
qs(t + 1)

)2 −
∑

s∈S

1

μs

(
qs(t)

)2

≤
∑

s∈S

1

μs

(
ās(t)

)2 +
∑

s∈S

1

μs

(
cs(t)

)2

− 2
∑

s∈S

qs(t)

μs

(
cs(t) − ās(t)

)
.

(24)

Denote μtot = ∑
s∈S μs . Now, we define the following use-

ful quantity for each server s: ws = μs
μtot

. Next, for each

(s, d, k), let I d,k
s (t) be an indicator function that takes the

value of 1 with probability ws and 0 otherwise such that

∑

s∈S
I d,k
s (t) = 1 ∀d ∈ D, k ∈ [1, . . . , a(d)(t)] .

We rewrite Eq. (24) and add and subtract the term 2
∑

s∈S
∑

d∈D
∑a(d)(t)

k=1 I d,k
s (t)qs(t) from the right hand side of the

equation. This yields,

∑

s∈S

1

μs

(
qs(t + 1)

)2 −
∑

s∈S

1

μs

(
qs(t)

)2

≤
∑

s∈S

1

μs

(
ās(t)

)2 +
∑

s∈S

1

μs

(
cs(t)

)2

︸ ︷︷ ︸
(a)

− 2
∑

s∈S

qs(t)

μs

(
cs(t) −

∑

d∈D

a(d)(t)∑

k=1

I d,k
s (t)

)

︸ ︷︷ ︸
(b)

+ 2
∑

s∈S

qs(t)

μs

(∑

d∈D
ā(d)
s (t)−

∑

d∈D

a(d)(t)∑

k=1

I d,k
s (t)

)

︸ ︷︷ ︸
(c)

,

(25)

where we also used ās(t) = ∑
d∈D ā(d)

s (t) in (c). Our goal
now is to take the expectation of Eq. (25). We start with ana-
lyzing Term (a) in Eq. (25). Denote μmin = min

s∈S
μs . Taking

expectation and using Eq. (20) and Eq. (21) we obtain

E

[∑

s∈S

1

μs

(
ās(t)

)2 +
∑

s∈S

1

μs

(
cs(t)

)2
]

≤ 1

μmin
E

[(∑

d∈D
a(d)(t)

)2
]

+
∑

s∈S

ϕs

μs
= 1

μmin

·
(∑

d∈D
σd +

∑

d∈D

∑

d ′∈D,
d ′
=d

λdλd ′
)

+
∑

s∈S

ϕs

μs
� C .

(26)

We now turn to analyze Term (b) in Eq. (25). Using the law
of total expectation we obtain

E

[∑

s∈S

qs(t)

μs

(
cs(t) −

∑

d∈D

a(d)(t)∑

k=1

I d,k
s (t)

)]

= E

[

E

[∑

s∈S

qs(t)

μs

(
cs(t) −

∑

d∈D

a(d)(t)∑

k=1

I d,k
s (t)

)]

∣
∣
∣
∣{qs(t)}s∈S

]

=
∑

s∈S
E

[
qs(t)

μs

(

μs−ws

∑

d∈D
λd

)]

=
∑

s∈S
E

[
qs(t)

μtot

(

μtot −
∑

d∈D
λd

)]

= ε

μtot

∑

s∈S
E

[
qs(t)

]
,

(27)

where we used Eq. (20), Eq. (21), the definition of I d,k
s (t)

and the admissibility of the system. We also used the fact
that a(d)(t) and I d,k

s (t) are independent which allowed us to
employ Wald’s identity. We turn to analyze term (c) in Eq.
(25).
Observe that

∑

s∈S

qs(t)

μs

(∑

d∈D
ā(d)
s (t) −

∑

d∈D

a(d)(t)∑

k=1

I d,k
s (t)

)

=
∑

d∈D

(∑

s∈S

qs(t)

μs

(
ā(d)
s (t) −

a(d)(t)∑

k=1

I d,k
s (t)

))

.

(28)

This means that we can consider each dispatcher separately.
In particular, for each dispatcher, we will apply the following
Lemma.

Lemma 5 Consider dispatcher d ∈ D. For any a(d)(t) > 0,
let {p(d)

s (t)}s∈S be the optimal probabilities computed by
dispatcher d for round t (i.e., probabilities that respect Eq.
(10) for the computed iwl). Then, for any p(d)

s (t), p(d)

s′ (t) >

0, it holds that

p(d)
s (t)

μs
≤ p(d)

s′ (t)

μs′
�⇒

qs(t)

μs
+ a(d)(t)

μmin
≥qs(t) + a(d)(t)

μs
≥ qs′(t)

μs′
.

(29)

Proof See Sect. 6.1
�

With this result at hand, we produce the following con-
struction. Let p(d)

s(1) (t), p
(d)
s(2) (t), . . . , p

(d)
s(n)

(t) be the optimal
probabilities computed by dispatcher d ordered in a decreas-
ing order of their value divided by the corresponding server

123

Stochastic coordination in heterogeneous… 267

rate, i.e., p(d)
s (t)
μs

. Then, according to Lemma 5, for any two
servers s(i), s(i+1) with positive probabilities, we have that

qs(i+1) (t)

μs(i+1)

+i
a(d)(t)

μmin
≥qs(i) (t)

μs(i)
+(i−1)

a(d)(t)

μmin
. (30)

Now, for dispatcher d ∈ D consider

∑

s(i)∈S

qs(i) (t)

μs(i)

(
ā(d)
s(i) (t) −

a(d)(t)∑

k=1

I d,k
s(i) (t)

)

=

∑

s(i)∈S

(qs(i) (t)

μs(i)
+(i−1)

a(d)(t)

μmin

)
·

(
ā(d)
s(i) (t) −

a(d)(t)∑

k=1

I d,k
s(i) (t)

)

︸ ︷︷ ︸
(i)

−
∑

s(i)∈S

(
(i−1)

a(d)(t)

μmin

)
·

(
ā(d)
s(i) (t) −

a(d)(t)∑

k=1

I d,k
s(i) (t)

)

.

︸ ︷︷ ︸
(i i)

(31)

For (i), we use Lemma 6which relies on amajorization argu-
ment similarly to [58,64].

Lemma 6

E

[∑

s(i)∈S

(qs(i) (t)

μs(i)
+ (i − 1)

a(d)(t)

μmin

)
·

(
ā(d)
s(i) (t) −

a(d)(t)∑

k=1

I d,k
s(i) (t)

)]

≤ 0.

(32)

Proof See Sect. 6.2.
�
We continue to analyze (ii). By Eq. (20), it holds that

E

[∑

s(i)∈S

(
(i−1)

a(d)(t)

μmin

)

·
(
ā(d)
s(i) (t) −

a(d)(t)∑

k=1

I d,k
s(i) (t)

)]

≤ E

[∑

s(i)∈S

(
(i−1)

(a(d)(t))2

μmin

)]

= σd(n2 − n)

2μmin
.

(33)

By taking the expectation of Term (c) and using Eq. (28),
Lemma 6 and Eq. (33), we obtain

E

[∑

s∈S

qs(t)

μs

(∑

d∈D
ā(d)
s (t)

−
∑

d∈D

a(d)(t)∑

k=1

I d,k
s (t)

)]

≤
∑

d∈D

σd(n2 − n)

2μmin
� D.

(34)

Finally, by applying Eq. (26), Eq. (27) and Eq. (34), we
can take the expectation of the right-hand side of Eq. (25).
This yields

E

[∑

s∈S

1

μs

(
qs(t+1)

)2
]

− E

[∑

s∈S

1

μs

(
qs(t)

)2
]

≤ C − 2ε

μtot

∑

s∈S
E

[
qs(t)

] + 2D.

(35)

Summing Eq. (35) over rounds 0, . . . , T−1, multiplying by
μtot
2εT and rearranging yields,

1

T

T−1∑

t=0

∑

s∈S
E

[
qs(t)

]

≤ (C + 2D)μtot

2ε
+ μtot

2εT
E

∑

s∈S

1

μs

(
qs(0)

)2
,

(36)

where we omitted the non-positive term E

[
− ∑

s∈S 1
μs

(
qs(T)

)2]
due to the telescopic series on the left hand side

of Eq. (35). Taking limits of Eq. (36) and making the stan-
dard assumption that the system is initialized with bounded

queue-lengths, i.e., E
[∑

s∈S
(
qs(0)

)2]
< ∞ yields:

lim sup
T→∞

1

T

T−1∑

t=0

∑

s∈S
E

[
qs(t)

]
≤ (C+2D)μtot

2ε

< ∞.

(37)

This concludes the proof.
Note that the proof does not rely on the specific method

used to estimate the total arrivals (which, in turn, affects the
calculated dispatching probabilities).We only rely on the fact
that the estimation respects 1 ≤ aest,d ≤ ∞ and on the way
the probabilities are calculated based on the estimation. This
allows the freedom to design even better estimation tech-
niques than Eq. (18) as we briefly mentioned in the main text
of the paper.

123

268 G. Goren et al.

6.1 Proof of lemma 5

Assume by the way of contradiction that p(d)
s (t)
μs

≤ p(d)

s′ (t)
μs′

but
qs (t)+a(d)(t)

μs
<

qs′ (t)
μs′

. For ease of exposition, we next omit the
dispatcher superscript d and the round index t . Consider an
alternative solution where all other probabilities are identical
except that we set p̃s = ps + ps′ and p̃s′ = 0. By the
definition of the error function given in Eq. (10), we have
that the difference in the error is

diff

= (a−1)
(ps+ps′)2

μs
+ 2(ps+ps′)

(qs
μs

−iwl+0.5

μs

)

−
(

(a−1)
p2s
μs

+ 2ps
(qs
μs

−iwl+0.5

μs

)
+ (a−1)

p2s′
μs′

+ 2ps′
(qs′

μs′
−iwl+0.5

μs′

))

.

Simplifying yields,

diff = (a − 1)
(p2s′ + 2ps ps′

μs
− p2s′

μs′

)

+ 2ps′
(qs
μs

+ 0.5

μs

)
− 2ps′

(qs′

μs′
+ 0.5

μs′

)
.

We now split into two cases.
Case 1: μs ≥ μs′ . In this case

diff ≤ (a − 1)
(2ps ps′

μs

)
+ 2ps′

(qs
μs

)
− 2ps′

(qs′

μs′

)

< (a − 1)
(2ps ps′

μs

)
− a

2ps′

μs
< 0.

Case 2: μs < μs′ . In this case

diff ≤ (a−1)
(2ps ps′

μs′

)
+2ps′

(qs
μs

)
−2ps′

(qs′

μs′

)
+ ps′

μs

< (a−1)
(2ps ps′

μs′

)
−a

2ps′

μs
+ ps′

μs
< 0.

In both cases the new solution has a lower error. This is a
contradiction to the assumption that qs (t)+a(d)(t)

μs
<

qs′ (t)
μs′

.
This concludes the proof.

6.2 Proof of lemma 6

For any s ∈ S, we have that

E

[

ā(d)
s(i) (t)

∣
∣
∣
∣ a

(d)(t), {qs(t)}s∈S
]

= p(d)
s(i) (t) · a(d)(t),

and,

E

[a(d)(t)∑

k=1

I d,k
s(i) (t)

∣
∣
∣
∣ a

(d)(t), {qs(t)}s∈S
]

= μs(i)

μtot
· a(d)(t).

This means that

(i) p(d)
s(i) (t) · a(d)(t) = μs(i) · a(d)(t) · p(d)

s(i) (t)

μs(i)
,

(ii)
μs(i)

μtot
· a(d)(t) = μs(i) · a(d)(t) · 1

μtot
.

Observe that the termμs(i) ·a(d)(t) is identical in both (i) and

(ii), and recall that
p(d)
s(i) (t)

μs(i)
is monotonically non-increasing

in i . This allows us to obtain the followingmajorization [62]
Lemma.

Lemma 7 Let k ∈ {0, 1, . . . , n − 1}. Then,
n−k∑

i=n

p(d)
s(i) (t) · a(d)(t) ≤

n−k∑

i=n

μs(i)

μtot
· a(d)(t) ∀ k ,

where an equality is obtained for k = n − 1.

Proof See Sect. 6.3.
�
Finally, since

(qs(i) (t)

μs(i)
+ (i − 1) · a(d)(t)

μmin

)
is a monotonically

non-decreasing in i , we obtain the following Lemma.

Lemma 8 For all k:

n−k∑

i=n

(
qs(i) (t)

μs(i)
+ (i − 1) · a

(d)(t)

μmin

)

p(d)
s(i) (t) · a(d)(t)

≤
n−k∑

i=n

(
qs(i) (t)

μs(i)
+ (i − 1) · a

(d)(t)

μmin

)
μs(i)

μtot
· a(d)(t).

Proof See Sect. 6.4.
�
In particular, Lemma 8 holds for k = n−1. Therefore, using
the Law of total expectation and Lemma 8 we obtain

E

[

E

[∑

s(i)∈S

(qs(i) (t)

μs(i)
+ (i − 1) · a

(d)(t)

μmin

)

·
(
ā(d)
s(i)(t) −

a(d)(t)∑

k=1

I d,k
s(i) (t)

)∣
∣
∣
∣a

(d)(t), {qs(t)}s∈S
]]

= E

[∑

s(i)∈S

(qs(i) (t)

μs(i)
+ (i − 1) · a

(d)(t)

μmin

)

·
(
p(d)
s(i)(t) · a(d)(t) − μs(i)

μtot
· a(d)(t)

)]

≤ 0.

(38)

123

Stochastic coordination in heterogeneous… 269

This concludes the proof.

6.3 Proof of lemma 7

By the way of contradiction, consider the smallest k ∈
{0, 1, . . . , n − 1} such that

n−k∑

i=n

μs(i) · a(d)(t) · p(d)
s(i) (t)

μs(i)
>

n−k∑

i=n

μs(i) · a(d)(t) · 1

μtot
.

Dividing both terms by a(d)(t) yields

n−k∑

i=n

μs(i)

p(d)
s(i) (t)

μs(i)
>

n−k∑

i=n

μs(i) · 1

μtot
.

Since
p(d)
s(i) (t)

μs(i)
is a monotonically non-increasing sequence

in i , we must have that if k′ ≥ k then
p(d)
s
(n−k′) (t)

μs
(n−k′)

> 1
μtot

. This

means that it must hold that

1∑

i=n

μs(i)

p(d)
s(i) (t)

μs(i)
>

1∑

i=n

μs(i) · 1

μtot
= 1 .

This is a contradiction to the fact that
∑1

i=n μs(i) · 1
μtot

=
∑n

i=1 μs(i) · p(d)
s(i) (t)

μs(i)
= ∑n

i=1 p
(d)
s(i) (t) = 1 (that is, both are

probability vectors and thus their sum must be equal to 1).

6.4 Proof of lemma 8

Denote η(i) =
(

qs(i) (t)

μs(i)
+ (i − 1) · a(d)(t)

μmin

)

and recall that

η(i) is a monotonically non-decreasing in i and that
p(d)
s(i) (t)

μs(i)

is monotonically non-increasing in i .

Consider the smallest index j such that p(d)
s(j) (t) ≤ μs(j)

μtot
. If

j = 1 than by Lemma 7 and since
∑n

i=1 p
(d)
s(i) (t) = 1, it must

hold that p(d)
s(j) (t) = μs(j)

μtot
∀ i and we are done. Now, assume

j > 1.
Consider the sums

1∑

i= j−1

η(i) ·
(

p(d)
s(i) (t) − μs(i)

μtot

)

≤ max{η(i)}i∈{1,..., j−1}
j−1∑

i=1

(

p(d)
s(i) (t) − μs(i)

μtot

)

,

and,

j∑

i=n

η(i) ·
(

p(d)
s(i) (t) − μs(i)

μtot

)

≤ min{η(i)}i∈{ j,...,n}
j∑

i=n

(

p(d)
s(i) (t) − μs(i)

μtot

)

.

Notice that

max{η(i)}i∈{1,..., j−1} ≤ min{η(i)}i∈{ j,...,n} ,

and,

j−1∑

i=1

(

p(d)
s(i) (t) − μs(i)

μtot

)

= −
j∑

i=n

(

p(d)
s(i) (t) − μs(i)

μtot

)

.

Therefore, we obtain

1∑

i=n

η(i) ·
(

p(d)
s(i) (t) − μs(i)

μtot

)

=
1∑

i= j−1

η(i) ·
(

p(d)
s(i) (t) − μs(i)

μtot

)

+
j∑

i=n

η(i) ·
(

p(d)
s(i) (t) − μs(i)

μtot

)

≤ max{η(i)}i∈{1,..., j−1}
j−1∑

i=1

(

p(d)
s(i)(t)−

μs(i)

μtot

)

+ min{η(i)}i∈{ j,...,n}
j∑

i=n

(

p(d)
s(i)(t)−

μs(i)

μtot

)

=
j−1∑

i=1

(

p(d)
s(i) (t) − μs(i)

μtot

)

·
(
max{η(i)}i∈{1,..., j−1}−min{η(i)}i∈{ j,...,n}

)
≤ 0

(39)

This concludes the proof.

7 Evaluation

In this section, we describe simulations and compare our
solution both to well-established algorithms and to the
most recent state-of-the-art algorithms for the heterogeneous
multi-dispatcher setting. The performance of load balancing
techniques is usually evaluated at high loads, so that the job
arrival rates are sufficiently high to utilize the servers.

In such a setting, we are interested in two main perfor-
mance criteria. The first criterion is the average response time

123

270 G. Goren et al.

over all client requests (i.e., jobs). For each request, we mea-
sure the number of rounds it spent in the system (i.e., from
its arrival to a dispatcher to its departure from the server that
processed it). The second criterion is the response times’ tail
distribution. This metric is crucial since it often represents
client experience due to two reasons: (1) clients may send
multiple requests (e.g., browsing a website), and delaying a
small subset of these may ruin client experience; (2) a client
request may be broken into multiple smaller tasks and the
request time will be determined by the last tasks to complete
(e.g., search engines). In both cases, it is important to meet
the desired tail latency for the 95th, 99th, or even the 99.9th
percentile of the distribution [11,24,46].

7.1 Setup

In our simulations, every run of each algorithm lasts for 105

rounds. A round is composed of three phases as described in
Sect. 2. Namely, first new requests arrive at the dispatchers.
The dispatchers must then act immediately and indepen-
dently from each other and dispatch each request to a server
for processing. Finally, the servers perform work and pos-
sibly finish requests. Finished requests immediately depart
from the system.

Each dispatcher has its own arrival process of requests.
Specifically, the number of requests that arrive to each dis-
patcher d at each round t is drawn from a Poisson distribution
with parameterλ. Formally,a(d)(t) ∼ Pois(λd). Each server
has its own processing rate. Specifically, the number of
requests that server s can process in each round t is geo-
metrically distributed with parameter μs . Formally, cs(t) ∼
Geom(1

1+μs
). Our modeling of the arrival and departure pro-

cesses follow standard practice (e.g., [2,34,43,57,58]).
Clearly, when the average number of requests that arrive

at the system surpasses the average processing rate of all
servers combined, the system is considered infeasible, i.e., it
cannot process all requests and must drop some of them. It is
therefore a standard assumption that the system is admissible
[20,24,34,40,42,52–54,58,60,64], i.e., that the total average
arrival rate at the system is upper-bounded by the total pro-
cessing capacity of all servers. Accordingly, this is a setting
we are interested in examining. We define the offered load to

be ρ = E[∑d∈D a(d)(0)]
E[∑s∈S cs (0)] =

∑
d∈D λd∑
s∈S μs

.

To be admissible, it must hold that ρ < 1. Therefore, in
all our simulations we test the performance of the different
dispatching algorithms for ρ ∈ (0, 1).

We have implemented 10 different dispatching techniques
in addition to ours. These include both well-established
techniques and the most recent state-of-the-art techniques.
In particular, we compare against JSQ [15,61,63], SED
[18,19,28,50], JSQ(2) [36,41,59], WR (weighted random),
JIQ [34,42,52,53,56], LSQ [58,64], as well as hJSQ(2), hJIQ

and hLSQ. The last three policies, i.e., hJSQ(2), hJIQ and
hLSQ are the adaptations of JSQ(2), JIQ and LSQ to account
for server heterogeneity. 7 We also compare against the recent
TWF policy of [24] that achieves stochastic coordination
for homogeneous systems. For a fair comparison, in all our
experiments, we use the same random seed across all algo-
rithms, resulting in identical arrival and departure processes.

7.2 Response time

We ran the evaluation over four different systems and two
different server heterogeneity configurations to represent: (a)
moderate heterogeneity that may appear by having different
generations of CPUs and hardware configurations of servers
and, (b) higher heterogeneity settings that may appear in the
presence of accelerators (e.g., FPGA or ASIC). Namely, sub-
figures denoted by (a) show the evaluation results for systems
where μs ∼ U [1, 10]. That is, the service rate of each server
in each system is randomly drawn from the uniform dis-
tribution over the real interval [1,10]. Similarly, sub-figures
denoted by (b) show the evaluation results for systems where
μs ∼ U [1, 100]. That is, the service rate of each server in
each system is randomly drawn from the uniform distribution
over the real interval [1,100].

Figure 3 shows the average response time of requests
as a function of the offered load at the system. It is evi-
dent that SCD consistently achieves the best results across
all systems and offered loads. Figure 4 shows the response
time tail distribution in systems with 100 servers and 10
dispatchers. Again, SCD achieves the best results with no
clear second best. For example, for moderate heterogeneity,
at the offered load of ρ = 0.99 and considering the 10−4

percentile, which is often of interest, SCD improves over
the second-best algorithm (hLSQ in this specific case) by
over 2.1×. TWF, which is the second-best at the average-
response-time metric, degrades here and is outperformed by
SED and hLSQ since they account for server heterogeneity
where TWF does not. For higher heterogeneity, the margin
from the second-best (LSQ) increases to 2.3×. Note that with
this higher heterogeneity, the delay tail distribution of TWF
and JSQ is significantly degraded since they do not account
for server heterogeneity (bymore than an order of magnitude
even for a load of ρ = 0.7).

7 Similarly to SED, the servers are ranked by their expected delay, i.e.,
by qs

μs
, instead of by qs . Likewise, when random sampling of servers

occurs, servers are sampled proportionally to their processing rates
rather than uniformly. Specifically, the probability to sample server s is

μs∑
s∈S μs

instead of 1
n .

123

Stochastic coordination in heterogeneous… 271

(a) (b)

Fig. 3 The figures depict the average response time as a function of
the offered load over four different systems. The x-axis represents the
offered load ρ. The y-axis represents the average response time in num-

ber of rounds. Sub-figure a shows systemswithmoderate heterogeneity.
Sub-figure b shows systems with higher heterogeneity

Fig. 4 The figures depict the
response-time tail distribution
over a system with 100 servers
and 10 dispatchers over three
different offered loads. The
x-axis represents the response
time in number of rounds
(denoted by τ). The y-axis
represents the complementary
cumulative distribution function
(CCDF). Sub-figure a shows
systems with moderate
heterogeneity. Sub-figure b
shows systems with higher
heterogeneity

(a)

(b)

For clarity, we discussed here only the 6 most competitive
algorithms out of the 10 implemented. Below, in Sect. 7.2.1,
we provide, for the interested reader, additional simulation
results that compare between SCD and JSQ(2), JIQ, LSQ
and WR (weighted random). In a nutshell, the JSQ(2), JIQ
and LSQ algorithms are less competitive since they do not
account for server heterogeneity, whereasWR ignores queue
length information and fails to leverage less loaded servers
in a timely manner.

7.2.1 Additional simulation results

We show complementary results to Figures 3 and 4 compar-
ing SCD to JSQ(2), JIQ, LSQ and weighted random (WR)
in Figs. 5 and 68. It is evident that SCD significantly out-
performs all these techniques across all systems, metrics,
and offered loads. Indeed, these techniques are less compet-
itive than the six presented in the main text. This is because
JSQ(2), JIQ, and LSQ do not account for server heterogene-
ity whereas WR ignores queue length information.

8 In WR, any request is sent to server s with probability μs
μtot

.

123

272 G. Goren et al.

(a) (b)

Fig. 5 Complementary results to Figure 3. Comparing SCD versus JSQ(2), JIQ, LSQ and WR

Fig. 6 Complementary results
to Figure 4. Comparing SCD
versus JSQ(2), JIQ, LSQ and
WR

(a)

(b)

7.3 Computation costs

We next test SCD’s execution running times. That is, given
the system state and arrivals, how much time does it take
for a dispatcher to calculate the dispatching probabilities for
that round? To answer that question, we implemented all
dispatching techniques, and in particular SCD using algo-
rithm 2, 3 and 5(+4), as well as JSQ and SED in C++ and
optimized them for run-time purposes. All times were mea-
sured using a single core setup on a machine with an Intel
Core i7-7700 CPU @3.60GHz and 16GB DDR3 2133MHz
RAM.

For each algorithm in each round, we measure the time
it takes each dispatcher to calculate its requests assignment
to the servers. While the asymptotic complexity of the algo-

rithms is fixed, the complexity of each particular instance
may require a different computation, depending on the num-
ber of arrived requests and server queue-lengths. Therefore,
we report the cumulative distribution function (CDF) of those
times.

Figures 7 and 8 shows the results for the setting described
with μs ∼ U [1, 10] and with μs ∼ U [1, 100], respectively.
For both heterogeneity levels, the running timeofSCD via the
algorithm from Sect. 4.2 scales similarly to JSQ and SED as
expected. I.e., all three have complexity O(n log n). Overall,
the measured running time of SCD via Algorithm 5, which
employs theMoMmechanism, is similar to that of Algorithm
3. SCD via Algorithm 2 is slower.

Although Algorithm 5 is asymptotically optimal, for the
system sizes we are interested in, Algorithm 3 runs slightly

123

Stochastic coordination in heterogeneous… 273

Fig. 7 Execution run times over systems with an increasing number of
servers and μs ∼ U [1, 10]

Fig. 8 Execution run times over systems with an increasing number of
servers and μs ∼ U [1, 100]

faster. However, as the system grows larger the relative dif-
ference smallens (from circa 31% with 100 servers to about
25%with 400 servers, on average). For very large systems the
linear behavior of Algorithm 5 will prevail, making it faster
than Algorithm 3. (The conditions for which this occurs, are
beyond the scope of this paper.) 9 Unlike the linear SCD
algorithm, the asymptotic effect of the quadratic behavior of
Algorithm 2 is apparent in these system sizes, and it is clearly
slower than the rest. Another interesting phenomenon is that
with the increased heterogeneity, though constant, there is
a larger gap among SCD, JSQ and SED. In particular, SED
becomes slower than SCD. This is due to the following rea-
son. All algorithms use dedicated and optimized-for-speed
data structures. 10 However, with the increased heterogene-
ity, there is an increased gap between the exact number of
operations JSQ and SED require to update their data struc-
tures when assigning new requests to servers. For JSQ, when

9 Additionally, as discussed in Sect. 4.3, it is possible to accelerate
Algorithm 5 using a non-deterministic variant with probabilistic run-
time guarantees.
10 for JSQ and SED these are min-heaps that always keep the next best
server at the top of the heap sowe do not have to sort the server according
to their queue length (JSQ) or their load (SED) after each update.

assigning a new request to a server s we need to update
qs(t) ← qs(t) + 1 disregarding the server processing rate.
This results in a predictable behavior of the data structure
where only a few operations are needed to fix it (often a
single operation). However, for SED the behavior is less pre-
dictable. The update in this case is qs (t)

μs
← qs (t)+1

μs
where the

addition is proportionally inverse the server processing rate,
i.e., proportional to 1

μs
. Thus, the assignment of requests to

different servers often requires additional operations to fix
the data structure. These running time measurements prove
to be consistent. In particular, we obtained similar results for
other systems and server heterogeneity levels.

We conclude that from the algorithm running time
perspective, SCD, when implemented via the algorithm
described in Sect. 4.2, incurs an acceptable computational
overhead, similar to that of JSQ and SED, which are in use
in today’s high-performance load balancers [38,55].

8 Discussion

Large scale computing systems are ubiquitous today more
than ever. Often, these systems havemany distributed aspects
which substantially affect their performance. The need to
address the distributed nature of such systems, both algorith-
mically and fundamentally, is imperative. In this work, we
presented SCD, a load balancing algorithm that addresses
modern computer clusters’ distributed and heterogeneous
nature in a principled manner. Extensive simulation results
demonstrate that SCD outperforms the state-of-the-art load
balancing algorithms across different systems and metrics.
Regarding computation complexity, we designed SCD to run
inO(n log n) time, aswell as an algorithm that runs in asymp-
totically optimal O(n) time. Therefore, it is no harder to
employ in practical systems than traditional approaches such
as JSQ and SED.

Our work leaves several open problems. For example:
(1) The amount of work that a job requires may depend
on specific features of the server processing it. Can infor-
mation about the nature of jobs and features of servers be
used to further improve the stochastic coordination among
the dispatchers? (2) It may be the case that not all dispatch-
ers are simultaneously connected to all servers, breaking the
symmetry among the dispatchers. How should we incorpo-
rate such (possibly dynamic) connectivity information while
maintaining stochastic coordination? (3)Can shared random-
ness (among the dispatchers) be used for better coordination?
a possible challenge is that the analysis becomes even more
involved (e.g., in some instances having shared randomness
appear to have no advantage - e.g., (a) zero arrivals at all
dispatchers except one; (b) probable sets that include one
server).

123

274 G. Goren et al.

Clearly, distributed load balancing presents many inter-
esting challenges, and a broad set of issues for study that can
impact the efficiency of practical systems.

Acknowledgements Guy Goren was partly supported by a grant from
the Technion Hiroshi Fujiwara cyber security research center and the
Israel cyber bureau, as well as by a Jacobs fellowship. Yoram Moses
is the Israel Pollak academic chair at the Technion. His work was sup-
ported in part by the Israel Science Foundation under grant 2061/19. In
addition, wewould like to thank the reviewers for insightful suggestions
that have contributed to the paper.

References

1. Adler, M., Chakrabarti, S., Mitzenmacher, M., Rasmussen, L.: Par-
allel randomized loadbalancing.RandomStruct.Algorithms13(2),
159–188 (1998)

2. Anselmi, J., Dufour, F.: Power-of-d-choices with memory: fluid
limit and optimality. Math. Oper. Res. (2020). https://doi.org/10.
1287/moor.2019.1014

3. Assadi, S., Bernstein, A., Langley, Z.: Improved bounds for dis-
tributed load balancing. arXiv preprint arXiv:2008.04148, (2020)

4. Atar, R., Keslassy, I., Orda, A., Vargaftik, S.: Persistent-idle load-
distribution. Stochastic Systems, Gal Mendelson (2020)

5. Azar, Y., Broder, A.Z., Karlin, A.R., Upfal, E.: Balanced alloca-
tions. In: Proceedings of the twenty-sixth annual ACM symposium
on theory of computing, 593–602, (1994)

6. Barbette, T., Tang, C., Yao, H., Kostić, D., Maguire Jr, G.Q.,
Papadimitratos, P., Chiesa, M.: A high-speed load-balancer design
with guaranteed per-connection-consistency. In 17th Symposium
on Networked Systems Design and Implementation (NSDI), 2020,
667–683, (2020)

7. Berenbrink, P., Brinkmann, A., Friedetzky, T., Nagel, L.: Balls into
non-uniform bins. J. Parallel Distrib. Comput. 74(2), 2065–2076
(2014)

8. Blum,M., Floyd, R.W., Pratt, V.R., Rivest, R.L., Tarjan, R.E., et al.:
Time bounds for selection. J. Comput. Syst. Sci. 7(4), 448–461
(1973)

9. Boyd, S., Vandenberghe, L.: Convex Optimization. Cambridge
University Press, Cambridge, England (2004)

10. Czygrinow, A., Hanćkowiak, M., Szymańska, E., Wawrzyniak,
W.: Distributed 2-approximation algorithm for the semi-matching
problem. In: International Symposium on Distributed Computing,
210–222. Springer, (2012)

11. Dean, J., Barroso, L.A.: The tail at scale. Commun. ACM 56(2),
74–80 (2013)

12. Delimitrou, C., Kozyrakis, C.: Paragon: Qos-aware scheduling for
heterogeneous datacenters. ACM SIGPLAN Notices 48(4), 77–88
(2013)

13. Duato, J., Pena, A.J, Silla, F., Mayo, R., Quintana-Ortí, E.S.:
rcuda: Reducing the number of gpu-based accelerators in high
performance clusters. In: 2010 International Conference on High
Performance Computing & Simulation, 224–231. IEEE, (2010)

14. Eisenbud, D.E., Yi, C., Contavalli, C., Smith, C., Kononov, R.,
Mann-Hielscher, E., Cilingiroglu, A., Cheyney, B., Shang, W.,
Hosein, J.D.: Maglev: a fast and reliable software network load
balancer. In: 13th USENIX Symposium on Networked Systems
Design and Implementation (NSDI), 523–535, (2016)

15. Eryilmaz, A., Srikant, R.: Asymptotically tight steady-state queue
length bounds implied by drift conditions. Queueing Syst. 72(3–4),
311–359 (2012)

16. Foss, S., Chernova, N.: On the stability of a partially accessible
multi-station queue with state-dependent routing. Queueing Syst.
29(1), 55–73 (1998)

17. Gandhi,R., Liu,H.H.,Hu,Y.C., Lu,G., Padhye, J.,Yuan,L., Zhang,
M.: Duet: Cloud scale load balancing with hardware and software.
ACM SIGCOMM Comput. Commun. Rev. 44(4), 27–38 (2014)

18. Gardner, K., Jaleel, J.A.,Wickeham, A., Doroudi, S.: Scalable load
balancing in the presence of heterogeneous servers. Performance
Evaluation, (2021)

19. Gardner, K., Stephens, Cole: Smart dispatching in heterogeneous
systems. ACM SIGMETRICS Perform. Eval. Rev. 47(2), 12–14
(2019)

20. Garrett, O.: NGINX and the “Power of Two Choices” Load-
Balancing Algorithm., 2018. https://www.nginx.com/blog/nginx-
power-of-two-choices-load-balancing-algorithm, published on
November 12, (2018)

21. Garrett, O.: HTTP Load Balancing., (2021). https://www.nginx.
com/

22. Georgiadis, L.,Neely,M.J., Tassiulas, L., et al.: Resource allocation
and cross-layer control in wireless networks. Found. Trends Netw.
1(1), 1–144 (2006)

23. Goren, G., Vargaftik, S.: Implementation of the SCD algo-
rithms., (2021). https://github.com/guytechnion/stochastically-
coordinated-dispatching

24. Goren, G., Vargaftik, S., Moses, Y.: Distributed dispatching in the
parallel server model. In: 34th International Symposium on Dis-
tributed Computing (DISC 2020), (2020)

25. Govindan, R., Minei, I., Kallahalla, M., Koley, B., Vahdat, A.:
Evolve or die: High-availability design principles drawn from
googles network infrastructure. In: Proceedings of the 2016 ACM
SIGCOMM Conference, 58–72, (2016)

26. Halldórsson, M., Köhler, S., Patt-Shamir, B., Rawitz, D.: Dis-
tributed backup placement in networks. Distrib. Comput. 31(2),
83–98 (2018)

27. Huang, M., Wu, D., Yu, C.H., Fang, Z., Interlandi, M., Condie, T.,
Cong, J.: Programming and runtime support to blaze fpga acceler-
ator deployment at datacenter scale. In: Proceedings of the Seventh
ACM Symposium on Cloud Computing, 456–469, (2016)

28. Jaleel, J.A., Wickeham, A., Doroudi, S., Gardner, K.: A general
“power-of-d” dispatching framework for heterogeneous systems.
(2020)

29. Karp, R.M., Luby, M., Meyer auf der Heide, F.: Efficient pram
simulation on a distributed memory machine. Algorithmica,
16(4):517–542, (1996)

30. Karush, W.: Minima of functions of several variables with inequal-
ities as side conditions. Master’s Thesis, Department ofMathemat-
ics, University of Chicago, (1939)

31. Kleinberg, R., Piliouras, G., Tardos, É.: Load balancing without
regret in the bulletin board model. Distrib. Comput. 24(1), 21–29
(2011)

32. Kuhn, H.W., Tucker, A.W.: Nonlinear programming. In: Proceed-
ings of theSecondBerkeleySymposiumonMathematical Statistics
and Probability, 481–492, Berkeley, Calif., (1951). University of
California Press

33. Lenzen, C., Wattenhofer, R.: Tight bounds for parallel randomized
load balancing. Distrib. Comput. 29(2), 127–142 (2016)

34. Lu, Y., Xie, Q., Kliot, G., Geller, A., Larus, J.R., Greenberg, A.:
Join-idle-queue: a novel load balancing algorithm for dynamically
scalable web services. Perform. Eval. 68(11), 1056–1071 (2011)

35. Lu, Y., Xie, Q., Kliot, G., Geller, A., Larus, J.R., Greenberg, A.:
Join-Idle-Queue: a novel load balancing algorithm for dynamically
scalable web services., (2011). https://www.microsoft.com/en-
us/research/publication/join-idle-queue-a-novel-load-balancing-
algorithm-for-dynamically-scalable-web-services/

123

https://doi.org/10.1287/moor.2019.1014
https://doi.org/10.1287/moor.2019.1014
http://arxiv.org/abs/2008.04148
https://www.nginx.com/blog/nginx-power-of-two-choices-load-balancing-algorithm
https://www.nginx.com/blog/nginx-power-of-two-choices-load-balancing-algorithm
https://www.nginx.com/
https://www.nginx.com/
https://github.com/guytechnion/stochastically-coordinated-dispatching
https://github.com/guytechnion/stochastically-coordinated-dispatching
https://www.microsoft.com/en-us/research/publication/join-idle-queue-a-novel-load-balancing-algorithm-for-dynamically-scalable-web-services/
https://www.microsoft.com/en-us/research/publication/join-idle-queue-a-novel-load-balancing-algorithm-for-dynamically-scalable-web-services/
https://www.microsoft.com/en-us/research/publication/join-idle-queue-a-novel-load-balancing-algorithm-for-dynamically-scalable-web-services/

Stochastic coordination in heterogeneous… 275

36. Luczak, M.J., McDiarmid, Colin, et al.: On the maximum queue
length in the supermarket model. Annals Probab. 34(2), 493–527
(2006)

37. Mars, J., Tang, L., Hundt, R.: Heterogeneity in “homogeneous”
warehouse-scale computers: A performance opportunity. IEEE
Comput. Archit. Lett. 10(2), 29–32 (2011)

38. Tony Mauro of F5. Choosing an NGINX Plus Load-Balancing
Technique., October 29, (2015). https://www.nginx.com/blog/
choosing-nginx-plus-load-balancing-techniques/#:~:text=With

39. McMullen, T.: Load balancing is impossible, (2016). https://www.
youtube.com/watch?v=kpvbOzHUakA

40. Mitzenmacher, M.: How useful is old information? IEEE Trans.
Parallel Distrib. Syst. 11(1), 6–20 (2000)

41. Mitzenmacher, M.: The power of two choices in randomized load
balancing. IEEE Trans. Parallel Distrib. Syst. 12(10), 1094–1104
(2001)

42. Mitzenmacher, M.: Analyzing distributed join-idle-queue: a fluid
limit approach. In: 2016 54thAnnualAllertonConference onCom-
munication, Control, and Computing, 312–318. IEEE, (2016)

43. Mitzenmacher, M., Prabhakar, B., Shah, D.: Load balancing with
memory. In: 43rd Annual IEEE Symposium on Foundations of
Computer Science., 799–808. IEEE, (2002)

44. Neely,M.J.: Optimal energy and delay tradeoffs formultiuser wire-
less downlinks. IEEE Trans. Inf. Theory 53(9), 3095–3113 (2007)

45. Neely, M.J.: Stability and capacity regions or discrete time queue-
ing networks. arXiv preprint arXiv:1003.3396, (2010)

46. Nishtala, R., Carpenter, P., Petrucci, V., Martorell, X.: Hipster:
Hybrid taskmanager for latency-critical cloudworkloads. In: IEEE
International Symposium on High Performance Computer Archi-
tecture (HPCA), 409–420, (2017)

47. Nocedal, J., Wright, S.: Numerical Optimization. Springer Science
& Business Media, Berlin/Heidelberg (2006)

48. Prekas, G., Kogias, M., Bugnion, E.: Zygos: Achieving low tail
latency for microsecond-scale networked tasks. In: 26th Sympo-
sium on Operating Systems Principles (SOSP), pages 325–341,
(2017)

49. Schurman, E., Brutlag, J.: The user and business impact of server
delays, additional bytes, andhttp chunking inweb search. In:Veloc-
ityWeb Performance and Operations Conference. O’Reilly, (2009)

50. Selen, J., Adan, I., Kapodistria, S., van Leeuwaarden, J.: Steady-
state analysis of shortest expected delay routing. Queueing Syst.
84(3), 309–354 (2016)

51. Smith, M.: Netflix Technology Blog. Rethinking Netflix’s Edge
Load Balancing. September 2018., (2018). https://netflixtechblog.
com/netflix-edge-load-balancing-695308b5548c

52. Stolyar, A.L.: Pull-based load distribution in large-scale heteroge-
neous service systems. Queueing Syst. 80(4), 341–361 (2015)

53. Stolyar, A.L.: Pull-based load distribution among heterogeneous
parallel servers: the case of multiple routers. Queueing Syst. 85(1–
2), 31–65 (2017)

54. Tarreau, W.: HAProxy. Test Driving “Power of Two Random
Choices” Load Balancing., 2019. https://www.haproxy.com/blog/
power-of-two-load-balancing/, published on February 15, (2019)

55. Tarreau, W.: The Reliable, High Performance TCP/HTTP Load
Balancer., (2021). http://www.haproxy.org/

56. van der Boor, M., Borst, S., van Leeuwaarden, J.: Load balancing
in large-scale systems with multiple dispatchers. In: IEEE INFO-
COM, (2017)

57. van der Boor, M., Borst, S., van Leeuwaarden, J.: Hyper-scalable
jsq with sparse feedback. Proc. ACM Meas. Anal. Comput. Syst.
3(1), 1–37 (2019)

58. Vargaftik, S., Keslassy, I., Orda, A.: LSQ: load balancing in
large-scale heterogeneous systems with multiple dispatchers.
IEEE/ACM Transactions on Networking, (2020)

59. Vvedenskaya, N.D., Dobrushin, R.L., Karpelevich, F.I.: Queueing
system with selection of the shortest of two queues: an asymptotic
approach. Problemy Peredachi Informatsii, 32(1):20–34, (1996)

60. Wang, C., Feng, C., Cheng, J.: Distributed join-the-idle-queue for
low latency cloud services. IEEE/ACM Trans. Netw. 26(5), 2309–
2319 (2018)

61. Weber, R.R.: On the optimal assignment of customers to parallel
servers. J. Appl. Probab. 15(2), 406–413 (1978)

62. Wikipedia contributors. Majorization — Wikipedia, the
free encyclopedia. https://en.wikipedia.org/w/index.php?
title=Majorization&oldid=993822990, (2020). [Online; accessed
29-January-2021]

63. Winston, W.: Optimality of the shortest line discipline. J Appl.
Probab. 14(1), 181–189 (1977)

64. Zhou, X., Shroff, N., Wierman, A.: Asymptotically optimal load
balancing in large-scale heterogeneous systems with multiple dis-
patchers. Perform. Eval. 145, 102146 (2021)

65. Zhou, X., Fei, W., Tan, J., Sun, Y., Shroff, N.: Designing low-
complexity heavy-traffic delay-optimal load balancing schemes:
Theory to algorithms. ACM POMACS 1(2), 39 (2017)

Publisher’s Note Springer Nature remains neutral with regard to juris-
dictional claims in published maps and institutional affiliations.

Springer Nature or its licensor holds exclusive rights to this article
under a publishing agreementwith the author(s) or other rightsholder(s);
author self-archiving of the accepted manuscript version of this article
is solely governed by the terms of such publishing agreement and appli-
cable law.

123

https://www.nginx.com/blog/choosing-nginx-plus-load-balancing-techniques/#:~:text=With
https://www.nginx.com/blog/choosing-nginx-plus-load-balancing-techniques/#:~:text=With
https://www.youtube.com/watch?v=kpvbOzHUakA
https://www.youtube.com/watch?v=kpvbOzHUakA
http://arxiv.org/abs/1003.3396
https://netflixtechblog.com/netflix-edge-load-balancing-695308b5548c
https://netflixtechblog.com/netflix-edge-load-balancing-695308b5548c
https://www.haproxy.com/blog/power-of-two-load-balancing/
https://www.haproxy.com/blog/power-of-two-load-balancing/
http://www.haproxy.org/
https://en.wikipedia.org/w/index.php?title=Majorization&oldid=993822990
https://en.wikipedia.org/w/index.php?title=Majorization&oldid=993822990

	Stochastic coordination in heterogeneous load balancing systems
	Abstract
	1 Introduction
	1.1 Related work

	2 Model
	3 Solving the dispatching problem
	3.1 Ideally balanced assignment
	3.2 Distributed load balancing as a Stochastic optimization problem

	4 Deriving a computationally efficient solution
	4.1 The probable set and its ordering
	4.2 nlogn complexity
	4.3 Linear complexity

	5 Putting it all together
	5.1 Estimating the arrivals
	5.2 Stability

	6 Detailed proof of strong stability
	6.1 Proof of lemma 5
	6.2 Proof of lemma 6
	6.3 Proof of lemma 7
	6.4 Proof of lemma 8

	7 Evaluation
	7.1 Setup
	7.2 Response time
	7.2.1 Additional simulation results

	7.3 Computation costs

	8 Discussion
	Acknowledgements
	References

