Distributed Computing (2022) 35:503-532
https://doi.org/10.1007/s00446-022-00432-y

®

Check for
updates

Making Byzantine consensus live

Manuel Bravo' - Gregory Chockler? - Alexey Gotsman’

Received: 2 April 2021 / Accepted: 9 June 2022 / Published online: 2 September 2022
© The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2022

Abstract

Partially synchronous Byzantine consensus protocols typically structure their execution into a sequence of views, each with a
designated leader process. The key to guaranteeing liveness in these protocols is to ensure that all correct processes eventually
overlap in a view with a correct leader for long enough to reach a decision. We propose a simple view synchronizer abstraction
that encapsulates the corresponding functionality for Byzantine consensus protocols, thus simplifying their design. We present
a formal specification of a view synchronizer and its implementation under partial synchrony, which runs in bounded space
despite tolerating message loss during asynchronous periods. We show that our synchronizer specification is strong enough
to guarantee liveness for single-shot versions of several well-known Byzantine consensus protocols, including PBFT and
HotStuff. We furthermore give precise latency bounds for these protocols when using our synchronizer. By factoring out the
functionality of view synchronization we are able to specify and analyze the protocols in a uniform framework, which allows

comparing them and highlights trade-offs.

Keywords Byzantine consensus - Blockchain - Partial synchrony - Liveness

1 Introduction

The popularity of blockchains has renewed interest in Byzan-
tine consensus protocols, which allow a set of processes
to reach an agreement on a value despite a fraction of
the processes being malicious. Unlike proof-of-work or
proof-of-stake protocols underlying many blockchains, clas-
sic Byzantine consensus assumes a fixed set of processes,
but can in exchange provide hard guarantees on the final-
ity of decisions. Byzantine consensus protocols are now
used in blockchains with both closed membership [7,31] and
open one [14,15,30], in the latter case by running Byzan-
tine consensus inside a committee elected among blockchain
participants. These use cases have motivated a wave of new
algorithms [14,31,45] that improve on classical solutions,
such as DLS [27] and PBFT [19].

Designing Byzantine consensus protocols is challenging,
as witnessed by a number of bugs found in recent protocols

This article is a revised and expanded version of a paper that appeared
at the 2020 International Symposium on Distributed Computing
(DISC).

B Alexey Gotsman
dev@null.com

1 IMDEA Software Institute, Madrid, Spain
2 University of Surrey, Guildford, UK

[2,5,17,35]. Historically, researchers have paid more atten-
tion to safety of these protocols rather than liveness: e.g.,
while PBFT came with a safety proof [18], the nontrivial
mechanism used to guarantee its liveness has never had one.
However, achieving liveness of Byzantine consensus is no
less challenging than its safety. The seminal FLP result shows
that guaranteeing both properties is impossible when the net-
work is asynchronous [28]. Hence, consensus protocols aim
to guarantee safety under all circumstances and liveness only
when the network is synchronous. The expected network
behavior is formalized by the partial synchrony model [27].
In one of its more general formulations [21], the model guar-
antees that after some unknown Global Stabilization Time
(GST) the system becomes synchronous, with message delays
bounded by an unknown constant § and process clocks track-
ing real time. Before GST, however, messages can be lost or
arbitrarily delayed, and clocks at different processes can drift
apart without bound. This behavior reflects real-world phe-
nomena: in practice, the space for buffering unacknowledged
messages in the communication layer is bounded, and mes-
sages will be dropped if this space overflows; also, clocks are
synchronized by exchanging messages (e.g., using NTP), so
network asynchrony will make clocks diverge.

Byzantine consensus protocols usually achieve liveness
under partial synchrony by dividing execution into views (aka
rounds), each with a designated leader process responsible

@ Springer

http://crossmark.crossref.org/dialog/?doi=10.1007/s00446-022-00432-y&domain=pdf

504

M. Bravo et al.

for driving the protocol towards a decision. If a view does
not reach a decision (e.g., because its leader is faulty), pro-
cesses switch to the next one. To ensure liveness, the protocol
needs to guarantee that all correct processes will eventually
enter the same view with a correct leader and stay there
long enough to complete the communication required for a
decision. Achieving such view synchronization is nontrivial,
because before GST, clocks that could measure the duration
of a view can diverge, and messages that could be used to
bring processes into the same view can get lost or delayed.
Thus, by GST processes may end up in wildly different views,
and the protocol has to bring them back together, despite
any disruption caused by Byzantine processes. Some of the
Byzantine consensus protocols integrate the functionality
required for view synchronization with the core consensus
protocol, which complicates their design [14,19]. In contrast,
both the seminal DLS work on consensus under partial syn-
chrony [27] and some of the more recent work [1,41,45]
suggest separating the complex functionality required for
view synchronization into a distinct component—view syn-
chronizer, or simply synchronizer. This approach allows
designing Byzantine protocols modularly, with mechanisms
for ensuring liveness reused among different protocols.

However, to date there has been no rigorous analysis show-
ing which properties of a synchronizer would be sufficient
for modern Byzantine consensus protocols. Furthermore,
the existing implementations of synchronizer-like abstrac-
tions are either expensive or do not handle partial synchrony
in its full generality. In particular, DLS [27] implements
view synchronization by constructing clocks from program
counters of processes. Since these counters drift apart on
every step, processes need to frequently synchronize their
local clocks. This results in prohibitive communication over-
heads and makes this solution impractical. Abraham et al. [1]
address this inefficiency by assuming hardware clocks with
a bounded drift, but only give a solution for a synchronous
system. Finally, recent synchronizers by Naor et al. [41] only
handle a simplified variant of partial synchrony which disal-
lows clock drift and message loss before GST.

In this paper we make several contributions that address
the above limitations:

— We propose a simple and precise specification of a syn-
chronizer abstraction sufficient for single-shot consensus
(Sect. 3). The specification ensures that from some point
on after GST, all correct processes go through the same
sequence of views, overlapping for some time in each
one of them. It precisely characterizes the duration of the
overlap and gives bounds on how quickly correct pro-
cesses switch between views.

— We propose a synchronizer implementation, called FAST-
SYNC, and rigorously prove that it satisfies our specifica-
tion. FASTSYNC handles the general version of the partial

@ Springer

synchrony model [27], allowing for an unknown § and—
before GST—unbounded clock drift and message loss
(Sect. 3.1). Despite the latter, the synchronizer runs in
bounded space—a key feature under Byzantine failures,
because the absence of a bound on the required mem-
ory opens the system to denial-of-service attacks. Our
synchronizer also does not use digital signatures, relying
only on authenticated point-to-point links.

— We show that our synchronizer specification is strong
enough to guarantee liveness under partial synchrony for
single-shot versions of a number of Byzantine consensus
protocols. All of these protocols can thus achieve liveness
using a single synchronizer—FASTSYNC. In the paper we
consider in detail PBFT [19] (Sect. 5.1), HotStuff [45]
(Sect. 5.2) and a two-phase version of the latter simi-
lar to Tendermint [14] (Sect. 5.3); in [12, §B] we also
analyze SBFT [31] and Tendermint itself. The precise
guarantees about the timing of view switches provided
by our specification are key to handle such a wide range
of protocols.

— We provide a precise latency analysis of FASTSYNC,
showing that it quickly converges to a synchronized view
(Sect. 3.2). Building on this analysis, we prove worst-case
latency bounds for the above consensus protocols when
using FASTSYNC. Our bounds consider both favorable
and unfavorable conditions: if the protocol executes dur-
ing a synchronous period, they determine how quickly
all correct processes decide; and if the protocol starts
during an asynchronous period, how quickly the pro-
cesses decide after GST. Our analysis stipulates an a priori
known conservative message delay estimate A, which
bounds the actual post-GST message delay § in every
execution. This allows us, for the first time, to derive
closed-form expressions for Byzantine consensus latency
bounds in a partial synchrony model where § both is
unknown and only holds after GST.

— Most of the protocols we consider were originally pre-
sented in a form optimized for solving consensus repeat-
edly. By specializing them to the standard single-shot
consensus problem and factoring out the functionality
required for view synchronization, we are able to suc-
cinctly capture their core ideas in a uniform framework.
This allows us to highlight the similarities and differences
among protocols in a pedagogical fashion, thus providing
a tutorial on modern Byzantine consensus.

2 System model

We assume a system of n = 3 f + 1 processes, out of which
atmost f can be Byzantine, i.e., can behave arbitrarily. In the
latter case the process is faulty; otherwise it is correct. We call
aset Q of 2 f+1 processes a quorum and write quorum(Q) in

Making Byzantine consensus live

505

this case. Processes communicate using authenticated point-
to-point links and, when needed, can sign messages using
digital signatures. We denote by (m); a message m signed by
process p;. We sometimes use a cryptographic hash function
hash(), which must be collision-resistant: the probability of
an adversary producing inputs m and m’ such that hash(m) =
hash(m’) is negligible.

We consider a generalized partial synchrony model [21,
27], which guarantees that, for each execution of the proto-
col, there exist a time GST and a duration § such that after
GST message delays between correct processes are bounded
by &. Before GST messages can get arbitrarily delayed or
lost, although for simplicity we assume that self-addressed
messages are never lost and are delivered to the sender instan-
taneously. As in [21], we assume that the values of GST and §
are unknown to the protocol. This reflects the requirements of
practical systems, whose designers cannot accurately predict
when network problems leading to asynchrony will stop and
what the latency will be during the following synchronous
period. However, to state some of our latency bounds, we
also assume the existence of a known upper bound A on the
maximum value of § in any execution [33]. In practice, A
provides a conservative estimate of the message delay dur-
ing synchronous periods, which may be much higher than the
maximal delay § in a particular execution. Finally, we assume
that the processes are equipped with hardware clocks that
can drift unboundedly from real time before GST, but do not
drift thereafter (our results can be trivially adjusted to handle
bounded clock drift after GST, but we omit this for concise-
ness). We denote the set of time points by Time (ranged over
by ¢) and assume that local message processing takes zero
time.

3 Synchronizer specification and
implementation

We now define a view synchronizer interface sufficient for
single-shot Byzantine consensus, and present its specifica-
tion and implementation. Let View = {1, 2, ...} be the set
of views, ranged over by v; we sometimes use O to denote an
invalid view. The job of the synchronizer is to produce noti-
fications new_view(v) at each correct process, telling it to
enter view v. A process can ensure that the synchronizer has

>F(®)

Eﬁrsl(v) «+— <26 —» Elast(v) <+ EF(V)'Zé —> Eﬂrst(V+1)
| | |

1. Vi,v,v'. (F;(v) and E;(v") are defined) =
(v <v' <= E;(v) < E;(v'))

Eﬁrst(v) Z GST

Vi.Vv > V. p; is correct = p; enters v

Vo > V. Elast (v) < Egipst(v) + d

Yo > V. Egpst (v + 1) > Egyst (v) + F(v)

whk e

Yo > V. Eiasy (v + 1) < Ejast (v) + F(v) + 6
Shrst > GST A F(1) > 26 =

V=1A Elast(l) S Slast + 6
C. Sﬁrst < GSTA Sf+1 < GST + PN

F(GV(GST +p) +1) > 26 =
YV =GV(GST +p)+1A
Elast(V) < GST +p+ F(V —1) + 36

@ >

Fig. 2 Synchronizer properties (holding for some V € View). Prop-
erties 1-5 specify the synchronizer abstraction, sufficient to ensure
consensus liveness. Properties A—C give latency bounds specific to our
FASTSYNC synchronizer (Sect. 3.1). The latter satisfies Property 4 for
d = 24. The parameter p is the retransmission interval used by FAST-
SYNC

started operating by calling a special start() function. We
assume that each correct process eventually calls start().

For a consensus protocol to terminate, its processes need
to stay in the same view for long enough to complete the mes-
sage exchange leading to a decision. Since the message delay
6 after GST is unknown to the protocol, we need to increase
the view duration until it is long enough for the protocol to
terminate. To this end, the synchronizer is parameterized by
a function defining this duration—F : View U {0} — Time,
which is monotone and such that F(0) = 0. The liveness of
a protocol usually relies on F reaching a particular value u:

.YV .V > v = F@) >u. (1)

This can be satisfied, e.g., by letting F(v) = 2v or F(v) =
2v.

Properties 1-5 of Fig. 2 define our synchronizer spec-
ification, and Fig. 1 illustrates them visually. (We explain
Properties A—C later; Property A is also illustrated in Fig. 1).
The specification strikes a balance between usability and
implementability. On one hand, it is sufficient to prove the
liveness of a range of consensus protocols (as we show in
Sect. 5). On the other hand, it can be efficiently implemented

E lasl(v+ 1)

| »

I I .

GST ‘\ / time
>Fwv)+o

Fig.1 Visual illustration of the synchronizer properties

@ Springer

506

M. Bravo et al.

under partial synchrony by our FASTSYNC synchronizer
(Sect. 3.1).

Ideally, a synchronizer should ensure that all correct pro-
cesses overlap in each view v for a duration determined by
F(v). However, achieving this before GST is impossible due
to network and clock asynchrony. Therefore, we require a
synchronizer to provide nontrivial guarantees only after GST
and starting from some view V. To formulate the guaran-
tees we use the following notation. Given a view v that was
entered by a correct process p;, we denote by E;(v) the
time when this happens; we let Efis(v) and Ejag(v) denote
respectively the earliest and the latest time when some cor-
rect process enters v. We let Sgrg¢ and Sjas¢ be respectively
the earliest and the latest time when some correct process
calls start(), and Si the earliest time by which k correct
processes do so. Thus, a synchronizer must guarantee that
views may only increase at a given process (Property 1),
and ensure view synchronization starting from some view V),
entered after GST (Property 2). Starting from V, correct pro-
cesses do not skip any views (Property 3), enter each view
v >)V within at most d of each other (Property 4) and stay
there for a determined amount of time: until F (v) after the
first process enters v (Property 5). Our FASTSYNC imple-
mentation satisfies Property 4 for d = 26. Properties 4 and 5
imply a lower bound on the overlap between the time inter-
vals during which all correct processes execute in view v:

Yu > V. Efirgt(v + 1) — Efast (v)
> (Efirst(v) + F(v)) — (Efirst(v) +d)
= F() —d. 2)

Byzantine consensus protocols are often leader-driven, with
leaders rotating round-robin across views. Hence, (2) allows
us to prove their liveness by showing that there will eventually
be a view with a correct leader (due to Property 3) where all
correct processes will overlap for long enough (due to (1) for
alarge enough u). Having separate Properties 4 and 5 instead
of a single property in (2) is required to prove the liveness
of some protocols, e.g., two-phase HotStuff (Sect. 5.3) and
Tendermint (Sect. 5.4).

3.1 FASTSYNC: a bounded-space synchronizer for
partial synchrony

In Algorithm 1 we present our FASTSYNC synchronizer,
which satisfies the synchronizer specification (Properties 1-5
of Fig. 2) for d = 2§. Despite tolerating message loss before
GST, FASTSYNC only requires bounded space; it also does
not rely on digital signatures.
FASTSYNC measures view duration using a timer

timer_view: when the synchronizer tells the process to enter
a view v, it sets the timer for the duration F(v). When the

@ Springer

timer expires, the synchronizer does not immediately move to
the next view v’; instead, it disseminates a special WISH(v")
message, announcing its intention. Each process maintains
an array max_views : {1, ..., n} — View U {0}, whose j-th
entry stores the maximal view received in a WISH message
from process p; (initially 0, updated in line 13). Keeping
track of only the maximal views allows the synchronizer to
run in bounded space. The process also maintains two vari-
ables, view and view™, derived from max_views (initially
0, updated in lines 14 and 15): view™ (respectively, view) is
equal to the maximal view such that at least f 4 1 processes
(respectively, 2 f 4 1 processes) wish to switch to a view no
lower than this. The two variables monotonically increase
and we always have view < view™.

The process enters the view determined by the view vari-
able (line 19) when the latter increases (view > prev_v in
line 16; we explain the extra condition later). At this point the
process also resets its timer_view (line 18). Thus, a process
enters a view only if it receives a quorum of WISHes for this
view or higher, and a process may be forced to switch views
even if its timer_view has not yet expired. The latter helps
lagging processes to catch up, but poses another challenge.
Byzantine processes may equivocate, sending WISH mes-
sages to some processes but not others. In particular, they
may send WISHes for views > v to some correct process,
helping it to form a quorum of WISHes sufficient for enter-
ing v. But they may withhold the same WISHes from another
correct process, so that it fails to form a quorum for entering
v, as necessary, e.g., for Property 4. To deal with this, when
a process receives a WISH that makes its view" increase,
the process sends WI SH(view™) (line 21). By the definition
of view™, at least one correct process has wished to move
to a view no lower than view™'. The WISH(view ™) message
replaces those that may have been omitted by Byzantine pro-
cesses and helps all correct processes to quickly form the
necessary quorums of WISHes.

An additional guard on entering a view is view " = view
inline 16, which ensures that a process does not enter a ““stale”
view such that another correct process already wishes to enter
a higher one. Similarly, when the timer of the current view
expires (line 4), the process sends a WISH for the maximum
of view + 1 and view™. In other words, if view = view™, so
that the values of the two variables have not changed since
the process entered the current view, then the process sends
a WISH for the next view (view + 1). Otherwise, view <
view™, and the process sends a WISH for the higher view
view ™.

To deal with message loss before GST, a process retrans-
mits the highest WISH it sent every p units of time, according
to its local clock (line 6). Depending on whether timer_view
is enabled, the WISH is computed as in lines 21 or 5. Finally,
the start function ensures that the synchronizer has started
operating at the process by sending WISH(1), unless the pro-

+

Making Byzantine consensus live

507

1 function start()
2 | if view" = 0 then
3 L send WISH(1) to all;

N

when timer_view expires
| send WISH(max(view + 1, view™)) to all;

wn

6 periodically
7 | if timer_view is enabled then
8 | | send wISH(view™) to all;
9 | elseif max_views[i] > O then
10 L send WISH(max(view + 1, view™)) to all;
11 when received WISH(v) from p;
12 | prev_v, prev_vT <« view, view
13 | if v > max_views[j] then max_views[j] < v;
14 | view <« max{v | k. max_views[k] =v A

I{Jj | max_views[j] = v}| = 2f + 1};
<« max{v | k. max_views[k] = v A

I/ | max_views[j] = v}| > f + 1}

+.
s

15 | viewT

16 | if view' = view A view > prev_v then

17 stop_timer(timer_view);

18 start_timer(timer_view, F(view));
19 trigger new_view(view);

20 | if view" > prev_vt then
21 L send WISH(view™) to all;

Algorithm 1: The FASTSYNC synchronizer at a process p; .
The periodic handler is invoked every p units of time.

cess has already done so in line 21 due to receiving f + 1
WISHes from other processes.

The guard max_views[i] > 0Oinline 9 ensures that the first
WISH sent by a process is always triggered by executing the
code at line 3, 5, or 21. Since we assume that self-addressed
messages are instantaneously delivered to the sender, this
guard becomes permanently enabled as soon as the first WI SH
from any one of those lines has been sent.

Discussion FASTSYNC requires only O (n) variables for stor-
ing views. The algorithm also ensures that eventually every
view is entered by all correct processes (Property 3), and
views entered by correct processes throughout an execution
do not skip values; the latter is formalized by the following
lemma, proved in Sect. 4.1.

Lemma 1 For all views v and v' such that 0 < v < v/, if
a correct process enters V', then some correct process has
previously entered v.

Thus, although the individual view values stored by FAST-
SYNC are unbounded, Property 3 and Lemma 1 limit the
power of the adversary to exhaust their allocated space, sim-
ilarly to [9].

The basic mechanisms we use in our synchronizer—
entering views supported by 2 f + 1 WISHes and relaying
views supported by f + 1 WISHes—are similar to the ones
used in Bracha’s algorithm for reliable Byzantine broadcast
[11]. However, Bracha’s algorithm only makes a step upon
receiving a set of identical messages. Thus, its naive applica-
tion to view synchronization [41, §A.2] requires unbounded
space to store the views v for which the number of received
copies of WISH(v) still falls below the threshold required
for delivery or relay. Moreover, tolerating message loss
would require a process to retain a copy of every message it
has broadcast, to enable retransmissions. FASTSYNC can be
viewed as specializing the mechanisms of Bracha broadcast
to take advantage of the particular semantics of WISH mes-
sages, by keeping track of only the highest WISH received
from each process and by acting on sets of WISHes for non-
identical views. This allows tolerating message loss before
GST in bounded space and without compromising liveness,
as illustrated by the following example.

We first show that, before GST, we may end up in the sit-
uation where processes are split as follows: a set P; of f
correct processes entered vy, a set P> of f correct processes
entered vp > vj, a correct process p; entered vy + 1, and
f processes are faulty. To reach this state, assume that all
correct processes manage to enter view v and then all mes-
sages between P; and P, U {p;} start getting lost. The f
faulty processes help the processes in P, U {p;} to enter all
views between v and vy, by providing the required WISHes
(line 16), while the processes in Pj get stuck in v;. After
the processes in P, U {p;} time out on vy, they start sending
WISH(v2+ 1) (line 5), but all messages directed to processes
other than p; get lost, so that the processes in P, get stuck in
v. The faulty processes then help p; gather 2 f + 1 messages
WISH(vy + 1) and enter vy + 1 (line 16).

Assume now that GST occurs, the faulty processes go silent
and the correct processes time out on the views they are in.
Thus, the f processes in P; send WISH(v; + 1), the f pro-
cesses in P> send WISH(v2 4 1), and p; sends WISH(v2 4 2)
(line 10). The processes in P; eventually receive the WI SHes
from P, U {p;}, so that they set view"™ = v 4+ 1 and send
WISH(v2 + 1) (line 21). Note that here processes act on
f -+ 1 mismatching WISHes, unlike in Bracha broadcast.
Eventually, the processes in P; U P receive 2 f copies of
WISH(v2 + 1) and one WISH(vy 4 2), which causes them to
set view = vy + 1 and enter vy + 1 (line 16). Note that here
processes act on 2 f + 1 mismatching WISHes, again unlike
in Bracha broadcast. Finally, the processes P; U P, time out
and send WISH(v, + 2) (line 5), which allows all correct
processes to enter vy + 2. Acting on sets of mismatching
WISHes is crucial for liveness in this example: if processes
only accepted matching sets, like in Bracha broadcast, mes-
sage loss before GST would cause them to get stuck, and they
would never converge to the same view.

@ Springer

508

3.2 Correctness and latency bounds of FASTSYNC

As we demonstrate shortly, the synchronizer specification
given by Properties 1-5 in Fig. 1 serves to prove that consen-
sus eventually reaches a decision. However, FASTSYNC also
satisfies some additional properties that allow us to quantify
how quickly this happens under both favorable and unfavor-
able conditions. We list these properties in Fig. 2 and will
explain them shortly.

Theorem 1 Consider an execution with an eventual message
delay bound 8, and assume that (1) holds for u = 2§. Then
there exists a view V such that in this execution FASTSYNC
satisfies all the properties in Fig. 2 for d = 24.

We prove this theorem in Sect. 4. An easy way to satisfy the
premise of Theorem 1 in any execution is to pick a function
F that grows without bound, so that it eventually reaches 2§.
However, practical implementations stop increasing timeouts
once they exceed a reasonable value. We can reflect this in
our model using the fact that § < A in any execution. Thus,
to ensure that (1) holds for u = N§ for some N > 1, itis
enough to require that the output of F eventually becomes a
constant U = NA:

VWV v = F@)=U. 3)

Proposition 1 Let § be the eventual message delay bound
in some execution. Then, for all N > 0, if (3) holds for
U = NA, then (1) holds for u = N§.

The above implies that the conclusion of Theorem 1 is sat-
isfied provided (3) holds for U = 2A, i.e., the output of
F eventually becomes a known constant, and never changes
afterwards.

We next describe the additional properties guaranteed by
Theorem 1. Property A bounds the time for switching to the
next view. This allows us to quantify the cost of switching
between several views (e.g., due to faulty leaders), as formal-
ized by the following proposition.

Proposition 2 For any v and v’ such thatV < v < v/,

v'—1
Erast (V) < Erast(0) +) (F(k) +9).

Proof Given Property 3, we prove the proposition by induc-
tion on views v’ > v. The base case of v/ = v holds trivially.
For the inductive step, assume that the desired inequality
holds for v/ = w > v. By Property A, Epg(w + 1) <
Elast(w) + F(w) + §. Combining this with the induction
hypothesis, we get the desired inequality for v/ = w + 1:

Est(w + 1) < Ejge(w) + F(w) +6

@ Springer

M. Bravo et al.
w—1
< Enst(0) + Y (F(k) +8) + F(w) + 8
k=v
< Enst(v) + Y (F(k) +6). n
k=v

Property B guarantees that, when the synchronizer starts after
GST (Sgrst > GST) and the initial timeout is long enough
(F(1) = 26), processes synchronize in the very first view
(V = 1) and enter it within § of the last correct process
calling start().

Let the global view at time t, denoted GV(¢), be the maxi-
mum view entered by a correct process at or before 7, or 0 if
no view was entered by a correct process. Property C quan-
tifies the latency of view synchronization in a more general
case when the synchronizer may be started before GST. The
property depends on the interval p at which the synchronizer
periodically retransmits its internal messages to deal with
possible message loss. The property considers the highest
view GV (GST + p) a correct process has at time GST + p and
ensures that all correct processes synchronize in the immedi-
ately following view within at most p 4+ F () — 1) 4 3§ after
GST. This is guaranteed under an assumption that the timeout
of this view is at least 28, and f + 1 correct processes call
start() early enough. By Proposition 1, we can apply The-
orem 1 if (3) holds for U = 2A. Then F(V — 1) < 2A, and
therefore, Property Cimplies Eja5()) < GST+p+2A+34.

In Appendix A we also analyze the FASTSYNC latency
after GST under the assumption that the timeout of the first
view entered by a correct process after GST is < 25. We
use this result to establish latency bounds assuming expo-
nentially growing timeouts, which is a common choice in
practice (e.g., [19]). In particular, we show that all correct
processes are guaranteed to enter synchronized view within
O (8 1g) after S, if the protocol is started after GST, and
within O (max{§1g§, A}) after GST + p, otherwise. The lat-
ter guarantees that the latency of view synchronization is
bounded after GST.

4 Proof of FASTSYNC correctness and
latency bounds

To prove Theorem 1, in Sect. 4.1 we first prove that
FASTSYNC is a correct implementation of the synchronizer
abstraction, as formalized by Properties 1-5 in Fig. 2. Then
in Sect. 4.2 we prove the latency bounds stated by Properties
A-C.

4.1 Proof of FASTSYNC correctness

We now prove:

Making Byzantine consensus live

509

Theorem 2 Consider an execution with an eventual message
delay bound &, and assume that (1) holds for u = 26. Then
there exists a view V such that in this execution FASTSYNC
satisfies Properties 1-5 in Fig. 2 for d = 24.

To prove the theorem, we first introduce the following
definitions. The local view of a process p; at time ¢, denoted
LV;(¢), is the latest view entered by p; at or before t, or
0 if p; has not entered any views by then. Thus, GV(r) =
max{LV;(z) | p; is correct}. We say thata process p; attempts
to advance from a view v > 0 at time ¢ if at this time p;
executes the code in either line 3 or line 5, and LV; (t) = v.

The next three lemmas establish basic constraints on the
ordering of events generated in an execution of FASTSYNC.
In particular, Lemma 2 shows that a WISH(v) message with
v > 0 can only be sent by a correct process if some correct
process has already attempted to advance from the view v —
1. Lemma 3 shows that a correct process can only enter a
view v > 0 if some correct process has already attempted
to advance from the view v — 1. Lemma 4 shows that some
a correct process can only send a WISH message if some
correct process has already called start.

Lemma 2 Foralltimest andviewsv > 0, ifa correct process
sends WISH(v) at t, then there exists a time t' < t such that
some correct process attempts to advance fromv — 1 ar t'.

Proof We first prove the following auxiliary proposition:

Vpi.Vv. p; is correct A p; sends WISH(v) att —
A’ <t.F >v—1.3p,. p;j is correct A

pj attempts to advance from v' at r’. 4)

By contradiction, assume that a correct process p; sends
WISH(v) at ¢, but for all ¥/ < r and all vV > v — 1, no
correct process attempts to advance from v’ at ¢’. Consider
the earliest time #; when some correct process pj sends a
WISH(vx) with vy > v, so that #;z < t. Then either vy =
pk.view+(tk) or pi.view(ty) = pk.ViEW+(tk) =v — L If
pr.viewT (i) = vr > v, then pr.max_views(z;) includes
f 4+ 1 entries > v > v, and therefore, there exists a correct
process p; that sent WISH(v') with v’ > v at f; < #, contra-
dicting the assumption that #; is the earliest time when this can
happen. Suppose that py.view(t;) = py.view" () = v —1.
Then at 7, the process pi executes either line 5 or line 10
and LV (tx) = vx — L. If py executes line 5 at #, then since
LVi (tx) = vk — 1, pi attempts to advance from vy —1 > v—1
at 1, < t, contradicting our assumption that no such attempt
can occur.

Suppose now that py executes the code in line 10 at #; and
pr.view(ty) = pr.viewt(t) = v — 1. Consider first the
case when vy = 1. Since max_views[k] > 0, pi has already
sent WISH(v;) for some view v; > 1 at a time < #. Since
v, = vr > v, this is a contradiction to our assumption that

no WISH messages with views > v can be sent before #;. It
remains to consider the case when vy > 1. Then Ej (v —1) is
defined and satisfies Ey (vy—1) < tx. Thus, pr.view(Ey (vx—
1) = pr.view" (Ex(vy — 1)) = v — 1. Since py starts
pr.timer_view at E;(vx — 1), and pg.timer_view(#;) is not
enabled, there exists a time 7 such that Ex(vx —1) < 1 < i
and py.timer_view expires at #;, triggering the execution of
the timer_view expiration handler. Since both pj.view and
pr.view™ are non-decreasing, and both are equal to vy — 1 at
E;(viy—1)aswellas tk,pk.view(t,é) = pk.VieW+(l‘]2) =V —
1. Thus, LV (#;) = vx — 1, which implies that at t; < 1, <1,
Pk attempts to advance from vy —1 > v—1, contradicting our
assumption that no such attempt can happen. We conclude
that (4) holds.

We now prove the lemma. Let ¢ and v be such that

some correct process sends WISH(v) at ¢t. By (4), there
exists a correct process that attempts to advance from a
view > v — 1 at or before ¢. Let ¢’ be the earliest time
when some correct process attempts to advance from a view
> v — 1, and let p; be this process and v" > v — 1 be
the view from which p; attempts to advance at ¢. Thus,
at t/, p ; executes the code in either line 3 or line 5, and
LV;(t") = v" = v — 1. Suppose first that p; executes the
code in line 5 at ¢". Since LV (1) = v’, there exists an earlier
time at which p;.view" = p;.view = v’. Since p;.view"
is non-decreasing, p;.view™ (t') > v'.If p;.view" (t') > v/,
then given that v/ > v — 1, p;.view" (#') > v. Thus, there
exists a correct process pi and time t” < t" such that py sent
WISH(v") with v > v to p; at t”. By (4), there exists a
time < ¢” < ¢’ at which some correct process attempts to
advance from a view > v” — 1 > v — 1, which is impossi-
ble. Thus, p;.view* (¢') = v'. Since LV, (t") = v/, we have
pj.view(t') = p;.view" (t') = v'. Suppose now that p exe-
cutes the code in line 3. Then pj.view™ (') = p;.view(t') =
0 = LV;(¢) = v'. Hence, in both cases
pjview(t") = p;.viewt () = v > v — 1.
By the definitions of view and view™, v’ is both the lowest
view among the highest 2 f + 1 views in p;.max_views(’),
and the lowest view among the highest f + 1 views in
pj.max_views(t). Hence, pj.max_views(t') includes f +1
entries equal to v’, and therefore, there exists a correct pro-
cess py such that

pj.view(t') = p;.view* (t')
= pj.max_views[k](t') =v' > v — L. 5)

Also, for all correct processes py, pj.max_views[l](t/) < v
otherwise, some correct process sent WISH(v”) with v’ > v
at a time < ¢/, and therefore, by (4), some correct process
attempted to advance from a view > v — 1 earlier than ¢/,
which is impossible. Thus,

@ Springer

510

M. Bravo et al.

pj.view(t") = p;.view" (') = p;.max_views[k](¢") < v.
Together with (5), this implies
pj.view(t") = pj.view" (') = v — 1.

Hence, LV (t") = v—1, and therefore, p j attempts to advance
fromv — 1 at¢’. Thus, v’ = v — 1 and ¢’ < ¢, as required. O

Lemma 3 If a correct process p; enters a view v, then there
exists a time t < E;(v) at which some correct process
attempts to advance from v — 1.

Proof Since p; enters a view v, we have p;.view(E;(v)) =
pi.view" (E;(v)) = v. By the definitions of view and
view™, v is both the lowest view among the highest 2 f + 1
views in p;.max_views(E;(v)), and the lowest view among
the highest f + 1 views in p;.max_views(E;(v)). Hence,
pi.max_views(E; (v)) includes f +1 entries equal to v. Then
there exists a time ¢’ < E;(v) at which some correct process
sends WISH(v). Hence, by Lemma 2, there exists a time
t <t < E;(v) at which some correct process attempts to
advance from v — 1. O

Lemma 4 Foralltimest andviewsv > 0, ifa correct process
sends WISH(v) at t, then there exists a time t' < t such that
some correct process calls start at t'.

Proof Consider the earliest time #; < ¢ at which some correct
process py sends WISH(vg) for some view vg. By Lemma 2,
there exists a time ¢; < # at which some correct pro-
cess attempts to advance from vy — 1 > 0, and therefore,
sends WISH(uvy) at ;. Since # is the earliest time when this
could happen, we have 7; = 1. Also, if vy — 1 > 0, then
Eyx(vx — 1) is defined, and hence, by Lemma 3, some cor-
rect process attempts to advance from vy — 2 by sending
WISH(vx — 1) earlier than t; = #;, which cannot happen.
Thus, at #;, pr attempts to advance from view 0, so that
v = 1 and LVi(#) = 0. Assume first that p; executes the
code in line 5 at #;. Then pi.timer_view expires at 7, and
hence, there exists a time s; < #; such that pj.timer_view
is set at si. Thus, at s, pr enters a view > 0. Since LV is
non-decreasing, LV (#x) > 0, which is a contradiction. Thus,
Pk cannot execute line 5 at #, and has to call start at this
time. O

By Lemma 3, no correct process can enter a view before
some correct process sends a WISH message. Since, by
Lemma 4, this cannot happen before some correct process
calls start, we have

Corollary 1 V. Sirst < Efirse (V).

We now prove that the views entered by correct processes
throughout an execution of FASTSYNC do not skip values, as
stipulated by Lemma 1 (Sect. 3.1).

@ Springer

Proofof Lemma 1. Fix v’ such that v/ > 2 and assume that
a correct process enters v/, so that Egs(v') is defined. We
prove by induction on k that for each k = 0..(v' — 1) some
correct enters v/ — k no later than Ef(v'). The base case
of k = 0 is trivial. For the inductive step, assume that the
required holds for some k, so that Egrg (v — k) < Efirst (V).
Then by Lemma 3, there exists a time ¢ < Eg (v — k)
at which some correct process p; attempts to advance from
v’ —k — 1. But then p;’s local view at ¢ is v — k — 1. Hence,
pjenters v’ —k — 1 before t < Efir (V' — k) < Efirt (v'), as
required. O

Lemma 5 below establishes that the views sent in the
WISH messages by the same process can only increase. Its
proof relies on the next proposition, stating a few simple
invariants that follow immediately from the structure of the
code and our assumption that every message sent by a process
is instantaneously delivered to the sender (Sect. 3).

Proposition 3 Let p; be a correct process. The following con-
ditions hold at all times in every execution of FASTSYNC:

1. Yu.Vt. p; sends WISH(v) at t —
v € {p;.view" (1), p;.view" (¢) + 1}.

2. Yu.Vt. p; sends WISH(v) att A v = p;.view' (1) +
1 = p;viewt(t) = p;.view(r) A (p;.timer_view
is disabled).

3. Vv.Vt. p; sends WISH(v) att —>
Vt' > t. p;.max_views[i](t') > 0 A p;.view™ () > 0.

Lemma5 For all views v, v’ > 0, if a correct process sends
WISH(v) before sending WISH(V'), thenv < v'.

Proof Let s and s’ such that s < s’ be the times at
which a correct process p; sends WISH(v) and WISH(v')
messages, respectively. We show that v/ > v. By Propo-
sition 3(1), v e {p;.view'(s), p;.view" (s) + 1} and
v e {piviewT(s), p;.view"(s") + 1}. Hence, if v =
pi.view'(s) or v/ = p;.view"(s') + 1, then we get v <
v’ from the fact that p;.view" is non-decreasing. It thus
remains to consider the case when v = p;.view™ (s) + 1
and v/ = p;.view" (s'). In this case by Proposition 3(2),
pi.viewT (s) = p;.view(s) and p;.timer_view(s) is dis-
abled. We now consider several cases depending on the line
at which WISH(v') is sent.

— WISH(v')is sent atline 3. In this case we have v/ = 1 and
pi.viewT(s') = 0, so that v/ = p;.view"(s’) + 1. But
this contradicts the assumption that v’ = p;.view™ (s'),
and thus this case is impossible.

— WISH(v)issentatlines5or 10. Then v’ = p;.view™ (s")
= max(p;.view(s') + 1, p;.view™ (s")). Since p;.view is
non-decreasing, we get p;.view™ (s') > p;.view(s') +

Making Byzantine consensus live

51

1 > p;.view(s) > p;.view(s) = p;.view™ (s). Hence,
pi.viewt (s") > p;.view"(s), and therefore, v =
pi.view" (s") > p;.view" (s) 4+ 1 = v, as required.

— WISH(V') is sent at line 8. Then p;.timer_view(s’) is
enabled. Since p;.timer_view(s) is disabled, there exists
a time s” such that s < s” < s’ and p; enters a
view at s”. By the view entry condition p;.view(s”) >
pi.prev_v(s”). Since p;.view is non-decreasing, we
get p;.view' (s') > p;view(s)) > p;.view(s”) >
pi.view(s) = p;.view'(s). Thus, p;.view'(s') >
pi.view" (s) and therefore, v/ = p;.view'(s)) >
pi.view+ (s) + 1 = v, as required.

— WISH(V') is sent at line 21. Then p;.view"(s’) >
pi.prev_vt(s’) > p;view"(s), and therefore, v/ =
pi.viewT (s') > p;.view'(s) + 1 = v, as required. O

In order to cope with message loss before GST, every cor-
rect process retransmits the highest WI SH it sent every p units
of time, according to its local clock (lines 6-10). Eventually,
one of these retransmissions will occur after GST, and there-
fore, there exists a time by which all correct processes are
guaranteed to send their highest WISHes at least once after
GST. The earliest such time, @, is defined as follows:

GST + p,
Stirsts

if Sgirst < GST;

otherwise.

GST =

From this definition it follows that
GST > GST. (6)

Lemma 6 below formalizes the key property of GST.

Lemma 6 For all correct processes p;, times t > GST, and
views v, if p; sends WISH(v) at a time < t, then there exists
a view v' > v and a time t’ such that GST < t' < t and p;
sends WISH(V) att'.

Proof Let s < t be the time at which p; sends WISH(v).
We consider two cases. Suppose first that Sg¢ > GST. By
Lemma 4, s > Skst, and therefore, GST < s < t. Thus,
choosing ¢ = s and v/ = v validates the lemma. Sup-
pose next that Sgr¢ < GST. Then by the definition of GST,
t > GST + p. If s > GST, then GST < s < t, and there-
fore, choosing ' = s and v = v validates the lemma.
Assume now that s < GST. Since after GST the p;’s local
clock advances at the same rate as real time, there exists a
time s’ satisfying GST < s’ < r such that p; executes the
periodic retransmission code in lines 6-10 at s’. Since p;
already sent a WISH message at s < GST < s’, by Proposi-
tion 3(3), p;.max_views[i](s’) > 0, and therefore, the code
sending a WISH message is guaranteed to be reached at s’.
Thus, there exists v’ such that p; sends WISH(v') at s’ by exe-

cuting the code in either line 8 or line 10, and GST < s’ < 1.
By Lemma 5, v' > v, which implies the required. O

We next state several lemmas that encapsulate the argu-
ments showing the various properties in Fig. 2. The following
lemma is used to prove Property 5.

Lemma 7 If a correct process enters a view v > 0 and
Efirst(v) > GST, then for all v\ > v, no correct process
attempts to advance from v' — 1 before Efit(v) + F (v).

Proof Suppose by contradiction that there exists a time ¢/ <
Efirst(v)+ F (v) and a correct process p; such that p; attempts
to advance from v’ — 1 > v — 1 at ¢’. If p; executes the code
inline 3 at#’,thenLV;(#') =0 =v"—1 > v—1 > 0, which
is impossible. Thus, at ¢’ the process p; executes the code
in line 5, and LV; (') = v’ — 1. Since p;.timer_view is not
enabled at 7/, p; must have entered v’ — 1 at least F (v) before
t" according to its local clock. Since v/ — 1 > v, by Lemma 1
we have Efq (V' — 1) > Efgrse(v) > GST. Therefore, given
that the clocks of all correct processes progress at the same
rate as real time after GST, we get

Efirst(v) < Eﬁrst(v/ -1 = /' — F(U/ —-1).
Hence,
> Efirst (V) + F(U/ - 1.

Since F is non-decreasing and v’ — 1 > v, we have F(v' —
1) > F(v), so that

7 > Efirst(v) + F(v),

which contradicts our assumption that 1’ < Efps (v) + F(v).
This contradiction shows the required. O

Corollary 2 Consider aview v and assume that v is entered by
a correct process. If Eqrst(v) > GST, then a correct process
cannot send a WISH(V) with v’ > v earlier than Efis (V) +
F(v).

Proof Assume a correct process sends a WISH(v') with v’ >
v at time ¢. By Lemma 2, there exists a time s < ¢’ such that
some correct process p; attempts to advance from v/ — 1 >
v—1lats.ByLemma7,s > Eg(v) + F(v), which implies
that t' > s > Ef(v) + F(v), as required. O

The following lemma is used to prove Property 4 for d =
26.

Lemma 8 Consider a view v > 0 and assume that v
is entered by a correct process. If Ef(v) > GST and
F(v) > 26, then all correct processes enter v and Eag (v) <
Efirst(v) + 24.

@ Springer

512

M. Bravo et al.

Proof Since Egs(v) > GST, by (6), Efirst (v) > GST. Since
F(v) > 2§, Corollary 2 implies that no correct process can
send WISH(v') with v' > v earlier than Efs(v) + 28. Once
any such WISH(v') is sent, it will take a non-zero time until
it is received by any correct process. Thus, we have:

(*) no correct process receives WISH(v') with v/ > v from
a correct process until after Egg (v) + 26.

Let p; be a correct process that enters v at Efg(v). By the
view entry condition, p;.view(Efgs(v)) = v, and therefore
pi.max_views(Egs(v)) includes 2 f + 1 entries > v. At
least f + 1 of these entries belong to correct processes, and
by (¥), none of them can be > v. Hence, there exists a set C
of f + 1 correct processes, each of which sends WISH(v) to
all processes before Efgt(v).

Since Efirg(v) > GST, by Lemma 6, every p; € C also
sends WISH(v') with v" > v at some time s; such that GST <
§j < Efirst(v). Then by (*) we have v' = v. It follows that
each p; € C is guaranteed to send WISH(v) to all correct
processes between GST and Efg (v). Since all messages sent
by correct processes after GST are guaranteed to be received
by all correct processes within § of their transmission, by
Efirst(v) + 6 all correct processes will receive WISH(v) from
at least f + 1 correct processes.

Consider an arbitrary correct process p; and let t; <
Efirst(v) + & be the earliest time by which p; receives
WISH(v) from f41 correct processes. By (¥), no correct pro-
cess sends WISH(v') with v’ > v before ; < Efirst (v) + 28.
Thus, pj.max_views(z;) includes at least f + 1 entries equal
to v and at most f entries > v, so that p;.view" (¢;) = v.
Then p; sends WISH(v) to all processes no later than 7; <
Efirst(v) + 6. Since Efirgt(v) > @, by Lemma 6, p; also
sendsWISH(v') withv’ > vin-between GST and Ef; (v)+8.
By (*), v/ = v, and therefore, p; sends WISH(v) to all pro-
cesses sometime between GST and Ef(v) + 6. Hence, all
correct processes are guaranteed to send WISH(v) to all cor-
rect processes between GST and Efg (v) + 8.

Consider an arbitrary correct process pi and let # <
Efirst (V) + 28 be the earliest time by which p; receives
WISH(v) from all correct processes. Then by (*), all entries
of correct processes in pi.max_views(f;) are equal to v.
Since there are at least 2 f 4 1 correct processes: (i) at least
2f + 1 entries in pr.max_views(f;) are equal to v, and
(ii) one of the f + 1 highest entries in pg.max_views(#;)
is equal to v. From (i), pr.view™ (1) > pr.view(ty) > v,
and from (ii), pi.view(ty) < pi.view™ (tx) < v. Therefore,
pr.view(ty) = pr.viewT () = v, so that p; enters v no
later than 7, < Efs(v) + 25. We have thus shown that by
Efirst (v) + 26, all correct processes enter v, as required. O

The following lemma shows that processes keep entering
new views forever. This is used to prove Property 3.

@ Springer

Lemma9 For all views v, there exists a view v\ > v such
that some correct process eventually enters v’

Proof Assume by contradiction that the required does not
hold and let v be the maximal view entered by a correct
process; if there are no such views, we let v = 0. Thus, we
have

Vt.Yv'>v+1.Vp;. =(p; enters v" at t A p; is correct). (7)

If there is a correct process that sends WISH(v') with v/ >
v + 1 at any time s, then by Lemma 2, a correct process p;
attempts to advance from v/ — 1 > v at some time s < s.
Thus, LV;(s’) =v' — 1 > v+ 1 > 1, which contradicts (7).
Thus, we have

V.Y > v+ 1.Vp;. =(p; sends WISH(V) at t A
pi 1s correct). (8)

Since we assume that all correct processes eventually call
start, there exists a time 77 = max{Efst(v), G_ST, Stast -
We consider two cases.

Suppose first that v = 0, so that no correct process enters
any view. Consider a correct process p;. This process must
call start atsometime#; < Ty.If p;.view™ = O at #;, then
pi sends WISH(1) at ;. On the other hand, if p;.view™ > 0at
t;, then p; has already sent WISH(v') with v’ = p;.view" >
0 when p;.view™ first became > 0 at some time before #;.
By (8), v = 1. Thus, in both cases, there exists a time #/ <
T such that p; sends WISH(1) at tl./. Since 77 > GST, by
Lemma 6, there exists a view v” > 1 and a time s; such that
GST <s; < Ty and p; sends WISH(v”) at s;. By (8),v” = 1.
Since the links are reliable after GST, WISH(1) sent by p; at
s; will be received by all correct processes. Thus, there exists
atime T, > T7 and a correct process p; such that p; receives
WISH(1) from all correct processes at ¢; < T>. By (8), all
entries of correct processes in p;.max_views(z;) are equal to
1. Since there are at least 2 f 4 1 correct processes: (i) at least
2f + 1 entries in p;.max_views(f;) are equal to 1, and (ii)
one of the f + 1 highest entries in p;.max_views(#) is equal
to 1. From (i), p;.view" (1;) > p;.view(;) > 1, and from
(ii), p;.view(t;) < p;.view" (1) < 1. Hence, p;.view(;) =
pi.view" () = 1, and therefore, p j enters view 1 at t;,
contradicting (7).

Next, suppose v > 0. Then some correct process entered
v, and thus there exists a set C consisting of f + 1 correct
processes all of which sent WISH(v") with v’ > v before 7.
Consider p; € C and let#; < T} be a time such that at #; the
process p; sends WISH(v;) with v; > v. Since 77 > GST,
by Lemma 6, there exists a view vlf > v; and a time s; such
that GST <'s5; < T7 and p; sends WISH(v;)) at s;. By (8), we
have v € {v, v + 1}. Since the links are reliable after GST,

Making Byzantine consensus live

513

the WISH(v;) sent by p; at s; will be received by all correct
processes.

Thus, there exists a time 7, > 1] > GST by which
all correct processes have received WISH(v') with v/ €
{v, v + 1} from all processes in C. Consider an arbitrary
correct process p;. By (8), the entry of every process in C in
pj.max_views(73) is equal to either v or v+ 1. Since |C| >
f + 1 and all processes in C are correct, pj.max_views(72)
includes at least f + 1 entries > v. Thus, pj.view+(T2) > v,
and therefore, p; sends WISH(v;) with v; > v no later than
at T». Since Th > G_ST, by Lemma 6, there exists a view
v} > v; and a time s such that GST < s; < ¢; and p; sends
WISH(U}) ats;. By (8), v;. € {v, v + 1}. Since the links are
reliable after GST, the WISH(v}) sent by p; at s; will be
received by all correct processes.

Thus, there exists a time 73 > Tp > GST by which all cor-
rect processes have received WISH(v') with v € {v, v + 1}
from all correct processes. Consider an arbitrary correct
process pi. Then at T3, all entries of correct processes in
pk-max_views are > v. By (8), each of these entries is equal
to either v or v+ 1. Since atleast 2 f + 1 processes are correct:
(i) atleast 2 f 4+ 1 entries in p;.max_views(73) are > v, and
(ii) one of the f + 1 highest entries in p;.max_views(73) is
< v+ 1. From (i), py.view" (T3) > pi.view(T3) > v, and
from (ii), pi.view(T3) < pi.view' (T3) < v + 1. Hence,
pr.view(T3), pk.view+(T3) € {v, v 4+ 1}. Since no correct
process enters v + 1, p.view(73) and pi.view™ (T3) cannot
be both simultaneously equal to v + 1. Thus, pg.view(T3) =
v, and either pg.view' (T3) = v or pr.view" (T3) = v + 1.
If pr.view" (T3) = v + 1, then p; has sent WISH(v;) with
vr = v + 1 when pg.view™ has first become equal to v + 1
sometime before 73. On the other hand, if pi.view(73) =
pk.view+(T3) = v, then p; has entered v and started
pi.timer_view at or before 73. Since py does not enter any
higher views, pi.timer_view will eventually expire, causing
Pk to send WISH(vg) with vy > v. By (8), vk = v+ 1. Thus,
there exists a time #; > 73 by which py sendsWISH(v+1) to
all processes. Since ty > T3 > GST, by Lemma 6, there exists
aview v; > v+ 1 and a time s; such that GST < 5 < T3
and py sends WISH(vy) at s;. By (8), v, = v + 1. Since the
links are reliable after GST, the WISH(v 4 1) sent by pi will
be received by all correct processes.

Thus, there exists a time Ty > T3 > GST by which all
correct processes have received WISH(v + 1) from all correct
processes. Fix an arbitrary correct process p;. By (8), all
entries of correct processes in p;.max_views(7y) are equal
to v+ 1. Since there are at least 2 f + 1 correct processes: (i) at
least 2 f + 1 entries in p;.max_views(7y) are equal to v + 1,
and (ii) one of the f + 1 highest entries in p;.max_views(73)
is equal to v 4 1. From (i), p;.view" (Ty) > p;.view(Ty) >
v + 1, and from (ii), p;.view(Ty) < p;.view (Ty) < v + 1.

Hence, p;.view(Ty) = pl.view+(T4) = v+1, and therefore,
p1 enters v + 1 by Ty, contradicting (7). O

From Lemmas 9 and 1 we get
Corollary 3 For any view v, some correct process enters v.

Finally, the following lemma gives the core argument for
the proof of Theorem 2.

Lemma 10 Consider an execution with an eventual message
delay bound & and a view V such that

V> GV(GST) + 1 A F(V) > 26. 9)

Then in this execution FASTSYNC satisfies Properties 1-5 in
Fig. 2 for d = 26.

Proof Property 1 is satisfied trivially. Consider a view)V such
that (9) holds. By Corollary 3, some correct process enters)V,
so that Egg (V) is defined. Since GV is non-decreasing and
V> GV(@) + 1, no correct process can enter V until after
GST. Thus, we get that Ege (V) > GST.

Fix a view v > V. By Corollary 3, some correct process
enters v. Then by Lemma 1 and (6) we get

Vv > V. Egrst(v) > Efirt(V) > GST > GST. (10)

Then Property 2 holds. Since F is a non-decreasing function,
Yv > V. F(v) > F(V) > 28. Thus, from (10) and Lemma 8,
all correct processes enter v and Elag(v) < Efirst(v) + 26.
This validates Properties 3 and 4 for d = 24.

It remains to prove Property 5. By Corollary 3, some cor-
rect process enters view v + 1. Then by Lemma 3 there
exist a time ¢ < Ef(v + 1) at which some correct pro-
cess attempts to advance from v. By (10), Efs(v) > GST.
Then by Lemma 7 we gett > Efrs(v)+ F(v), which implies
Efst(v + 1) > t > Efrgc(v) + F(v), as required. We thus
conclude that FASTSYNC satisfies Properties 1-5 in Fig. 2 for
d = 26, as needed. O

Proof of Theorem 2. Consider an execution of FASTSYNC and
let § be the eventual message delay bound in this execution.
Then (1) for u = 28 implies that F(v') > 28 for some
view v’. Since F is monotone, V = max{v’, GV(GST) + 1}
satisfies (9). Then the required follows from Lemma 10. O

4.2 Proof of FASTSYNC latency bounds

We next extend the proof of FASTSYNC correctness to also
establish the latency bounds for entering various views stated
by Properties A—C in Fig. 2. Our proofs are structured as fol-
lows. Given a view v whose entry time we seek to bound, we
first derive a bound on the time by which all correct processes
must send a WISH for the view v or higher. We then apply

@ Springer

514

M. Bravo et al.

the following lemma, which bounds the latency of entering v
as a function of the time by which all correct processes have
sent such WISHes.

Lemma 11 For all views v > 0 and times s, if all correct
processes p; send WISH(v;) with v;i > v no later than
at s, and some correct process enters v, then Ejg(v) <
max(s, @) + 4.

Proof Fix an arbitrary correct process p; that sends WISH(v;)
with v; > v to all processes at time #; < s < max(s, ﬁ).
Since max(s, @) > GST, by Lemma 6 there exists a time
t{ such that GST < 1/ < max(s, GST) and at t/, pi sends
WISH(v)) withv] > v; > v to all processes. Since #; > GST,
all correct processes receive WISH(v;) from p; no later than
att] + 8 < max(s, GST) + 3.

Consider an arbitrary correct process p; and let ¢; <
max(s, GST) + 8 be the earliest time by which p; receives
receives WISH(v;) with with v/ > v from each correct
processes p;. Thus, at ¢;, the entries of all correct pro-
cesses in p;.max_views are occupied by views > v. Since
at least 2f + 1 entries in p;.max_views belong to cor-
rect processes, the (2 f 4 1)th highest entry is > v. Thus,
pj.view(t;) > v. Since p;.view is non-decreasing, there
exists a time t} < t; at which p;.view first became > v. If
pj.view(r;) = pj.view+(t;.) = v, then p; enters v at 1.
Otherwise, either pj.view(t}) > v or pj.vieer(t}) > .
Since both p;.view and pj.vieWJr are non-decreasing, p;
will never enter v after t} . Thus, a correct process cannot enter

v after max(s, @) + 4. Since by the lemma’s premise, some

correct process does enter v, Elas(v) < max(s, GST) + 8, as
needed. m|

The next lemma gives an upper bound on the duration of
time a correct process may spend in a view before sending a
WISH for a higher view.

Lemma 12 If a correct process py enters a view v > 0,
then py sends WISH(vy) with vy > v + 1 no later than at
max (Elasc (v), GST) + F(v).

Proof Suppose that py enters v > 0 at time s < Elu5(v),
and starts pg.timer_view for the duration of F (v) at s;. Then

pr-view(sy) = pr.view™ (sp) = v.

Since the clocks of the correct processes advance at the same
rate as real time after GST, py.timer_view cannot last past
max (Ejast(v), GST) + F(v). Let s; such that

sk < s < max(Eas(v), GST) + F(v)

be the time at which pg.timer_view either expires or is
stopped prematurely by executing the code in line 17.

@ Springer

If pr.timer_view expires at s,’(, then pp sends WISH(vg)
with v = max(pg.view(s;) + 1, pi.view™ (sp)). Since
both pi.view and py.view™' are non-decreasing, we have
pi.view(s;) > v and py.view" (s;) > v. Thus, vy > v + 1,
as required. On the other hand, if py.timer_view is stopped
prematurely at s;, then py.view(s;) > pi.view(sy) = v
and therefore, pr.view'(s;) > pi.view(s)) > v + 1.
Since pi.view™ is non-decreasing and py.view™ (sy) = v,
pr-view™ must have changed its value from v to v > v+1
at some time s;’ such that sy < s;' < s;. Thus, the condition
in line 20 holds at s;, which means that p; sends WISH(vy)
withvy > v+ 1at s,’{/. Thus, in all cases, px sends WISH(vy)
with v > v + 1 no later than at max(Ejas (v), GST) + F(v),
as required. O

We now use the above two lemmas to bound the time it
takes for a correct process that has entered a view v to enter
the view v + 1, as required by Property A.

Corollary 4 For all times t, if all correct processes enter v >
0, East(v) > GST, and some correct process enters v + 1,
then Ejagt(v + 1) < Eppge(v) + F(v) + 6.

Proof Instantiating Lemma 12 for the special case when all
correct processes enter v at GST or later, and given that by (6),
GST > GST, we get that every correct py sends WISH(vg)
with vy > v + 1 no later than at Ej,(v) + F(v) > GST.
Then the required follows from Lemma 11. O

We now prove several lemmas needed for Properties B
and C. First, given an arbitrary time 7 such that r > GST
and GV(¢) > 0, we derive an upper bound on the latency
of reaching the next view GV (¢) + 1 starting from ¢. To this
end, we first bound the time by which all correct processes
must send a WISH for a view > GV(z) + 1 (Lemma 13),
and then apply Lemma 11 to bound the latency of entering
GV(t) + 1 (Corollary 5). In the following, we instantiate this
result for ¢ = GST 4 p to establish Property C for the case
of GV(GST + p) > 0 (Corollary 7).

Lemma 13 Consider a time t > GST and suppose that
GV(t) > 0. Let T =t + F(GV(¢t)) + 8. If some correct
process enters GV (t) + 1, then all correct processes py send
WISH(v) with v > GV(¢) + 1 to all processes no later than
atT + 6.

Proof Since GV(¢1) > 0, the definition of GV implies
that there exists a correct process p; such that p; entered
GV(¢) and E;(GV(¢)) < t. By the view entry condition,
p1.view(E;(GV(t))) = GV(¢), and therefore p;.max_views
(E;(GV(2))) includes 2 f + 1 entries > GV(¢). Since f + 1 of
these entries belong to correct processes, there exists a set C
of f + 1 correct processes p;, each of which sent WISH(v;)
with v; > GV(¢) to all processes before E;(GV(t)) < t.
Since t > GST, by Lemma 6, p; sends WISH(v)) with

Making Byzantine consensus live

515

vlf > v; > GV(¢r) sometime between GST and 7. Since after
GST every message sent by a correct process is received
by all correct processes within § of its transmission, the
above implies that by ¢ 4+ § every correct process receives
aWISH(v)) with v] > GV(t) from each process p; € C.

Consider an arbitrary correct process pj andlett; <t +§
be the earliest time by which p; receives WISH(v;) with v; >
GV(¢) fromeach process p; € C. Thus, for all processes p; €
C, pj.max_views[i](;) > GV(¢?). Since |[C| = f + 1, the
(f + 1)th highest entry in p;.max_views[i](z;) is > GV (1),
and therefore, p j.view+ (tj) > GV(z). Then each correct
process p; sends WISH(v;) with v; > GV(¢) to all correct
processes no later than 7; < ¢+ 4. Since t +6 >t > GST
and, by the definition of GV, some correct process entered
GV(t), by Lemma 11,

E1a(GV (1)) = 1 + 26. (11)

In addition, by Lemma 6, there exists a time t;. such that
GST < t} <t+éand p; sends WISH(U}) with v} >v; >
GV(¢) at t;.. Since a message sent by a correct process after
GST is received by all correct processes within § of its trans-
mission, all correct processes must have received WI SH(U})
with v/, > GV(r) from each correct process p; in-between
GST and ¢ + 26.

Consider an arbitrary correct process pi. If pi enters
GV(?), then by Lemma 12, p; sends WISH(vx) with vy >
GV(t) + 1 at some time #; < max(E(GV(?)), GST) +
F(GV(1)). If Eja(GV(¢)) > GST, then by (11),

1 < Epast (GV(1)+ F(GV(1)) <t 428 + F(GV(1))=T + 3.

O_n the other hanEf GST > Ej,5(GV(1)), then since t >
GST, and by (6), GST > GST, we have

th <GST+ F(GV(t)) <t+ F(GV(®)) < T +6.

Thus, we conclude that if py enters GV (¢), then the required
holds.

Suppose now that py never enters GV(¢), and let #; be
the earliest time > GST by which py receives WISH(U;)
from each correct process p;; we have # < t + 24. Since
v} > GV(t), and there are 2f + 1 correct processes,
Ppr-max_views(t) includes at least 2 f + 1 entries > GV (¢).
Thus, pg.view(ty) > GV(r). Since pj never enters GV(¢),
we have either pk.view+ (tx) = pr.view(ty) > GV(¢) + 1 or
pr.view(r) = GV() A pr.view™ () > GV(¢) + 1. Thus,
pr.view™ (f;) > GV(¢)+1 and therefore, py sends WISH(vg)
with vy > GV(t) + 1 by <t+25 < T + 6. Hence, we get
that all correct processes send WI SH(vg) with vy > GV(¢)+1
to all correct processes no later than 7 + §, validating the

lemma. O

Lemmas 11 and 13 imply an upper bound on the latency
of reaching the view GV (¢) 4 1 from an arbitrary time ¢ such
that t > GST and GV(z) > 0.

Corollary 5 Consider a time t > GST and suppose that
GV(t) > 0. If some correct process enters the view GV (t)+ 1,
then Epg(GV(r) + 1) <t + F(GV(r)) + 36.

We next derive a bound on the latency of entering view 1.
This is used to prove Property B as well as Property C for
the case of GV(GST + p) = 0.

Lemma 14 If some correct process enters view 1, then
Elast(1) < min(t; +28, 15+ 8), where t; = max(Sy41, GST)
and t) = max(Sast, GST). Equivalently:

Bt (1) <15 + 6 (12)
Epse(1) <11 + 28. (13)

Proof We consider three cases:

— GST < Syy1 < Siast» sothat f; = Sy and £ = Spag
‘We consider two cases:

— Sf41 + 6 < Spas. Let C be the set of the f + 1 cor-
rect processes p; calling start() att; < Spyq. If
pi.view" (#;) = 0, then at ¢;, p; sends WISH(1) to
all processes by executing the code in line 3. Oth-
erwise, p;.view'(;) > 1, and p; sent WISH(v;)
with v; > 1 when p;.view™ first became equal to
v; at some time s; < t; < Syqq1. Since t; < Sy
and Spy1 > GST, in both cases, by Lemma 6,
pi sends WISH(v!) with v/ > v; > 1 sometime
between GST and Syy;. Thus, we get that all pro-
cesses p; € C send WISH(v;) with v] > 1 to all
processes in-between GST and Sy1. It follows that
all correct processes receive all these WI SH(vlf) mes-
sages no later than Syy; + 8. Consider a correct
process p;, and let ¢; be the earliest time by which
pj receives the WISH(v) messages sent by the pro-
cesses p; € Cin-between GST and Sy, 1; then GST <
tj < Sy41 4+ 8. Thus, pj.max_views[k](z;) > 1 for
all py € C.Since |C| > f 4+ 1, the (f + 1)th highest
entry in p;.max_views[k](z;) is > 1, and therefore,
pj.view" (;) > 1. Thus, p; sends WISH(v;) with
v; > 1 to all processes no later than 7; < S¢y1 + 4,
and we also have S¢11 + 38 > GST. Since some cor-
rect process enters view 1, by Lemma 11, Ejq (1) <
Sfy1+28 =1 +26. Since 11 + 8 < 1, we also have
Ea¢ (1) < min(t; + 26, t» 4+), as needed.

— Sfr41+ 8 = Siase- Let p; be a correct process calling
start() at t; < Spg. If p;i.view™ (#;) = 0, then at

@ Springer

516

M. Bravo et al.

ti, pi sends WISH(1) to all processes by executing
the code in line 3. Otherwise, pi.view+ (t;) > 1,and
pi sent WISH(v;) with v; > 1 when pi.vieWJr first
became equal to v; at some time §; < #; < Sjag.
Thus, all correct processes send WISH(v;) with v; >
1 to all processes no later than Sjg > GST. Since
some correct process enters view 1, by Lemma 11,
Elast(1) < Stast +8 =t + 8. Since 11 + 6 > 1p, we
also have Ejas (1) < min(z; + 28, 1o + 8), as needed.

- S < GST < Sjast, SO that 1; = GST and tr = Spast. We
consider two cases:

- GST+6 < Siast- Let C be the set of the f + 1 cor-
rect processes p; calling start() at f; < GST. If
pi.viewT (#;) = 0, then at #;, p; sends WISH(1) to
all processes by executing the code in line 3. Other-
wise, p;.viewT (#;) > 1, and p; sent WISH(v;) with
v; > 1 when p;.view™ first became equal to v; at
sometime before #;. Since t; < GST, by Lemma 6,
there exists a time s; such that GST < s§; < GST
and at s;, p; sends WISH(v.) with v/ > v; > 1
to all processes. Thus, we get that all processes in
C send WISH(U;) with v; > 1 to all processes in-
between GST and GST. It follows that all correct
processes receive all these WISH(v;) messages no
later than GST + §. Consider a correct process pj,
and let ¢; be the earliest time by which p; receives
the WISH(v!) messages sent by the processes in C
in-between GST and GST; then GST < tj < GST +356.
Thus, p;.max_views[k](t;) > 1 for all p, € C.
Since |C| = f + 1, the (f + 1)th highest entry in
pj.max_views[k](;) is > 1. Thus, p;.view™ (¢;) >
1, so that p; sends WISH(v;) with v; > 1 to all
processes no later than#; < GST +36. Since some cor-
rect process enters view 1, by Lemma 11, Eja (1) <
GST+28 = t; + 26. Since t; + 6 < tp, we also have
Est (1) < min(#; + 26, t» 4+), as needed.

— GST 4 8 > Spust- Let p; be a correct process calling
start() at f; < Sjag. If pi.view™ (#;) = 0, then at
ti, pi sends WISH(1) to all processes by executing
the code in line 3. Otherwise, p;.view™ (#;) > 1, and
pi sent WISH(v;) with v; > 1 when p;.view™ first
became equal to v; at some time s; < t; < Sja. Thus,
we get that all correct processes p; send WISH(v;)
with v; > 1 to all processes no later than Spg¢ >
GST. Since some correct process enters view 1, by
Lemma 11, Eja5(1) < Spast +8 =12+ 8. Since rp <
t1 + 8, we also have Ej,s (1) < min(t; + 268, 1 + 6),
as needed.

= Sf11 = Stast < GST, so that #; = t» = GST. Let p,-_be
a correct process calling start() att; < St < GST.
If p;.view"(;) = 0, then at #;, p; sends WISH(1) to

@ Springer

all processes by executing the code in line 3. Otherwise,
pi.view (#;) > 1, and p; sent WISH(v;) with v; > 1
when p; .view™ first became equal to v; at some time s; <
ti < Sast < GST. By Lemma 6, in both cases p; sends
WISH(v;) with v/ > v; > 1 sometime between GST
and GST. Since some correct process enters view 1, by
Lemma 11, we getthat Ejaq (1) < GST+8 = 1,+36. Since
t1 = tr, we also have Ej,5 (1) < min(#; + 26, 1, + §), as
needed.

Thus, we get thatin all three cases above, Ejag (1) < min(t;+
28, 1ty +8), as needed. O

We now instantiate the bound (12) of Lemma 14 for the
special case of all correct processes starting the protocol after
GST to obtain the latency bound stipulated by Property B.

Corollary 6 If Sgr¢ > GST and a correct process enters view
1, then Ejas(1) < Spase + 6.

Proof Let Sirg > GST. Then GST = Sgrg by the definition
of GST. We now use the bound (12) of Lemma 14 with 1| =
max(Syy1, Sirst) = Syp41 and £ = max(Stast, Stirst) = Slast-
We get Eugt (1) < tp + 8 = Spast + 6, as required. O

Finally, by combining Corollary 5 and the bound (13) of

Lemma 14, we obtain the following bound, used to prove
Property C.

Corollary 7 Assume that Sgrse < GST and Sy < GST + p.
Then if a correct process enters GV(GST + p) + 1, then

Elast(GV(GST + p) + 1) < GST + p + F(GV(GST + p)) + 36.

Proof Since Sgrs¢ < GST, by the definition of GST, we have
GST = GST + p. If GV(GST + p) = 0, then choosing t; =
max(Sf41, GST + p), and 1, = max(Siast, GST + p), by the
bound (13) of Lemma 14 we get E155(GV(GST + p) + 1) <
t1 +24. Since Sf41 < GST + p, we have f; = GST + p, and
therefore,

Epast(GV(GST 4 p) + 1) < GST + p + 28 <
GST + p + F(GV(1)) + 36,

as required. On the other hand, if GV(GST + p) > 0, then by
Corollary 5,

E1t(GV(GST + p) + 1) < GST + p + F(GV(GST + p)) + 36,

as required. O

Proof of Theorem 1. Consider an execution of FASTSYNC and
let § be the eventual message delay bound in this execution.
We first show how to select a view) such that (9) holds. We
consider the following cases. First, if

Making Byzantine consensus live

517

Stirst = GST A F(1) > 28, (14)

then we let V = 1. Since Sgrt > GST, the definition of GST
implies GST = Sfy5t, and therefore, (9) holds. Second, if

Shrst < GST A Sf41 < GST + p A
F(GV(GST + p) + 1) > 2, (15)

then we let V = GV(GST + p) + 1. Since Sgr¢ < GST, the
definition of GST implies GST = GST + p, and therefore, (9)
holds. In all other cases, (1) for u = 28 implies that F (v") >
25 for some view v’, and therefore, by the monotonicity of
F,V = max{v’, GV(GST) + 1} satisfies (9).

Thus, by Lemma 10, Properties 1-5 in Fig. 2 hold for V
chosen as above and d = 2.

To prove Property A, fix v > V. By Property 3, all correct
processes enter v. By (9),v >V > GV(G_ST) + 1. Given that
GV is non-decreasing, this implies that no correct process can
enter v until after GST. Thus, Et(v) > Efirst(v) > GST,
and by Corollary 4 we get Ejat (v + 1) < Ejac(v) + F(v) +
8, validating Property A. Finally, by our choice of V, (14)
implies V = 1, and (15) implies V = GV(GST + p) + 1.
Thus, Property B follows from Corollary 6, and Property C
from Corollary 7. We therefore, conclude that FASTSYNC
satisfies all properties in Fig. 2 for d = 26 and V chosen as
above. m]

5 Liveness and latency of Byzantine
consensus protocols

We show that our synchronizer abstraction allows ensur-
ing liveness and establishing latency bounds for several
consensus protocols. The protocols solve a variant of the
Byzantine consensus problem that relies on an application-
specific valid() predicate to indicate whether a value is valid
[16,23]. In the context of blockchain systems a value rep-
resents a block, which may be invalid if it does not include
correct signatures authorizing its transactions. Assuming that
each correct process proposes a valid value, each of them has
to decide on a value so that:

— Agreement. No two correct processes decide on different
values.

— Validity. A correct process decides on a valid value, i.e.,
satisfying valid().

— Termination. Every correct process eventually decides on
a value.

5.1 Single-shot PBFT

We first consider the seminal Practical Byzantine Fault Tol-
erance (PBFT) protocol [19]. This protocol was originally
presented as implementing state-machine replication, where
the processes agree on a sequence of commands. In Algo-
rithm 2 we present its specialization to consensus, in the style
of DLS [27]. The protocol in Algorithm 2 works in a succes-
sion of views produced by the synchronizer. Each view v has
a fixed leader leader(v) = p(w—1) mod n)+1 that is responsi-
ble for proposing a value to the other processes, which vote
on the proposal. A correct leader needs to choose its proposal
carefully so that, if some process decided a value in a previ-
ous view, the leader will propose the same value. To enable
the leader to do this, when a process receives a notification
from the synchronizer to move to a view v (line 1), it sends
a NEWLEADER message to the leader of v with some infor-
mation about the latest value it accepted in a previous view.
The process also stores the view v in a variable curr_view,
and sets a flag voted to FALSE, to record that it has not yet
received any proposal from the leader in the current view.
Various messages sent in the protocol are tagged with the
view of the sender; a receiver accepts a message only if it is
in the same view according to the curr_view variable.

The leader computes its proposal based on a quorum of
NEWLEADER messages (line 5) and sends the proposal, along
with some supporting information, in a PROPOSE message
to all processes (for uniformity, including itself). We describe
the proposal computation in detail after describing the rest
of the protocol. The leader’s proposal is processed in two
phases, each with an all-to-all message exchange among pro-
cesses. A process receiving a proposal x from the leader of
its view v (line 11) first checks that voted is FALSE, so that it
has not yet accepted a proposal in v. It also checks that x sat-
isfies a SafeProposal predicate (also explained later), which
ensures that a faulty leader cannot reverse decisions reached
in previous views. The process then sets voted to TRUE and
stores x in curr_val.

Since a faulty leader may send different proposals to dif-
ferent processes, the process next communicates with others
to check that they received the same proposal. To this end, the
process disseminates a PREPARED message with the hash of
the proposal it received. The process then waits until it gath-
ers a set C of PREPARED messages from a quorum with a
hash matching the proposal (line 16). We call this set of mes-
sages a prepared certificate for the value and check it using
the following predicate:

prepared(C, v, h) <—
0. quorum(Q) A C ={{PREPARED(v, h)); | pj € Q}.

Once a process assembles a prepared certificate, the pro-
cess stores it in cert, the view in which it was formed

@ Springer

518

M. Bravo et al.

1 upon new_view(v)

2 curr_view < v;

3 | voted < FALSE;

4 | send (NEWLEADER(curr_view, prepared_view,
prepared_val, cert)); to leader(curr_view);

5 when received {{NEWLEADER (v, view;, val;,
certj))j | pj € O} = M for a quorum Q

6 | pre: curr_view = v A p; = leader(v) A

(Vm € M. ValidNewLeader(im));

7 | if 3j.view; = max{viewy | pr € Q} # 0 then
‘ send (PROPOSE(v, val;, M)); to all;

9 | else

10 L send (PROPOSE(v, myval(), M)); to all;

11 when received (PROPOSE(v, x, _)); =m

12 | pre: curr_view = v A voted = FALSE A
SafeProposal(m);

13 | curr_val < x;

14 | voted < TRUE;

15 | send (PREPARED(v, hash(curr_val))); to all;

16 when received {(PREPARED(v, h)); | pj € O} =C
for a quorum Q

17 | pre: curr_view = v A voted = TRUE A
hash(curr_val) = h;

18 | prepared_val < curr_val;

19 prepared_view < curr_view;

20 cert < C;

21 | send (COMMITTED(v, h)); to all;

22 when received {(COMMITTED(v, h)); | pj € Q}
for a quorum Q

23 pre: curr_view = prepared_view = v A
hash(curr_val) = h;

24 | decide(curr_val);

Algorithm 2: Single-shot PBFT at a process p;. All vari-
ables storing views are initially set to 0 and others to L. The
predicates ValidNewLeader and SafeProposal are defined
by (16) and (17).

in prepared_view, and the value it corresponds to in
prepared_val. At this point we say that the process prepared
the value. Since a prepared certificate consists of at least
2 f +1 PREPARED messages and there are 3 f 4 1 processes
in total, it is impossible to prepare different values in the
same view: this would require some correct process to send
two PREPARED messages with different hashes in the same
view, which cannot happen due to the check on the voted flag
in line 12. Formally, let us write wf(C) (for well-formed) if
the set of correctly signed messages C was generated in the
execution of the protocol.

@ Springer

Proposition 4

Vv, C, C’, x, x'. prepared(C, v, hash(x)) A
prepared(C’, v, hash(x)) A
WF(C) AWF(C') => x = x'.

Since the synchronizer transitions processes through increas-
ing views (Property 1 in Fig. 2), we also get

Proposition 5 The variables curr_view and prepared_view
at a correct process never decrease and we always have
prepared_view < curr_view.

Having prepared a value, the process participates in
another message exchange: it disseminates a COMMITTED
message with the hash of the value and waits until it gathers
a quorum of matching COMMITTED messages for this value
(line 22). We call such a quorum a committed certificate and
let

committed(C, v, h) <
30. quorum(Q) A C={{COMMITTED(v, h)); | pj € Q}.

Once a process assembles a committed certificate for a value
x, it decides on x.

When the synchronizer triggers a new_view notifica-
tion at a process (line 1), the process sends a NEWLEADER
message to the new leader. Since preparing a value is a prereq-
uisite for deciding on it, by Proposition 4 forming a prepared
certificate for a value x in a view v guarantees that x is the
only value that can possibly be decided in v. For this reason,
itis this certificate, together with the corresponding value and
view, that the process sends upon a view change to the new
leader in a NEWLEADER message (line 4). The leader makes
its proposal based on a quorum of well-formed NEWLEADER
messages (line 5), as checked by a ValidNewLeader predi-
cate:

ValidNewLeader((NEWLEADER(V', v, x, C))) <=
v <V A (v #0 = prepared(C, v, hash(x))). (16)

Similarly to Paxos [37], the leader selects as its proposal
the value prepared in the highest view, or, if there are no
such values, its own proposal given by myval(). Since a
faulty leader may not follow this rule, the processes need to
check that the leader has selected the proposal correctly. To
this end, the leader’s PROPOSE message carries, in addition
to the proposal, the NEWLEADER messages on the basis of
which it was computed (line 4). Processes check its correct-
ness by redoing the leader’s computation, as specified by the
SafeProposal predicate (line 12):

Making Byzantine consensus live

519

SafeProposal((PROPOSE(v, x, M));) <=
pj = leader(v) A valid(x) A
30, view, val, cert. quorum(Q) A
M = {(NEWLEADER(v, viewg, valy, certy))x | px € Q}IA
(Vm € M.ValidNewLeader(m)) A
(Fk.viewy #0) =
(Fk.viewr = max{view; | p; € O} A x = valy)). (17)

Note that the SafeProposal check still allows a faulty
leader to send different proposals to different processes,
e.g., by selecting different quorums of NEWLEADER mes-
sages, or by selecting different values in case when none
of the NEWLEADER messages carries a prepared certificate.
Hence, the SafeProposal check does not make the exchange
of PREPARED messages unnecessary, as it protects against
such behavior. On the other hand, exchanging COMMITTED
messages before deciding is needed to preserve decisions
across views and thereby validate the Agreement property
of consensus. It guarantees that, if a process decides on a
value x, then at least f + 1 correct processes have prepared
x. Regardless of whether the leader of the next view is cor-
rect or faulty, due to the SafeProposal check it will make
a proposal based on prepared values from at least 2 f + 1
processes. Then at least one correct process out of these will
report the value x, which the leader will have to take into
account. This is the core argument in the proof of Agreement
we give below (Theorem 9).

Note that, when a process enters view 1, it trivially knows
that no decision could have been reached in prior views.
Hence, the leader of view 1 can send its proposal immedi-
ately, without waiting to receive a quorum of NEWLEADER
messages. Processes can avoid sending NEWLEADER mes-
sages to this leader, and can accept its proposal after checking
that it satisfies valid rather than ValidNewLeader. For brevity,
we omit this optimization from the pseudocode, even though
we take it into account in our latency analysis.

Since the synchronizer is not guaranteed to switch pro-
cesses between views all at the same time, a process in a view
v may receive a message from a higher view v’ > v, which
needs to be stored in case the process finally switches to v’.
If implemented naively, this would require a process to store
unboundedly many messages. Instead, we allow a process to
store, for each message type and sender, only the message
of this type received from this sender that has the highest
view. As we show below (Theorem 15), this does not violate
liveness. Thus, assuming consensus proposals of bounded
size, the protocol Algorithm 2 runs in bounded space, and
so does the overall consensus protocol with the FASTSYNC
synchronizer.

Safety In PBFT, deciding on a value requires preparing it,
which implies

Proposition 6

Yv, C, h.committed(C, v, h) A Wf(C) =
3C’. prepared(C’, v, h) A wf(C’).

Furthermore, the validity check in SafeProposal ensures that
any prepared value is valid:

Proposition 7
Vv, C, x. prepared(C, v, hash(x)) A wf(C) = valid(x).

The above two propositions imply
Corollary 8 Single-shot PBFT satisfies Validity.

The Agreement property of consensus follows from the
next lemma, ensuring that if a committed certificate was
assembled for a value in a given view, then only this value
can be prepared in any higher view.

Lemma 15
Vv, v, C, C’, x, x'.committed(C, v, hash(x)) A

prepared(C’, v, hash(x")) A
wf(C) AWF(CH) AV <V = x =x'.

Proof Fix v, C and x, and assume committed(C, v, hash(x))
and wf(C); then v > 0. We prove by induction on v’ that

Yo', C’, x".v < v A prepared(C’, v/, hash(x")) A wf(C")
= x' = x.

Assume this holds for all v/ < v*; we now prove it for v/ =
v*. To this end, assume v < v/, prepared(C’, v, hash(x"))
and wf(C").

From the induction hypothesis it follows that

vC” V", x". v <v" < v A prepared(C”, v”, hash(x))
AWF(C") = x =x".

Furthermore, by Propositions 4 and 6 we have
vC”, x". prepared(C”, v, hash(x”) Awf(C") = x=x",
so that overall we get

vC" V", x". v <v” <V Aprepared(C”, v”, hash(x"))
AWf(C") = x =x". (18)

Since prepared(C’, v, hash(x")) and wf(C”), some cor-
rect process has received a message m = (PROPOSE (v, x/,
M)) from the leader of v’ such that SafeProposal(m)
(line 12). Let

@ Springer

520

M. Bravo et al.

M = {(NEWLEADER(V', viewj, valj, cert;)); | pj € Q'}

for some quorum Q’. Since SafeProposal(m), we have Vi’ €
M . ValidNewLeader(m’), so that

Vpj € Q'.viewj < V' A (view; #0 =
prepared(cert j, viewj, hash(val;)) A wf(cert;)).

From this and (18) we get that
Vp;j € Q'.view; > v = valj = x. (19)

Since committed(C, v, hash(x)) and wf(C), a quorum
Q of processes sent COMMITTED(v, hash(x)). The quo-
rums Q and Q' have to intersect in some correct process
Pk, which has thus sent both COMMITTED(v, hash(x))
and NEWLEADER(V', viewy, valy, certy). Since v < v/,
this process py must have sent the COMMITTED mes-
sage before the NEWLEADER message. Before sending
COMMITTED(v, hash(x)) the process set prepared_view to
v (line 19). Then by Proposition 5 process py must have had
prepared_view > v when it sent the NEWLEADER message.
Hence, view; > v # 0 and max{view; | p; € Q'} > v. Then
from (19) for any j such that view; = max{view; | p; € Q'}
we must have val; = x. Since SafeProposal(m) holds, this
implies x" = x.]

Corollary 9 Single-shot PBFT satisfies Agreement.

Proof Assume two correct processes decide on values x and
x’ in views v and v/, respectively. Then

committed(C, v, hash(x)) A committed(C’, v, hash(x”))
for some well-formed C and C’. By Proposition 6 we have
prepared(Co, v, hash(x)) A prepared(Cy, v', hash(x"))

for some well-formed Co and C|). Without loss of generality
assume v < v'. If v = v/, then x = x’ by Proposition 4. If
v < v/, then x = x’ by Lemma 15. O

Liveness and latency Assume that the protocol is used with a
synchronizer satisfying Properties 1-5 in Fig. 2. To simplify
the following latency analysis, we assume d = 2§, as for
FASTSYNC (the liveness proof in the general case is virtu-
ally identical to the one given here). The next theorem states
requirements on a view sufficient for the protocol to reach a
decision and quantifies the resulting latency.

Theorem 3 Consider an execution of single-shot PBFT with
an eventual message delay bound 8, and let v > V be a
view such that F(v) > 65 and leader(v) is correct. Then all
correct processes decide in view v by Elas(v) + 46.

@ Springer

Proof By Property 2, we have Efg.o(v) > GST, so that all
messages sent by correct processes after Efrg(v) get deliv-
ered to all correct processes within §. Once a correct process
enters v, it sends its NEWLEADER message, so that leader(v)
is guaranteed to receive a quorum of such messages by
Elas¢(v) 4+ 8. When this happens, the leader will send its
proposal in a PROPOSE message, which correct processes
will receive by El,5(v) + 28. If they deem the proposal
safe, it takes them at most 2§ to exchange the sequence
of PREPARED and COMMITTED messages leading to deci-
sions. By (2), all correct processes will stay in v until at least
East (V) + (F(v) —d) > Ejast(v) 4+ 446 and thus will not send
a message with a view > v until this time. Then none of the
above messages will be discarded at correct processes before
this time, and assuming the safety checks pass, the sequence
of message exchanges will lead to decisions by Ej,g (v) +44.

It remains to show that the proposal x that leader(v) makes
in view v (line 5) will be deemed safe by all correct pro-
cesses according to the SafeProposal predicate (line 11). All
the conjuncts of SafeProposal except for valid(x) are triv-
ially satisfied given that leader(v) is correct. If the leader
is choosing its own proposal as x, then it is valid because
correct processes propose valid values. Otherwise, from
ValidNewLeader we get that prepared(C, _, hash(x)) for
a well-formed C. Hence, by Proposition 7 we again have
valid(x). O

Since by Property 3 correct processes enter every view
starting from) and, by the definition of leader(), leaders
rotate round-robin, we are always guaranteed to encounter a
correct leader after at most f view changes. Then Theorem 3
implies that the protocol is live when the timeouts are high
enough.

Corollary 10 Consider an execution with an eventual mes-
sage delay bound 8, and assume that (1) holds for u = 64.
Then in this execution single-shot PBFT satisfies Termina-
tion.

We can ensure that single-shot PBFT is always live by picking
afunction F that grows without bound. Alternatively, we can
prevent timeouts from growing unboundedly by picking F
that satisfies (3) for U = 6A: then by Proposition 1, (1) holds
for u = 66.

When single-shot PBFT is used with the FASTSYNC syn-
chronizer, rather than an arbitrary one, we can use Properties
A—-C in Fig. 2 to bound how quickly the protocol reaches
a decision after GST. To this end, we combine Theorem 3
with Property C, which bounds the latency of view syn-
chronization when the protocol is started before GST, and
Proposition 2, which bounds the latency of going through up
to f views with faulty leaders.

Corollary 11 Let v = GV(GST + p) + 1 and assume that
Stirst < GST, F(v) > 65 and Syy1 < GST + p. Then in

Making Byzantine consensus live

521

single-shot PBFT all correct processes decide by GST + p +
ST E K +8) + 6.

We can also quantify the latency of the protocol under favor-
able conditions, when it is started after GST. In this we rely on
Property B, which gives conditions under which processes
synchronize in view 1. The following corollary of Theorem 3
exploits this property to bound the latency of PBFT when itis
started after GST and the initial timeout is set appropriately,
but the protocol may still go through a sequence of up to f
faulty leaders. The summation in the bound (coming from
Proposition 2) quantifies the overhead in the latter case.

Corollary 12 Assume that Sgrt > GST and F (1) > 65. Then

in single-shot PBFT all correct processes decide by Siast +
S (F(k) +8) + 58,

Finally, the next corollary bounds the latency when addi-
tionally the leader of view 1 is correct, in which case the
protocol can benefit from the optimized execution of this
view noted earlier. The corollary follows from Property B
and an easy strengthening of Theorem 3 for the special case
ofv=V=1.

Corollary 13 Assume that Sgre > GST, F(1) > 58 and

leader(1) is correct. Then in single-shot PBFT all correct
processes decide by Syt + 49.

Assume that F' is such that (3) holds for U = 6A; then
as we noted above, single-shot PBFT with FASTSYNC is live.
Furthermore, under the conditions of Corollaries 11 and 12,
the latency of the protocol is bounded even when it has to
go through multiple views before deciding: by GST + p +
(6A 4+ 68)(f + 1) + 66 if starting before GST, and by Sjast +
(6A + 8) f + 56 if starting after GST.

Communication complexity To reach a decision in a single
view with a correct leader, the protocol requires exchanging
messages with O (n°) signatures: this is because the leader
has to forward prepared certificates to processes together with
its proposal to prove the correctness of the latter. This can
be lowered to O (n?) by using threshold signatures, which
combine multiple signatures into one [31]. We next consider
aprotocol that lowers the communication complexity further.

5.2 Single-shot HotStuff

We consider the more recent HotStuff protocol [45]. The
protocol was originally presented as solving an inherently
multi-shot problem, agreeing on a hash-chain of blocks. In
Algorithm 3 we present its single-shot version that concisely
expresses the key idea and allows comparing the protocol
with others. For brevity, we also eschew the use of threshold
signatures, used in the original presentation. This still yields
aprotocol with lower communication complexity than PBFT.

HotStuff delegated view synchronization to a separate
component [45], but did not provide its practical implementa-
tion or analyze how view synchronization affects the protocol
latency. We show that our single-shot version of HotStuff is
live when used with a synchronizer satisfying the specifi-
cation in Sect. 3 and give precise bounds on its latency. We
also show that the protocol requires only bounded space when
using our synchronizer FASTSYNC.

Like single-shot PBFT, the protocol in Algorithm 3
switches views when told by the synchronizer, with view
leaders rotating round-robin. However, the leader’s proposal
is processed in three phases instead of two. The protocol
starts in the same way as PBFT: processes send NEWLEADER
messages with prepared certificates to the leader (line 4), the
leader chooses its proposal as before and distributes it in
a PROPOSE message (line 11). The processes then assem-
ble prepare certificates by exchanging PREPARED messages
(line 16), so that Proposition 4 still holds. However, after
forming a prepared certificate for a value, a process partic-
ipates in an additional message exchange: it disseminates a
PRECOMMITTED message with the hash of the value and
waits until it gathers a quorum of PRECOMMITTED mes-
sages matching the prepared value (line 22). This ensures
that at least f + 1 correct processes have prepared the value
x. Since the leader of the next view will gather prepared com-
mands from at least 2 f + 1 processes, at least one correct
process will tell the leader about the value x, and thus the
leader will be aware of this value as a potential decision in
the current view.

Having gathered a quorum of PRECOMMITTED messages
for a value, the process becomes locked on this value, which
is recorded by setting a special variable locked_view to the
current view. From this point on, the process will not accept
a proposal of a different value from a leader of a future
view, unless the leader can convince the process that no deci-
sion was reached in the current view. This is ensured by the
SafeProposal check the process does on a PROPOSE mes-
sage from a leader (line 12):

SafeProposal ((PROPOSE(v, x, C)) ;) <=
pj = leader(v) A valid(x) A
(locked_view # 0 = x = prepared_val v

(Av'. v>v' > locked_view A prepared(C, v’, hash(x)))).
(20)

This checks that the value is valid and that, if the process has
previously locked on a value, then either the leader proposes
the same value, or its proposal is justified by a prepared cer-
tificate from a higher view than the lock. In the latter case
the process can be sure that no decision was reached in the
view it is locked on.

@ Springer

522

M. Bravo et al.

1 upon new_view(v)

2 curr_view < v;

3 | voted < FALSE;

4 | send (NEWLEADER(curr_view, prepared_view,
prepared_val, cert)); to leader(curr_view);

5 when received {{NEWLEADER (v, view;, val;,
certj))j | pj € Q} = M for a quorum Q

6 | pre: curr_view = v A p; = leader(v) A

(Vm € M. ValidNewLeader(im));

7 | if 3j. view; = max{viewy | px € Q} # 0 then
‘ send (PROPOSE(v, val;, cert)); to all;

9 | else

10 L send (PROPOSE(v, myval(), 1)); to all;

11 when received (PROPOSE(v, x, _)); =m

12 | pre: curr_view = v A voted = FALSE A
SafeProposal(m);

13 | curr_val < x;

14 | voted < TRUE;

15 | send (PREPARED(v, hash(curr_val))); to all;

16 when received {(PREPARED(v, h)); |

pj € O} = C for a quorum Q

17 | pre: curr_view = v A voted = TRUE A
hash(curr_val) = h;

18 | prepared_val < curr_val;

19 prepared_view < curr_view;

20 cert < C;

21 | send (PRECOMMITTED(v, h)); to all;

22 when received {{PRECOMMITTED(v, h)); |
pj € Q) for a quorum Q

23 pre: curr_view = prepared_view = v A
hash(curr_val) = h;

24 | locked_view <« prepared_view;

25 | send (COMMITTED(v, h)); to all;

26 when received {(COMMITTED(v, h)); |
pj € Q} for a quorum Q
27 | pre: curr_view = locked_view = v A
hash(curr_val) = h;
28 | decide(curr_val);

Algorithm 3: Single-shot HotStuff at a process p;. All vari-
ables storing views are initially set to O and others to L. The
predicates ValidNewLeader and SafeProposal are defined
by (16) and (20).

Having locked a value, the process participates in the final
message exchange: it disseminates a COMMITTED message
with the hash of the value and waits until it assembles a
committed certificate (line 26). Once a process assembles a
committed certificate for a value x, it decides on x. Assem-

@ Springer

bling a committed certificate for x ensures that at least f 4+ 1
correct processes are locked on the same value. This guar-
antees that a leader in a future view cannot get processes
to decide on a different value: this would require 2 f + 1
processes to accept the leader’s proposal; but at least one
correct process out of these would be locked on x and would
refuse to accept a different value due to the SafeProposal
check. Thus, while the exchange of PRECOMMITTED mes-
sages ensures that a future correct leader will be aware of
the value being decided and will be able to make a pro-
posal passing SafeProposal checks (liveness), the exchange
of COMMITTED ensures that a faulty leader cannot revert the
decision (safety).

Note that, when a process enters view 1, it trivially knows
that no decision could have been reached in prior views.
Hence, the leader of view 1 can send its proposal immedi-
ately, without waiting to receive a quorum of NEWLEADER
messages (line 10), and processes can avoid sending these
messages to this leader. For brevity, we omit this optimiza-
tion from the pseudocode, even though we take it into account
in our latency analysis.

Since the synchronizer is not guaranteed to switch pro-
cesses between views all at the same time, a process in a view
v may receive a message from a higher view v’ > v, which
needs to be stored in case the process finally switches to v’.
If implemented naively, this would require a process to store
unboundedly many messages. Instead, we allow a process to
store, for each message type and sender, only the message
of this type received from this sender that has the highest
view. As we show below (Theorem 4), this does not violate
liveness. Thus, assuming consensus proposals of bounded
size, the protocol in Algorithm 3 runs in bounded space, and
so does the overall consensus protocol with the FASTSYNC
synchronizer.

Safety First note that, due to Property 1 of the synchronizer,
we have

Proposition 8 The variables locked_view, prepared_view
and curr_view at a correct process never decrease and we
always have locked_view < prepared_view < curr_view.

The Validity property of consensus is proved like for PBFT
(Sect. 5.1). The Agreement property follows from the follow-
ing analog of Lemma 15.

Lemma 16
Yu, v, C, C’, x, x'. committed(C, v, hash(x)) A

prepared(C’, v', hash(x")) A
Wi(C) AWF(CHY AV <V = x =X,

Making Byzantine consensus live

523

Proof Fix v, C and x, and assume committed(C, v, hash(x))
and wf(C). We prove by induction on v’ that

Yo', C', x'. prepared(C’, v/, hash(x)) AWF(C") Av < v/
= x =x.

Assume this holds for all v < v*; we now prove
it for v = v*. To this end, assume v < v and
prepared(C’, v, hash(x")) for a well-formed C’.

Since committed(C, v, hash(x)) and wf(C), a quo-
rum Q of processes sent COMMITTED(v, hash(x)). Since
prepared(C’, v’, hash(x’)) and wf(C’), a quorum Q’ of
processes sent PREPARED(v', hash(x’)). The quorums Q
and Q' have to intersect in some correct process py,
which has thus sent both COMMITTED(v, hash(x)) and
PREPARED(vV’, hash(x”)). Since v < v/, process py must
have sent COMMITTED(v, hash(x)) before PREPARED(V/,
hash(x’)). Before sending COMMITTED(v, hash(x)) the
process set locked_view to v (line 24) and had
prepared_val = x.

Assume towards a contradiction that x # x’. Let v” be the
first view after v when py prepared some proposal x” # x, so
that v < v’. When this happened, by Proposition 8 process
pr must have had prepared_val = x and locked_view >
v. Then by the SafeProposal check (line 12), the leader of
v” provided a well-formed prepared certificate C” such that
prepared(C”, v, hash(x”)) for v’ such that v < v <
v” < v/. But then by induction hypothesis we have x” = x,
and above we established x” # x: a contradiction. Hence,
we must have x = x’, as required. O

Corollary 14 Single-shot HotStuff satisfies Agreement.

Proof Analogous to the proof of Corollary 9, but using
Lemma 16 instead of Lemma 15. O

Liveness and latency Assume that the protocol is used with a
synchronizer satisfying Properties 1-5 in Fig. 2; to simplify
the following latency analysis, we assume d = 24, as for
FASTSYNC. The next theorem states requirements on a view
sufficient for the protocol to reach a decision and quantifies
the resulting latency.

Theorem 4 Consider an execution of single-shot HotStuff
with an eventual message delay bound §, and let v >V be a
view such that F (v) > 78 and leader(v) is correct. Then all
correct processes decide in view v by Elas(v) + 56.

Proof Once a correct process enters v, it sends its
NEWLEADER message, so that leader(v) is guaranteed to
receive a quorum of such messages by Ejag (v)+6. When this
happens, the leader will send its proposal in a PROPOSE mes-
sage, which correct processes will receive by Ej,g (v) + 26.
If they deem the proposal safe, it takes them at most 38
to exchange the sequence of PREPARED, PRECOMMITTED

and COMMITTED messages leading to decisions. By (2), all
correct processes will stay in v until atleast Ejag (v)+(F (v) —
d) > Elasi(v) + 58, and thus will not send a message with a
view > v until this time. Then none of the above messages
will be discarded at correct processes before this time, and
assuming the safety checks pass, the sequence of message
exchanges will lead to decisions by Ej,g(v) + 58.

It remains to show that the proposal leader(v) makes
in view v (line 5) will satisfy SafeProposal at all correct
processes (line 12). It is easy to show that the proposal sat-
isfies valid, so we now need to prove the last conjunct of
SafeProposal. This trivially holds if no correct process is
locked on a value when receiving the PROPOSE message
from the leader.

We now consider the case when some correct process is
locked on a value when receiving the PROPOSE message, and
let p; be a process that is locked on the highest view among
correct processes. Let x = p;.prepared_val be the value
locked and vy = p;.locked_view < v be the corresponding
view. Since p; locked x at vg, it must have previously received
messages PRECOMMITTED(vg, hash(x)) from a quorum of
processes (line 22), atleast f + 1 of which have to be correct.
The latter processes must have assembled a prepared certifi-
cate for the value x at view vg (line 16). By Proposition 8,
when each of these f + 1 correct processes enters view v, it
has prepared_view > vg and thus sends the corresponding
value and its prepared certificate in the NEWLEADER(v, .. .)
message to leader(v). The leader is guaranteed to receive at
least one of these messages before making a proposal, since
it only does this after receiving at least 2 f + 1 NEWLEADER
messages (line 5). Hence, the leader proposes a value x” with
a prepared certificate formed at some view v’ > vg no lower
than any view that a correct process is locked on when receiv-
ing the leader’s proposal. Furthermore, if v/ = v, then by
Proposition 4 we have that x” = x and x is the only value that
can be locked by a correct process at vg. Hence, the leader’s
proposal will satisfy SafeProposal at each correct process. O

Corollary 15 Consider an execution with an eventual mes-
sage delay bound 8, and assume that (1) holds for u = 74.
Then in this execution single-shot HotStuff satisfies Termina-
tion.

Similarly to Sect. 5.1, when the protocol is used with the
FASTSYNC synchronizer, we can quantify its latency in both
unfavorable scenarios (when starting before GST) and favor-
able scenarios (when starting after GST). The first corollary
of Theorem 5 below uses Property C and Proposition 2, and
the following two corollaries, Property B. Like in Sect. 5.2,
the last corollary takes into account the optimized execution
of view 1.

Corollary 16 Let v = GV(GST + p) + 1 and assume that
Stirst < GST, F(v) > 76 and Syy1 < GST + p. Then in

@ Springer

524

M. Bravo et al.

single-shot HotStuff all correct processes decide by GST +
p+ T (P +8)+78.

Corollary 17 Assume that Sgrt > GST and F (1) > 75. Then
in single-shot HotStuff all correct processes decide by Sias +
YL (Fk) + 8) + 65.

Corollary 18 Assume that Sqrqy > GST, F(1) > 66, and

leader(1) is correct. Then in single-shot HotStuff all correct
processes decide by Spast + 56.

Assume that F is such that (3) holds for U = 7A.
Then by Proposition 1 and Corollary 15 single-shot HotStuff
with FASTSYNC is live. Furthermore, under the conditions
of Corollaries 16 and 17 its latency is bounded by GST +
o+ (TA +8)(f + 1) + 76 if starting before GST, and by
Stast + (7A +68) f 4 64 if starting after GST. As expected, the
latency bounds for HotStuff are higher than those for PBFT
(Sect. 5.1) due to an extra message exchange.
Communication complexity To reach a decision in a single
view with a correct leader, the protocol requires exchanging
messages with O (n?) signatures. Using threshold signatures,
this communication complexity can be lowered to O (n)
[45]. To this end, instead of performing an all-to-all mes-
sage exchange processes can send partial signatures to the
leader, which aggregates them into a single threshold signa-
ture and distributes it to processes. Our results can be easily
adjusted to this variant of the protocol.

5.3 Two-phase HotStuff

We next consider a two-phase variant of HotStuff [45], which
processes the leader’s proposals in two phases instead of three
(Algorithm 4). To keep the same communication complexity
as the three-phase HotStuff, the two-phase version uses time-
outs not just for view synchronization, but also in the core
consensus protocol to delimit different stages of a single view.
This is similar to Tendermint [14] and Casper [15], which use
timeouts for the same purposes. By handling two-phase Hot-
Stuff we demonstrate that our synchronizer specification is
strong enough to deal with interactions between the timeouts
in different parts of the overall protocol. We also show that
the protocol requires only bounded space when used with our
FASTSYNC synchronizer.

In two-phase HotStuff, a process handles a proposal from
the leader in the same way as in the three-phase one, by send-
ing a PREPARED message (line 14 in Algorithm 4). Upon
assembling a prepared certificate for a value x (line 19), a
process stores the value in prepared_val and the certificate
in cert. In contrast to HotStuff, the process then imme-
diately becomes locked on the value, without exchanging
PRECOMMITTED messages; this is recorded by assign-
ing locked_view to the current view (the prepared_view
variable is thus unnecessary). The process then sends a

@ Springer

1 upon new_view(v)

2 curr_view < v;

voted <— FALSE;

stop_timer(timer_newleader);

if p; = leader(curr_view) then
start_timer(timer_newleader,

L Fp(curr_view));

A e W

7 | send (NEWLEADER(curr_view, locked_view,
prepared_val, cert)); to leader(curr_view);

8 when timer_newleader expired and received M =
{(NEWLEADER(v, view;, valj, certj)); | pj € P}

9 | pre: curr_view = v A p; = leader(v) A

(VYm € M.ValidNewLeader(im));

10 | if 3j.view; = max{viewy | px € P} # 0 then

1 ‘ send (PROPOSE(v, val;, cert;)); to all;

12 | else

13 L send (PROPOSE(v, myval(), 1)); to all;

14 when received (PROPOSE(v, x, _)); =m

15 | pre: curr_view = v A voted = FALSE A
SafeProposal(m);

16 | curr_val < x;

17 | voted <« TRUE;

18 | send (PREPARED(v, hash(curr_val))); to all;

19 when received {(PREPARED(v, h)); | pj € 0} =C
for a quorum Q

20 | pre: curr_view = v A voted = TRUE A
hash(curr_val) = h;

21 prepared_val < curr_val;

22 | locked_view <« curr_view;

23 cert < C;

24 | send (COMMITTED(v, h)); to all;

25 when received {{COMMITTED(v, h)); | pj € Q} for
a quorum Q
26 | pre: curr_view = locked_view = v A
hash(curr_val) = h;
27 | decide(curr_val);

Algorithm 4: Two-phase HotStuff at a process p;. All vari-
ables storing views are initially set to 0 and others to L. The
predicates ValidNewLeader and SafeProposal are defined
by (16) and (20).

COMMITTED message with the hash of the locked value,
and assembling a quorum of such messages causes the pro-
cess to decide on the value (line 25). Upon entering a new
view (line 1), a process sends to the leader a NEWLEADER
message with the information about the last value it prepared,
and therefore locked (line 7). The leader computes its pro-

Making Byzantine consensus live

525

posal from NEWLEADER messages in the same way as in
three-phase HotStuff (line 10).

The two-phase version of HotStuff satisfies Validity and
Agreement for the same reasons as the three-phase one: as we
noted in Sect. 5.2, the exchange of PRECOMMITTED mes-
sages, omitted from the current protocol, is only needed for
liveness, not safety. However, ensuring liveness in two-phase
HotStuff requires a different mechanism: since a correct pro-
cess p; gets locked on a value immediately after preparing it,
gathering prepared values from an arbitrary quorum of pro-
cesses is not enough for the leader to ensure it will make a
proposal that will pass the SafeProposal check at p;: the quo-
rum may well exclude this process. To solve this problem,
the leader waits before making a proposal so that eventually
in some view it will receive NEWLEADER messages from
all correct processes. This ensures the leader will eventually
make a proposal that will pass the SafeProposal checks at all
of them. In more detail, when a process enters a view where
it is the leader, it sets a special timer timer_newleader for
the duration determined by a function F,. The leader makes
a proposal only after the timer expires (line 8).

For the leader to make an acceptable proposal, the dura-
tion of timer_newleader needs to be long enough for all
NEWLEADER messages for this view from correct pro-
cesses to reach the leader. For the protocol to decide,
after timer_newleader expires, processes also need to stay
in the view long enough to complete the necessary mes-
sage exchanges. The following theorem characterizes these
requirements formally, again assuming d = 26 in Property 4.
Note that in the proof of the theorem we rely on the guarantees
about the timing of correct processes entering a view (Prop-
erty 4) to show that timer_newleader fulfills its intended
function.

Theorem 5 Consider an execution of two-phase HotStuff
with an eventual message delay bound 8, and let v >V
be a view such that F,(v) > 38, F(v) — F,(v) > 56 (so
that F(v) > 83) and leader(v) is correct. Then all correct
processes decide in view v by Eus(v) + Fp(v) + 36.

Proof Once a correct process enters v, it sends its

NEWLEADER message, so that leader(v) is guaranteed
to receive such messages from all correct processes by
Elast(v) + 8. By Property 4 of the synchronizer, the leader
enters v by Ejg(v) — 26 at the earliest. Since the leader
starts its timer_newleader when it enters v and F,(v) >
34, the leader is guaranteed to receive NEWLEADER mes-
sages from all correct processes before timer_newleader
expires. When timer_newleader expires, which happens no
later than Ejag(v) + F)(v), the leader will send its pro-
posal in a PROPOSE message, which correct processes will
receive by Ejag(v) + F),(v) + 8. If they deem the proposal
safe, it takes them at most 2§ to exchange the sequence
of PREPARED and COMMITTED messages leading to deci-

sions. By (2), all correct processes will stay in v until at least
Elast(v) + (F(v) —d) > Efyrst(v) + F)p(v) + 38. Then none
of the above messages will be discarded at correct processes
before this time, and assuming the safety checks pass, the
sequence of message exchanges will lead to decisions by
Enast (v) + Fp(v) + 38.

It remains to show that the proposal leader(v) makes
in view v (line 8) will satisfy SafeProposal at all correct
processes (line 14). It is easy to show that this proposal sat-
isfies valid, so we now need to prove the last conjunct of
SafeProposal. This trivially holds if no correct process is
locked on a value when receiving the PROPOSE message
from the leader.

We now consider the case when some correct process is
locked on a value when receiving the PROPOSE message, and
let p; be a process that is locked on the highest view among
correct processes. Let x = p;.prepared_val be the value
locked and vy = p;.locked_view < v be the corresponding
view. Since leader(v) receives all of the NEWLEADER mes-
sages sent by correct processes before making its proposal,
it proposes a value x” with a prepared certificate formed at
some view v’ > vg. Also, if v/ = vg, then by Proposition 4,
x' = x and x is the only value that can be locked by a cor-
rect process at vg. Hence, the leader’s proposal will satisfy
SafeProposal at each correct process. O

Corollary 19 Consider an execution with an eventual mes-
sage delay bound 8§, and assume that F is such that (1) holds
respectively for F and u = 85, and for F — Fj, and u = 56.
Then in this execution two-phase HotStuff satisfies Termina-
tion.

Thus, one way to ensure the liveness of two-phase Hot-
Stuff is to pick functions F' and F, such that both of
these, as well as the difference between them, grow with-
out bound. This can be satisfied, e.g., by letting F(v) = 2v
and F,(v) = v. By Proposition 1, another way to ensure
liveness is to pick F such that (3) holds for U = 8A, and F),
is such that the same property holds for U = 3 A; this option
prevents the timeouts from growing unboundedly.

Latency The following corollaries of Theorem 4 quantify the
latency of two-phase HotStuff with the with the FASTSYNC
synchronizer in different scenarios. The first corollary uses
Property C and Proposition 2, and the following two corol-
laries, Property B. Like in Sect. 5.1, the last corollary takes
into account the optimized execution of view 1.

Corollary 20 Let v = GV(GST + p) + 1 and assume that
Sfrst < GST, Syy1 < GST + p, Fp(v) = 36 and F(v) —
Fy(v) > 568. Then in two-phase HotStuff all correct pro-
cesses decide by GST + p + ZZI{__ll(F(k) +8)+ Fp(v +
)+ 56

@ Springer

526

M. Bravo et al.

Corollary 21 Assume that Srse > GST, F,(1) > 36 and
F(1) — Fy(1) > 56. Then in two-phase HotStuff all correct

processes decide by Siast +Z}{=1 (F(k)+8)+F,(f+1)+44.

Corollary 22 Assume that Sgrse > GST, F(1) > 58 and
leader(1) is correct. Then in two-phase HotStuff all correct
processes decide by Spast + 49.

Assume that F is such that (3) holds for U = 8A, and F),
is such that the same property holds for U = 3A; then as
we noted above, two-phase HotStuff with FASTSYNC is live.
Furthermore, under the conditions of Corollaries 20 and 21
its latency is bounded by GST+p+(8A+8)(f+1)+3A+56
if starting before GST, and by Sjas + (8A +68) f +3A +46
if starting after GST.

The latency bounds we established allow us to compare
the two-phase version of HotStuff with the its three-phase
version (Sect. 5.2) and PBFT (Sect. 5.1). In the ideal case
when the network is synchronous, the timeouts are set to the
minimal values ensuring liveness, and the leader of view 1
is correct, two-phase HotStuff has the same latency as PBFT
and alower latency than three-phase HotStuff: 46 in Corollar-
ies 13 and 22 vs 5§ in Corollary 18. When the initial leader is
faulty, all protocols incur the overhead of switching through
several views until they encounter a correct leader (Corollar-
ies 12, 17 and 21). In this case, the latency of deciding in the
first view with a correct leader is at most 6§ for three-phase
HotStuff, 56 for PBFT and F,(f + 1) + 4§ for two-phase
one. In the worst case the latency of two-phase HotStuff is
Fp(f + 1) + 48 < 3A + 44. This is much higher than the
latency of the other protocols, since in practice A gives only
a conservative estimate of the message delay. But even when
Fy(f + 1) is the optimal 34, the two-phase HotStuff bound
yields 76—a higher latency than for three-phase HotStuff
and PBFT. The latency bounds for the case of starting before
GST relate similarly (Corollaries 11, 16 and 20). The higher
latency of two-phase HotStuff in these cases are caused by
the inclusion of the timeout F),(f + 1), which reflects the
lack of “optimistic responsiveness” of this protocol [45].

5.4 Summary and additional case studies

We have shown that our synchronizer specification is
strong enough to guarantee liveness under partial synchrony
for three Byzantine consensus protocols using different
approaches:

— In PBFT the leader proposals go through two phases of
message exchanges. Both safety and liveness are ensured
by the leader sending supporting information together
with its proposal that allows processes to verify the pro-
posal’s correctness.

@ Springer

— HotStufflowers the communication complexity by reduc-
ing the amount of supporting information the leader has to
send with its proposal. Achieving liveness then requires
an additional message exchange to ensure that the leader
has an up-to-date information when making its proposal.

— Two-phase HotStuff eliminates the extra message
exchange of HotStuff and instead ensures liveness using
a timeout within a view: the leader waits until it receives
the information from all correct processes before making
its proposal.

To further demonstrate the wide applicability of our syn-
chronizer specification, we have also used it to prove the
correctness and analyze the latency of single-shot versions
of SBFT [31] and Tendermint [14]. We defer the details to
[12, §B]. SBFT is a recent improvement of PBFT that adds
a fast path for cases when all processes are correct, and our
analysis quantifies the latency of both paths. Tendermint is
similar to two-phase HotStuff; in particular, it also processes
leader proposals in two phases and uses timeouts both for
view synchronization and to delimit different stages of a sin-
gle view. However, the protocol never sends messages with
certificates, and thus, like FASTSYNC, does not need digital
signatures. Tendermint integrates the functionality required
for view synchronization with the core consensus protocol,
breaking its control flow in multiple places. We consider its
variant that delegates this functionality to the synchronizer,
thus simplifying the protocol. Our analysis of the resulting
protocol is similar to the one of two-phase HotStuff in Sect.
5.3. Apart from deriving latency bounds for the protocol,
our analysis exploits the synchronizer specification to give a
proof of its liveness that is more rigorous than the existing
ones [6,14], which lacked a detailed correctness argument for
the view synchronization mechanism used in the protocol.

6 Related work

Most Byzantine consensus protocols are based on the concept
of views (aka rounds), and thus include a mechanism for view
synchronization. This mechanism is typically integrated with
the core consensus protocol, which complicates the design
[14,19,31]. Subtle view synchronization mechanisms have
often come without a proof of liveness (e.g., PBFT [18])
or had liveness bugs (e.g., Tendermint [5] and Casper [35]).
Furthermore, liveness proofs have not usually given concrete
bounds on the latency of reaching a decision (exceptions are
[4,39]).

Several papers suggested separating the functionality of
view synchronization into a distinct component, including
the seminal DLS paper on consensus under partial syn-
chrony [27] and its more modern implementation [25]. DLS
specified the guarantees provided by view synchronization

Making Byzantine consensus live

527

indirectly, by proving that its implementation simulated
an abstract computational model with a built-in notion of
rounds. The model guarantees that, eventually, a process in
around r receives all messages sent by correct processes in
r. This property is needlessly strong for Byzantine consen-
sus, since protocols such as PBFT (Sect. 5.1) and HotStuff
(Sect. 5.2) can make progress in a given view if they receive
messages from any quorum; executing such protocols in the
DLS model would thus undermine their optimistic respon-
siveness [45]. DLS implemented rounds using a distributed
protocol that synchronizes process-local clocks obtained by
counting state transitions of each process. This protocol has
to synchronize local clocks on every step of the consensus
algorithm, which results in prohibitive communication over-
heads and makes this solution impractical.

Abraham et al. [1] build upon ideas from fault-tolerant
clock synchronization [24,43] to implement view synchro-
nization assuming that processes have access to hardware
clocks with bounded drift. But this work only gives a solu-
tion for a synchronous system. Our FASTSYNC synchronizer
also assumes hardware clocks but removes the assumption
of bounded drift before GST, thus making them compatible
with partial synchrony. We note that, although the problems
of clock and view synchronization are different, they are
closely related at the algorithmic level. We therefore believe
that our view synchronization techniques can in the future
be adapted to obtain an efficient partially synchronous clock
synchronization protocol.

The HotStuff protocol [45] delegated the functionality of
view synchronization to a separate component, called a pace-
maker. But it did not provide a formal specification of this
component or a practical implementation. To address this,
Naor et al. have recently formalized view synchronization as
a separate problem [41,42]. Unlike us, they did not provide
a comprehensive study of the applicability of their speci-
fications to a wide range of modern Byzantine consensus
protocols. In particular, their specifications do not expose
bounds on how quickly processes switch views (Property 4
in Fig. 2), which are necessary for protocols such as two-
phase HotStuff (Sect. 5.3) and Tendermint (Sect. 5.4).

Naor et al. also proposed synchronizer implementations in
a simplified variant of partial synchrony where § is known a
priori, and messages sent before GST are guaranteed to arrive
by GST+46 [41,42]. These implementations focus on optimiz-
ing communication complexity, making it linear in best-case
scenarios [41] or in expectation [42]. They achieve linearity
by relying on digital signatures (more precisely, threshold
signatures), which FASTSYNC eschews. Unlike FASTSYNC,
they also require unbounded space (for the reasons explained
in Sect. 3.1). Finally, we give exact latency bounds for
FASTSYNC under both favorable and unfavorable conditions
whereas [41,42] only provide expected latency analysis. It
is interesting to investigate whether the benefits of the two

approaches can be combined to tolerate message loss before
GST with both bounded space and alow communication com-
plexity.

DiemBFT [44] extends HotStuff with a view synchro-
nization mechanism, integrated with the core protocol; the
protocol assumes reliable channels. DiemBFT is optimized
to solve repeated consensus, whereas in this paper we focus
on single-shot one.

The original idea of using synchronizers to simulate
a round-based synchronous system on top of an asyn-
chronous one is due to Awerbuch [8]. This work however,
did not consider failures. Augmented round models to sys-
tematically study properties of distributed consensus under
various failure and environment assumptions were proposed
in [10,22,29,36]. These papers however, do not deal with
implementing the proposed models under partial synchrony.
Upper bounds for deciding after GST in round-based crash
fault-tolerant consensus algorithms were studied in [3,26].
While we derive similar bounds for Byzantine failures, it
remains open if these are optimal or can be further improved.
Failure detectors [20,21], which abstract away the timeliness
guarantees of the environment, have been extensively used
for developing and analyzing consensus algorithms [21,40]
in the presence of benign failures. However, since capturing
all possible faulty behaviors is algorithm-specific, the classi-
cal notion of a failure detector does not naturally generalize to
Byzantine settings. As a result, the existing work on Byzan-
tine failure detectors either limits the types of failures being
addressed (e.g., [38]), or focuses on other means (such as
accountability [32]) to mitigate faulty behavior.

The generalized partial synchrony model stipulating the
existence of a fixed but unknown post-GST message delay
bound § is due to [21]. The time complexity measure com-
bining § with an a priori known conservative message delay
bound A > § was first introduced in [33,34]. This work,
however, assumed a stronger variant of partial synchrony
where § is unknown but holds throughout the entire execu-
tion, rather than eventually [27]. We adopt a similar metric
for our latency analysis, but only require that the two bounds
6 and A hold after GST. To the best of our knowledge, our
analysis of Byzantine consensus latency is the first one in
this model.

7 Conclusion

We have proposed a modular approach for ensuring liveness
in Byzantine consensus under a general variant of the par-
tial synchrony model, which permits unlimited message loss
and out-of-sync clocks before GST, and does not stipulate
the knowledge of communication delay bounds after GST. To
this end, we have proposed a specification of a view synchro-
nizer that is strong enough to ensure liveness in a number of

@ Springer

528

M. Bravo et al.

well-known Byzantine consensus algorithms. We have also
shown that this specification is implementable under partial
synchrony in bounded space, despite message loss before
GST. We believe that our synchronizer abstraction provides
amuch needed tool for facilitating the design of partially syn-
chronous Byzantine consensus protocols, and for enabling a
systematic analysis of their performance guarantees. In our
current work we are generalizing the results presented here
from (single-shot) Byzantine consensus to Byzantine state-
machine replication [13].

Acknowledgements Alexey Gotsman was supported by a Starting
Grant RACCOON from the European Research Council.

Appendix A: General latency bounds

We now augment the set of properties in Fig. 2 with two
additional latency bounds given by Properties D and E
in Fig. 3. These two properties are analogous to Proper-
ties B and C, but handle the cases when F(1) < 2§ and
F(GV(GST 4+ p) + 1) < 26, respectively. We then prove
Theorem 6, which generalizes Theorem 1 to establish that
FASTSYNC also satisfies Properties D and E in Fig. 3 in addi-
tion to those given in Fig. 2.

The resulting set of properties can be used to derive latency
bounds for specific instantiations of the timeout function F.
We demonstrate how to do this for an exponentially growing
timeout function, which is a common choice in practice (e.g.,
[19]). Specifically, we prove that if Vv > 0. F (v) = 2V, then
all correct processes are guaranteed to enter a synchronized
view within O (§ 1g 8) after Sjug if the protocol is started after
GST (Theorem 7); and within O (max{§1gd, A}) after GST +
p, otherwise (Corollary 23). The latter guarantees that the
latency of view synchronization is bounded after GST.

Theorem 6 Consider an execution with an eventual message
delay bound 8, and assume that (1) holds for u = 26. Then
there exists a view V such that in this execution FASTSYNC
satisfies all the properties in Figs. 2 and 3 for d = 26.

To prove the Theorem 6, we first prove the following
proposition, which is an easy consequence of the definition
of GV.

Proposition 9 For all views v, if a correct process enters v,
then GV (Egs(v)) = v.

Proof By definition of GV, GV(Egst(v)) > v. Assume by
contradiction that GV(Efs(v)) > v. Thus, there exists a
correctprocess thatenters aview v’ > vattimet’ < Ef (V).
By Lemma 1, there exists atime ¢ < ¢’ such that some correct
process enters v at 7. Thus, Eg(v) <t < t' < Egirgt(v),
which is a contradiction. m]

@ Springer

The next lemma generalizes Corollary 7 to bound the
laterﬂ of entering an arbitrary view > GV(z) + 1 for all
t > GST and GV(¢) > 0.

Lemma 17 Lett > GST and suppose that GV(t) > 0. If for
all k > 1, some correct process enters every view GV (t) +k,
then Eia(GV(1) + k) < 1 4+ Y ¥20 F(GV(1) + i) 4 3k8.

Proof By induction on & > 1. Since some correct process
enters GV(¢) + 1 and GV(¢) > 0, Corollary 7 implies that
Elast(GV(2) + 1) <t + F(GV(¢)) + 35. Thus, the required
holds for the base case of k = 1.

For the inductive step, assume that the required holds for
k =1 where ! > 1, and consider k = [4 1. Suppose that

t > GST AGV(t) > 0.

Then, by the induction hypothesis,

-1
E(GV(t) +1) <t+ Y F(GV(r) +1) + 315. 1)
i=0

Since some correct process enters GV (¢) +1, Efirs (GV(2) +1)
is defined. Thus, by Lemma 9, we have

GV(Efst(GV() +1)) =GV () +1 > GV(r) > 0.

Since GV is non-decreasing, the above implies that
Egirst(GV(t) +1) > t > GST.

Thus, by Corollary 7,

Elag(GV(@) +1+1)
< Efirst (GV(2) + 1) + F(GV(1) +1) + 38
< Eg(GV(@) + D + F(GV(@) + 1) + 36,

which by (21), implies

Erast(GV(1) + 1+ 1)

< Eps(GV(1) + 1) + F(GV(1) + 1) + 38
-1

<t+ Y F(GV(r) +1) 4318 + F(GV(t) + 1) + 35
i=0
(+1)—1

=i+ Y FGV@) +i)+3(0+ 13,

i=0

as required. O

Proof of Theorem 6. Consider an execution of FASTSYNC and
let § be the eventual message delay bound in this execution.

Making Byzantine consensus live

529

D. Shr > GST A F(1) < 26 —
VY =min{v | F(v) > 26} A
Bt (V) < Siast + 205" F(6) + (3V — 2)8

E. Shrst < GST A Sf+1 <GST+pA
F(GV(GST +p)+1) < 26 =
VY =min{v | F(v) > 26} A
Bt (V) < GST + p+ Y77 F(i) +3V6

Fig.3 Additional FASTSYNC latency bounds

We first show how to select a view) such that (9) holds. We
consider the following cases. First, if

Stirst = GST A F(1) > 24, (22)

then we let V = 1. Since Spirt > GST, the definition of GST
implies GST = Sy, and therefore, (9) holds. Second, if

Serst < GST A Spp1 < GST+p A
F(GV(GST + p) + 1) > 28, (23)

then we let ViGV(GST ﬂ)) + 1. Since Sfirs¢ < GST, the
definition of GST implies GST = GST + p, and therefore, (9)
holds. Third, if

Stirst = GST A F(1) < 26, (24)

then we let V = min{v | F(v) > 26}. Since Sfs¢ > GST, the
definition of GST implies GST = Shirgt. By the monotonicity
of F, F(1) < 26 implies that V > 1 = GV(Sgst) + 1.
Thus, (9) holds. Fourth, if

Stirst < GST A Spp1 < GST+p A
F(GV(GST + p) + 1) < 28, (25)

then we let V = min{v | F(v) > 2§}. Since Sgrt < GST,
the definition of GST implies GST = GST + p. By the
monotonicity of F, F(GV(GST + p) + 1) < 2§ implies
that V > GV(GST + p) + 1, and therefore, (9) holds. In
all other cases, (1) for u = 28 implies that F(v') > 28
for some view v’, and therefore, by the monotonicity of F,
VY = max{v/, GV(@H— 1} satisfies (9). Thus, by Lemma 10,
Properties 1-5 in Fig. 2 hold for V chosen as above and
d = 26.

To prove Property A, fix v > V. By Property 3, all correct
processes enter v. By (9),v >V > GV(GST) + 1. Given that
GV is non-decreasing, this implies that no correct process can
enter v until after GST. Thus, Eat (V) > Efirst (V) > GST, and
by Corollary 4 we get Ejast(v + 1) < Enast(v) + F(v) + 6,
validating Property A. Next, by our choice of V, (22) implies

YV = 1, and (23) implies V = GV(GST + p) + 1. Thus,
Property B follows from Corollary 6, and Property C from
Corollary 7.

We now prove Property D in Fig. 3. By our choice of
V, (24) implies that V = min{v | F(v) > 2§}. By Lemma 9,
GV (Efrst (1)) = 1. Since F(1) < 28, the monotonicity of F
implies V > 1, and therefore,

Ik >1.V=1+k. (26)

Instantiating Lemma 17 with r = Egrg(1) > Shrge = GST
and GV(Egs (1)) = 1 > 0, we get

k—1
Enasi(1+ k) < Egirt(1) + Y F(1 +1) + 3k,
i=0
which by (26) implies
V-2
EasV) < Egrg(1) + Y F(1+1) +3(V—1)8
i=0
V-2
< Ens(1)+ Y F(14i)+3(V = 1)s.
i=0

Hence, by Corollary 6, we have

V-2
EnstOV) < St +8+) Fi +1) +3(V = 1)
i=0
V-1
= Siast + Y F(i) + 3V —2)3, 27)

i=1

as required.

Lastly, we prove Property E in Fig. 3. By our choice of
V, (25) implies that V = min{v | F(v) > 24}. By Lemma 9,
GV (Efirst (GV(GST 4 p) + 1)) = GV(GST + p) + 1. Since
F(GV(GST + p) + 1) < 24, the monotonicity of F implies
V > GV(GST + p) + 1, and therefore,

dk>1.V=GV(GST+p) + 1 +k. (28)

Instantiating Leﬂna 17 witht = Egt (GV(GST+p)+1) >
GST 4+ p = GST and GV(Eft(GV(GST + p) + 1)) =
GV(GST 4+ p) + 1 > 0, we get

Elast(GV(GST + p) 4+ 1 + k)
=< Eﬁrst(GV(GST +p)+1)
k—1
+ Y F(GV(GST + p) + 1+ i) + 3k8,
i=0

@ Springer

530

M. Bravo et al.

which by (28) implies

East (V) < Efirst (GV(GST + p) + 1)
V_GV(GST+p)—2
+
i=0
+3V—-GV(GST+p) —1)§ <
Ens(GV(GST+p) + 1)
V—-GV(GST+p)—2
X
i=0
+ 3(V = GV(GST + p) — 1)s.

F(GV(GST + p) + 1 +1)

F(GV(GST +p) + 1 +1i)

Hence, by Corollary 7, we have

Elast (V) < Epast(GV(GST + p) + 1)
V—GV(GST+p)—2
+ >
i=0
+3(V = GV(GST + p) — 1)$
< GST + p + F(GV(GST + p)) + 368
V—GV(GST+p)—2
+
i=0
+3(V = GV(GST + p) — 1)$
V—-GV(GST+p)—1
=GST+p + >
i=0
+3(V — GV(GST + p))8
V-1
<GST+p+ Y F(i)+3Vs,
i=0

F(GV(GST + p) + 1 +1)

F(GV(GST + p) + 1 +1)

F(GV(GST + p) + i)

as required. O

‘We now use Theorem 6 to derive closed-form expressions
for view V and the latency of reaching it after GST assuming
an exponentially growing timeout function F(v) = 2 for
all v > 0. Below we show that if the protocol starts after
GST (Sgrst > GST), then all correct processes are guaran-
teed to synchronize in the view) = max{[lg 287, 1}, which
they enter within O (8 1g §) of the last correct process calling
start.

Theorem 7 Consider an execution of with an eventual mes-
sage delay bound 8, and assume that (1) holds for u = 24,
Sirst = GST, and Vv > 0. F (v) = 2V. Then in this execution
FASTSYNC satisfies all the properties in Figs. 2 and 3 for
V = max{[lg 287, 1} and d = 25. Furthermore, it holds:

Elast(V) < Stast + 36128 + 85 = Spast + O (3 1g).

@ Springer

Proof We consider two cases. Suppose first that F (1) > 24.
Then, by Theorem 6, all the properties in Figs. 2 and 3 hold
for V= 1and d = 24, and by Property B,

Elast(v) = Slast + 4. (29)

Since F(1) > 26, by our choice of the timeout function,
21 > 268. Hence, Ig25 < 1, and therefore, [1g257 € {0, 1}.
Thus, we get V = 1 = max{[lg24§7, 1}, as needed.

Suppose next that F (1) < 2§. Then, by Theorem 6, all the
properties in Figs. 2 and 3 hold for V = min{v | F(v) > 2§}
and d = 2§, and by Property D,

V-1
EagV) < St + Y F(i) + 3V = 2)8. (30)
i=1

Since F(1) < 26,V > 1, and therefore,

V=min{v | 2" >2§ Av > 1}

=min{v | v > 1g25 A v > 1},
which implies
V = max{[lg 28], 1}, 3D

as needed.
Finally, plugging (31) into (30) and using the fact that
[g267 <1g26 + 1, we get

1g28
Elast(V) < Siast + Z 2+ (31g26 +1)s
i=1
=< Stast + 38128 + 83 = Siast + O (31g6). (32)

Thus, from (29) and (32), we get
Epsc(V) <351g8 + 85 = Spast + O(51g9),

as required. O

We now show that if some correct process calls start
before GST (Sgirst < GST), then all correct processes are guar-
anteed to synchronize in the view V = max{[1g 2§17, GV(GST)
+p + 1}, which they enter within O (max{§1g3d, F(V — 1))
after GST + p.

Theorem 8 Consider an execution of with an eventual mes-
sage delay bound §, and assume that (1) holds for u = 24,
Stirst < GST, andVv > 0. F(v) = 2. Then in this execution
FASTSYNC satisfies all the properties in Figs. 2 and 3 for
V = max{[lg 28], GV(GST + p) + 1} and d = 26. Further-
more, it holds:

Elast (V) < GST + p +max{381gs, F(V— 1)} + 108

Making Byzantine consensus live

531

= GST + p + O(max{81gs, F(V — D).

Proof We consider two cases. Suppose first that F(GV(GST+
p)+1) > 25. Then, by Theorem 6, all the properties in Figs. 2
and 3 hold for V = GV(GST + p) + 1 and d = 24, and by
Property C,

Elst(V) <GST+p+ F(V—1) + 36. (33)

Since F(GV(GST+p)+1) > 28, by our choice of the timeout
function, 26V(GST+A+1 > 25 Hence, 1g28 < GV(GST+p)+
1, and therefore, [1g28] < GV(GST + p) + 1. Thus, we get
YV = GV(GST + p) + 1 = max{[lg28], GV(GST + p) + 1},
as needed.

Suppose next that F(GV(GST + p) + 1) < 28. Then,
by Theorem 6, all the properties in Figs. 2 and 3 hold for
YV =min{v | F(v) > 248} and d = 2§, and by Property E,

V-1
Ens(V) <GST+p+) F(i) +3V5. (34)
i=0

Since F(GV(GST + p) +1) < 26,V > GV(GST + p) + 1,
and therefore,

Y =min{v | 2" > 26 Av > GV(GST + p) + 1}
=min{v | v > 1g25§ A v > GV(GST + p) + 1},

and therefore,
V = max{[lg 287, GV(GST + p) + 1}, (33)

as needed.
Finally, plugging (35) into (34) and using the fact that
[lg28] <1g28 4+ 1, we get
1225
Enst(V) <GST+p+ Y 2/ +3(1g28 + 1)8
i=1
<GST+ p +3581gd + 105
=GST+p+ 0(S1gd). (36)

Thus, from (29) and (36), and since F (V—1) can be arbitrarily
large, we get

Elast (V) < GST + p +max{381gs, F(V— 1)} + 108
=GST+ p+ O(max{dlgs, F(V—1}),
as required. O

By Proposition 1, we can apply Theorem 8 if (3) holds for
U = 2A.Then F(V—1) < 2A, which implies the following:

Corollary 23 Suppose that (3) holds for U = 2A, and
Yv > 0.F(v) = 2V Then, every execution of FAST-
SYNC with the eventual message delay & such that Sgrgt <
GST satisfies all the properties in Figs. 2 and 3 for V =
max{[lg 287, GV(GST + p) + 1} and d = 24, and it holds:

Enst(V) < GST + p + max{381g 8, 2A} + 108
= GST + p + O(max{§1g s, A}).

References

1. Abraham, I., Devadas, S., Dolev, D., Nayak, K., Ren, L.:
Synchronous Byzantine agreement with expected O(1) rounds,
expected O (n?) communication, and optimal resilience. In: Con-
ference on Financial Cryptography and Data Security (FC) (2019)

2. Abraham, I., Gueta, G., Malkhi, D., Alvisi, L., Kotla, R.,
Martin, J.: Revisiting fast practical Byzantine fault tolerance.
arXiv:1712.01367 (2017)

3. Alistarh, D., Gilbert, S., Guerraoui, R., Travers, C.: How to solve
consensus in the smallest window of synchrony. In: Symposium on
Distributed Computing (DISC) (2008)

4. Amir, Y., Coan, B.A., Kirsch, J., Lane, J.: Prime: Byzantine repli-
cation under attack. IEEE Trans. Dependable Secure Comput. 8(4),
564-577 (2011)

5. Amoussou-Guenou, Y., Pozzo, A. D., Potop-Butucaru, M., Tucci-
Piergiovanni, S.: Correctness of Tendermint-core blockchains. In:
Conference on Principles of Distributed Systems (OPODIS) (2018)

6. Amoussou-Guenou, Y., Pozzo, A. D., Potop-Butucaru, M., Tucci-
Piergiovanni, S.: Dissecting tendermint. In: Conference on Net-
worked Systems (NETYS) (2019)

7. Androulaki, E., Barger, A., Bortnikov, V., Cachin, C., Christidis,
K., Caro, A.D., Enyeart, D., Ferris, C., Laventman, G., Manevich,
Y., Muralidharan, S., Murthy, C., Nguyen, B., Sethi, M., Singh, G.,
Smith, K., Sorniotti, A., Stathakopoulou, C., Vukolic, M., Cocco,
S. W., Yellick, J.: Hyperledger fabric: a distributed operating sys-
tem for permissioned blockchains. In: European Conference on
Computer Systems (EuroSys) (2018)

8. Awerbuch, B.: Complexity of network synchronization. J. ACM
32(4), 804-823 (1985)

9. Bazzi, R. A., Ding, Y.: Non-skipping timestamps for Byzantine
data storage systems. In: Symposium on Distributed Computing
(DISC) (2004)

10. Biely, M., Widder, J., Charron-Bost, B., Gaillard, A., Hutle, M.,
Schiper,A.: Tolerating corrupted communication. In: Symposium
on Principles of Distributed Computing (PODC) (2007)

11. Bracha, G.: Asynchronous Byzantine agreement protocols. Inf.
Comput. 75(2), 130-143 (1987)

12. Bravo, M., Chockler, G., Gotsman, A.: Making Byzantine consen-
sus live (extended version). CoRR arXiv:2008.04167 (2020)

13. Bravo, M., Chockler, G., Gotsman, A.: Liveness and latency
of Byzantine state-machine replication. In: Symposium on Dis-
tributed Computing (DISC) (2022)

14. Buchman, E., Kwon, J., Milosevic,Z.: The latest gossip on BFT
consensus. arXiv:1807.04938 (2018)

15. Buterin, V., Griffith, V.: Casper the friendly finality gadget.
arXiv:1710.09437 (2017)

16. Cachin, C., Kursawe, K., Petzold, F., Shoup, V.: Secure and efficient
asynchronous broadcast protocols. In: International Cryptology
Conference (CRYPTO) (2001)

@ Springer

http://arxiv.org/abs/1712.01367
http://arxiv.org/abs/2008.04167
http://arxiv.org/abs/1807.04938
http://arxiv.org/abs/1710.09437

532 M. Bravo et al.
17. Cachin,C., Vukolic, M.: Blockchain consensus protocols in the wild 35. Incorrect by construction-CBC Casper isn’t live. https:/
(keynote talk). In: Symposium on Distributed Computing (DISC) derekhsorensen.com/docs/CBC_Casper_Flaw.pdf
(2017) 36. Keidar, I., Shraer, A.: Timeliness, failure-detectors, and consensus
18. Castro, M.: Practical Byzantine fault tolerance. PhD thesis, Mas- performance. In: Symposium on Principles of Distributed Comput-
sachusetts Institute of Technology (2001) ing (PODC) (2006)
19. Castro, M., Liskov, B.: Practical Byzantine fault tolerance. In: Sym- 37. Lamport, L.: The part-time parliament. ACM Trans. Comput. Syst.
posium on Operating Systems Design and Implementation (OSDI) 16(2), 133-169 (1998)
(1999) 38. Malkhi, D., Reiter, M.: Unreliable intrusion detection in distributed
20. Chandra, T.D., Hadzilacos, V., Toueg, S.: The weakest failure computations. In: Workshop on Computer Security Foundations
detector for solving consensus. J. ACM 43(4), 685-722 (1996) (CSFW) (1997)
21. Chandra, T.D., Toueg, S.: Unreliable failure detectors for reliable 39. Milosevic, Z., Biely, M., Schiper, A.: Bounded delay in Byzantine-
distributed systems. J. ACM 43(2), 225-267 (1996) tolerant state machine replication. In: Symposium on Reliable
22. Charron-Bost, B., Schiper, A.: The heard-of model: computing in Distributed Systems (SRDS) (2013)
distributed systems with benign faults. Distrib. Comput. 22(1), 49— 40. Mostéfaoui, A., Raynal, M.: Solving consensus using Chandra-
71 (2009) Toueg’s unreliable failure detectors: a general quorum-based
23. Crain, T., Gramoli, V., Larrea, M., Raynal, M.: DBFT: efficient approach. In: Symposium on Distributed Computing (DISC)
leaderless Byzantine consensus and its application to blockchains. (1999)
In: Symposium on Network Computing and Applications (NCA) 41. Naor, O., Baudet, M., Malkhi, D., Spiegelman, A.: Cogsworth:
(2018) Byzantine view synchronization. In: Cryptoeconomics Systems
24. Dolev, D., Halpern, J.Y., Simons, B., Strong, R.: Dynamic fault- Conference (CES) (2020)
tolerant clock synchronization. J. ACM 42(1), 143-185 (1995) 42. Naor, O., Keidar, 1.: Expected linear round synchronization: the
25. Dragoi, C., Widder, J., Zufferey, D.: Programming at the edge of missing link for linear Byzantine SMR. In: Symposium on Dis-
synchrony. Proc. ACM Program. Lang. 4(OOPSLA), 213:1-213:30 tributed Computing (DISC) (2020)
(2020) 43. Simons, B., Welch, J., Lynch, N.: An overview of clock synchro-
26. Dutta, P., Guerraoui, R., Lamport, L.: How fast can eventual syn- nization. In: Fault-Tolerant Distributed Computing (1986)
chrony lead to consensus? In: Conference on Dependable Systems 44. State machine replication in the Diem blockchain. https://
and Networks (DSN) (2005) developers.diem.com/papers/diem-consensus-state-machine-
27. Dwork, C., Lynch, N.A., Stockmeyer, L.J.: Consensus in the pres- replication-in-the-diem-blockchain/2021-08-17.pdf
ence of partial synchrony. J. ACM 35(2), 288-323 (1988) 45. Yin, M., Malkhi, D., Reiter, M. K., Golan-Gueta, G., Abraham,
28. Fischer, M.J., Lynch, N.A., Paterson, M.: Impossibility of dis- LI.: HotStuff: BFT consensus with linearity and responsiveness.
tributed consensus with one faulty process. J. ACM 32(2), 374-382 In: Symposium on Principles of Distributed Computing (PODC)
(1985) (2019)
29. Gafni, E.: Round-by-round fault detectors: unifying synchrony and
asynchrony. In: Symposium on Principles of Distributed Comput-
30, Gilad, Y, Hemo, R., Micali, 5. Viachos, G Zeldovih, N PUblsher'sNote Springer Natureremains neutal wit regard o jris-
. . . dictional claims in published maps and institutional affiliations.
Algorand: scaling Byzantine agreements for cryptocurrencies. In:
Symposium on Operating Systems Principles (SOSP.) (2017.) Springer Nature or its licensor holds exclusive rights to this article
31. Golan-Gueta, G., Abraham, 1., Grossman, S., Malkhi, D., Pinkas,
. . . . under a publishing agreement with the author(s) or other rightsholder(s);
B., Reiter, M.K., Seredinschi, D., Tamir, O., Tomescu, A.: SBFT: . .S . . . R
. . author self-archiving of the accepted manuscript version of this article
a scalable and decentralized trust infrastructure. In: Conference on is solely governed by the terms of such publishing agreement and appli-
Dependable Systems and Networks (DSN) (2019) cable law
32. Haeberlen, A., Kuznetsov, P.: The fault detection problem. In: Con- ’
ference on Principles of Distributed Systems (OPODIS) (2009)
33. Herzberg, A., Kutten, S.: Fast isolation of arbitrary forwarding
faults. In: Symposium on Principles of Distributed Computing
(PODC) (1989)
34. Herzberg, A., Kutten, S.: Early detection of message forwarding

faults. SIAM J. Comput. 30(4), 1169-1196 (2000)

@ Springer

https://derekhsorensen.com/docs/CBC_Casper_Flaw.pdf
https://derekhsorensen.com/docs/CBC_Casper_Flaw.pdf
https://developers.diem.com/papers/diem-consensus-state-machine-replication-in-the-diem-blockchain/2021-08-17.pdf
https://developers.diem.com/papers/diem-consensus-state-machine-replication-in-the-diem-blockchain/2021-08-17.pdf
https://developers.diem.com/papers/diem-consensus-state-machine-replication-in-the-diem-blockchain/2021-08-17.pdf

	Making Byzantine consensus live
	Abstract
	1 Introduction
	2 System model
	3 Synchronizer specification and implementation
	3.1 FastSync: a bounded-space synchronizer for partial synchrony
	3.2 Correctness and latency bounds of FastSync

	4 Proof of FastSync correctness and latency bounds
	4.1 Proof of FastSync correctness
	4.2 Proof of FastSync latency bounds

	5 Liveness and latency of Byzantine consensus protocols
	5.1 Single-shot PBFT
	5.2 Single-shot HotStuff
	5.3 Two-phase HotStuff
	5.4 Summary and additional case studies

	6 Related work
	7 Conclusion
	Acknowledgements
	Appendix A: General latency bounds
	References

