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Abstract
Graph spanners and emulators are sparse structures that approximately preserve distances of the original graph. While there
has been an extensive amount of work on additive spanners, so far little attention was given to weighted graphs. Only very
recently as reported by Ahmed et al. (in: Adler I, Müller H (eds) Graph-Theoretic Concepts in Computer Science - 46th
International Workshop, WG 2020, Leeds, UK). extended the classical +2 (respectively, +4) spanners for unweighted graphs
of size O(n3/2) (resp., O(n7/5)) to the weighted setting, where the additive error is +2W (resp., +4W ). This means that for
every pair u, v, the additive stretch is at most +2Wu,v , where Wu,v is the maximal edge weight on the shortest u − v path
(weights are normalized so that the minimum edge weight is 1). In addition, as reported by Ahmed et al. (in: Adler I, Müller
H (eds) Graph-Theoretic Concepts in Computer Science - 46th International Workshop, WG 2020, Leeds, UK). showed a
randomized algorithm yielding a +8Wmax spanner of size O(n4/3), here Wmax is the maximum edge weight in the entire
graph. In this work we improve the latter result by devising a simple deterministic algorithm for a +(6 + ε)W spanner for
weighted graphs with size O(n4/3) (for any constant ε > 0), thus nearly matching the classical +6 spanner of size O(n4/3)
for unweighted graphs. Furthermore, we show a +(2+ ε)W subsetwise spanner of size O(n · √|S|), improving the +4Wmax

result of as reported by Ahmed et al. (in: Adler I, Müller H (eds) Graph-Theoretic Concepts in Computer Science - 46th
International Workshop, WG 2020, Leeds, UK). (that had the same size). We also show a simple randomized algorithm for
a +4W emulator of size Õ(n4/3). In addition, we show that our technique is applicable for very sparse additive spanners,
that have linear size. It was proved by Abboud A, Bodwin G (J ACM 64(4):28–12820 2017) that such spanners must suffer
polynomially large stretches. For weighted graphs, we use a variant of our simple deterministic algorithm that yields a linear
size+Õ(

√
n ·W ) spanner, and we also obtain a tradeoff between size and stretch. Finally, generalizing the technique of Dor D

et al. (SIAM J Comput 29:1740–1759, 2000) for unweighted graphs, we devise an efficient randomized algorithm producing
a +2W spanner for weighted graphs of size Õ(n3/2) in Õ(n2) time.

Keywords Graph theory · Pure additive spanners

1 Introduction

Let G = (V , E, w) be a weighted undirected graph on n
vertices. Denote by dG(u, v) the distance between u, v ∈
V in the graph G. A graph H = (V , E ′, w′) is an (α, β)-
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spanner of G if it is a subgraph of G and for every u, v ∈ V ,

dH (u, v) ≤ α · dG(u, v) + β. (1)

For an emulator H , we drop the subgraph requirement (that
is, we allow H to have edges that are not present in G, while
still maintaining dH (u, v) ≥ dG(u, v) for all u, v ∈ V ).

Spannerswere introduced in the 80’s by [4], and have been
extensively studied ever since. One of the key objectives in
this field is to understand the tradeoff between the stretch of
a spanner and its size (number of edges). For purely mul-
tiplicative spanners (with β = 0), an answer was quickly
given: for any integer k ≥ 1, [5] showed that a greedy algo-
rithm provides a (2k − 1, 0)-spanner with size O(n1+1/k).
This bound is tight assuming Erdős’ girth conjecture.
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In this paper we focus on purely additive spanners, where
α = 1, which we denote by +β spanners. Almost all of
the previous work on purely additive spanners was done for
unweighted graphs. The first purely additive spanner was a
+2 spanner of size O(n1.5) [6,7], which was followed by
a +6 spanner of size O(n4/3) [8,9], and a +4 spanner of
size Õ(n7/5) [10,11]. A result of [2] showed that any purely
additive spanner with O(n4/3−δ) edges, for constant δ > 0,
must have a polynomial stretch β. On the other hand, several
works [10,12–14] obtained sparser spannerswith polynomial
stretch. The state-of-the-art result of [14] has near-linear size
and stretch Õ(n3/7).

In [7] the notion of near-additive spanners for unweighted
graphs was introduced, where α = 1 + ε for some small
ε > 0. They showed (1+ε, β)-spanners of size O(β ·n1+1/k)

with β = O(
log k

ε
)log k . Many following works [12,15–19]

improved several aspects of these spanners, but up to the β

factor in the size, this is still the state-of-the-art. Providing
some evidence to its tightness, [18] showed that such span-
ners must have β = �( 1

ε·log k )
log k .

Since many applications of spanners stem from weighted
graphs (in particular some distributed applications, such as
asynchronous protocol design [20], compact routing tables
[21,22]. Formore see [1] and the references therein), it is only
natural to study additive spanners in that setting. Assume the
weights are normalized so that the minimum edge weight is
1. We distinguish between two types of additive spanners; in
the first one the additive stretch is +c · Wmax, where Wmax

is the weight of heaviest edge in the graph, and c is usually
some constant. A more desirable type of additive stretch is
denoted by +c · W , which means that for every u, v ∈ V ,

dH (u, v) ≤ dG(u, v) + c · Wu,v,

where Wu,v is the heaviest edge in the shortest path between
u, v in G. if there are multiple shortest paths, pick the one
with the minimal heaviest edge. It is possible to find it by
iteratively running Dijkstra on the graph and removing the
heaviest edge until the distance change.

This estimation is not only stronger, but also handles
nicely the multiplicative perspective of the spanner: a+c ·W
spanner is also a (c+ 1, 0) spanner (while a +Wmax approx-
imation can have unbounded multiplicative stretch).

For a given set S ⊆ V , we say a graph H is a subsetwise
spanner if it is a subgraph of G and Equation 1 must hold
only for u, v ∈ S (and for u, v ∈ V \S the distance can be
unbounded).

The first adaptation of (near)-additive spanners to the
weighted setting was given in [23], where we showed near-
additive spanners and emulators with essentially the same
stretch and size as the state-of-the-art results for unweighted
graphs, while β is multiplied byW (themaximal edgeweight
on the corresponding path). In addition, a construction of an

additive +2W spanner of size Õ(n3/2) can be inferred from
[23].1 Ahmed et al. [1] recently gave a comprehensive study
of weighted additive spanners. Among other results, they
showed a +2Wmax spanner of size O(n1.5), a +4W spanner
of size Õ(n7/5), 2 and a +8Wmax spanner of size O(n4/3).
Given a set S ⊆ V , they showed a+4Wmax subsetwise span-
ner of size O(n · √|S|). While the former two results match
the state-of-the-art unweighted bounds, the latter two leave
room for improvement. Indeed, [1] pose as an open problem
whether a+6Wmax spanner of size O(n4/3) can be achieved.

After publishing a preliminary version of this paper,
Ahmed et al [24] considered a different settings called
pairwise spanners where given a set P ⊆ V × V , Equa-
tion 1 must hold only for pairs {u, v} ∈ P . They showed
+2W ,+4W , and +(6 + ε)W pairwise spanner with size
O(n|P|1/3), O(n|P|2/7), O(n|P|1/4) respectively, match-
ing the state of the art size of what is known for unweighted
graphs

1.1 Our results

In this workwe improve the bounds of [1] both quantitatively
and qualitatively. For any constant ε > 0, we show a simple
deterministic construction of a +(6 + ε)W spanner of size
O(n4/3).3 Thus, the additive stretch of our spanner is arbi-
trarily close to 6W , while having the superior dependence on
the largest edge weight on the shortest u−v path, rather than
the global maximum weight. Furthermore, our algorithm is
a simple greedy algorithm, in contrast to the more involved
2-stage randomized algorithm of [1].

We show the versatility of our techniques by applying
them to the subsetwise setting. Given a set S ⊆ V , for any
constant ε > 0, we obtain a (2 + ε) · W subsetwise spanner
of size O(n · √|S|), again improving [1] both in the stretch
and in the dependence on maximal edge weight.

A slight variant of our simple greedy algorithm works
in the setting of sparse spanners with polynomial additive
stretch, also for weighted graphs. This is in contrast to essen-
tially all previous algorithms for very sparse pure additive
spanners, that were rather involved. In particular, we obtain
a linear size +Õ(

√
n) · W spanner, and more generally,

for any 0 ≤ ε ≤ 1, a +O(n
1−ε
2 log n)W spanner of size

O(n1+ε). While this result does not match the state-of-the-
art for unweighted graphs, we believe it is interesting to have
such spanners in the weighted setting, and we find the sim-
plicity of the algorithm appealing.

In addition, we show a simple randomized algorithm that
produces a+4W emulator of size Õ(n4/3). This corresponds

1 The notation Õ(·) hides polylogarithmic factors.
2 In their paper the spanner is claimed to be +4Wmax but a tighter
analysis shows it is actually a +4W .
3 For arbitrary ε > 0, the size of our spanner is O(n4/3/ε).
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to the +4 emulator of size O(n4/3) for unweighted graphs
[6,7].

Finally, bearing the mind the applications of such span-
ners to efficiently computing shortest paths, we devise an
efficient Õ(n2) time algorithm for a +(2 + ε)W spanner of
size Õ(n3/2) (the previous best running time was Õ(n2.5)
[23]). This result builds on the +2 spanner for unweighted
graphs of [3].

1.2 Overview of our construction and analysis.

Our algorithms for the (6+ε) ·W spanner and the (2+ε) ·W
subsetwise spanner follow a common approach. We adapt
the algorithm of [9], who showed a simple +6 spanner for
unweighted graphs, to the weighted setting. Both [9] and the
path-buying construction of [8] iteratively add paths to the
spanner H , and argue that for each new edge in a path that is
added to H , there is some progress formany pairs of vertices.
Specifically, assume that for some u, v ∈ V we have for a
constant c that

dH (u, v) ≤ dG(u, v) + c , (2)

where H is the current spanner we maintain. For unweighted
graphs, if we make progress and improve the distance in H
between u, v, it will be by at least 1. Thus, oncewe obtain (2),
the distance between u, v can be improved at most c more
times. This nice attribute does not apply to weighted graphs,
since there the distance between u, v can be improved only
by a tiny amount.

In our algorithm, we first add the t-lightest edges incident
on every vertex (the value of t depends on the required spar-
sity), and then greedily add shortest paths between vertices
whose stretch is too large, ordered by their W . To over-
come the issue of tiny improvements, our notion of progress
depends on the weights. That is, when adding paths to the
spanner, we will show that many pairs improve their distance
by at least �(ε · W ). Note that W is in fact a function (the
maximum edge weight in the current path), so some care is
required to ensure sufficient progress is made for many other
pairs (that can have either a smaller or a larger W ). Now, if
the current distance in H between u, v ∈ V is

dH (u, v) ≤ dG(u, v) + c · W ,

then the distance between u, v can be improved at most O( c
ε
)

more times. This number translates directly to the size of the
spanner, and also affects the stretch.

The previous constructions of (near) linear-size additive
spanners with polynomial stretch, such as [8,13,14,25], used
rather complicated constructions and analysis, based on dis-
tance preservers, path-buying, and involved clustering. In
this work we show for the first time that a simple greedy

algorithm, augmented by a multiplicative spanner, can also
provide such a linear-size spanner. Moreover, our algorithm
provides a spanner even in the weighted setting. The analy-
sis of this algorithm is nontrivial, and uses a novel labeling
scheme of the graph vertices. The idea is that each of the
greedily added paths must have labeled a lot of new ver-
tices, else we could have used the existing t-lightest edges,
combined with the multiplicative spanner and the previously
added paths, to obtain a sufficiently low stretch alternative
path. We then conclude that the number of added paths is
bounded, which is then used to bound the number of edges
added to the spanner in all these paths, by an argument based
on low intersections between shortest paths.

1.3 Organization

After reviewing a few preliminary results in Sect. 2, we show
our +(6+ ε) ·W spanner in Sect. 3, and the linear size span-
ner with polynomial stretch for weighted graphs in Sect. 5.
The+2W spanner with Õ(n2) construction time is shown in
Sect. 6. Our +(2 + ε) · W subsetwise spanner is in Sect. 4,
and the +4W emulator in Sect. 7.

2 Preliminaries

Let G = (V , E, w) be a weighted undirected graph, with
nonnegative weights w : E → R+ , and fix a parameter
ε > 0. Denote by Pu,v the shortest path between vertices
u, v ∈ V , breaking ties consistently (say by id’s), so that
every sub-path of a shortest path is also a shortest path and
two shortest paths have at most one intersecting subpath. Let
Wu,v denote the weight of the heaviest edge in Pu,v . For a
positive integer t , a t-light initialization of G is a subgraph
H = (V , E ′, w) that contains, for each u ∈ V , the lightest t
edges incident on u (or all of them, if deg(u) ≤ t), breaking
ties arbitrarily. For u ∈ V , we say that v is a t-light neighbor
of u if the edge {u, v} is among the t lightest edges incident
on u.

The following lemma was shown in [1, Theorem 5].

Lemma 2.1 ([1]) Let G = (V , E, w) be an undirected
weighted graph, and H a t-light initialization of G. If Pu,v

is some shortest path in G that is missing � edges in H, then
there is a set of vertices S ⊆ V such that:

1. |S| = �(t�).
2. For each vertex a ∈ S there exists a vertex b ∈ Pu,v s.t.

a is a t-light neighbor of b, with edge weight w(a, b) ≤
Wu,v . In other words, all the vertices in S are connected
to Pu,v using edges lighter than Wu,v .
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(The fact that light edges are connecting S to Pu,v did
not appear explicitly in [1], but it follows directly from their
proof and the definition of light edge.)

We will also use the greedy construction of multiplicative
spanners [5].

Lemma 2.2 ([5]) Let G = (V , E, w) be an undirected
weighted graph, and fix a parameter k ≥ 1. There exists
a (2k − 1, 0)-spanner of size O(n1+1/k).

The following standard lemma asserts that sampling a
random set S of vertices with the appropriate density, will
guaranteewith high probability (w.h.p.) that for every u ∈ V :
either all of its neighbors are in a t-light initialization, or u
has a light neighbor in S.

Lemma 2.3 Let G = (V , E, w) be an undirected weighted
graph and let H be a (2nε ln n)-light initialization of G for
some 0 ≤ ε ≤ 1. Let S ⊆ V be a random set, created
by sampling each vertex independently with probability 1

nε .
Then with probability at least 1 − 1/n, for every vertex u
having at least 2nε ln n neighbors in G, there exists y ∈ S
s.t. y is a (2nε ln n)-light neighbor of u.

Proof LetU be the set of verticeswith degree at least 2nε ln n
in G. Fix u ∈ U , and denote by Xu the event that there exists
y ∈ S which is a (2nε ln n)-light neighbor of u. Every vertex
is sampled to S independently with probability 1

nε , hence

Pr[X̄u] =
(
1 − 1

nε

)nε ·2 ln n
(3)≤ (1/e)2 ln n = (1/n)2.

Let X be the event that for every u ∈ U , the event Xu

occurs. By the union bound,

Pr[X̄ ] ≤
∑
u∈U

Pr[X̄u] ≤ |U |/n2 ≤ 1/n.

	


3 A+(6+ ")W spanner

In this section we present our +(6 + ε)W spanner which is
an adaptation of the construction of [9] for weighted graphs.

Construction Our algorithm for a+(6+ε)W spanner works
as follows. Initially, H is set as a n1/3-light initialization
of G. Next, sort all the pairs u, v ∈ V : first according to
Wu,v , and then by dG(u, v) (from small to large), breaking

3 1 − x ≤ e−x

Fig. 1 An illustration for Lemma 3.1. The dotted line is Pu,v , and the
edges {a, u}, {b, x}, {c, v} are all light. It is possible that u = x or v = x

ties arbitrarily. Then, go over all pairs in this order; when
considering u, v, we add Pu,v to H if

dH (u, v) > dG(u, v) + (6 + ε)Wu,v. (3)

Analysis. Our main technical lemma below asserts that by
adding a shortest path to H , we get for many pairs of the
path’s neighbors: 1) a good initial guarantee, and also 2)
sufficiently improve their distance in H .

Lemma 3.1 Let u, v ∈ V be two vertices for which the path
Pu,v was added to H, and take any x ∈ Pu,v . Let a, b, c ∈ V
be different n1/3-light neighbors of u, x, v, respectively, s.t.
{u, a}, {x, b}, {v, c} weight at most Wu,v . Denote by H0 the
spanner just before Pu,v was added and by H1 the spanner
right after the path was added. Then both of the following
hold.

1. dH1(a, b) ≤ dG(a, b)+4Wu,v and dH1(b, c) ≤ dG(b, c)
+ 4Wu,v .

2. dH1(a, b) ≤ dH0(a, b)− ε
2Wu,vordH1(b, c) ≤ dH0(b, c)

− ε
2Wu,v .

Proof Fix Pu,v and a, b, c as defined in the Lemma, see
also Fig. 1. We begin by proving the first item, using
the triangle inequality and the fact that the three edges
{a, u}, {b, x}, {c, v} all appear in H1 (since they are n1/3-
light), and have weight at most Wu,v .

dH1(a, b) ≤ dH1(a, u) + dH1(u, x) + dH1(x, b)

= w(a, u) + dG(u, x) + w(x, b)

≤ w(a, u) + dG(u, a) + dG(a, b)

+dG(b, x) + w(x, b)

≤ dG(a, b) + 4Wu,v. (4)

The bound on dH1(b, c) follows in a symmetric manner,
which concludes the proof of the first item. Seeking con-
tradiction, assume that the second item does not hold. This
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imply that

dH0(a, b) < dH1(a, b) + ε

2
Wu,v

(4)≤ dG(u, x)

+
(
2 + ε

2

)
Wu,v ,

and also

dH0(b, c) < dH1(b, c) + ε

2
Wu,v

≤ dG(x, v) +
(
2 + ε

2

)
Wu,v .

So we have that

dH0(u, v) ≤ dH0(u, a) + dH0(a, b) + dH0(b, c) + dH0(c, v)

< w(u, a) + dG(u, x) +
(
2 + ε

2

)
Wu,v + dG(x, v)

+
(
2 + ε

2

)
Wu,v + w(c, v)

≤ dG(u, v) + (6 + ε)Wu,v,

which is a contradiction to (3), since we assumed that the
path Pu,v was added to the spanner. 	

Theorem 3.2 For every undirected weighted graph G =
(V , E, w) and ε > 0, there exists a deterministic polyno-
mial time algorithm that produces a +(6 + ε)W spanner of
size O( 1

ε
· n4/3).

Proof Our construction algorithm adds a shortest path
between pairs whose stretch is larger than +(6 + ε)W , so
we trivially get a +(6 + ε)W spanner (the running time can
be easily checked to be polynomial in n). Thus, we only need
to bound the number of edges. Starting with the n1/3-light
initialization introduces at most n4/3 edges to the spanner, so
it remains to bound the number of edges added by adding the
shortest paths.

Let u, v ∈ V be two vertices for which the path Pu,v

was added to the spanner. Consider the time in which this
path was added, let H0 be the spanner just before the addi-
tion of Pu,v , and H1 after the addition. We say that a pair
of vertices a, b ∈ V is set-off at this time, if it is the first
time that dH1(a, b) ≤ dG(a, b) + 4Wu,v , and it is improved
if dH1(a, b) ≤ dH0(a, b) − ε

2Wu,v . The main observation
is that once a pair is set-off, it can be improved at most
O( 1

ε
) times. To see this, note that after the set-off we have

dH (a, b)−dG(a, b) ≤ 4Wu,v , and recall that we ordered the
pairs by their maximal weight Wu,v , so any future improve-
ment will be at least by ε

2Wu,v . Since at the end wemust have
dH (a, b) ≥ dG(a, b), there can be at most O( 1

ε
) improve-

ments.
We will show that if � edges of Pu,v are missing in H0,

then at least �(� · n2/3) pairs are either set-off or improved.

Fix any x ∈ Pu,v , and let a, b, c ∈ V be different n1/3-
light neighbors of u, x, v, respectively, connected by edges
of weight at most Wu,v . Apply Lemma 3.1 on u, v, x and
a, b, c. We get that both pairs (a, b) and (b, c) are set-off (if
they haven’t before), and at least one of them is improved.

The final goal is to show that there are�(�·n2/3) such set-
off/improving pairs.We first claim that the first and last edges
of Pu,v are missing in H0. Seeking contradiction, assume
that the first edge {u, u1} ∈ E(H0), then the pair u1, v has
Wu1,v ≤ Wu,v and dG(u1, v) < dG(u, v) (using that the sub-
path of Pu,v from u1 to v is the shortest path between u1, v),
and its stretch must be larger than +(6 + ε)Wu,v (otherwise
u, v will have stretch at most +(6 + ε)Wu,v as well), so we
should have considered the pair u1, v before u, v, and added
Pu1,v to H . That would produce a shortest path between u, v,
which yields a contradiction to (3). A symmetric argument
shows that the last edge is missing too.

Now, since H0 contains a n1/3-light initialization, but u
(resp., v) has a missing edge, it follows that u (resp., v) has at
least n1/3 neighbors that are all lighter than the missing first
(resp., last) edge of Pu,v , and thus of weight at most Wu,v .
So there are at least n1/3 choices for a and for c. By Lemma
2.1 there are at least �(� · n1/3) choices for b. We conclude
that there are at least �(� · n1/3 · n1/3) = �(� · n2/3) pairs
that are set-off/improved.

Let t be the number of edges added by all paths. Since
every pair canbe set-off only once, and improvedO( 1

ε
) times,

we get the following inequality

�(t · n2/3) ≤ O

(
n2

ε

)
,

thus t = O( n
4/3

ε
). 	


4 A+(2+ ")W subsetwise spanner

We will now show how to extend the technique of the +(6+
ε)W spanner to a +(2 + ε)W subsetwise spanner.

Let G = (V , E, w) be a weighted undirected graph, a
parameter 0 < ε < 1, and S ⊆ V a set of vertices. In this
section we devise a +(2 + ε)W subsetwise spanner of size
O(n · √|S|/ε). That is, the spanner guarantees an additive
stretch at most (2 + ε) · Wu,v for any u, v ∈ S.

Construction Our algorithm follows a similar greedy idea to
our previous construction. We start by letting H be a (

√|S|)-
light initialization of G. Next, sort all the pairs {u, v} ∈ (S

2

)
by Wu,v in increasing order, breaking ties arbitrarily. When
considering u, v, we add Pu,v to H if

dH (u, v) > dG(u, v) + (2 + ε)Wu,v. (5)
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Analysis Our main lemma is a variant of Lemma 3.1 tai-
lored to the subsetwise case. For every path added to H , we
improve the distance frommany neighbors of the path to ver-
tices in S, and have a good guarantee for all of them. Note
that even though we claim improvements for many pairs in
S× V , the final spanner does not have guarantee for all such
pairs, only to those in S × S.

Lemma 4.1 Let Pu,v be a path that was added to H. Denote
by H0 the spanner just before Pu,v was added and by H1 the
spanner right after the path was added. Let a be a (

√|S|)-
light neighbor of x ∈ Pu,v with w(a, x) ≤ Wu,v . Then both
of the following hold.

1. dH1(u, a) ≤ dG(u, a)+2Wu,v and dH1(v, a) ≤ dG(u, a)

+ 2Wu,v .
2. dH1(u, a) ≤ dH0(u, a)− ε

2Wu,v ordH1(v, a) ≤ dH0(v, a)

− ε
2Wu,v .

Proof Webeginwith the first item. By the triangle inequality,

dH1(u, a) ≤ dH1(u, x) + dH1(x, a)

= dG(u, x) + dG(x, a)

≤ dG(u, a) + dG(x, a) + dG(x, a)

≤ dG(u, a) + 2Wu,v.

The bound on dH1(v, a) follows in a symmetric manner,
which concludes the proof of the first item.

Seeking contradiction, assume that the second item does
not hold. This imply that

dH0 (u, a) < dH1(u, a) + ε

2
Wu,v ≤ dG(u, x) +

(
1 + ε

2

)
Wu,v ,

and also

dH0 (v, a) < dH1(v, a) + ε

2
Wu,v ≤ dG(v, x) +

(
1 + ε

2

)
Wu,v .

So we have that

dH0(u, v) ≤ dH0(u, a) + dH0(a, v)

< dG(u, x) +
(
1 + ε

2

)
Wu,v + dG(x, v)

+
(
1 + ε

2

)
Wu,v

= dG(u, v) + (2 + ε)Wu,v,

which is a contradiction to (5), since we assumed that the
path Pu,v was added to the spanner. 	

Theorem 4.2 For every undirected weighted graph G =
(V , E, w) with n vertices, a vertex set S ⊆ V and a param-
eter ε > 0, there exists a deterministic polynomial time
algorithm that produces a +(2 + ε)W subsetwise S × S
spanner of size O( 1

ε
· n√|S|).

Proof Our algorithm clearly yields a +(2 + ε) · W spanner
for S × S, and can be done in polynomial time. It remains to
bound the size of the spanner. The (

√|S|)-initialization adds
at most n · √|S| edges to H .

Let u, v ∈ S be such that Pu,v is added to the spanner. Let
H0 be the spanner just before the path is added, and H1 after.
A pair (a, b) in S × V is said to set-off if this is the first time
that dH1(a, b) ≤ dG(a, b) + 2Wu,v . This pair is improved if
dH1(a, b) ≤ dH0(a, b) − ε

2 · Wu,v .
By Lemma 2.1 if there are � missing edges of Pu,v in H0,

then there are at least �(� · √|S|) light neighbors that are
connected to vertices on missing edges of Pu,v with weight
at most Wu,v . Thus there are �(� · √|S|) choices for a in
Lemma 4.1. That is, so many pairs in S × V are set-off and
improved. We notice that pairs from S × V can be set-off
once and improved at most 4

ε
times thereafter. If t is the total

number of edges added to H by all the paths in the second
stage of the algorithm, we get that

�(t · √|S|) ≤ O

( |S| · |V |
ε

)
,

thus t = O( 1
ε

· n√|S|). 	


5 A+Õ(n
1−"
2 W) spanner of sizeO(n1+")

Let G = (V , E, w) be a weighted undirected graph with n
vertices, and let 0 ≤ ε ≤ 1 be a parameter. We will now

present our +O(n
1−ε
2 log nW ) spanner of size O(n1+ε).

Construction Let H be a (nε)-light initialization of G. We
then add the edges of the (log n, 0) spanner from Lemma 2.2
to H . Next, we sort all the pairs u, v ∈ V byWu,v in increas-
ing order (breaking ties arbitrarily). For each pair (u, v) we
add Pu,v if

dH (u, v) > dG(u, v) + c · n 1−ε
2 log n · Wu,v, (6)

where c is a constant to be determined.

Analysis By the last step of the algorithm, every pair will

have stretch O(n
1−ε
2 log n · W ). The number of edges added

by the (nε)-light initialization of G is at most n1+ε, and the
(log n, 0)-greedy spanner from Lemma 2.2 has O(n) edges.
The main difficulty of the analysis lies in bounding the num-
ber of edges in the paths added by the algorithm.Denote byP
the set of paths added in the last stage. We start by bounding
the number of such paths.

Lemma 5.1 |P| ≤ n
1−ε
2 .
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Proof Wewill define a labeling for the vertices. At the begin-
ning, all the vertices will be unlabeled. Go over the added
paths by the order of the algorithm. For every path Px,y which
was added to the spanner, and every missing edge (a, b) in
it, we label by {x, y} all the unlabeled (nε)-light neighbors
of a and of b. We will show that for every added path, we

label at least n
1+ε
2 vertices. This will imply that

|P| ≤ n

n
1+ε
2

= n
1−ε
2 ,

proving the lemma.
Seeking contradiction, assume that there is a path for

which we labeled less than n
1+ε
2 vertices, and let Pu,v be

the first such path considered by the algorithm. Note that

there can be at most n
1−ε
2 paths that were added before Pu,v .

Let H0 be the spanner just before Pu,v was added. The goal
is to showa low stretch path in H0 betweenu, v, contradicting
the fact that Pu,v was added. To this end, we distinguish
between two types of edges in Pu,v that are missing in H0.

The first type are missing edges (a, b) that all the (nε)-
light neighbors of a or all the (nε)-light neighbors of b are
unlabeled.Observe that there is a constant k, so there can be at
most k ·n 1−ε

2 suchmissing edges, since by Lemma 2.1 k ·n 1−ε
2

missing edges have at least �(k · n 1−ε
2 · nε) = �(k · n 1+ε

2 )

neighbors which are given labels. Choosing a large enough

k, will contradict the assumption we label less than n
1+ε
2

vertices when adding Pu,v . Since there can’t be many edges
of this type, for each such edge (a, b) we can use the log n-
spanner which gives stretch at most log n · w(a, b) ≤ log n ·
Wu,v . Thus the total stretch over all these edges is at most

k log n · n 1−ε
2 · Wu,v .

The second type are missing edges with a labeled (nε)-
light neighbor. Suppose u′ is a vertex in Pu,v on a missing
edge (u′, u′′) with an (nε)-light neighbor labeled {x, y},
which means Px,y was added to H0. Order the vertices in
Pu,v by their distance from u from left to right. Let v′ be
the rightmost vertex on a missing edge (v′′, v′) in Pu,v with
an (nε)-light neighbor labeled by {x, y} (it is possible that
v′ = u′) .Wefirst show there exists a constant additive stretch
path between u′ and v′.

Denote by a (resp. b) the light neighbor of u′ (resp. v′)
with label {x, y}. Let x ′ (resp., y′) be a vertex in Px,y such
that a (resp., b) is a (nε)-light neighbor of x ′ (resp., y′). As
Px ′,y′ is a subpath of Px,y it was already added to H0 (see
Fig. 2).

Note that w(u′, a) ≤ w(u′, u′′) ≤ Wu,v , since the edge
(u′, u′′)was not added in the (nε)-initialization, and similarly
w(v′, b) ≤ Wu,v . Also w(x ′, a) ≤ Wx,y ≤ Wu,v , since a got
its label by being a light neighbor of a missing edge in Pxy ,
and Wx,y ≤ Wu,v by the initial sort of pairs according to
the heaviest edge. Similarly w(y′, b) ≤ Wu,v . Recalling that

Fig. 2 An illustration for Lemma 5.1. Straight lines and curved lines are
edges and paths which are present in H0. Dotted straight lines are edges
missing in H0 and dotted curved lines are path with possibly missing
edges in H0

and all the edges to an (nε)-light neighbor are in H0, and
Px ′,y′ is also in H0 because Px,y was added to the spanner,
we can now see that the distance between u′ and v′ in H0 has
constant additive stretch:

dH0(u
′, v′) ≤ dH0(u

′, a) + dH0(a, x ′)
+ dH0(x

′, y′) + dH0(y
′, b) + dH0(b, v

′)
≤ dG(u′, a) + dG(a, x ′) + dG(x ′, y′)

+ dG(y′, b) + dG(b, v′)
≤ 2(dG(u′, a) + dG(a, x ′)) + dG(u′, v′)

+ 2(dG(y′, b) + dG(b, v′))
≤ dG(u′, v′) + 8Wu,v.

We conclude that whenever we encounter a vertex u′ on
a missing edge with a light neighbor labeled {x, y}, we can
simply use the path in H0 to the last vertex v′ on Pu,v on a
missing edge with a light neighbor labeled {x, y}, and pay
only 8Wu,v additive stretch. Let z be the neighbor of v′ closer
to v, then use the multiplicative spanner in case the edge
(v′, z) is missing.

The remaining path from z to v will clearly have no more
missing edges with a light neighbor labeled {x, y}. Recall
that we added at most n

1−ε
2 paths before Pu,v , so there can

be at most n
1−ε
2 different labels. Putting everything together

the total additive stretch accumulated by the second type of

missing edges is at most (8 + log n) · n 1−ε
2 · Wu,v .

Thus there exists a path in H0 between u, v of length at

most dG(u, v) + (8 + (1 + k) log n) · n 1−ε
2 · Wu,v , setting

c ≥ 9 + k from Equation 6 contradicts the fact that Pu,v

was added by the algorithm. This concludes the proof of the
lemma.

	


Lemma 5.2 Adding P to H adds O(n) edges to the spanner.

Proof Let Pu,v be a path added by the algorithm. Let H0

be the spanner just before it is added. Then for every edge
(a, b) ∈ Pu,v there are three cases:
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1. At least one of the vertices a, b does not belong to any
path previously added to H . Since every vertex has 2
edges touching it in the path, there can be at most 2n
such edges among all the paths.

2. Both a, b belong to the same previously added path.Note
that the edge (a, b) is already in H0 in this case.

3. There is a previously added path Px,y such that a ∈ Px,y
and b /∈ Px,y . Then the two paths Px,y and Pu,v start
their intersection at a.

To bound the number of edges in case 3, note that every two
paths can have only one intersecting subpath. So any pair of
paths in P can introduce at most 2 edges to case 3 (the first
and the last edge in their common subpath). By Lemma 5.1
there can be at most 2

(|P |
2

) = O(n1−ε) such added edges in
all the paths. 	


By Lemma 5.2 the number of edges in H is O(n1+ε). We
have proven the following theorem.

Theorem 5.3 For every undirected weighted graph G =
(V , E, w) and 0 ≤ ε ≤ 1, there exists a deterministic poly-

nomial time algorithm that produces a +O(n
1−ε
2 log n)W

spanner of size O(n1+ε).

6 A +2W spanner in Õ(n2) time

In this section we present the generalization of +2 span-
ner construction algorithm of [3] for weighted graphs. Let
G = (V , E, w) be a weighted graph with n vertices, and fix
k = 1/2 · log n (assume k is an integer). Set s0 = n, s1 =
n/2, . . . , sk = n/2k = √

n. For each i = 0, 1, . . . , k, let Vi
be the set of vertices of degree at least si (note that V0 = ∅),
set Vk+1 = V . Let Di be a set of vertices sampled indepen-
dently at random from V , each with probability p = c log n

si
for a constant c > 1. By Chernoff bound

Pr[|Di | ≤ 3E[Di ]]
≥ 1 − e−E[Di ] = 1 − e

−n·c log n
si ≥ 1 − 1

n�(c)
.

Hence w.h.p. |Di | = O(
n log n
si

), and Di is a dominating set
for Vi by Lemma 2.3.

For every i ∈ [k], and for every v ∈ Vi , let pi (v) ∈ Di be
the closest vertex in Di to v (breaking ties arbitrarily). Define
E∗
i = {(v, pi (v)) : v ∈ Vi }. Also, for every v ∈ Vi , define

Bunchi (v) = {(u, v) ∈ E : w((u, v)) < w((v, pi (v)))}.
For v /∈ Vi , (i.e., deg(v) < si ), set Bunchi (v) = {(v, u) ∈
E} to be the set of all edges incident on v.

Now set E1 = E , and for each i ∈ [2, k + 1], set
Ei = ⋃

v∈V Bunchi−1(v). Note that for v ∈ Vi the random
variable |Bunchi (v)| is dominated by a geometric random

variable with parameter p = c log n
n , so E[|Bunchi (v)|] =

si
c log n . Thus for any v ∈ V

Pr[|Bunchi (v)| ≤ si ] = 1 − (1 − p)si

= 1 −
(
1 − c log n

n

)si
≥ 1 − 1

n�(c)
.

We conclude that w.h.p. |Ei | = O(n · si−1).

Construction The algorithm is to add to the spanner H short-
est path trees (SPT) from every vertex of Di in the graph
(V , Ei ∪ E∗

i ), and take all edges of Ek+1. See Algorithm 1.

Algorithm 1 +2W spanner(G, S, ε)

1: Initialize H ← ∅;
2: for i = 1, 2, . . . , k do
3: Build SPT trees rooted at every vertex v ∈ Di in (V , Ei ∪ E∗

i ),
and add them to H ;

4: end for
5: return H ∪ Ek+1;

We will also refer to each iteration i of this for-loop as
step i of the algorithm.

Analysis of Size and Running Time For every index i ∈ [k],
we havew.h.p. |Di | = Õ(n/si ), thus

∑k
i=1 |Di |·n = Õ(n2)·∑k

i=1
1
si

= Õ(n3/2). Also,w.h.p. |Ek+1| ≤ n ·sk = Õ(n3/2).

Hence the overall size of the spanner is Õ(n3/2) as well.
To bound the running time, note that each step i ∈ [k]

of the algorithm requires computing |Di | SPTs in a graph
with O(|Ei | + n) edges. Using Dijkstra, each tree can be
constructed in near linear time, so the total running time for
step i is

Õ(|Ei | + n) · |Di | = Õ(n · si−1 · n/si ) = Õ(n2)

time. The last step requires Õ(|E |) time, and thus the overall
time is Õ(n2).

Stretch Analysis Let u, v be a vertex pair, let P = Pu,v be
the shortest u−v path, andWu,v is the weight of the heaviest
edge in P . For the sake of the following lemma, step 0 of the
algorithm is before the algorithm starts.

Lemma 6.1 For every index i = 0, 1, . . . , k, at least one of
the following holds:

1. dH (u, v) ≤ dG(u, v) + 2Wu,v , or
2. E(P) ⊆ Ei+1.

Proof The proof is by induction i .
Base (i = 0): Clearly E(P) ⊆ E1 = E , i.e., the second
assertion holds.
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Step: Suppose that the induction hypothesis holds for some
i ∈ [0, k−1]. If the first assertion holds for i , then obviously
the first assertion holds for i + 1 as well. Hence, in this case
we are done.

So suppose that the second assertion holds for i , i.e.,
E(P) ⊆ Ei+1. Consider the case that there exists an edge
e = (x, y) ∈ E(P) \ Ei+2. (As otherwise E(P) ⊆ Ei+2,
and the second assertion holds for i +1.) Then we claim that
both x, y ∈ Vi+1. To see this, assume that, e.g., x /∈ Vi+1,
but then by definition of Bunch for vertices not in Vi+1 we
have that (x, y) ∈ Bunchi+1(x) ⊆ Ei+2, contradiction.

So we have x, y ∈ Vi+1, and e = (x, y) /∈ Bunchi+1(y).
Thus y′ = pi+1(y) is defined, and

Wu,v ≥ w((x, y)) ≥ w((y, y′)) = w((y, pi+1(y)) .

Recall that (y, pi+1(y)) ∈ E∗
i+1. So both paths (y′, y) ◦

P(y, u) and (y′, y) ◦ P(y, v) are contained in Ei+1 ∪ E∗
i+1.

(We use ◦ here for concatenation, P(y, u) for the subpath
of P connecting y with u, and P(y, v) for the subpath of P
connecting y with v.)

Also, y′ ∈ Di+1. Hence inserting an SPT tree rooted at y′
in Ei+1 ∪ E∗

i+1 into the spanner H guarantees

dH (u, v) ≤ dG(u, v) + 2w(y′, y) ≤ dG(u, v) + 2 · Wu,v .

This tree is indeed inserted into the spanner on step i + 1,
and so the first assertion for i + 1 holds. 	


Apply the lemma for i = k. If the first assertion holds,
then we are done. Otherwise E(P) ⊆ Ek+1. But then step
k + 1 of the algorithm ensures that dH (u, v) = dG(u, v),
as all edges of Ek+1 are inserted into H on this step. This
completes the proof of the following theorem.

Theorem 6.2 Let G = (V , E, w) be a weighted graph with
n vertices, then there is an Õ(n2) time randomized algorithm
that produces w.h.p. a +2W spanner of size Õ(n3/2).

7 A+4W emulator

In this section we present the generalization of +4 emulator
of [3] for weighted graphs.

Construction Our algorithm for a +4W emulator works as
follows. Start by letting H = (V , E ′, dG) be a (2n1/3 ln n)-
light initialization ofG.4 Let S ⊆ V be a random set, created
by sampling each vertex independently with probability 1

n1/3
.

We finish by adding S× S to E ′ (with weights corresponding
to distances in G).

4 By increasing the leading constant from 2 to c, we can reduce the
failure probability to at most O(n1−c).

Fig. 3 Straight lines are edges available in H . Curved lines are shortest
paths available in H

Analysis

Theorem 7.1 For every undirected weighted graph G =
(V , E, w), there exists a randomized algorithm that produces
w.h.p. a +4W emulator of size O(n4/3 log n).

Proof We begin with the stretch analysis. Let u, v ∈ V . If all
the edges of Pu,v exists in H , then dH (u, v) = dG(u, v) and
we are done.

Otherwise, let u = x1, x2, . . . xk = v be the vertices of
Pu,v sorted by their distance from u. Let xi , x j be the first and
last vertices for which {xi , xi+1}, {x j−1, x j } /∈ E ′. We claim
that each of xi , x j have at least 2n1/3 ln n neighbors in G,
because {xi , xi+1}, {x j−1, x j }were not included in H as part
of the light initialization. By Lemma 2.3, there exist a, b ∈ S
which are (2n1/3 ln n)-light neighbors of xi , x j respectively.
In addition, xi+1, x j−1 are not (2n1/3 ln n)-light neighbors
of xi , x j , respectively, thus w(xi , a) ≤ w(xi , xi+1) ≤ Wu,v

and w(x j , b) ≤ w(x j−1, x j ) ≤ Wu,v .
The sub-paths Pu,xi , Px j ,v exist in H , and also all the edges

{xi , a}, {a, b}, {b, x j } ∈ E ′. We can use them for bounding
dH (u, v) (see fig. 3).

dH (u, v)

≤ dH (u, xi ) + dH (xi , a) + dH (a, b)

+ dH (b, x j ) + dH (x j , v)

= dG(u, xi ) + dG(xi , a) + dG(a, b)

+ dG(b, x j ) + dG(x j , v)

≤ dG(u, xi ) + dG(xi , a) + dG(xi , a) + dG(xi , x j )

+ dG(b, x j ) + dG(b, x j ) + dG(x j , v)

≤ dG(u, v) + 4Wu,v.

Bounding the size is straightforward. The n1/3 log n-light
initialization introduces at most O(n4/3 log n) edges, while
|S| is a Bernoulli random variable with parameters (n, 1

n1/3
).

Therefore, E[|S|] = n · 1
n1/3

= n2/3 and by Chernoff bound

|S| ≤ 2n2/3,w.h.p.. Thus |S×S| = O(n2/3·n2/3) = O(n4/3)
w.h.p..

Hence the total size of the emulator is O(n4/3 log n)

w.h.p.. 	
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