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Abstract
In modern operating systems and programming languages adapted to multicore computer architectures, parallelism is
abstracted by the notion of execution threads. Multi-threaded systems have two major specificities: on the one part, new
threads can be created dynamically at runtime, so there is no bound on the number of threads participating in long-running
executions. On the other part, threads have access to a memory allocation mechanism that cannot allocate infinite arrays.
These specificities make it challenging to adapt some algorithms to multi-threaded systems, in particular those that need to
assign one shared register per process. This paper explores the synchronization power of shared objects in multi-threaded
systems by extending the famous Herlihy’s wait-free hierarchy to take these constraints into consideration. It proposes to
subdivide the set of objects with an infinite consensus number into nine new degrees, depending on their ability to synchronize
a bounded, finite or infinite number of processes, with or without the need to allocate an infinite array. To show the relevance
of the proposed extension, for each new degree it is either proved that it is empty, or an object illustrating it is proposed.
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1 Introduction

1.1 Wait-free universality

In sequential computing, the notion of universality is repre-
sented by a Turing machine capable of computing anything
that is computable. Read/write registers, the basic objects of a
Turingmachine, are thus universal objects in sequential com-
puting. In the context of distributed systems, we know, since
1985 and the famous FLP impossibility result, that the con-
sensus problem has no deterministic solution in a distributed
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system where even one process might fail by crashing [10].
This impossibility is not due to the computing power of
the individual processes, but rather to the difficulty of coor-
dination between the different processes that compose the
distributed system. Coordination and agreement problems
are thus at the heart of computability in distributed systems
[13].

A shared memory distributed system can be abstracted
as a set of processes accessing concurrently a set of shared
objects. The implementations of these objects are based on
read/write registers and hardware instructions. Searching for
correct and efficient implementations of usual objects (e.g.
queues, stacks) is far from being trivial when the system is
failure prone [14,19,21]. Intuitively, a “good” implementa-
tion of a concurrent object has to satisfy two properties: a
consistency condition and a progress condition that specify
respectively the meaningfulness of the returned results, and
the guarantees on the liveness.

Linearizability [15] is a consistency condition. It ensures
that all the operations of a distributed history appear as if
they were executed sequentially: each operation on an object
appearing at a single point in time, between its start and end
events. This gives the illusion to the processes to access a
physical concurrent object.
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The use of locks in an implementation may cause block-
ing in a system where processes can crash. Prohibiting the
use of locks leads to several progress conditions, among
whichwait-freedom [12] and lock-freedom [15].Whilewait-
freedom guarantees that every operation terminates after a
finite time, lock-freedom guarantees that, if a computation
runs for long enough, at least one process makes progress
(this may lead some other processes to starve).Wait-freedom
is thus stronger than lock-freedom: while lock-freedom is
a system-wide progress condition, wait-freedom is a per-
process progress condition.

A major difficulty of distributed computing is that wait-
free linearizable implementations are often costly, when not
impossible. In the latter, the system has to be enriched with
somemore sophisticated objects or hardware special instruc-
tions. The coordination power of objects is thus important
for computability in distributed systems. In [12], consensus
is proved universal. Namely, any object having a sequen-
tial specification has a wait-free implementation using only
read/write registers and some number of consensus objects.

Hence the idea to assign to eachobject a consensus number
representing its ability to solve consensus. More precisely,
an object has consensus number x if it is universal in an
asynchronous system composed of x processes, but not in
a system composed of x + 1 processes. If no upper bound
exists on x , the object has an infinite consensus number.

1.2 Problem statement

This last decade, first with peer-to-peer systems, and then
with multi-threaded programs on multicore machines, the
assumption of a closed system with a fixed number n of
processes and where every process knows the identifiers of
all processes became too restrictive. In multi-threaded sys-
tems, new processes can be created and started at run-time,
so although the number of processes at each time instant is
finite, there is no bound on the total number of processes that
can participate in long-running executions.

Another specificity of multi-threaded systems must be
taken into account. Threads share a (virtually) unbounded
common memory space. As in the Java and C languages, the
processes have access to a primitive to allocate this memory
(new or malloc). Such calls should specify the number of
memory locations they ask for. By this mean and during its
execution time each thread can allocate an unbounded but
finite number of memory locations. This memory allows to
instantiate record data structures or arrays.

It turns out that many synchronization algorithms require
the sharing of an array whose size depends on the number
of processes to be synchronized (e.g. The bakery mutual
exclusion algorithm [16]). This may be problematic, when
no bound is known on the number of threads in an execution:
assigning one register to each of them is not trivial, especially

if this number can be infinite. This fact is often regarded as
secondary when designing concurrent algorithms. For exam-
ple, [4] identifies as “trivial” the change of finite arrays
indexed by processes to infinite arrays or linked lists. Among
other contributions of this paper, the fact that maintaining
extensible data structures such as linked lists requires syn-
chronization power that is not necessarily provided by all
objects which have an infinite consensus number.

The two aspects noted above have an important impact
on which algorithms can be implemented in multi-threaded
systems and which algorithms cannot, and therefore on the
coordination power of shared objects: in [2], Afek, Morrison
and Wertheim exhibited an object called the iterator stack
(noted IStack) that has an infinite consensus number, but
cannot be used to implement consensuswhen infinitelymany
processesmay join an execution over time. The present paper
answers the following question: how to compare the synchro-
nization power of shared objects in multi-threaded systems?

1.3 Approach

Following the same approach as in [12], we propose to com-
pare the synchronization power of shared objects based on
the maximal number of processes they are able to synchro-
nize, including in situations where the set of participating
processes is initially unknown or may change during an exe-
cution. More precisely, we differentiate computing models
according to the restrictions on process arrival, as introduced
in [11]. In these models, any number of processes may crash
(or leave, in a same way as in the classical model), but fresh
processes can also join the network during an execution.
When a process joins such a system, it is not known to the
already running processes. Three (families of) arrival models
are distinguished in [4]:1

– For each integer n ≥ 1, the n-arrival model Mn
1 , where

the number n of processes is fixed and may appear in
the process code. As stated in [11], “work on adaptive
algorithms implicitly precludes the use of the system size
n as a parameter in a solution.” Hence, we generalize

1 A fourth model, M4, called infinite concurrency, was introduced in
[4], where infinitely many processes may be present in the system and
an infinite number of operations can take place in any finite interval
of time. We choose to ignore this model because it poses a problem to
define linearizability.
Suppose that, for each i ≥ 1, process pi writes the value i in a variable

x during the interval
[
1 − 1

2i ; 1 − 1
2i+1

]
; then p0 starts reading x at

time 1. There is no “last written value” before the read, so the return
value is not well defined. Restricting infinite concurrency to a subset of
non-conflicting operations (e.g. reads or operations on different objects)
would render infinite concurrency and infinite arrival computationally
equivalent as one can easily use contention on conflicting operations to
control the arrival of processes.
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Fig. 1 Extended wait-free hierarchy: in a multi-treaded system, it is impossible to implement an object O1 using any number of instances of O2
and read/write registers, if O2 is more on the left, or bottom, than O1. Green circles display the consensus number of each degree

the model family into the bounded arrival model, M1, in
which at most n processes may participate, where n is
only known, to the processes, at the beginning of each
execution, but may vary from one execution to another.

– The finite arrival model, M2, in which a finite number of
processes participate in each execution.

– The infinite arrival model, M3 (also referred to as
unbounded concurrency model), where new processes
may keep arriving during the whole execution. Let us
note that, at any time, the number of processes that have
already joined the system is finite, but can be infinitely
growing.

We pointed out above that the impossibility to allocate
an array with an infinite range of indices is a major limiting
factor that restricts the computing power of some objects in
multi-threaded systems. We thus study the power of syn-
chronization of shared objects depending on whether the
possibility of allocating infinite arrays is offered or not.
Therefore, we propose the two-dimensional hierarchy pre-
sented on Fig. 1. In this hierarchy, shared objects are sorted
horizontally depending on their universality in models Mn

1 ,
M1,M2 andM3 when infinitememory allocation is not avail-
able, and vertically on their ability to do sowhen it is possible
to allocate infinite arrays. We then challenge the significance
of this hierarchy by exploring whether or not there exists an
object filling each possible degree.

1.4 Contributions of the paper

In a first step, we show how the proposed hierarchy encom-
passes the existing one and then for each new degree, either
a representative object is proposed or it is proved empty.

Extend the wait-free hierarchy We show that, on the one
hand, the proposed hierarchy coincides with Herlihy’s hier-
archy on objects with a finite consensus number. Indeed,
Theorem 2 proves that infinite arrays are not necessary for
universal constructions inmodelsMn

1 andM1, which justifies
that we keep the same term “consensus number” to catego-
rize shared objects in our hierarchy. On the other hand, the
proposed hierarchy refines the one proposed by Herlihy for
objects with infinite consensus number.We say that an object
O has consensus number∞y

x , for x, y ∈ {1, 2, 3} if O is uni-
versal in Mx but not Mx+1 (if x �= 3) when infinite memory
allocation is not available, and O is universal in My but not
My+1 (if y �= 3) when infinite memory allocation is avail-
able. As having access to infinite arrays is never detrimental,
no object has consensus number ∞y

x for y < x .
Identify all filled degrees Following our approach, we

prove that no object has consensus number∞1
1 (Theorem 3),

and we identify objects filling all remaining degrees of the
hierarchy, as depicted by Fig. 1. We prove that multi-valued
consensus (denoted Cons〈N〉) is still universal in all the
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models considered in this paper, i.e. it has consensus number
∞3

3. Rephrasing the theorems concerning the iterator stack
[2], we naturally deduce that iterator stacks have consensus
number ∞2

2. Interestingly, we prove that binary consensus
(denoted Cons〈B〉) is not universal in multi-threaded sys-
tems, resulting in a consensus number of ∞3

1 (Theorem 5).
The proof that the composition of binary consensus and iter-
ator stacks has consensus number ∞3

2 (Theorem 6) is the
most technical part of the paper. We define a new special
instruction, called setOrDecrement and denoted SOD,
that either writes its parameter or decrements the register
depending on the sign of its previous value, and we show
that a register provided with the setOrDecrement oper-
ation has consensus number ∞2

1 (Theorem 4).

1.5 Organization of the paper

The remainder of this paper is organized as follows. We first
illustrate the practical issues that led to our problem state-
ment in Sect. 2 and, then, we present the infinite arrival
models in Sect. 3. Section 4 shows that consensus is still
universal in the infinite arrival model. Sections 5 and 6
identify the empty degrees of the hierarchy by proving the-
orems 2 and 3. Sections 8, 7, and 9 show that the remaining
degrees are not empty by proving the consensus number
of setOrDecrement registers, binary consensus and a
composition of binary consensus and iterator stacks. Finally,
Sect. 10 concludes the paper.

2 Illustration of the issue

Sharded counters Several implementations of shared coun-
ters are available for concurrent programs. One may simply
use the fetchAndAdd instruction, if available. Another
solution is to protect the incrementation of a single shared
variable using a compareAndSwap instruction, within
a loop that retries until the compareAndSwap is suc-
cessful.2 Such a strategy has the drawback of creating
contention on the single variable, that may impact per-
formance when many processes try to access the variable
simultaneously. Another possibility, similar to the sharded
counter in cloud computing, consists in assigning to each
process p a single-writer/multi-reader register, which only p
can safely increment without fear of concurrent updates. A
read of the shared counter is then the sum of all the values
obtained after a snapshot of the set of registers. This strat-
egy is at the basis of the LongAdder class in the standard
library of Java, but this class is neither wait-free nor lineariz-

2 This was the standard implementation of getAndIncrement in
Java, prior to version 8.

able. In the following, wewill discuss howwe can implement
a sharded counter in Java.

The bounded arrival model The simplest implementation
of a sharded counter uses an array of size n, where n is the
number of threads. However, n must be known by the con-
structor when creating the array. Passing n as an argument to
the constructor might not be a problem for some programs.
For example, when parallelism is managed through a fixed-
size thread pool, the size of the thread pool can be used for the
size of the array. Programs for which a limit on the number
of threads created throughout an execution is a priori known
are said to belong to the bounded arrival model, denoted by
M1.

The finite arrival modelNow imagine a program that must
first create a shared counter, then read a configuration file,
starting a new thread for each selected option. Here, the
assumption of a fixed n known at the start of execution may
not be realistic. One solution could be to allocate arrays that
are much larger than the size that will be used in practice.
This approach has several drawbacks. Indeed, in the case
where the limit of the allocated array is effectively reached,
the correctness and the termination of the algorithms are no
longer ensured. The rest of the time, this approach presents
a huge waste. It would therefore be more judicious to have
dynamic data structures having the possibility of arbitrarily
growing to adapt to the number of threads, such as dynamic
arrays, linked lists, sets, or dictionaries.

Simple linked lists can be designed following the same
algorithmic pattern as the push operation of Treiber’s stack
[22]. The constructor of such an algorithm only creates a
sentinel cell (the end of the linked list) as well as a shared
register, head (reference to this sentinel cell). The first time
a thread accesses the shared object, it allocates its own cell
and, in an infinite loop, attempts to insert it at the head of the
list, using a compareAndSwap.

An important question is the following: is the algo-
rithm described above wait-free? Since there is an infinite
loop, it is possible that some process always loses its
compareAndSwap, and never terminates its operation.
However, this cannot happen in the example of the configu-
ration file described above, because no new thread is created
after the configuration file has been completely parsed, and
each process only needs to win the compareAndSwap
once. The hypothesis that there is an instant after which no
new thread is started is called the finite arrivalmodel, denoted
by M2.

The infinite arrival model Finally, let us consider a server
that starts a new thread each time it receives a request from a
client. If the server is properly sized, the number of threads
running at any timemay remain relatively low.Yet, the linked
list algorithm described above is only lock-free, as there are
executions in which some thread may never be able to insert
its own cell. The most general model, in which there is no
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assumption about the number of threads that can be created
during an execution, is called the infinite arrival model and
denoted by M3.

The example of the sharded counter above illustrates a
common issue when trying to adapt many distributed algo-
rithms to multi-threaded programming languages such as
Java or C++: how to deal with data structures whose size
depends on the number of participants? This paper explores
one facet of this issue: the synchronization power necessary,
and sufficient, to build any wait-free data structure.

3 Computingmodels

This paper considers distributed computations where pro-
cesses (or threads) have access to local memory for local
computations and also have access to shared objects (shared
memory) to communicate and synchronize with each other.
We define, below, the assumptions on the set of processes
and the kind of memory they can access. Each combina-
tion of a process model and a memory model instantiates a
different computing model. Moreover, as some objects can-
not be implemented using only read/write registers, a system
can be enriched with synchronization objects like consensus
objects, iterator stacks, etc, or by special instructions that can
be invoked on registers, such as setOrDecrement.

3.1 Arrival models

We consider computation models composed of a set � of
sequential processes p0, p1, . . .Each process pi has a unique
identifier i that may appear in its code. The set � is the set
of potential processes that may join, get started and crash
or leave during a given execution. At any time, the number
of processes that have joined is finite. The cardinality of �

defines four computing models:

n-arrival models Mn
1 (n ≥ 1): |�| = n, and n is a parameter

of each system model.
Bounded arrival model M1: � is finite and |�| is known

to the processes at runtime. In
other words, M1 is the union
of the Mn

1 , for all n, and a
problem can be solved in the
bounded arrival model if, and
only if, it can be solved in
the n-arrival model, regard-
less the size of the system.

Finite arrival model M2: � is finite but |�| is unknown
to the processes.

Infinite arrival model M3: � is countable.

3.2 Communication between processes

Processes communicate by reading and writing a memory
composed of an infinite number of unbounded registers3.
Reads and writes on a shared register x are denoted by
x .read() and x .write(v). We also consider local variables
and read-only shared registers, for which we use the lighter
notations x and x ← v.

Processes have access to a dynamic allocation mechanism
that canonly return anunbounded, but finite, number ofmem-
ory locations at once. The allocationmechanism is accessible
through the syntax new T , that instantiates an object of type
T (T may be a record datatype or a shared object giving
access to a set of operations) and returns its reference, i.e. it
allocates the memory locations needed to manage the object
and initializes them by calling a constructor.4

Processes are not limited in the number of registers they
can access, nor by the number of times they can use the allo-
cation mechanism, during an execution. However, they can
only access memory locations that either 1) have been allo-
cated at the system set up, or 2) they obtained directly through
the allocation mechanism, or 3) are accessible by following
references stored (as integer values) in some accessiblemem-
ory location. In other words, when a process pi allocates a
memory location at runtime, it can initially only be accessed
by pi until pi shares a reference pointing to it with other
processes.

As advocated in the Introduction, when sufficiently pow-
erful synchronization objects are not available, it may be
necessary to assume an allocation mechanism which allows
to allocate and initialize an infinite number of memory loca-
tions at once.When a system allows such allocation, it is said
to provide infinite allocation. This defines four more arrival
system models MAn

1, MA1, MA2 and MA3 that represent
the four above-mentioned models enriched with an infinite
memory allocation mechanism. In our algorithms, infinite
arrays are accessible through a type InfiniteArray,
whose constructor takes, as a parameter, a rule i 	→ f (i)
stating that the cell at index i must be set to f (i). Like in
finite arrays, the cell at index i of an array A is denoted by
A[i].

3.3 Synchronization objects

In order to improve their computability, the different com-
puting models can be enriched by giving access to more
evolved shared atomic objects, that are denoted between

3 Memory addresses of an infinite memory are unbounded, so this
assumption is necessary to store references.
4 In this paper, we do not consider a de-allocation or garbage collection
mechanism, because we only investigate computability issues that are
not affected by the possibility to reuse memory locations.
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square brackets in the model name and referred to as enrich-
ing shared objects. For example, M3[Cons〈N〉] denotes the
infinite arrival model where as many consensus objects as
necessary are made available.
Set-or-decrement registers A set-or-decrement register SOD
is an integer register providing the standard read and
write operations, as well as a setOrDecrement spe-
cial instruction that takes an integer as argument and has no
return value. An invocation of setOrDecrement(v) first
reads the current value x of the register. If x ≤ 0, the register
is set to v. Otherwise, the register is decremented by one.
Iterator stacks The iterator stack IStack, introduced in [2],
provides a write operation isWrite() and a read operation
isRead(). Intuitively, isWrite(v) prepends the value v

at the beginning of a stack and returns a reference i to a fresh
iterator, and isRead(i) increments iterator i and returns
the value it points to. More precisely, isWrite(v) takes a
written value v ∈ N as argument and returns the next inte-
ger value in a sequence 0, 1, . . . For a given i ∈ N, the kth
invocation of isRead(i) returns the kth value ever written
if isWrite was invoked at least max(i + 1, k) times, and
⊥ otherwise.
Consensus objects A consensus object, denoted Cons〈T 〉,
provides two operations. The operation propose(v) takes
an argument v ∈ T and returns the oldest proposed value, i.e.
the first process that invokes the operation gets its own value
and all invocations returns this same value, called decision
value and we say that the consensus object is won. A second
operation, get(), returns the value stored in the consensus
object if it has been won; otherwise, it returns a default value
⊥. We distinguish between binary consensus Cons〈B〉 in
which only two values can be proposed (e.g. true and false),
and the multi-valued consensus, for example Cons〈N〉 in
which proposed values are integer values, possibly encoding
a reference to a memory location. Finally, Consn〈N〉 desig-
nates the n-process consensus that only has a propose(v)

operation that only verify the previously-stated properties for
its first n invocations, and the next returned values are left
unspecified.

3.4 Distributed executions

An execution α is a (finite or infinite) sequence of steps, each
taken by a process of �. A step of a process corresponds to
the execution of a hardware instruction or an operation of one
of the atomic enriching objects defined above. Processes are
asynchronous, in the sense that there is no constraint onwhich
process takes each step: a process may take an unbounded
number of consecutive steps, or wait an unbounded but finite
number of other processes’ steps between two of its own
steps. Moreover, it is possible that a process stops taking
steps at some point in the execution, in which case we say
this process has crashed, or even that a process takes no step

during a whole execution (|�| is only an upper bound on the
number of participating processes). We say that a process pi
arrives in an execution at the time of its first step during this
execution. Remark that, although the number of processes in
an execution may be infinite in M3, the number of processes
that have arrived into the system at any step is finite.

A configuration C is composed of the local state of each
process in � and the internal state of each enriching shared
object, including read/write registers. For a finite execution
α, we denote by C(α) the configuration obtained at the end
of α. An empty execution is noted ε. An execution β is an
extension of α if α is a prefix of β.
Implementation of shared objects An implementation of a
shared object is an algorithm divided into a set of sub-
algorithms, one for the initialization (a.k.a. the constructor of
the object), and one for each operation of the object, that pro-
duces wait-free and linearizable executions. Linearizability
and atomicity are equivalent thanks to observational refine-
ment, i.e. if an object O has a linearizable implementation in
a model M , then M and M[O] are computationally equiv-
alent (M[O] represents the model M enriched with atomic
objects O) [9].

Definition 1 (Linearizability) An execution α is linearizable
if all operations return the same value as if they occurred
instantly at somepoint of the timeline, called the linearization
point, between their invocation and their response, possibly
after removing some non-terminated operations.

Definition 2 (Wait-freedom) An execution α is wait-free if
no operation takes an infinite number of steps in α.

Consensus protocols Similarly to [12], it may be useful to
express consensus as a one-shot task [10], i.e. one in which
each process proposes some value and may decide a value,
such that the three following properties are respected:

– Wait-freedom (see Definition 2).
– Validity: all decided values are proposed by some pro-
cess.

– Agreement: distinct processes never decide on distinct
values.

Previous affirmations that one-shot consensus and wait-free
linearizable consensus objects are computationally equiva-
lent [18] still apply in all models used in this papers, so we
use both definitions interchangeably.

Universality A model M is said to be wait-free universal
(or simply universal) if any object with a sequential specifica-
tion can be implemented in M , with respect to linearizability
and wait-freedom. By extension, an object O is said to be
universal in M if M[O] is universal.

Let O be an object. We say that O has consensus number
n ∈ N if Mn

1 [O] is universal but not Mn+1
1 [O], and that O
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has consensus number ∞y
x , for x, y ∈ {1, 2, 3} if it verifies

both following conditions:

– Mx [O] is universal and, if x ≤ 2, then Mx+1[O] is not
universal.

– MAy[O] is universal and, if y ≤ 2, then MAy+1[O] is
not universal.

Remark that the proposed hierarchy is not strict: it is
impossible to use any number of objectswith consensus num-
ber∞3

1 to implement an objectwith consensus number∞2
2 in

a multi-threaded system, because this would require allocat-
ing infinite arrays. Conversely, it is impossible to implement
an object with consensus number∞3

1 using only objects with
consensus number∞2

2 because some participating processes
could starve while new processes constantly arrive in the
system.

4 Universality of consensus inM3

The aim of this section is to extend universality of consensus
to multi-threaded systems. In order to prove the universality
of consensus in the bounded arrival model, Herlihy intro-
duced the notion of universal construction5. It is a generic
algorithm that, given a sequential specification of any object
whose operations are deterministic and total,6 provides a
concurrent implementation of this object. Wait-free imple-
mentations rely on what is called a helping mechanism,
recently formalized in [6]. This mechanism requires that,
before terminating its operation, a process helps completing
pending ones of other processes. Helping is not obvious in
the infinite arrival model. Indeed, a process should be able
to announce itself to processes willing to help it. However,
due to the infinite number of potential participating processes
over time, it is not reasonable to assume that each process
can write in a dedicated register that can be read by all.

Similarly to [8] which first proposes a Collect object and
then uses it as a building block for a universal construction,
we define the weak log object, a data structure used as a list
of presence where a process that arrives registers. We first
propose a universal construction based on consensus objects
and aweak log object and then an implementation of theweak
log using read/write registers and consensus objects. This
proves that consensus is universal in all models considered
in this paper.

Interestingly, this presentation also highlights how con-
structions that verify both liveness and safety conditions can

5 A small guided tour on universal constructions can be found in [20].
6 This means that any operation on the object can be called and the call
returns regardless of the state of the object.

be obtained as a combination of a seed of liveness, here illus-
trated by the wait-free weak log that is not linearizable but
only eventually consistent, and a sprout of safety, in our case
the list of operations that would be sufficient for a lock-free
linearizable universal construction without the need of the
weak log. It also illustrates a use case for weak consistency
in a situation where strong consistency can also be achieved.

4.1 The weak log abstraction

We first define the weak log abstraction. In an instance of
the weak log, a process pi proposes a value through an
operation append(vi ), that returns the sequence of all the
values previously appended. The weak log is wait-free but
not linearizable, in the sense that there might be no inclu-
sion between the sequences returned by different operations.
However, it is requested that values appended by correct pro-
cesses will eventually appear in all returned sequences and
that the order of the values within each sequence is consistent
with the different sequences returned by all operations.

Definition 3 (Weak log) A process pi proposes a value vi
(all appended values are assumed different) by invoking
append(vi ), that returns a finite sequence wi = wi,1 ·
wi,2 · · · wi,|wi | such that:

Validity. Any value returned in a sequence was
the argument of some invocation of
append.

Suffixing. If some invocation of append(vi ) ter-
minates, then vi is appended at the end
of its returned sequencewi :∀i, wi,|wi | =
vi .

Total order. If two invocations of append return
respectively wi and w j , then all pairs
of values that wi and w j both con-
tain appear in the same order: for
all i, j, ki , k j , li , l j such that wi,ki =
w j,k j andwi,li = w j,l j , we have ki ≤ li
if, and only if, k j ≤ l j .

Eventual visibility. If some invocation of append(vi ) ter-
minates, then, eventually, all sequences
returned by invocations of append
will contain vi . In otherwords, the num-
ber of returned sequences that do not
contain vi is finite.

Wait-freedom. Any invocation of append(vi ) by a
correct process pi eventually returns.

4.2 A universal construction

Algorithm 1 presents a universal construction using a weak
log and consensus objects. This algorithm is similar to the one
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presented in [14], except that the array of single-writer/multi-
reader registers used by processes to announce their opera-
tions is replaced by a weak log. A universal construction
emulates any shared object. The shared object to implement
is represented by an initial state initialState, passed as
an argument to the constructor, and a set of operations called
invocations that change the state of the object and return a
value. A process pi that want to execute an operation invoci
on the emulated object calls apply(invoci ) on the universal
construction.
Processes share two variables:

– announceis aweak log inwhich processes append their
invocations;

– operationsis a consensus object at the head of a
linked list of operations. The list is a succession of nodes
of type Node, defined as a structured type made up of
two fields: value is the invocation of some process, and
next is a consensus object referencing another node of
type Node after the consensus has been won by some
process.

When process pi calls apply(invoci ), it first appends
invoci to announceand obtains in return a list toHelpi of
invocations. Then, it attempts to insert the invocations of
toHelpi at the end of the list operationsuntil all the invo-
cations of toHelpi have been inserted. While traversing the
list, it maintains a state statei of the implemented object, ini-
tialized to initialState and on which all invocations
are applied in their order of appearance in the list.

We now prove that Algorithm 1 is linearizable and wait-
free. Linearizability is achieved by Algorithm 1 in the same
way as in [14], so the proof of Lemma 1 is similar.

Lemma 1 (Linearizability)All executions admissible byAlgo-
rithm 1 are linearizable.

Proof Let α be an execution admissible by Algorithm 1.
Let us first remark that, for any operation apply(invoci )

invoked by process pi , at most one node node is such
that node.value = invoci . Indeed, suppose this is not
the case, and let us consider the first two such nodes,
node j and nodek . Both were proposed on line 9 by pro-
cesses p j and pk respectively. As operations are totally
ordered in a list, process pk accessed node j before access-
ing nodek . After accessing node j and executing line 11,
invoci = node j .value /∈ toHelpk , which contradicts the
fact that pk proposed nodek = invoci .

Let us define the linearization point of any operation
apply(invoci ) as, if it exists, the first step in which some
process p j proposed a node node j with node j .value =
invoci and won the consensus on line 9.

We now prove that any operation apply(invoci ) done by
a terminating process pi has a linearization point, between its
invocation and termination point. By the validity property of
announce, and as all invoci values are different, no process
proposes invoci before pi arrived in the system.

By the suffixing property of announce, at the beginning
of pi ’s loop, invoci ∈ toHelpi . When pi terminates, invoci /∈
toHelpi . Therefore, invoci was removed on line 11 of some
iteration of the loop, so some process won a consensus where
it proposed a node node j with node j .value = invoci .

Finally, operations are applied by pi on statei in the same
order as they appear in the list (lines 12), which is the same
order as their linearization points, which concludes the proof.

��
The proof ofwait-freedom (Lemma2) ismore challenging

because the proof of [14] heavily relies on the fact that the
number of processes is finite.
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Lemma 2 (Wait-freedom)All executions admissible byAlgo-
rithm 1 are wait-free.

Proof Suppose there is an execution α admissible by Algo-
rithm 1 that is not wait-free. It means that some process
pi takes an infinite number of steps in its invocation of
apply(invoci ) in α. By the wait-freedom property of
announce, pi enters the while loop after a finite number
of steps, and each iteration of the loop terminates. There-
fore, pi executes an infinite number of loop iterations. Let
wi = wi,1 · wi,2 · · ·wi,|wi | be the initial value of toHelpi .
Before Line 9, as wi is finite and nodei .value equals
some wi,k at each iteration, there exists a value k such that
nodei .value = wi,k an infinite number of times.

Letwin0, win1, . . . be the infinite sequence of the values
taken by nodei .value just after Line 9 during the execution,
let pω( j) be the process that took the step on line 9 installing
the value win j in the consensus and let pa( j) be the process
that invoked apply(win j ).

As processes pω( j) always proposes the first invocation
of toHelpω( j) that was not inserted in the list yet, there is an
infinite number of values win j such that either

– wi,k is not part of wω( j) or
– wi,k is part of wω( j), but appears after win j in the list.

By the eventual visibility property, thefirst case only concerns
a finite number of win j , so there is an infinite number of
values win j in the second case.

For each of them, by the suffixing property, win j =
wa( j),|wa( j)|, i.e. the process that invoked apply(win j )

obtained win j as the last value of its toHelpa( j). By the
total order property, it is impossible that pω( j) obtains win j

before wi,k and pa( j) obtains wi,k before win j . Therefore
wa( j) does not contain wi,k . However, this contradicts the
eventual visibility property that prevents an infinite number
of pa( j) processes to ignore wi,k .

This contradicts the assumption of a non wait-free execu-
tion. ��

4.3 An implementation of the weak log

The main difficulty in the implementation of a weak log lies
in the allocation of onememory location per process, where it
can safely append its value. As it is impossible to allocate an
infinite array at once, it is necessary to build a data structure
in which processes allocate their own piece of memory, and
make it reachable to other processes, by winning a consen-
sus. The list (operations) of Algorithm 1 displays such
a pattern, but it poses a challenge: as an infinite number of
processes access the same sequence of consensus objects,
one process may loose all its attempts to insert its own node,
breaking wait-freedom.

Algorithm 2 solves this issue by using a novel feature, that
we call passive helping: when a process wins a consensus,
it creates a side list to host values of processes concurrently
competing on the same consensus object. As only a finite
number of processes have arrived in the system when the
consensus is won, a finite number of processes will try to
insert their value in the side list, which ensures termination.
Figure 2 presents an execution of Algorithm 2.

In other words, the processes share a main list of side
lists of appended values. Side lists are a succession of nodes
of type SideNode, defined as a structured type made up
of two fields: value is a value appended by some pro-
cess, and next is a consensus object referencing another
node of type SideNode after the consensus has been won
by some process. Similarly, the main list is a succession of
nodes of type MainNode, defined as a structured type made
up of two fields: side is a reference to a SideNode, and
next is a consensus object referencing another node of type
MainNode after the consensus has been won by some pro-
cess.
Processes executingAlgorithm2 share twovariables:first
and last defined as follows.

– first is a consensus object on references toMainNode,
at the beginning of the main list.

– last is a read/write register referencing a consensus
object on references to MainNode. In the absence of
concurrency, last references the next field of the last
MainNode of the main list. Initially, the main list is
empty and last is set to a reference at first.

When a process pi invokes append(vi ), it first creates
a SideNode owni containing its value vi . Then, it reads
last, and proposes a new MainNode whose side list is
only composed of owni as its successor, and writes the next
consensus field of the MainNode returned by the consensus
in last. If pi loses the consensus, it inserts owni in the side
list of the winner of the consensus (lines 7, 9 and 10). After
that, pi traverses the list of lists to build the sequence logi it
returns (⊕ represents concatenation).

Note that the consensus and the write on lines 6 and 8
are not done atomically. This means that a very old value
can be written in last, in which case its value could move
backward. The central property of the algorithm, proved by
Lemma 3, is that last eventually moves forward, allowing
very slow processes to find some place in a side list.

Lemma 3 If an infinite number of processes execute Line 8,
then the number of processes that read the same lastvalue
at Line 6 is finite.
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Proof We first prove by induction on the succession of nodes
in themain list of theweak log that for eachMainNodemain,
the number of writeoperations of main.next in lastat
line 8 is finite.

– Initially, firstis never written in last, because only
decided values on line 6 are written, and firstis never
proposed.

– We now prove that, if the number of writes of main in
lastis finite, then the number of writes of main.next
in lastis finite.
We prove the following contrapositive proposition: if the
number of writes of main.next in lastis infinite, then
the number of writes of main in lastis infinite as well.
In order to writemain.next in last, a process needs to
read main in lastat line 6. As main.next is written an
infinite number of times andmain is read an infinite num-

Fig. 2 An execution of
Algorithm 2. Consensus objects
and read/write registers are
represented respectively with
circles and diamonds. Processes
p5 and p6 attempt to
concurrently insert v5 and v6,
respectively, in the weak log.
They both read the same value
in last, referencing the
consensus object in the main list
containing v4. Process p5 wins
the consensus and inserts v5 in
its own side list after the one
containing v4, and p6 loses the
consensus, so it inserts v6 in the
side list created by p5
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ber of times, then necessarily, main is written an infinite
number of times as well.

Let us now suppose that an infinite number of processes exe-
cute line 8, and that an infinite number of reads of lastreturn
main. This implies that there was an infinite number of
writeoperations of main in lastat line 8, which contra-
dicts the previous induction result. ��
Lemma 4 (Validity) All the values in a returned sequence
have been appended by processes.

Proof The value logi returned by the algorithm is built by
concatenation of values sidei .value that can only be cre-
ated, at line 6 or 10, using an appended value. ��
Lemma 5 (Suffixing) Ifwi is the sequence returned when pi
appended vi then wi,|wi | = vi .

Proof This is a direct consequence of the fact that vi =
owni .value is appended at the end of logi at Line 13 just
before the return statement on Line 14. ��

Definition 4 formalizes the order in which values are
ordered in the weak log. Intuitively, this order is the con-
catenation of all the side lists, in the order of the main list.
In Algorithm 2, the main list is traversed in this precedence
order, which ensures consistency of the order of all returned
sequences (Total order property of the weak log).

Definition 4 (Precedence) A SideNode s precedes a
SideNode s′ in the weak log if:

– there exists a sequence of SideNode {s1, . . . , sn} such
that for all 1 ≤ k < n, sk+1 is decided in sk .next,
s1 = s, and sn = s′;

– or there exists a sequence of MainNode {m1, . . . ,mn}
such that for all 1 ≤ k < n,mk+1 is decided inmk .next,
m1.side precedes s and mn .side precedes s′.

A value v precedes a value v′ in theweak log if there exist two
SideNode s and s′ such that s precedes s′, s.value = v

and s′.value = v′.

Lemma 6 (Total order) If two processes pi and p j terminate
their invocations, then all pairs of values that belong to both
wi and w j appear in the same order.

Proof Let us remark that both processes pi and p j append
values in their log following the precedence order defined
by Definition 4. Therefore, for any two values vk and vl that
appear in both wi and w j , pi and p j have appended them at
the end of the log in the same order, which proves the lemma.

��

Lemma 7 (Eventual visibility) If some process pi terminates
its invocation, then the number of returned sequences that do
not contain vi is finite.

Proof Let us denote by mi and si the values of maini and
sidei when pi terminates.

Let us suppose (by contradiction) that there is an infinite
number of processes which return sequences that do not con-
tain vi , and an infinite number of them started their operation
after pi returned. For each such process p j , let m j and s j be
the values of main j and side j when p j terminates its exe-
cution. As the collect loop respects the precedence order of
Definition 4, for an infinite number of p j , m j precedes mi .
As there is only a finite number of lists preceding mi (pi
terminates), an infinite number of processes have the same
value m of m j . All of them read the same value of lastat
Line 6 and wrote on Line 8. This contradicts Lemma 3. ��
Lemma 8 (Wait-freedom) No process takes an infinite num-
ber of steps in an execution.

Proof Let us suppose that there exists an execution α such
that process pi takes an infinite number of steps in α trying
to append vi . This means that one of the two loops (lines 9
and 12) loops an infinite number of times:

– If the loop at Line 9 loops for an infinite number of times,
it means that sidei �= owni for an infinite number of
nodes. This implies that an infinite number of values are
appended to the same side list at Line 10, which means
that an infinite number of processes read the same value
at Line 6, and wrote at Line 8, which contradicts Lemma
3.

– If the loop at Line 12 loops forever, this means that
pi never reads vi , and as there is a finite number of
MainNode that precede the list mi in which vi has been
appended, one of their side lists contains an infinite num-
ber of nodes. All these nodes were created by processes
reading the same value of lastat Line 6, which also
contradicts Lemma 3.

Both cases lead to a contradiction. ��
Theorem 1 Multi-valued consensus has consensus number
∞3

3.

Proof By Lemmas 4, 5, 6, 7 and 8 , Algorithm 2 implements
a weak log. By Lemmas 1 and 2 , Algorithm 1 is a universal
construction in M3[Cons〈N〉]. ��
Remark 1 The usual algorithm for solving consensus using
the compare-and-swap special instruction on atomic registers
does not need any adaptation towork inmodelM3. Therefore,
compare-and-swap has consensus number ∞3

3 as well.
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5 Infinite memory allocation is not necessary
inM1

The original paper on the wait-free hierarchy [12] mentions
no limitation that could arise in computingmodelswhere infi-
nite allocation is not available. In this section, we prove that,
in the context of bounded arrival models, infinite memory
allocation is not a decisive factor to determine if universality
can be achieved or not. This implies that our hierarchy is an
extension of that proposed by Herlihy because they coincide
for objects with a finite consensus number. This justifies our
choice to keep the same name.

This result builds on the observation that, in MAn
1, any

wait-free algorithm of binary consensus has a bound on the
number of memory locations used by any execution, as long
as there is a bound on process identifiers (Lemma 9). Such
a bound can be obtained by using renaming algorithms: for
example, the algorithm introduced in [5] does not require
infinitememory allocation either. In this section, we suppose,
without loss of generality, that there is a bound N on process
identifiers.

Lemma 9 For any object O, if Cons〈B〉 can be implemented
in MAn

1[O], then Cons〈B〉 can be implemented in Mn
1 [O].

Proof Suppose there exists an algorithm A that implements
binary consensus in MAn

1[O]. As discussed in Sect. 3, we
can suppose without loss of generality that A is a one-shot
consensus, hence an input of A is composed of a set � of at
most n processes taken from {p0, . . . , pN }, and a map that
associates a Boolean input to each process in�. The number
of possible inputs is bounded by 2N × 2n .

For each possible input 〈� ⊂ {p0, . . . , pN },� → B〉,
let us consider the tree of all possible executions of A with
this input: the root is the empty execution, and an execution
αβ is the son of an execution α if β is a step taken by some
process pi according to A. By construction, the tree is locally
finite since no execution can have more than n sons, and as
A is wait-free, the graph does not contain any infinite path.
Therefore, by Konig’s lemma, for each possible input 〈� ⊂
{p0, . . . , pN },� → B〉, a finite number of configurations
may be accessed by some execution.

Finally, afinite number Xn of configurations are accessible
by any execution of A. In each configuration, each process
may be about to invoke an operation on a different shared
object, so at most a finite number n × Xn of objects can be
used by A. Therefore, A can be simulated by an algorithm in
Mn

1 [O] that only allocates n × Xn memory locations at set
up. ��
Theorem 2 For any object O, if M An

1[O] is universal, then
Mn

1 [O] is also universal.
Proof Suppose that MAn

1[O] is universal; by definition,
Cons〈B〉 can be implemented in MAn

1[O]. By Lemma 9,

Cons〈B〉 can be implemented in Mn
1 [O]. It is possible to

implement Cons〈N〉 using a bounded number of Cons〈B〉
objects in the bounded arrival model using an algorithm like
the one given in [23], and that can be easily adapted to
shared memory [19]. Finally, by Theorem 1, O is univer-
sal in Mn

1 [O]. ��

Remark 2 Since M1[O] is the union of the Mn
1 [O] for all n,

Theorem 2 implies that, if MA1[O] is universal, then M1[O]
is also universal. However, this does not mean that M1[O]
and MA1[O] are equivalent. In particular, some algorithms
from MA1 that use infinite arrays for other reasons than
creating a universal construction or assigning one single-
writer/multiple-reader register to each process [1,3] might
not be possible to adapt to M1.

6 No object has consensus number∞1
1

In this section, we prove that no object has consensus number
∞1

1. We prove this by showing that, when infinite memory
allocation is available, any universal object O in the bounded
arrival model is also universal in the finite arrival model.
Indeed, if MA1[O] is universal, it is possible to use objects
O to solve consensus among n processes, for all n. Algo-
rithm3 then uses theseConsn〈N〉 objects to solveConsensus
in MA2 (Lemmas 10, 11 and 12 ).

Processes share three infinite arrays: greaterId, cons
and adopt. For each index r ∈ N, greaterId[r ] is a
Boolean register, initially false, that can bewritten by pi only
if i ≥ r ;
cons[r ] is a Consr 〈N〉 object that accepts participation of
processes p0, . . . , pr−1; and adopt[r ] is a register, initially
⊥ (any value that cannot be proposed), that will store the
decided value of cons[r ] so that processes pr , pr+1, . . .

can know the decided value without participating.
Algorithm 3 is round-based. At round r , processes with

identifiers smaller than r agree on some value using the
Consr 〈N〉 object cons[r ], while the other processes simply
announce their presence by marking greaterId[r ]. If the
former decide first, they return the value they decided. Oth-
erwise, if the latter arrive before consensus took place, more
rounds are necessary. If the two groups write concurrently,
it is possible that some processes decide a value at round
r while others start round r + 1. In that case, the protocol
ensures that they adopt the decided value for the next rounds,
ensuring agreement.
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Claim For any round r , atmost r processes invokepropose
on cons[r ] Line 7.
Proof By Line 9, a process pi can only execute Line 10 if
r > i , and there are at most r processes with identifiers less
than r . ��
Lemma 10 (Wait-freedom)All executions of Algorithm3 ter-
minate in M A2.

Proof InMA2, each execution has a processwith the greatest
identifier (call it imax ). VariablegreaterId[r ] is only set to
true (Line 5) if r ≤ imax (Line 4), so all processes terminate
at the latest at round imax + 1 (Line 12). ��
Lemma 11 (Validity) If pi decides v, then some process pro-
posed v.

Proof Let pi be a process that decides vi on round ri . Let
us suppose vi is not the input of some process, and let us
consider the first time a value that is not the input of some
process is written in either v j or adopt[r j ] by some process
p j . This cannot happen on Line 4 by definition of val j . By
Claim 6 and validity for Consr j 〈N〉, only a value previously
written in some v j can be written in vi on Line 10. Due to
the condition xi �= ⊥, only a value previously written in
adopt[r ] can be written in vi on Line 9, and only a value of
vi is written in adopt[ri ] on Line 11. This is absurd, so the
value vi is set to vali on Line 4 and is still a proposed value
when pi decides. ��
Lemma 12 (Agreement) If processes pi and p j decide
respectively vi and v j , then vi = v j .

Proof Let pi be a process that terminates, deciding vi , at the
smallest round number ri .

We first prove, by induction on r , that, for all r > ri , all
processes p j participating to round r start the round with
v j = vi . Suppose p j participates at round r = ri + 1. If

j > ri , then v j = vi after p j executed Line 10 during round
ri , by Claim 6 and the agreement property of Consri 〈N〉.
Otherwise, p j set greaterId[ri ] to true Line 6 after
pi read greaterId[ri ] as false (Line 12), so p j read
adopt[ri ] on Line 7 after pi wrote vi to adopt[ri ] on
Line 11. By Lemma 11, the value vi decided by pi was pro-
posed by some process, so vi �= ⊥, and p j started round
ri + 1 with v j = vi (Line 8). Let us suppose the claim holds
for some r > ri . By Claim 6 and the validity property of
Consr 〈N〉, only vi can be decided on Line 10, and therefore
written in adopt[r ] Line 11, so all processes either keep
their value vi (if the condition on Line 8 is false), or adopt
the value vi they read in adopt[r ] (Line 7) or the value vi
they decide on cons[r ] Line 10, to start round r + 1.

Let p j be a process that decides v j at round r j ≥ ri . We
have r j > j , so p j returned the value decided on Line 10,
which we have already established to be vi . ��
Theorem 3 No object has consensus number ∞1

1.

Proof Suppose, by contradiction, that some object O has
consensus number ∞1

1. Hence, MA1[O] is universal. For all
n, it is possible to implement a Consn〈N〉 object in MA2,
using O by simulating the algorithm of the bounded arrival
model and setting the bound to n.

By Lemmas 10, 12 and 11 , Algorithm 3 is an implementa-
tion of consensus in MA2, which is universal by Theorem 1.
A contradiction. ��

7 Objects with consensus number∞2
1

By Theorem 3, objects that have consensus number ∞2
1

are the weakest objects that can be used to solve consen-
sus among n processes, for all n, but are unable to adapt to
an unknown number of processes. This section proves that
set-or-decrement registers have consensus number∞2

1 (The-
orem 4). Intuitively, this is because the number of processes
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that can be synchronized using the setOrDecrement spe-
cial instruction depends on the argument it is invoked with.
The proof of Theorem 4 requires three intermediate results:
the universality of set-or-decrement in M1 (Proposition 1),
and the impossibility to solve consensus in MA3[SOD]
(Proposition 2) and M2[SOD] (Proposition 3).

7.1 Set-or-decrement is universal inM1

Algorithm4presents an implementation ofmulti-valued con-
sensus using a set-or-decrement register. The underlying idea
is to encode each value v as the interval [v×n; v×n+n−1].
The algorithm uses a set-or-decrement register shared ini-
tialized to 0. When a process pi invokes propose(vi ),
it invokes the operation setOrDecrement on shared,
with the interval maximum v × n + n − 1 as argument. If
pi is the first process to do so, it sets the value. Otherwise,
it decrements the register by 1, which leaves the value of the
register within the same interval. Finally, pi reads the register
to decode the decision value.

Proposition 1 M1[SOD] is universal.
Proof Algorithm 4 is wait-free because it does not contain
any loop. Let pi be the first process that executes Line 2,
writing vi × n + n − 1. After that, shared is decremented
at most n − 1 times so all reads return a value between vi ×
n+n−1− (n−1) = vi ×n and vi ×n+n−1 (Line 3) and
all processes decide vi . This implies validity and agreement
on consensus, so SOD is universal. ��

7.2 Set-or-decrement is not universal inMA3

It was already noted in [2] that having access to Consn〈N〉
objects for all nwas not sufficient to solve consensus inMA3.
This section adapts the arguments to thesetOrDecrement
special instruction (Proposition 2). The proof relies on an
extension of the classical notion of valency to runs that
only contain steps by processes with identifiers smaller
than n (Definition 5). In order to solve consensus between
n processes, p0 must reach an n-critical configuration
(Lemma 13), in which it must invoke setOrDecrement
with an argument larger than n (Lemma 14). In the infinite

arrival model, more and more processes may arrive, forcing
p0 to invoke setOrDecrement with ever-growing argu-
ments, breaking wait-freedom.

Definition 5 (n-critical configuration) Let α be an execution
of a consensus algorithm.LetC(α)be the configuration (state
of the computation) obtained after the execution α. We say
thatC(α) is v-n-valent if v can be decided in some extension
αβ of α in which only processes p0, p1, . . . pn−1 take steps.
We say that C(α) is n-bivalent if it is both v-n-valent and
w-n-valent for some v �= w, and that it is v-n-univalent if
it is v-n-valent and not n-bivalent. Finally, we say that C(α)

is n-critical if it is n-bivalent and that the next step taken
by any process in p0, p1, . . . pn−1 leads to a v-n-univalent
configuration, for some v.

Lemma 13 Any finite execution α such that C(α) is n-
bivalent has an extension αβ such that C(αβ) is n-critical.

Proof Suppose this is not the case. We build an infinite exe-
cution α′ = αβ1β2 . . . such that, for all i , αi = αβ1β2 . . . βi

leads to an n-bivalent configuration. For i = 0, α0 = α is

an n-bivalent configuration. Suppose we have built such an
execution for some i . By hypothesis, C(αi ) is not n-critical,
so there is a process pi whose next step is βi+1 such that
αi+1 = αiβi+1 leads to an n-bivalent configuration. Finally,
α′ is infinite but finitely many processes arrived, so some
process took an infinite number of steps, which contradicts
wait-freedom. ��
Lemma 14 In any n-critical configuration, with n > 2,
p0, . . . , pn−1 are about to invoke setOrDecrement(xi )
with xi ≥ n − 1 on the same register, the value of which is
non-positive.

Proof Let n > 2 and let α be an execution leading to a n-
critical configuration. Each process pi is about to execute a
step βi on some shared object.

Let us suppose there exists a process pi whose next step
is a read. As C(α) is critical, C(αβi ) is v-n-univalent and
there exists p j such that C(αβ j ) is w-n-univalent, with v �=
w. This is impossible since C(αβiβ j ) is v-n-univalent, but
C(αβ j ) and C(αβiβ j ) are indistinguishable to p j .

Let us suppose that processes q1 and q2 are about to
access two different registers x1 and x2. As C(α) is crit-
ical, these steps lead to v1-n-univalent and v2-n-univalent
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configurations, and, if v1 = v2, there exists a process q3
accessing a register x3 and leading to a v3-n-univalent con-
figuration, with v3 �= v1 = v2. As x3 �= x1 or x3 �= x2,
there always exist two processes pi and p j accessing differ-
ent registers such that C(αβi ) is v-n-univalent and C(αβ j )

is w-n-univalent, with v �= w. This is impossible because
C(αβiβ j ) is v-n-univalent, C(αβ jβi ) is w-n-univalent, and
C(αβiβ j ) = C(αβ jβi ).

Let us suppose that all processes are about to access the
same register and there exists a process pi whose next step
is a write. As C(α) is critical, C(αβi ) is v-n-univalent and
there exists p j such that C(αβ j ) is w-n-univalent, with v �=
w. This is impossible since C(αβ jβi ) is w-n-univalent, but
C(αβi ) and C(αβ jβi ) are indistinguishable to pi .

Let us suppose that all processes p0, . . . , pn−1 are about
to invokeSOD(xi ) on the same register, whose value is x > 0.
As C(α) is critical, there exist two processes pi and p j such
that C(αβi ) is v-n-univalent and C(αβ j ) is w-n-univalent,
with v �= w. As n > 2, there exists a third process pk . This
is impossible because C(αβi ) and C(αβ j ) are indistinguish-
able to pk , since the value of the register is x − 1 in both
configurations.

Let us suppose that all processes p0, . . . , pn−1 are about to
invoke SOD(xi ) on the same register whose value is nonpos-
itive, and for some i , xi ≤ n− 2. As C(α) is critical, C(αβi )

is v-n-univalent and there exists p j such thatC(αβ j ) isw-n-
univalent, with v �= w. Let γ be some concatenation of the
next step of xi processes, excluding pi and p j . C(αβiγβ j )

is v-n-univalent and C(αβ j ) is w-n-univalent, but the two
configurations are indistinguishable to p j .

The only remaining case is that processes p0, . . . , pn−1

are about to invoke SOD(xi ) with xi ≥ n − 1 on the same
register, whose value is nonpositive. ��
Proposition 2 MA3[SOD] is not universal.
Proof Suppose there exists an algorithm A that solves con-
sensus in MA3[SOD]. We build a sequence of executions
α0 = β0, α1 = β0β1, α2 = β0β1β2, . . . and a sequence of
integers n0 ≤ n1 ≤ n2 ≤ · · · such that, for all i , process p0
takes a step in βi and C(αi ) is ni -critical.

For i = 0, let n0 = 3, and γ be the execution in which
each pi proposes i . In a pi -solo extension of γ , pi decides i ,
so C(γ ) is n0-bivalent. By Lemma 13, there is an extension
α0 of γ such that C(α0) is n0-critical.

Suppose we have built an execution αi and an integer ni
respecting the induction invariant for some i . By Lemma 14,
in C(αi ), p0, . . . , pni−1 are about to invoke SOD(xi ) on the
same non-positive register, with xi ≥ ni − 1. Let us pose
ni+1 = maxi∈{0,...,ni−1} xi + 2.

As C(αi ) is ni -critical, C(αi ) is also ni -bivalent, so
C(αi ) is ni+1-bivalent. By Lemma 13, there is an extension
αi+1 = αiβi+1 of αi such that C(αi+1) is ni+1-critical. By
Lemma 14, in C(αi+1), p0 is about to invoke SOD(x ′

0), with

x ′
0 ≥ ni+1−1 = maxi∈{0,...,ni−1} xi+2−1 ≥ x0+2−1 > x0.
In particular, p0 took a step to invoke SOD(x0) in βi+1.

To conclude, p0 took an infinite number of steps in α =
β1β2 . . . , i.e. α is not wait-free. A contradiction. ��

7.3 Set-or-decrement is not universal inM2

Proposition 3 below shows that set-or-decrement registers are
not universal in the finite arrival model when infinite mem-
ory allocation is not possible. In addition to set-or-decrement
registers, one reason why infinite memory allocation mech-
anisms may be necessary and sufficient in M2 is that the
number of instances of set-or-decrement registers required
by the synchronization grows boundlessly with the number
of processes. Recently, [7] introduced a complexity-based
hierarchy ranking shared objects according to the number of
instances that are needed to solve obstruction-free consen-
sus. For example, at least O

(√
n
)
registers in addition to a

test-and-set operation are necessary to solve obstruction-free
multi-valued consensus between n processes. In order to be
universal in M2, an object has only two ways to circumvent
the limitation that only a fixed and finite number of objects
can be created at the initialization of any algorithm: either
it has a constant complexity in the hierarchy proposed in
[7], or it provides enough synchronization power to maintain
an extensible data structure (e.g. a linked list), where new
instances of itself can be created at runtime and accessed by
newly arrived processes.

Theproof of Proposition 3has the sameflavor as the proofs
in [7], but simplified as we are only interested in decidability
whereas their bounds need to be as tight as possible. Figure 3
illustrates the main steps of the proof. More precisely, the
proof of Proposition 5 builds a scheduler that keeps track
of a subset �′ of processes that have never communicated
with each other because the values they write in registers are
overwritten. The property maintained by the executions pro-
duced by this scheduler, called �′-partitioning, is specified
in Definition 6. The scheduler builds an execution in which
a large number of processes participate, and more and more
shared registers are covered by many processes (i.e. these
processes try to write or invoke set-or-decrement in the reg-
isters, see Definition 7) ignore the existence of each other,
until all objects are covered and two processes decide differ-
ent values. Themain difficulty of the proof is that the number
of processes that need to participate depends on the argu-
ments of the setOrDecrement invocations, so it has to be
guessed by the scheduler before the information is available.
Nevertheless, due to �′-partitioning, processes in different
partitions cannot communicate to adapt their arguments to
the number of processes, which allows us to pick the appro-
priate number of processes a posteriori.
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(a) (b)

(e)(d)(c)

Fig. 3 Illustration of the covering arguments used in the paper, by a
proof that M2 is not universal. The goal is to build an execution such
that two processes are about to terminate but do not know about each
other, hence deciding a different value (Fig. 3e).We do that by building,
inductively, an execution in which more and more registers (pictured in
diamond shapes) are covered enough times (Fig. 3d, starting with the
register first (Fig. 3b). The difficult part in most proofs is to make
onemore process cover onemore register (Fig. 3c). Here, two processes

(p4 and p8) have overwritten the values written by p9 in x0 and x1 and
been executed in isolation until p4 covers a register in X \ X1. Notice
that p4 and p8 may have learned about each other in the process, but
not about p9. Hence, we maintain a set �i, j,u of processes that do not
know about each other. Other processes (in light color), are ignored in
the rest of the execution, but they might only be known by one process
still in �i, j,u , which we encode by an equivalence relation ∼i, j,u . The
notations used in the proofs are illustrated on Fig. 3a

Definition 6 (Partitioned execution) Let �′ ⊂ � be a set
of processes, let ∼ be an equivalence relation on �, and let
p ∈ �′ be a process. We say that a finite execution α is
(�′,∼, p)-partitioned (or simply �′-partitioned if ∼ and p
are immaterial) if: (1) for all processes q, q ′ ∈ �′ q � q ′, (2)
for all processes q ∈ �′, the restriction αq of α to steps taken
by processes q ′ ∼ q is a valid execution of the algorithm,
and (3) all shared registers have the same value in C(α) and
C(αp).

Definition 7 (Covered register) Let p be a process and x be
a register, we say that p covers x in a configuration C if the
next step performed by p in C is either a write to x or an
invocation of setOrDecrement on x .

Proposition 3 M2[SOD] is not universal.

Proof Let us suppose there exists an algorithm A that solves
consensus in M2[SOD]. To simplify the proof, we also sup-
pose that processes start the algorithm by writing their value
to some registerfirst, and finish it bywriting their decided
value in another register last. Remark that such registers
and steps can be added to any consensus algorithm without
loss of generality. A finite set X of m = |X | registers are
created by the constructor of A.

We build (by induction on i and j), for all i ∈ {0, . . . ,m−
1}, a shared register xi ∈ X (we define Xi = {x0, . . . , xi })
and for all j ∈ N and u ≥ 2, a set �i, j,u of processes, and
an execution αi, j,u such that:

– αi, j,u is �i, j,u-partitioned (we denote by ∼i, j,u the cor-
responding equivalence relation),

– all registers of at Xi are covered at least u times by pro-
cesses in �i, j,u ,

123



Extending the wait-free hierarchy to multi-threaded systems 391

– j processes of �i, j,u cover registers in X \ Xi ,
– all registers of X \ Xi are in their initial state,
– for all u′ > u, �i, j,u ⊂ �i, j,u′ and for all processes p ∈

�i, j,u , C(αi, j,u) and C(αi, j,u′) are indistinguishable to
p. In particular, it means that the classes of equivalence
of ∼i, j,u are also classes of equivalence of ∼i, j,u′ .

Initialization for i = 0 and j = 0. Let u ≥ 2. We
pose x0 = first, �0,0,u = {p1, . . . , pu} and ∼0,0,u as
the equality over �0,0,u . In execution α0,0,u , each process
pk ∈ �0,0,u proposes its own identifier k and stops execut-
ingwhen it is about towrite in x0 = first. Executionα0,0,u

is�0,0,u-partitioned because no process accessed any shared
object, and all u processes of�0,0,u cover x0 by construction.

From j to j + 1, for a fixed i . Suppose that, for some
i ∈ {0, . . . ,m − 1}, we have built Xi , and for some j ∈ N,
we have built, for all u ≥ 2, �i, j,u and αi, j,u verifying the
properties stated above.

Let us first remark that last /∈ Xi . Otherwise, at least 2
processes q and q ′ of�i, j,2, would coverlast inC

(
αi, j,2

)
.

Letα′ be the extensionofC
(
αi, j,2

)
inwhichq, thenq ′,writes

in last, and the decide the same value v by agreement of
A. By validity of A, and as all processes proposed different
values, some unique process qv proposed v. Since α′ is par-
titioned, q also decided v in α′

q , so by validity of A again,
qv ∼i, j,2 q. Similarly, qv ∼i, j,2 q ′, so q ∼i, j,2 q ′, which
contradicts the fact that q and q ′ both belong to �i, j,2.

For all registers x ∈ Xi , let x̄ be the value stored in x in
ConfigurationC(αi, j,2).WeposeU = maxx∈Xi (max(x̄, 0))+
2. Let us also pick a subset �i, j of �i, j,U , containing, for
each x ∈ Xi , either:

– one process about to write in x , or
– one process about to invoke setOrDecrementon x if

x̄ ≤ 0, or
– x̄ + 1 processes about to invoke setOrDecrementon

x ,

in Configuration C(αi, j,U ). Such a �i, j exists because U ≥
2 processes of�i, j,U covered each register of Xi . Moreover,
for all u ≥ 2, �i, j ⊂ �i, j,u+U . Let us pick pi, j ∈ �i, j .

Let u ≥ 2.We pose�i, j+1,u = (�i, j,u+U \�i, j )∪{pi, j },
∼i, j+1,u as the equivalence relation built by merging the
classes of equivalence of processes in �i, j in ∼i, j,u+U , and
αi, j+1,u = αi, j,u+Uβi, j,u , where βi, j,u is built by first let-
ting each process q ∈ �i, j take one step, and then executing
pi, j until it covers a register in X \ Xi . Such a situation must
happen because A is wait-free, and pi, j cannot terminate its
execution before covering last ∈ X \ Xi .

All registers xu ∈ Xi were overwritten by processes in
�i, j before pi, j had a chance to do a read, and all registers
in X \ Xi are in their initial state, so pi, j only read values
written by processes p′ ∼i, j+1,u pi, j . Therefore, αi, j+1,u is

�i, j+1,u-partitioned. Moreover, all registers in Xi are still
covered by at least u processes in �i, j,u+U \ �i, j . Adding
pi, j to the j processes that already covered registers from
X \ Xi in C(αi, j,u), at least j + 1 processes cover registers
that are not in Xi , in C(αi, j+1,u). Moreover for u′ > u, the
executions αi, j+1,u′ and αi, j+1,u are indistinguishable to all
processes in �i, j+1,u , because αi, j,u′+U and αi, j,u+U are
indistinguishable to them, and the same processes in �i, j

took the same steps in βi, j,u and βi, j,u′ .
From ito i +1 Suppose that, for some i ∈ {0, . . . ,m−2},

we have built Xi , and for all j ∈ N and u ≥ 2, �i, j,u and
αi, j,u verifying the properties stated above. Let u ≥ 2. We
pose �i+1,0,u = �i,(m−i)u,u and αi+1,0,u = αi,(m−i)u,u . As
(m−i)u processes cover some of them−i registers in X \Xi ,
by the pigeon holes theorem, at least one register, that defines
xi+1, is covered by at least u processes of�i+1,0,u . All regis-
ters of Xi are covered by the same u processes inC(αi+1,0,u)

and in C(αi,(m−i)u,u). The other properties of αi+1,0,u are
naturally deduced from the properties of αi,(m−i)u,u .

Contradiction Finally, in C(αm−1,1,2), some process cov-
ers a shared object in X \ Xi = ∅ by definition of m. This is
absurd, so A cannot exist. ��
Theorem 4 setOrDecrementhas consensus number∞2

1.

Proof Direct consequence of Propositions 1, 2 and 3 . ��

8 Objects with consensus number∞3
1

As advocated in Sect. 6, binary consensus has long been
known to be equivalent tomulti-valued consensus in the clas-
sicalmodelM1. This section extends this result by presenting
an implementation of multi-valued consensus from binary
consensus in the infinite arrival model, when an infinite
memory allocation mechanism is available (Proposition 4).
Conversely, we also prove that binary consensus is not uni-
versal in multi-threaded systems, because infinite memory
allocation is necessary to solvemulti-valued consensus in the
finite arrival model (Proposition 5). Interestingly, this means
that Cons〈B〉 is not at the top of the extended wait-free hier-
archy, as it only has consensus number ∞3

1 (Theorem 5).

8.1 Binary consensus is universal inMA3

The sticky bit object, a resettable version of binary consensus,
has been shown to be universal inMA1 in [18]. Reductions of
multi-valued consensus to binary consensus have later been
proposed for message-passing systems [17], and extended to
M1 [19]. Algorithm 5 extends this result to the model MA3.
Processes share three infinite arrays: propose, isSet and
cons. For each index j ∈ N, propose[ j] is intended to
store the value proposed by p j , isSet[ j] is a Boolean set
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to true only after propose[ j] has been set, and cons[ j]
is a binary consensus object in which true is decided if, and
only if, the value of p j is decided. When a process pi pro-
poses a value vali , it first writes it to proposed[i] and sets
isSet[i] to true to announce its value. Then, it browses the
array indexes in the increasing order of the identifiers, trying
to agreewith other participantswhether or notproposed[ j]
can be decided.

Proposition 4 MA3[Cons〈B〉] is universal.
Proof We prove that Algorithm 5 implements Cons〈N〉 in
MA3[Cons〈B〉].

Termination. As all processes write true to isSet[i]
(Line 5) before reading isSet[ j] (Line 7),
the first access to isSet is a write by some
process p j0 . All processes pi executing the
loop for j = j0 will propose true, so by
the validity property of binary consensus, no
process executes an iteration for j > j0.

Agreement. By the agreement property of binary con-
sensus, all deciding processes decide on the
same round j , which is the smallest x such
that true is decided by cons[x].

Validity. Suppose pi decides at round j on Line 9.
Some process read isSet[ j] = true on
Line 7, so process p j previously wrote true
on Line 5, after writing its proposed value in
proposed[r j ] on Line 4. This is the value
returned by pi .

Finally, by Theorem 1, MA3[Cons〈N〉] is universal. ��

8.2 Binary consensus is not universal inM2

Although Algorithm 5 solves consensus in the infinite arrival
model, it requires O(n) memory locations to synchronize

n processes. Similarly, to our knowledge, no known algo-
rithmuses less than log2(n) binary consensus objects to solve
multi-valued consensus in Mn

1 in the worst case [23]. In this
section,we prove that infinitememory allocation is necessary
tomake binary consensus universal in the finite arrivalmodel.
Proposition 5 below actually shows a more general result,
stating that no deterministic object that can be in a finite
number of states (which is the case for binary consensus), is

universal in the finite arrival model without infinite memory
allocation. Similarly to the proof of Proposition 3, the proof
of Proposition 5 proposes a scheduler that builds executions
in which all shared registers are covered by enough processes
to force two of them to decide different values (the definition
of covered register is adapted in Definition 8). Contrastingly,
the proof of Proposition 5 differs from the proof of Proposi-
tion 3 in that the indistinguishability arguments concern the
values proposed by the different participants (captured by a
notion of valuation), rather than which processes participate.

Definition 8 (Covered register) Let p be a process and x an
shared register. We say that p covers x in a configuration C
if the next step of p in C is a write to x .

Proposition 5 For all deterministic objects O with a finite
number of reachable states, M2[O] is not universal.
Proof Let O be a finite deterministic object, and let us sup-
pose there exists an algorithm A that solves consensus in
M2[O]. Similarly to Proposition 3, we suppose, to simplify
the proof, that processes start the algorithm by writing their
value to some register first, and finish it by writing their
decided value in another register last, not used otherwise
in the algorithm. At the initialization of A, a finite set X of
m = |X | registers is created (we do not include instances of
O in X , but their number must be finite in M2).

For all i ∈ {0, . . . ,m}, we pose ui = 2(m − i + 1)!.
We consider executions of processes in the finite set � =
{p1, . . . , pu0}.
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We will now build, by induction on (i, j) ∈ N
2, with 0 ≤

i < m and 0 ≤ j ≤ (m − i)ui+1, taken in lexicographical
order:

– A sequence xi ∈ X of shared registers (we define Xi =
{x0, . . . , xi });

– A sequence �i, j of sets of processes;
– A sequence Vi, j of infinite sets of integers (we define a
valuation V of Vi, j as a function that associates some
V (p) ∈ Vi, j to each p ∈ �i, j , and for all v ∈ Vi, j ,
let Vv be the constant valuation that associates v to each
p ∈ �i, j );

– For each valuation V of Vi, j , one execution αV
i, j ;

Such that, for all valuations V , V ′ of Vi, j :

IH1i, j : All processes of �i, j cover the same registers in

C
(
αV
i, j

)
and C

(
αV ′
i, j

)
;

IH2i, j : All instances ofO are in the same state inC
(
αV
i, j

)

and C
(
αV ′
i, j

)
;

IH3i, j : All registers of Xi are covered at least (ui − j)

times in C
(
αV
i, j

)
;

IH4i, j : At least j processes of�i, j cover shared registers

of X \ Xi in C
(
αV
i, j

)
;

IH5i, j : All registers of X \ Xi are in their initial state in

C
(
αV
i, j

)
;

IH6i, j : For each process p ∈ �i, j , C
(
αV
i, j

)
and

C
(
α
VV (p)
i, j

)
are indistinguishable to p.

Initialization for i = 0and j = 0 Let us pose x0 =
first, �0,0 = �, and V0,0 = N. For each valuation V of
V0,0, let αV

0,0 be the execution in which each process p ∈ �

proposes V (p) and stops executing when it is about to write
into x0 = first. By construction, all processes of �0,0

cover first (hence, IH10,0), so x0 is covered u0 times
(hence, IH30,0), and O is in the initial state regardless of
the valuation (hence, IH20,0). No process covered or wrote
any other register (hence, IH40,0 and IH50,0). Moreover, for

all p and V ,C
(
αV
i, j

)
andC

(
α
VV (p)
i, j

)
are indistinguishable to

p since the processes did not communicate (hence, IH60,0).
From jto j +1,for a fixed i Suppose that, for some i < m

and for some j < (m − i)ui+1, we have built Xi , �i, j , Vi, j

and αV
i, j for all V , verifying the induction hypotheses IH1i, j

to IH6i, j .
Let us remark that last /∈ Xi . Otherwise, by IH3i, j , at

least ui − j > 2 processes would cover last in C
(
αV
i, j

)

for all valuations V of Vi, j . Let us take p and q amongst
them, and let V be an injective valuation of Vi, j (V exists

because �i, j is finite and Vi, j is infinite). Let αV , αp and

αq be respectively the extensions of αV
i, j , α

VV (p)
i, j and α

VV (q)

i, j ,
in which p and then q, took their last step and decided a
value. In αp, all processes would have proposed V (p) so p
would decide V (p) by the validity property of consensus.
By IH6i, j , αp and αV are indistinguishable to p, so p would
decide αV . Similarly, q would decide V (q) in αq and in αV ,
which would violate the Agreement property of consensus.

Let us pick, arbitrarily, a set � ⊂ �i, j of i + 1 pro-

cesses, each covering a different register from Xi inC
(
αV
i, j

)

(regardless of V , by IH1i, j ).� exists because of IH3i, j , with
ui − j > ui −(m−i)ui+1 > 1. Let us also pick, arbitrarily as
well, a process p ∈ �. We pose �i, j+1 = (�i, j \ �) ∪ {p}.

For all valuations Ṽ of Vi, j such that, for all q ∈ �,

Ṽ (q) = Ṽ (p), we build α̃Ṽ
i, j as the extension ofα

Ṽ
i, j inwhich,

at first, each process q ∈ � takes one step, which overwrites
all registers in Xi ; then, p takes steps until it covers a register
that is not in Xi . Such a situationmust happen because, on the
one side, A is wait-free so p cannot run in isolation forever,
and on the other side, p must write into last /∈ Xi before
terminating.

On the one hand, since Vi, j is infinite, there is an infinite
set S of valuations onVi, j that are constant on�. On the other
hand, there are afinite number ofways for p to cover a register
not in Xi and finitely many instances of O with finitely many
states. Therefore, by the pigeon holes Theorem, there exists
an infinite subset S′ of S such that, for all valuations Ṽ and
Ṽ ′ of S′ that are constant on �, p covers the same register,

and all instances of O are in the same state, in C
(
α̃Ṽ
i, j

)
and

C
(
α̃Ṽ ′
i, j

)
. Let us pose Vi, j as the union of the ranges of the

valuations in S′.
For all valuationsV ofVi, j+1,we define Ṽ as the valuation

of Vi, j such that Ṽ (q) = V (q) for all q ∈ �i, j and Ṽ (q) =
V (p) for all q ∈ �, and we let αV

i, j+1 = α̃Ṽ
i, j .

Let V and V ′ be two valuations ofVi, j+1. By construction,
and by IH1i, j and IH2i, j , all processes of �i, j cover the
same registers, and all instances of O are in the same states

inC
(
αV
i, j+1

)
andC

(
αV ′
i, j+1

)
, hence IH1i, j+1 and IH2i, j+1.

Moreover, all registers in Xi are still covered by the processes
in �i, j \ �,

hence IH3i, j+1. Adding p to the j processes that already

covered registers from X \ Xi in C
(
αṼ
i, j

)
(by IH4i, j ), j + 1

processes cover registers that are not in Xi , in C
(
αV
i, j+1

)
,

hence IH4i, j+1. Registers not in Xi were in their initial state

in αṼ
i, j by IH5i, j , and were not overwritten in αV

i, j+1, hence
IH5i, j+1.

Let q ∈ �i, j+1. If q �= p, the local state of q is the

same inC
(
αV
i, j+1

)
and inC

(
αṼ
i, j

)
, and by IH6i, j ,C

(
αṼ
i, j

)
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andC
(
α
VV (q)

i, j

)
are indistinguishable to q, soC

(
αV
i, j+1

)
and

C
(
α
VV (q)

i, j+1

)
are indistinguishable to q. Moreover, in all the

steps of αV
i, j+1 following αṼ

i, j , p only read from (1) the state

of instances of O , which are the same in C
(
α
VV (p)
i, j

)
and

C
(
αṼ
i, j

)
by IH2i, j , (2) the shared registers of Xi , that were

overwritten by processes of � with the same value in αV
i, j+1

and α
VV (p)
i, j+1 by IH6i, j and by definition of Ṽ , and (3) the

other shared registers that are in their initial state by IH5i, j .

Therefore, C
(
αV
i, j

)
and C

(
α
VV (p)
i, j

)
are indistinguishable to

p. Hence, IH6i, j+1.
From ito i + 1 Suppose that, for some i < m − 1, and for

j = (m − i)ui+1, we have built �i, j , Vi, j and αV
i, j for all

V , verifying the induction hypotheses IH1i, j to IH6i, j stated
above.

We pose �i+1,0 = �i, j , Vi+1,0 = Vi, j and for all valua-
tions V of Vi+1,0, αV

i+1,0 = αV
i, j . By IH4i, j and the pigeon

holes Theorem, there exists one of the m − i registers in
X \ Xi , that defines xi+1, that is covered by at least ui+1

processes of �i+1,0.
Induction hypotheses IH1i+1,0, IH2i+1,0, IH5i+1,0 and

IH6i+1,0 trivially follow from IH1i, j , IH2i, j , IH5i, j and
IH6i, j , respectively, and IH4i+1,0 is a tautology when j = 0.
By IH3i, j , all registers of Xi are covered at least ui − j =
ui+1 times inC

(
αV
i, j

)
, and so is xi+1 by construction, hence

IH3i+1,0.
Contradiction To conclude the proof, let us consider the

last step in the induction above, with i = m − 1 and j =
(m − i)ui+1 = 2. By IH4m−1,2, at least 2 processes cover
shared objects in X \ Xi = ∅ by definition of m. This is
absurd, so A cannot exist. ��

Theorem 5 Binary consensus has consensus number ∞3
1.

Proof As stated earlier, M1[Cons〈B〉] is universal, and, by
Proposition 4, so is MA3[Cons〈B〉]. Moreover, as Cons〈B〉
has a finite number of states, M2[Cons〈B〉] is not univer-
sal by Proposition 5. In conclusion, Cons〈B〉 has consensus
number ∞3

1. ��

9 Objects with consensus number∞3
2

Because an object with consensus number∞3
1 is universal in

MA3 and an object with consensus number ∞2
2 is universal

in M2, their composition can only have consensus number
∞3

2 or ∞3
3. In this section, we prove that the composition of

binary consensus and iterator stacks, our respective examples
for consensus numbers ∞3

1 and ∞2
2, is not universal in M3

(Proposition 6), so it has consensus number∞3
2 (Theorem 6).

Similarly to propositions 3 and 5 , the proof of Propo-
sition 6 proposes a scheduler that builds a �′-partitioned
execution, keeping track of a subset �′ of processes that
have never communicatedwith each other, and inwhichmore
and more shared objects are covered (Definition 9 adapts the
notion of coverage to take iterator stacks and binary consen-
sus objects into account, and adds a property that applies to
the whole configuration). The major difficulty is that iterator
stacks cannot be overwritten by a finite number of processes,
and the valency-based proof introduced in [2] cannot be
adapted to a setting where binary consensus objects can be
used in a critical configuration. Lemma 15 allows the sched-
uler to introduce a flow of newly arrived processes that, by
covering, reading or writing all iterator stacks, prevents any
chosen process trying to access an iterator stacks from learn-
ing any valuable information about the existence of other
processes. This intuition is specified in Definition 10, by the
concept of blind extensions.

Definition 9 (Covered configuration) An object x is write-
covered by a process p in a configuration C if: (1) x is a
register and the next step of p in C is a write on x , (2) x is
a binary consensus object and the next step of p in C is to
propose a value to x , or (3) x is an iterator stack and the next
step of p in C is a write on x .

An object x is covered by a process p in a configuration
C if x is write-covered, or x is an iterator stack and the next
step of p in C is a read on x .

Let �′ ⊂ � be a set of processes, let n ∈ N, and let
Y be a set of shared objects. We say that a configuration C
is (�′, n,Y )-covered if, in C , all objects in Y are covered
at least n times by processes from �′, and, in the case of a
binary consensus object x , at least n processes are about to
propose the same value.

Definition 10 (Blind extension) Let α be a (�′,∼, p)-
partitioned execution. We say that αβ is a blind extension
of α if no process took steps in both α and β, and for each
process q taking steps in β, there is an extension αpβ

′ of αp

such that the local state of q is the same in C(αβ) and in
C(αpβ

′). In other words, only fresh processes took steps in
β, but they could not learn about the existence of processes
other than those that are equivalent to p.

Lemma 15 Let α be a (�′,∼, p)-partitioned execution of a
consensus algorithm A, let X be the set of objects instantiated
at the set-up of A, and let m = |X |.

For all k ∈ {0, . . . ,m}, there exists a blind extension αβ

of α such that either:

– at least k different objects are write-covered in C(αβ) by
processes q1, · · · , qk that did not take steps in α, or

– some process q that did not take any step in α terminates
its execution.
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Proof We prove the lemma by induction on k. For k = 0,
we pose β = ε, the empty execution. Let us suppose, as the
induction hypothesis H(k), that the lemma holds for some
k ∈ {0, . . . ,m−1}.We start the proof of H(k+1) by proving
a claim.

Claim There exists a blind extension αβ ofα such that either:

– at least k different objects are write-covered in C(αβ) by
processes q1, . . . , qk that did not take steps in α, and one
more different object is covered in C(αβ) by a process
qk+1 that did not take steps in α, or

– some process q that did not take any step in α terminates
its execution.

Proof Suppose this claim is false.We build an infinite execu-
tion αβ0β1β2 . . . in which some process q takes an infinite
number of steps, such that each extension αβ0 . . . βn of α is
blind. Let w be the number of writes on iterator stacks in α,
let αβ0 = αγ1 . . . γw+2 be the blind execution obtained after
invoking the induction hypothesis H(k),w+2 times, and let
Yl be the set containing the k objects write-covered in γl , for
each l. Let q be a process that did not take steps in αβ0. As
we supposed the claim was false, Y = ⋃w+2

l=1 Yl has size k
and each object y ∈ Y is write-covered at least w + 2 times
in C(αβ0).

Suppose we have built a blind extension δn = αβ0 . . . βn

of α. We build βn+1 as follows, such that αβ0 . . . βnβn+1 is
a blind extension of α. As we supposed the claim was false,
q cannot terminate its execution in its next step.

– Suppose q is about to read an iterator stack y ∈ Y in
configuration C(δn). Let w′ be the number of writes on
some iterator stack in δn . We build δn+1 = δnζ1 . . . ζw′η
as follows: each ζl is the result of one invocation of the
induction hypothesis H(k). As we supposed the claim
was false, the set of write-covered objects in each ζl is
Y . In particular, in C(δnζ1 . . . ζw′), y is write-covered w′
times by processes that did not take steps in δn . In η, we
letw′ processes write in y, then q reads in y and gets one
of the values written by one of these processes, which
ensures the extension is blind.

– If q is about to write into an iterator stack y ∈ Y in
configurationC(δn), βn+1 is solely composed of the next
step of q. The write returns an iterator i = iα + i ′, where
iα is the number of writes on y inα and i ′ is the number of
writes on y in β0 . . . βn . As iα ≤ w, q cannot distinguish
the return value with a return value it would have had if
its write in y was preceded by iα writes from processes
that arrived in β0, so the extension is blind.

– Otherwise, in configuration C(δn), q is about to execute
a local step, read from a register x ∈ X , write into a
register y ∈ Y , propose a value to a consensus object

y ∈ Y , or access an object instantiated during β0 . . . βn

or in α by some process p′ ∼ p. In all these cases, βn+1

is solely composed of the next step of q, which is a blind
extension of δn .

Supposing the claim is false, we built an execution in which
process q takes an infinite number of steps, which contradicts
wait-freedom and concludes the proof of the claim. ��

Let us continue the proof of Lemma 15 by supposing that
H(k+1) is false.We build an infinite execution αβ0β1β2 . . .

in which some process q takes an infinite number of steps,
and such that each extension αβ0 . . . βn is blind.

Letw be the number of write operations on iterator stacks
in α, and w′ = (m − k)(w2 + 1). Remark that w′ is an upper
bound on the number of read operations that can return a
non-⊥ value in (m − k) iterator stacks, starting from C(α).
We build αβ0 = αγ1 . . . γw′+1 such that each γl is the blind
extension given by the claim. As we supposed H(k +1) was
false, 1) a set Y of k objects are write-covered (w′ +1) times
inC(αβ0) by processes that arrived inβ0, 2) no processwrote
in an iterator stack y /∈ Y in β0, and 3) (w′ + 1) processes
that did not take steps in α are about to read iterator stacks
that are not in Y . Let� be the set of these (w′ +1) processes.

Let us suppose we have built a blind extension δn =
αβ0 . . . βn of α such that some process in � took at least
one step in βl , for each l ≤ n. To build βn+1, we pick some
process q ∈ � that did not read a value v �= ⊥ in an iterator
stack y /∈ Y in δn . Such a process does exist because if the
hypothesis that H(k + 1) is false then no process wrote in
an iterator stack y /∈ Y in β0 . . . βn . On the other side, it is
impossible to read a non-⊥ value in an iterator stack y /∈ Y
more than w′ < |�| times. Moreover, if the hypothesis that
H(k+1) is false, then q cannot terminate its execution in its
next step.

– Suppose q is about to read from an iterator stack
y ∈ Y in configuration C(δn). Let w′′ be the num-
ber of writes on iterator stacks in δn , and let us build
δn+1 = δnζ1 . . . ζ2w′′η as follows. Let λ1 = δn and
λi = δnζ1 . . . ζi−1 for i > 1. For each i ∈ {1, . . . , 2w′′},
λiζi is the shortest blind extension of λi such that a pro-
cess that did not take steps in λi , is about to write in y, or
to read from y in the same iterator as q. Such an extension
exists by the claim and the supposition that H(k + 1) is
false. By the pigeon holes theorem, two cases are possi-
ble in C(δnζ1 . . . ζ2w′′). If at least w′′ new processes are
about to read y, then η contains their read, and then the
read by q returning ⊥. Otherwise, at least w′′ new pro-
cesses are about to write in y, and η contains their write
and the read by q, that returns a value written in η. In
both cases, δn+1 is blind.
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– If q is about to write in an iterator stack y ∈ Y in configu-
ration C(δn), the only step of βn+1 is the write operation
of q. As described in the claim, the fact that y is write-
covered at least (w′′ + 1) times by processes arrived in
β0, which is more than the number of writes on y in α,
implies that the extension is blind.

– In the other cases, in configuration C(δn), process q is
about to execute a local step, to read from a register
x ∈ X , to write into a register y ∈ Y , to propose a value
to a consensus object y ∈ Y , or to access an object instan-
tiated during β0 . . . βn or in α by some process q ′ ∼ q.
In all these cases, βn+1 is solely composed of the next
step of q, which is a blind extension of δn .

Assuming H(k + 1) is false, we have built an execution in
which a finite number of processes takes an infinite number
of steps, which contradicts wait-freedom and concludes the
proof. ��
Proposition 6 M3[Cons〈B〉,IStack] is not universal.

Proof Suppose there exists an algorithm A that solves
consensus in M3[Cons〈B〉,IStack]. Similarly to Propo-
sition 3, we suppose that processes start the algorithm by
writing their value to some register first, and finish it by
writing their decided value to another register last. At the
initialization of A, a finite set X of |X | = m objects are
created.

For all i ∈ {0, . . . ,m}, we pose ui = (m− i +1)!2m−i+1.
We consider an execution in which � = {p0, p1, p2, . . . }
is infinite and each process pi proposes its identifier i to
consensus. We will now build, by induction on (i, j) ∈ N

2,
with 0 ≤ i < m and 0 ≤ j ≤ 2 × (m − i) × ui+1, taken in
lexicographical order:

– A sequence xi ∈ X of shared objects of X (we define
Xi = {x0, . . . , xi });

– A sequence �i, j of processes sets;
– A sequence αi, j of �i, j -partitioned executions (let ∼i, j

be the equivalence relation) leading to a (�i, j , ui −
j, Xi )-covered configuration, such that at least j pro-
cesses of �i, j cover objects that are not in Xi , and these
objects are in their initial state.

Initialization for i = 0and j = 0 We pose �0,0 = �

and x0 = first. In execution α0,0, each process pk ∈
{p0, . . . , pu0} proposes its identifier k and stops executing
when it is about to write in first. As no operation on
shared objects has occured in α0,0, α0,0 is �0,0-partitioned
and C(α0,0) is (�0,0, u0, X0)-covered.

From jto j + 1,for a fixed i Suppose that, for some i ∈
{0, . . . ,m − 1}, we have built Xi , and for some j < 2 ×
(m − i) × ui+1, we have built �i, j and αi, j verifying the

properties stated above. We build αi, j+1 = αi, jβi, jγi, j and
�i, j+1 as follows.

Let us first remark that last /∈ Xi . Otherwise, at least
ui − j > 2 processes pA �= pB ∈ �i, j would be about to
write respectively a and b to the register last in C

(
αi, j

)
,

such that a was proposed by process pa and b was proposed
by process pb, with pa ∼i, j pA �i, j pB ∼i, j pb, by validity
of consensus. Then, pA and pB would decide different values
violating the agreement property of consensus.

Let us pick, arbitrarily, a set � ⊂ �i, j of i + 1 processes,
each covering a different register from Xi in C

(
αi, j

)
(recall

that each of them is covered at least ui − j > 1 times). The
extension βi, j is composed of one step of each process in �.
Let us also pick, arbitrarily aswell, a process p ∈ �.We pose
�′ = (�i, j \�)∪{p}, and let∼′ be the equivalence relation
built by merging the classes of equivalence of processes of
�, in ∼i, j . Execution αi, jβi, j is (�′,∼′, p)-partitioned.

Let αi, j+1 = αi, jβi, jγi, j be the shortest blind extension
of αi, jβi, j such that, inC(αi, jβi, jγi, j ), some process q cov-
ers an object y /∈ Xi or terminate its execution. Such an
extension exists by Lemma 15 for k = i + 1. Since q can-
not terminate itts execution before covering last /∈ Xi , q
covers an object y /∈ Xi in C(αi, jβi, jγi, j ). Moreover, as we
considered the shortest such extension, objects that are not
in Xi are still in their initial state.

Let �i, j+1 = (�i, j \ �) ∪ {q}, and let ∼i, j+1 be the
equivalence relation built by merging the classes of equiv-
alence of processes of �, in ∼i, j and adding all processes
introduced in γi, j in the class of equivalence of q. Execution
αi, j+1 is (�i, j+1,∼i, j+1, q)-partitioned because αi, jβi, j is
(�′,∼′, p)-partitioned and αi, j+1 is a blind extension of
αi, jβi, j . Moreover,C

(
αi, j+1

)
is (�i, j+1, ui − ( j +1), Xi )-

covered by the same processes asC
(
αi, jβi, j

)
, and q, as well

as j processes from �i, j , cover objects that are not in Xi .
From ito i + 1 Suppose that, for some i ∈ {0, . . . ,m − 2}

and j = 2× (m − i)× ui+1, we have built Xi , �i, j and αi, j

verifying the properties stated above.
At least j = 2×(m−i)×ui+1 objects are covered in αi, j .

By the pigeon holes theorem, there exists one of the m − k
objects that is not in Xi , denoted by xi+1, covered by at least
2 × ui+1 processes. If xi+1 is a binary consensus object, by
the pigeon holes theorem again, the most proposed value is
proposed at least ui+1 times. Let us denote by � the set of
these processes. Moreover, at least ui − j = 2ui+1 > ui+1

processes of �i, j cover each object in Xi . Let us denote by
 the set of these processes.

We pose αi+1,0 = αi, j and �i+1,0 = � ∪ .
Execution αi+1,0 is �i+1,0-partitioned and C(αi+1,0) is
(�i+1,0, ui+1, Xi+1)-covered, which concludes the induc-
tion.

ContradictionLet us consider the last step in the induction
above, with i = m − 1 and j = 2 × (m − i) × ui+1 = 4.
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At least 4 processes cover shared objects in X \ Xi = ∅ by
definition of m. This is absurd, so A cannot exist. ��
Theorem 6 The composition of iterator stacks and binary
consensus has consensus number ∞3

2.

Proof By [2], M2[IStack] is universal, and by Proposi-
tion 4, MA3[Cons〈B〉] is universal, so IStack+Cons〈B〉
has at least consensus number ∞3

2. By Proposition 6,
IStack + Cons〈B〉 has at most consensus number ∞3

2. ��

10 Conclusion

This paper explores the universality of shared objects in the
infinite arrival model where it is not possible to allocate and
initialize, at once, an infinite number of memory locations.
For that, we extend the existing wait-free hierarchy by sep-
arating the objects having an infinite consensus number into
five categories, according to their universality in the bounded,
finite or infinite arrival models, and the need or not of an infi-
nite memory allocationmechanism. This paper raises several
new open issues, that we detail thereafter.

We proposed a universal construction using consensus
objects and read/write registers, in which all invoked opera-
tions are stored twice in infinitely growing logs.Although this
construction serves the purpose of proving the universality
of consensus in all considered models, its complexity makes
it impractical. An interesting open problem is the space com-
plexity of universal constructions in multi-threaded systems,
including in situations where different special instructions,
such as compare-and-swap, are available.

We supposed that processes share an infinite memory.
Although this assumption is central to the definition of the
Turing Machine at the basis of computer science, it natu-
rally implies that pointers to memory locations have infinite
size, which is less practical. Without this assumption, multi-
valued consensus could be solved using a number of binary
consensus objects equal to the size of a pointer [23]. An inter-
esting open problem is the existence of a shared object with
consensus number ∞3

1 that does not have a poly-logarithmic
implementation of consensus in MA2.

Finally, the example of an object having consensus num-
ber ∞3

2 we exhibited in this paper is a composition of two
objects having a consensus number resp. ∞2

2 and ∞3
1. It

would be interesting to investigate if this is always the case.
This can be split into twoquestions.Does there exist an object
of consensus number ∞3

2 that cannot be expressed as such
a composition? Conversely, does there exist two objects of
consensus number ∞2

2 and ∞3
1 whose composition has con-

sensus number ∞3
3?
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9. Filipović, I., O’Hearn, P., Rinetzky, N., Yang, H.: Abstraction for
concurrent objects. Theoret. Comput. Sci. 411(51–52), 4379–4398
(2010)

10. Fischer, M.J., Lynch, N.A., Paterson, M.: Impossibility of dis-
tributed consensus with one faulty process. J. ACM 32(2), 374–382
(1985)

11. Gafni, E., Merritt, M., Taubenfeld, G.: The concurrency hierarchy,
and algorithms for unbounded concurrency. In: Proceedings of the
Twentieth Annual ACM Symposium on Principles of Distributed
Computing, pp. 161–169. ACM (2001)

12. Herlihy, M.: Wait-free synchronization. ACM Trans. Program.
Lang. Syst. 13(1), 124–149 (1991)

13. Herlihy, M., Rajsbaum, S., Raynal, M.: Power and limits of dis-
tributed computing shared memory models. Theor. Comput. Sci.
509, 3–24 (2013)

14. Herlihy, M., Shavit, N.: The Art of Multiprocessor Programming.
Morgan Kaufmann, Shavit (2008)

15. Herlihy, M., Wing, J.M.: Linearizability: a correctness condition
for concurrent objects. ACM Trans. Program. Lang. Syst. 12(3),
463–492 (1990)

16. Lamport, L.: A new solution of Dijkstra’s concurrent programming
problem. Commun. ACM 17(8), 453–455 (1974)

17. Mostefaoui, A., Raynal, M., Tronel, F.: From binary consensus to
multivalued consensus in asynchronous message-passing systems.
Inf. Process. Lett. 73(5–6), 207–212 (2000)

18. Plotkin, S.A.: Sticky bits and universality of consensus. In: Pro-
ceedings of the Eighth Annual ACM Symposium on Principles of
Distributed Computing, pp. 159–175 (1989)

19. Raynal, M.: Concurrent Programming - Algorithms, Principles,
and Foundations. Springer (2012)

20. Raynal,M.:Distributeduniversal constructions: a guided tour.Bull.
EATCS, 121, 2017

123



398 M. Perrin et al.

21. Taubenfeld, G.: Distributed Computing Pearls. Synthesis Lectures
on Distributed Computing Theory. Morgan & Claypool Publishers
(2018)

22. Treiber, R.K.: Systems Programming: Coping with Parallelism.
International Business Machines Incorporated, Thomas J. Watson
Research (1986)

23. Zhang, J., Chen, W.: Bounded cost algorithms for multivalued
consensus using binary consensus instances. Inf. Process. Lett.
109(17), 1005–1009 (2009)

Publisher’s Note Springer Nature remains neutral with regard to juris-
dictional claims in published maps and institutional affiliations.

123


	Extending the wait-free hierarchy to multi-threaded systems
	Abstract
	1 Introduction
	1.1 Wait-free universality
	1.2 Problem statement
	1.3 Approach
	1.4 Contributions of the paper
	1.5 Organization of the paper

	2 Illustration of the issue
	3 Computing models
	3.1 Arrival models
	3.2 Communication between processes
	3.3 Synchronization objects
	3.4 Distributed executions

	4 Universality of consensus in M3
	4.1 The weak log abstraction
	4.2 A universal construction
	4.3 An implementation of the weak log

	5 Infinite memory allocation is not necessary in M1
	6 No object has consensus number infty11
	7 Objects with consensus number infty12
	7.1 Set-or-decrement is universal in M1
	7.2 Set-or-decrement is not universal in MA3
	7.3 Set-or-decrement is not universal in M2

	8 Objects with consensus number infty13
	8.1 Binary consensus is universal in MA3
	8.2 Binary consensus is not universal in M2

	9 Objects with consensus number infty23
	10 Conclusion
	References




