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Abstract
The celebrated result of Fischer, Lynch and Paterson is the fundamental lower bound for asynchronous fault tolerant com-
putation: any 1-crash resilient asynchronous agreement protocol must have some (possibly measure zero) probability of not
terminating. In 1994, Ben-Or, Kelmer and Rabin published a proof-sketch of a lesser known lower bound for asynchronous
fault tolerant computation with optimal resilience in face of a Byzantine adversary: if n ≤ 4t then any t-resilient asynchronous
verifiable secret sharing protocol must have some non-zero probability of not terminating. Our main contribution is to revisit
this lower bound and provide a rigorous and more general proof. Our second contribution is to show how to avoid this lower
bound. We provide a protocol with optimal resilience that is almost surely terminating for a strong common coin functionality.
Using this new primitive we provide an almost surely terminating protocol with optimal resilience for asynchronous Byzan-
tine agreement that has a new fair validity property. To the best of our knowledge this is the first asynchronous Byzantine
agreement with fair validity in the information theoretic setting.

1 Introduction

One of the most important models of distributed computing
is the Asynchronous communication model. Intuitively, this
model captures the highest level of network un-reliability.
It allows the adversary to delay each message arrival in an
adaptive manner up to any finite amount. A basic question of
distributed computing is:

Is there a fundamental limit to fault tolerant computation
in the Asynchronous model?

The celebrated Fischer, Lynch, and Paterson (FLP) [12]
impossibility result from 1985 is perhaps the most well
known such fundamental limitation. It states that reaching
agreement, even in the face of just one crash failure, is impos-
sible for deterministic protocols. More formally, FLP [12]
prove that any protocol that solves Agreement in the asyn-
chronous model that is resilient to at least one crash failure
must have a non terminating execution. Thus, no protocol
can solve Agreement in this model in finite time, but using
randomization, it is possible to define a measure on the num-
ber of rounds and obtain protocols that have a finite expected
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termination. Given the FLP [12] impossibility it is natural to
ask:

Is this potentially measure zero event of non termination
the only limitation for fault tolerant computation in the asyn-
chronous model?

In 1983, Ben-Or et al. [6] initiated the study of secure
multiparty computation in the asynchronous model. Their
fundamental result is that the answer above is yeswhen there
are n > 4t servers and an adversary that can corrupt at most
t parties in a Byzantine (fully malicious) manner. They show
that perfect security with finite expected run time can be
obtained for any functionality.

The BCG [6] work left open the domain of 3t < n ≤ 4t
(with n = 3t it is known that Byzantine agreement is impos-
sible, see [11]). In 1993, Canetti and Rabin [9] obtained a
protocol for Asynchronous Byzantine Agreement with opti-
mal resilience (3t < n). Their protocol had an “annoying
property”: the non-termination event has a non-zero prob-
ability measure. This problematic non-zero probability of
non-termination came from their verifiable secret sharing
protocol. In 1994, Ben-Or et al. [7] addressed this problem.
They provided an optimal resilience asynchronous secure
multiparty computation protocol with the same “annoying
property”: the non-termination event has a non-zero prob-
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ability measure.1 Moreover, BKR [7] claim that this is
unavoidable. That is, if n ≤ 4t then any t-resilient asyn-
chronous verifiable secret sharing protocol Amust have some
non-zero probability qA > 0 of not terminating. Unfortu-
nately, BKR [7] only provided a proof-sketch of this lower
bound.

1.1 First contribution: lower bounds on
asynchronous verifiable secret sharing with
optimal resilience

25 years after the publication of the proof-stretch of BKR
[7], the main contribution of this paper is a rigorous proof of
the lower bound theorem. We believe that our work will help
provide clarity and better understanding of the asynchronous
model and its impossibility results. In addition, our lower
bound proof improves over the BKR proof-sketch in two
important ways:

Oneweakness of the BKR [7] proof-sketch is that its argu-
ments only imply a lower bound for verifiable secret sharing
schemes that have perfect hiding and binding properties. This
raises a natural question: Can allowing some error probabil-
ity in the Asynchronous Verifiable Secret Sharing scheme
(AVSS) remove the need for a non-zero probability of non-
termination? Our proof strengthens the BKR lower bound
claim and proves this is not the case. We prove that even
AVSS schemes with constant error must have a non-zero
probability of non-termination.

A second weakness of the BKR [7] proof-sketch is that
its arguments assume the share (and reconstruct) protocols
terminate in a fixed (constant) number of rounds. VSS proto-
cols whose share protocol terminates with probability 1 have
been shown to be useful in other contexts [1]. Our proof
strengthens the BKR [7] lower bound claim and proves that
a non-zero probability of non-termination must occur even
if the share and reconstruct protocols only terminate with
probability 1.

1.2 Second contribution: upper bounds on strong
common coin and asynchronous Byzantine
agreement with fair validity

What are the implications of this lower bound? Does it imply
that all optimal resilience secure computation must have a
non-zero probability of non-termination? We know that this
is not the case. In fact, Ben-Or [5] and Bracha [8] prove
that Byzantine agreement has a measure zero probability of

1 BCG [6]: “our protocol, as well as the verifiable secret sharing
protocol of [CR93], have the following annoying property: the exponen-
tially small error probability includes an exponentially small non-zero
probability of not terminating. This should be contrasted with the
asynchronous Byzantine Agreement problem where the randomized
protocol terminates with probability 1”.

non-termination (it almost surely terminates) with optimal
resilience. However the expected time of termination of these
protocols is exponential.

The work of [2] shows that almost surely termination is
possible even with a polynomial expected number of rounds.
This is obtained using a certain type of a weak common coin
functionality that is also almost surely terminating. This gap
raises a natural question:

Are there other functionalities (stronger than a weak coin,
but weaker than verifiable secret sharing) that can be imple-
mented in the asynchronous model for n = 3t + 1 that are
almost surely terminating?

Our first upper bound contribution is to answer this ques-
tion in the affirmative. We show that a certain type of strong
common coin is possible to implement in an almost surely
terminatingmanner. The difference between aweak common
coin and a strong common coin is that in a strong common
coin protocol, all parties output the same value while in a
weak common coin, with constant probability, different par-
ties may output different values for the coin.

What is the advantage of a strong common coin over a
weak common coin? With a strong common coin we know
how to obtain asynchronous Byzantine agreement with a fair
validity property. In Byzantine agreement protocols with fair
validity all parties are required to output a nonfaulty party’s
input with probability 1

2 or greater, in addition to the regular
requirements from Byzantine agreement protocols. We do
not know how to obtain this validity property with a weak
coin.

Our second upper bound contribution is a Byzantine
Agreement protocol in the Asynchronous model for n =
3t + 1 with fair validity that is almost surely terminating.
To the best of our knowledge this is the first Asynchronous
Byzantine Agreement protocol with fair validity in the infor-
mation theoretic setting.

2 Lower bound

2.1 Communicationmodel and definitions

This work deals with a fully-connected asynchronous net-
work with a Byzantine adversary. This means that every two
parties have a direct link between them. The direct link is
assumed to be secure and authenticated. By the link being
secure, we mean that if party Pi sends a message to party Pj ,
no other party can read its contents. By the link being authen-
ticated, we mean that if party Pi receives a message from Pj ,
then Pj actually sent that message to Pi . In an asynchronous
network any message is eventually received in finite time,
but there is no bound on the amount of time the message can
be delayed. The network has n parties, and the adversary can
control up to t parties. A party controlled by the adversary
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can deviate arbitrarily from the protocol, and is said to be
faulty. Our work deals with information-theoretic security,
and thus we assume the adversary is potentially computa-
tionally unbounded.

In the following definitions and discussions when a party
has called a protocol and is running it to completion, we say
that it “participates in the protocol”.

Definition 1 A Byzantine Asynchronous Verifiable Secret
Sharing (AVSS) protocol, comprised of a pair of protocols
(S, R),2 has a designated dealer called D, which receives a
secret s from a finite field F as input. For ε > 0, such a pro-
tocol is called an almost-surely terminating (1 − ε)-correct
t-resilient Byzantine AVSS protocol if the three following
properties hold for every adversary controlling t parties at
most, and any message scheduling:

1. Termination

(a) If the dealer is nonfaulty and all nonfaulty parties
participate in protocol S, then each nonfaulty party
will almost-surely eventually complete protocol S.

(b) If some nonfaulty party completed protocol S, then
eachnonfaulty party that participates in Swill almost-
surely eventually complete protocol S.

(c) If all of the nonfaulty parties finished protocol S and
began protocol R, they will all almost-surely com-
plete protocol R.

2. CorrectnessOnce the first nonfaulty party has completed
protocol S, there exists some value r ∈ F such that with
a probability of at least (1 − ε):

(a) If the dealer is nonfaulty, r = s.
(b) Every nonfaulty party that completes protocol R out-

puts the value r .

3. Secrecy If the dealer is nonfaulty, and no honest party has
began protocol R, no adversary can gain any information
about s. More precisely, denote V s to be the adversary’s
view of an execution of S with a nonfaulty dealer shar-
ing s before some nonfaulty party calls protocol R. If
the dealer is nonfaulty, then for any given adversary and
message scheduling, the distribution of V s is the same
for all possible secrets s.

When we say that some party almost-surely completes the
protocol, wemean that it completes the protocol in finite time
with probability 1. This also means that for every ε > 0 there
exists some number N ∈ N such that the probability that
the party exchanges more than N messages with all parties
during protocol S is less than ε. It is important to note that

2 S is the protocol for sharing a secret and R is the protocol for recon-
structing it.

those valuesmight need to be adjusted based on the adversary
and scheduling as well. Similarly, if all parties almost-surely
terminate, for every ε > 0 there exists some N ∈ N such
that the probability that there exists a nonfaulty party who
exchanges more than N messages is no greater than ε.

2.2 Lower bound statement and proofs

Themain result shown in this section is proving the following
theorem:

Theorem 1 For any ε ∈ (0, 1
2 ] and n, t ∈ N such that

4t ≥ n > t there does not exist an almost-surely termi-
nating

( 1
2 + ε

)
-correct t-resilient Byzantine AVSS protocol

(S, R) for n parties.

This is done by first proving a slightly weaker version of
the theorem, only showing that no such protocol exists for
n = 4, t = 1 when sharing a binary secret s ∈ {0, 1}. Using
standard methods, this result can be expanded to any 4t ≥
n ≥ 3t + 1, and to a multivalued secret, and an explanation
of how to do that is provided below. Therefore, the first goal
in this section is proving the following theorem:

Theorem 2 For any ε ∈ (0, 1
2 ] there is no almost-surely

terminating
( 1
2 + ε

)
-correct 1-resilient Byzantine AVSS pro-

tocol (S, R) for sharing a binary secret s ∈ {0, 1} with 4
parties.

Let the parties be A, B,C, D, and let D be the dealer. By
way of contradiction, assume the parties run an almost-surely
terminating

( 1
2 + ε

)
-correct t-resilient Byzantine AVSS pro-

tocol. The theorem is proven using two main lemmas. The
first lemma describes possible malicious behaviour by a
faulty dealer during protocol S. The second lemma describes
possible malicious behaviour by another party in protocol R.

In both of the described attacks, parties A, B and D
communicate freely in a synchronous manner throughout
protocol S and party C does not send or receive any mes-
sages. By communicating in a synchronous manner wemean
that we proceed in “rounds” consisting of waiting until par-
ties complete their computation and send messages. Then,
once parties sent all of the messages in a given round, all
messages are delivered and the next round begins.3 As will
be shown below, in this setting parties A, B and Dmust com-
plete protocol S. After parties A, B and D have completed
protocol S, party C receives all messages from parties A and
B, but does not receive messages from party D. Then, parties
A, B and C run protocol R with their communication being
conducted in a synchronous manner. Again, as shown below,
parties A, B and C must complete protocol R in this setting

3 In order to avoid extreme cases of unending computation, a maximal
number of computation steps can be imposed on each party in each
round.
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as well. All messages to and from D are delayed through-
out protocol R until all three parties complete the protocol.
After parties A, B and C complete protocol R, all messages
are delivered without delay. Note that the behaviour in proto-
col S is consistent with party C being crashed. Furthermore,
the behaviour in protocol R is consistent with party C being
delayed earlier, and party D being malicious or crashed.

Before we state the first lemma we define a distribution
of views where the system is synchronous, the dealer D and
parties A, B are nonfaulty and partyC has crashed. In such a
setting, from theTermination property of AV SS all nonfaulty
parties almost-surely complete protocol S. Set some 1 >

ε′ > 0 and let N ∈ N be a number such that if parties
A, B, D participate in protocol S in the setting described
above, the probability that one of them runs for more than
N rounds throughout protocol S is smaller than ε′. From the
Termination property of the protocol, and since the setting is
synchronous, such a value N must exist. Define long to be the
event in which either A, B or D run for longer than N rounds
throughout protocol S, and long to be its complement.

Definition 2 For every s ∈ {0, 1} , P ∈ {A, B}, let πs,P be
the distribution of P’s view when a nonfaulty D shares the
value s and party C is faulty and silent, conditioned upon the
event long.

In the attack described in the first lemma, the dealer, D has
a nonzero probability of causing parties A and B to complete
protocol S, but the distribution of party A’s view conditioned
upon the attack’s success is π0,A, while the conditional dis-
tribution of party B’s view is π1,B .

Lemma 1 A faulty dealer D has a strategy such that with
some nonzero probability the following event holds:

1. Parties A and B complete protocol S.
2. The conditional distribution of party A’s view is π0,A.
3. The conditional distribution of party B’s view is π1,B.

Intuitively, the dealer will try to make party A and party B
complete protocol S while seeing contradictory worldviews.
Conditioned on this nonzero probability event the following
happens: on the one hand, in A’s view, the execution of S
looks like one in which D shared the value 0 and C was
faulty and silent (corresponding to the distribution π0,A). On
the other hand, in B’s view the execution of S looks like one
in which D shared the value 1 and C was faulty and silent
(corresponding to the distribution π1,B). After A and B com-
plete protocol S, C starts participating in the protocol, and
completes protocol S as well. Then all three parties partic-
ipate in protocol R, and eventually complete it and output
some value r . This value r will be used in the next attack in
the second lemma.

The crux of this attack is that parties A and B should not
know whether 0 or 1 is shared during S in a run in which

D is nonfaulty because of the Secrecy property. Leveraging
this ambiguity, the faulty dealer tries to make them complete
S with incompatible views, which they will have to resolve
during protocol R.

Afterwards, in order to prove the main result, we prove
the following lemma for every 1 > ε′ > 0 (arbitrarily close
to 0):

Lemma 2 Without loss of generality, the adversary has a
strategy controlling party B such that when a nonfaulty D
shares the value 0, with probability at least 1 − ε′:

– A’s view during protocol S is distributed according to
the distribution π0,A,

– C outputs 0 at the end of protocol R with probability 1
2

or less.

The value 0 in the lemma is used when in the previous attack
party C outputs the value r = 0 with probability 1

2 or less.
The claim is “without loss of generality”, in the sense that if
C outputs the value r = 1 with probability 1

2 or less then we
switch A with B as well as 0 with 1.

In this attack, B acts normally throughout S, and then
throughout R acts as if the attack in Lemma 1 took place.
As opposed to the previous attack which can succeed with
some tiny nonzero probability, B’s attack succeeds (i.e. it
looks as if the attack in Lemma 1 took place) with a proba-
bility arbitrarily close to 1. This means that the event that C
outputs 0 with probability 1

2 or less can occur with a proba-
bility arbitrarily close to 1. Note that if the dealer shares 0,
then every nonfaulty party should output 0 with probability
1
2 + ε or greater, and thus C can only fail to output 0 with
probability 1

2 − ε. Therefore, for a small enough ε′ we reach
a contradiction. This concludes the proof for Theorem 2.

Several random variables are defined in order to prove the
aforementioned lemmas. Technically, the distribution of the
random variables could depend on the dealer, the adversary
andon themessage scheduling.Throughout all of the analysis
these factors are strictly defined, and are therefore omitted
from the definitions of the random variables.

Let Ms
XY be the distribution of messages exchanged

between party X and party Y during the sharing protocol S
if the network is synchronous, party D is a nonfaulty dealer
sharing the value s, party C is faulty and silent, and no non-
faulty party calls protocol R. Let Rs

X be the distribution of the
internal randomness of party X throughout the sharing proto-
col in the described setting. LetV s

X be the distribution of party
X ’s view of the share phase in the setting described above.
For every pair of parties X ,Y and value s let rsX ∼ Rs

X be a
random variable describing X ’s randomness in a given run,
ms

XY ∼ Ms
XY be a random variable describing the messages

between parties X and Y with a nonfaulty dealer sharing s
in the described setting, and vsX ∼ V s

X be a random variable
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describing X ’s view in the run. Note that rsX is necessarily
part of vsX in some way, as well as ms

XY for every party Y .
For any distributionD, x ∈ D means that x has a nonzero

probability under D. Party X ’s view vX is consistent with
s if vX ∈ V s

X . Similarly, a set of messages mXY exchanged
between party X and party Y is consistent with the secret s
if mXY ∈ Ms

XY .
For the first part of the analysis, assume D is corrupted

by the adversary. The overarching goal is to prove Lemma 1
while party A sees a view consistent with D sharing the value
0 and party B sees a view consistent with D sharing the
value 1. Intuitively, from the Secrecy property, neither party
A nor party B should be able to tell which value was shared
throughout protocol S, and thus D could send messages in
that manner and neither party would notice.

The adversary’s strategy is as follows: Party D samples
sA ← R0

A|long and sAB ← M0
AB |r0A = sA, long and

then sB ← R1
B |m1

AB = sAB, long. Afterwards it samples
sAD ← M0

AD|m0
AB = sAB, r0A = sA, long and mBD ←

M1
BD|m1

AB = sAB, r1B = sB, long. The random variables
sA, sB are D’s guesses of A and B’s randomness, and the
variables sAB, sAD, sBD are the messages D predicts will be
sent. Define party X ’s randomness throughout this run to be
rX and the messages exchanged between parties X and Y
in this run to be mXY . Finally, define the event G, in which
sA = rA, sB = rB .

Before showing this behaviour can be used as part of
Lemma 1, we need to show that these distributions are
well-defined and samplable. Note that the setting is entirely
synchronous. For simplicity, assume that the number of bits
in a message and the amount of randomness needed in each
round are bounded. In addition, assume that every party sends
some message indicating that it completes protocol S. These
assumptions are used in order to simplify the proof of the
next lemma.4

Lemma 3 For every valuesm′
AD,m′

AB, r ′
A such that Pr[m0

AD= m′
AD,m0

AB = m′
AB, r0A = r ′

A, long] �= 0:

Pr[m0
AD = m′

AD,m0
AB = m′

AB, r0A = r ′
A|long]

= Pr[m1
AD = m′

AD,m1
AB = m′

AB, r1A = r ′
A|long]

4 In order to prove the general case, the dealer can simulate the entire
run for parties A, B, D round-by-round twice, once sharing the value
0 and once sharing the value 1. The dealer will only accept pairs of
runs in which the messages exchanged between parties A and B are the
same. Proving that there must exist such a pair of runs requires proving
a lemma similar to the following lemma without conditioning upon
the event long. Note that since the rounds almost-surely terminate, the
sampling process will also terminate with probability 1. This will result
in slight differences in the attacks and proofs, but with very similar
techniques and ideas. The main difference is that all of the sampled
probabilities will not be conditioned upon the event long.

Proof First note that from the Termination property of
AV SS, if all nonfaulty parties participate in protocol S they
will all complete it. Observe a scheduling in which the com-
munication between parties A, B and D is synchronous,
party C is silent throughout all of protocol S and no non-
faulty party calls protocol R at all. In this case, since no
nonfaulty party calls protocol R, the Secrecy property must
hold at the time the parties complete protocol S.

Seeking a contradiction, assume the lemma doesn’t hold
and show a violation of the Secrecy property. In that case,
observe the scenario in which the adversary controls party
A and the nonfaulty dealer shares the value 0. Party A acts
like a nonfaulty party would in protocol S. From D and B’s
point of view, party A acts as a nonfaulty party and C acts as
a faulty party which doesn’t send any messages. Since they
cannot distinguish between the scenarios, the messages must
be distributed according to the distributions M0

AD, M0
AB and

A’s randomness must be distributed according to R0
A. Since

Pr[m0
AD = m′

AD,m0
AB = m′

AB, r0A = r ′
A, long] �= 0, there

is a nonzero probability that parties A, B, D complete pro-
tocol S with A having exchanged those messages in fewer
than N rounds. All parties also know when other parties
complete the protocol because they send a message indicat-
ing they completed protocol S. No nonfaulty party called R
yet, and Pr[m0

AD = m′
AD,m0

AB = m′
AB, r0A = r ′

A|long] �=
Pr[m1

AD = m′
AD,m1

AB = m′
AB, r1A = r ′

A|long]. In other
words, if party A acted in the exact same way, and D were
sharing the value s = 1 instead, Awould have had a different
probability of seeing these values if the event long took place.
Since A’s random values and the messages it exchanges are
a part of its view, as well as its knowledge as to whether the
event long happened, this means that this adversary’s view
in the case s = 0 is distributed differently than it would be
in the case s = 1 reaching a contradiction. For complete-
ness, all messages to and from C can be sent and received
after parties A, B and D complete protocol S in order for the
scheduling to be valid. 	


The probabilities are equal for every event with nonzero
probability in the case that the dealer is sharing the value
0. Since both must be probability spaces Pr[m0

AD =
m′

AD,m0
AB = m′

AB, r0A = r ′
A|long] = 0 if and only if

it is also true that Pr[m1
AD = m′

AD,m1
AB = m′

AB, r1A =
r ′
A|long] = 0, and thus the distributions must be identical.
In addition, the exact same arguments can be made for B
instead or if party D shared the value s = 1.

A direct corollary is that any of the marginal and condi-
tional probabilities are also the same. For example:

Corollary 1 For every m′
AD ∈ M0

AD|long:

Pr[m0
AD = m′

AD|long] = Pr[m1
AD = m′

AD|long].
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Furthermore, for every m′
AB ∈ M0

AB |long:

Pr[m0
AD = mAD|m0

AB = m′
AB, long]

= Pr[m1
AD = mAD|m1

AB = m′
AB, long].

Proof Each of these equalities is shown individually. Define
the distributions Xs = Ms

AB |long and Y s = Rs
A|long.

Pr[m0
AD = m′

AD|long]
=

∑

m′
AB∈X0,

r ′
A∈Y 0

Pr[m0
AD =m′

AD,m0
AB =m′

AB, rA=r ′
A|long]

=
∑

m′
AB∈X1,

r ′
A∈Y 1

Pr[m1
AD =m′

AD,m1
AB =m′

AB, rA=r ′
A|long]

= Pr[m1
AD = m′

AD|long]

Summing over m′
AB ∈ X0 = M0

AB |long is the same
as summing over m′

AB ∈ X1 = M1
AB |long because for

every m′
AB ∈ M0

AB |long there must exist m′
AD, r ′

A such
that Pr[m0

AD = m′
AD,m0

AB = m′
AB, r0A = r ′|long] �= 0.

From previous observations, this means that Pr[m1
AD =

m′
AD,m1

AB = m′
AB, r1A = r ′

A|long] �= 0 and thus m′
AB ∈

M0
AB |long as well. The same reasoning holds about r ′

A. The
argument also clearly works in reverse. This argument can
also be made for any other subset of the three variables.

For the second property, note that Pr[m0
AB = m′

AB |long]
�= 0 and thus the probability is well defined. In that case:

Pr
[
m0

AD = m′
AD|m0

AB = m′
AB, long

]

= Pr
[
m0

AD = m′
AD,m0

AB = m′
AB |long]

Pr
[
m0

AB = m′
AB |long]

= Pr
[
m1

AD = m′
AD,m1

AB = m′
AB |long]

Pr
[
m1

AB = m′
AB |long]

= Pr
[
m1

AD = m′
AD|m1

AB = m′
AB, long

]

It is important to notice that all of those arguments could
have beenmadewith any subset of the three randomvariables
described in the lemma. 	

Corollary 2 The values sampled by D in the described attack
are sampled from well-defined, samplable distributions.

Proof We go through each sampled value and check if
the distribution is well-defined. First, D samples sA ←
R0
A|long. From the definitions of ε′ and the correspond-

ing N , the probability that A’s view throughout protocol
S is of length greater than N is no greater than ε′. This
means that the event long happens with probability 1 −
ε′ > 0 at the very least, and thus there must also exist

some value rA ∈ R0
A|long. D then samples sAB ←

M0
AB |r0A = sA, long. Since Pr

[
r0A = rA|long] �= 0, there

must be some set of messages m′
AB ∈ M0

AB |long such that
Pr
[
m0

AB = m′
AB, r0A = sA|long] �= 0 and thus the distribu-

tion iswell defined. The argument for sAD is identical. D then
samples sB ← R1

B |m1
AB = sAB, long. Following similar

arguments, Pr
[
m0

AB = sAB |long] �= 0 and thus from Corol-
lary 1, Pr

[
m1

AB = sAB |long] �= 0. Now, following similar
arguments both sB and sBD are sampled from well-defined
distributions. D can easily sample from these distributions
by simulating all runs with parties A, B and D that take no
more than N rounds to terminate. This is possible because of
the assumption that the size of messages and randomness in
each round is bounded. If that is not the case, D can simulate
the protocol step by step and sample values that way. 	


In general the strategy from this point on is to prove that
if any party’s view is consistent with some secret it must
complete protocol S. The next step is to show that if event G
occurs, A and B’s view must be consistent with some secret
s (not the same one) and the event long must take place. In
the runs described by the random variables party C is faulty
and doesn’t send any messages, and thus we prove that there
are runs in which parties A and B must complete protocol S
even without receiving any messages from C .

Lemma 4 If party A’s view is consistent with some secret
s ∈ {0, 1} then it must almost-surely complete the protocol,
even without receiving any messages from party C.

Proof Since party A’s view is consistent with the secret s,
A could have had this exact view with a nonfaulty dealer D
sharing s if C were faulty and silent. Since in that run A and
B are nonfaulty and D is a nonfaulty dealer, from the Ter-
mination property of AV SS, Amust almost-surely complete
protocol S in that run. A can’t tell the difference between its
view in this run and the view in which C was faulty, and thus
A must complete protocol S if its view is merely consistent
with s. Party C’s messages won’t be infinitely delayed in
this run because the probability that party A has an infinitely
large view is 0. After completing protocol S, all of party C’s
messages can be delivered. 	


This exact argument can be made for party B as well. We
now turn to show that if D acts according to the described
strategy, there is a nonzero probability that A and B complete
protocol S with the desired distribution of views, conditioned
upon the event long.

Lemma 5 If the dealer is faulty, sA = rA, sB = rB, D
exchanges the messages sAD and sBD with parties A and
B respectively, parties A and B exchange the messages sAB
between them, and the scheduling is as described above, then
party A’s view is distributed according to V 0

A|long and party
B’s view is distributed according to V 1

B |long.
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Proof The random variable v0A is defined to be party A’s
view during protocol S with a nonfaulty dealer D sharing
the value s = 0, and a faulty C which remains silent. Since
no messages are received from party C , A’s view consists of
m0

AB,m0
AD, r0A. In the run described in the lemma no mes-

sages are sent or received from party C either and thus party
A’s view consists of sAB, sAD, rA. Technically the ordering
could also matter, but note that the scheduling is determin-
istic and looks identical in both runs, so the order in which
messages are received is ignored.

Observe some m′
AB,m′

AD, r ′
A such that Pr[m0

AB =
m′

AB,m0
AD = m′

AD, rA = r ′
A|long] �= 0:

Pr
[
m0

AB = m′
AB,m0

AD = m′
AD, r0A = r ′

A|long]

= Pr
[
m0

AD = m′
AD|m0

AB = m′
AB, r0A = r ′

A, long
]

× Pr
[
m0

AB = m′
AB |r0A = r ′

A, long
] · Pr [r0A = r ′

A|long]

On the other hand:

Pr
[
sAB = m′

AB, sAD = m′
AD, rA = r ′

A|G]

= Pr
[
sAD = m′

AD|sAB = m′
AB, rA = r ′

A,G
]

× Pr
[
sAB = m′

AB |rA = r ′
A,G

]
Pr
[
rA = r ′

A|G]

= Pr
[
sAD = m′

AD|sAB = m′
AB, sA = r ′

A

]

× Pr
[
sAB = m′

AB |sA = r ′
A

]
Pr
[
sA = r ′

A

]

= Pr
[
m0

AD = m′
AD|m0

AB = m′
AB, r0A = r ′

A, long
]

× Pr
[
m0

AB = m′
AB |r0A = r ′

A, long
]
Pr
[
r0A = r ′

A|long
]

= Pr
[
m0

AB = m′
AB,m0

AD = m′
AD, r0A = r ′

A|long
]

Where the second to last equality stems from the defini-
tions of the random variables sA, sAB, sAD .

The analysis for B’s view can be done in a similar fashion,
finding that:

Pr
[
sAB = m′

AB, sBD = m′
BD, rB = r ′

B |G]

= Pr
[
sBD = m′

BD|sAB = m′
AB, rB = r ′

B,G
]

× Pr
[
rB = r ′

B |sAB = m′
AB,G

]
Pr
[
sAB = m′

AB |G]

= Pr
[
sBD = m′

BD|sAB = m′
AB, sB = r ′

B

]

× Pr
[
sB = r ′

B |sAB = m′
AB

]
Pr
[
sAB = m′

AB |G]

= Pr
[
m1

BD = m′
BD|m1

AB = m′
AB, r1B = r ′

B, long
]

× Pr
[
r1B = r ′

B |m1
AB = m′

AB, long
]
Pr
[
sAB = m′

AB |G]

Where the final equality stems from the definition of the ran-
dom variables sBD, sB . Now observe the messages between

parties A and B:

Pr
[
sAB = m′

AB |G]

=
∑

r ′
A∈R0

A|long
Pr
[
sAB = m′

AB |rA = r ′
A,G

]

Pr
[
rA = r ′

A|G]

=
∑

r ′
A∈R0

A|long
Pr
[
sAB = m′

AB |sA = r ′
A

]
Pr
[
sA = r ′

A

]

=
∑

r ′
A∈R0

A|long
Pr
[
m0

AB = m′
AB |r0A = r ′

A, long
]

Pr
[
r0A = r ′

A|long
]

= Pr
[
m0

AB = m′
AB |long

]
= Pr

[
m1

AB = m′
AB |long

]

Where the third equality stems from the definitions of sA and
sAB , and the last equality stems fromCorollary 1.Completing
the original analysis:

Pr
[
sAB = m′

AB, sBD = m′
BD, rB = r ′

B |G]

= Pr
[
m1

BD = m′
BD|m1

AB = m′
AB, r1B = r ′

B, long
]

× Pr
[
r1B = r ′

B |m1
AB = m′

AB, long
]
Pr
[
sAB = m′

AB |G]

= Pr
[
m1

BD = m′
BD|m1

AB = m′
AB, r1B = r ′

B, long
]

× Pr
[
r1B = r ′

B |m1
AB = m′

AB, long
]

× Pr
[
m1

AB = m′
AB |long

]

= Pr
[
m1

AB = m′
AB,m1

BD = m′
BD, r1B = r ′

B |long
]

An equality holds for every event with nonzero probability
and both views must define probability spaces, and thus the
distributions must be the same. 	

Lemma 6 If the dealer is faulty, sA = rA, sB = rB, D sends
messages to parties A and B according to sAD and sBD,
and the scheduling is as described above, then parties A and
B complete protocol S having exchanged sAD, sBD with D
respectively and sAB between them.

Proof If party D correctly guesses sA = rA, sB = rB , then
the messages A and B exchange with each other and with D
in response to each of D’s messages become entirely deter-
ministic and dictated only by D’s messages. This means that
since D’s messages are always going to be consistent with
the sampled values sAD, sBD , parties A and B are going to
send the appropriate responses to D, as well as exchange the
messages sAB sampled by D between them. In that case, from
Lemma 5 party A’s view is distributed according to V 0

A|long
and party B’s view is distributed according to V 1

B |long. This
means that party A’s view is consistent with s = 0 and party
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B’s view is consistent with s = 1. From Lemma 4, parties A
and B almost-surely complete protocol S in finite time. 	


In order for the scheduling to be valid, once parties A
and B complete protocol S, all messages to and from party
C are instantly delivered. Note that party D hasn’t sent any
messages to party C . There is a nonzero probability of sA =
rA, sB = rB , and thus Lemma 1 is proven by combining
Lemmas 5 and 6.

Nowobserve the following behaviour and scheduling after
protocol S: party D now stays silent throughout all of proto-
col R, and all of the messages to and from parties A, B andC
are synchronously delivered. Since all nonfaulty parties par-
ticipate in protocol S, and some nonfaulty party completed
protocol S, all nonfaulty parties almost-surely complete it as
well. Similarly, since all nonfaulty parties completed proto-
col S and participate in protocol R, they all almost-surely
complete it as well. Define OC to be the random variable
describing the output of party C during these runs, condi-
tioned upon the event G. In other words, only observe the
runs in which party D correctly guessed the other parties’
randomness. Now, it is either the case that Pr [OC = 0] ≤ 1

2
or the case that Pr [OC = 1] ≤ 1

2 .
The rest of the section proves Lemma 2 by describing

attacks inwhich the adversary controls either party A or party
B and simulates the previous adversary’s behaviour condi-
tioned upon the event G. It is possible for the adversary to
simulate that event with probability 1 − ε′ even though the
event has a negligible probability of occurring in the origi-
nal attack, gaining a significant advantage. First assume that
Pr [OC = 0] ≤ 1

2 . In that case, the adversary can control
party B with some specific scheduling in such a way that
if a nonfaulty dealer shares the value 0 and the event long
takes place, party A’s view throughout the protocol must be
distributed according to V 0

A|long. Party B also acts in a way
similar to the way it would have acted in the previous attack.
This means that all parties act in the same way they would
have acted in the original attack, and thus party C outputs 0
with probability 1

2 or less if the event long takes place. Since
the event long takes place with at least a probability of 1−ε′,
this proves the lemma.

Lemma 7 If Pr [OC = 0] ≤ 1
2 , there exist an adversary con-

trolling party B and a scheduling such that with probability
1− ε′ or greater the following things hold when a nonfaulty
dealer D shares the value 0:

– party A’s view during protocol S is distributed according
to V 0

A|long,
– partyC outputs 0 at the end of protocol R with probability

1
2 or less.

Proof The scheduling is described only when the dealer
shares the value s = 0 and no party runs for longer than

N rounds. Any other valid scheduling can take place if those
conditions don’t hold. The adversary takes control of party
B, and makes it act as a nonfaulty party would throughout
all of protocol S. All communications between parties A, B
and D are synchronous throughout protocol S. In addition,
all messages to and from C are delayed until parties A, B
and D complete protocol S. After completing the protocol,
messages between parties D and C are further delayed until
parties A, B and C complete protocol R. Since party B is
acting as a nonfaulty party would, parties A and D can’t tell
the difference between this run and a run in which party C is
faulty and silent. As discussed above, in this setting parties
A, B and D must complete protocol S.

Let m̂XY be the messages party X exchanged with party
Y throughout protocol S, and let r̂X be party X ’s random-
ness throughout the protocol. After completing protocol S,
party B simulates all runs in which long takes place when a
nonfaulty dealer shares the value 1. If there is no such run in
which the messages m̂ AB are exchanged between parties A
and B, party B acts as a nonfaulty party throughout protocol
R. Otherwise, party B uses its simulations in order to sam-
ple some random values ŝB ← R1

B |m1
AB = m̂ AB, long and

some messages ŝBD ← M1
BD|m1

AB = m̂ AB, r1B = ŝB, long.
Note that clearly Pr[m0

AB = m̂ AB |long] �= 0, and thus also
Pr[m1

AB = m̂ AB |long] �= 0 from Corollary 1. This means
that the above distributions are well-defined. From this point
on, party B acts as a nonfaulty party would act with a view
consisting of m̂ AB, ŝBD, ŝB . After parties A and B com-
plete protocol S all messages between parties A, B and C ,
including the messages previously sent, are synchronously
delivered. All messages to and from party D are delayed
until the rest of the parties complete protocol R. It is impor-
tant to note that in this scheduling, all the messages party D
sent to party C throughout protocol S are also delayed until
parties A, B and C complete protocol R.

Recall that mXY is defined as the messages exchange
by parties X and Y and rX is defined as X ’s randomness
throughout the attack described in Lemma 1. Now observe
a snapshot of the values party A saw throughout proto-
col S and the values party B claims it saw throughout the
protocol. For any values r ′

A, r
′
B , m

′
AB , m

′
BD , m

′
AD such

that Pr[mAB = m′
AB,mAD = m′

AD,mBD = m′
BD, rA =

r ′
A, rB = r ′

B |G] �= 0 the following also holds:

Pr [mAB = m′
AB,mAD = m′

AD,mBD = m′
BD, rA = r ′

A,

rB = r ′
B |G] = Pr[sAB = m′

AB, sAD = m′
AD, sBD = m′

BD,

rA = r ′
A, rB = r ′

B |G] = Pr[sAB = m′
AB, sAD = m′

AD,

sA = r ′
A|G]Pr[sB = r ′

B |sAB = m′
AB, sAD = m′

AD,

sA = r ′
A]Pr[sBD = m′

BD|sAB = m′
AB, sAD = m′

AD,

sA = r ′
A, sB = r ′

B] = Pr[m0
AB = m′

AB,m0
AD = m′

AD,
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r0A = r ′
A|long]Pr[r1B = r ′

B |m1
AB = m′

AB, long]
× Pr[m1

BD = m′
BD|m1

AB = m′
AB, r1B = r ′

B, long]

Where the last equality stems from several facts. From
Lemma 5 Pr[sAB = m′

AB, sAD = m′
AD, rA = r ′

A|G] =
Pr[m0

AB = m′
AB,m0

AD = m′
AD, r0A = r ′

A|long]. From
the way the random variable sB is sampled, given sAB
the variable sB is independent of the variables sAD, sA.
Now, Pr[sB = r ′

B |sAB = m′
AB] = Pr[r1B = r ′

B |m1
AB =

m′
AB, long] from the definition of sB . A similar argument

can be made for the final expression.
On the other hand, note that since parties A, B and D are

acting as nonfaulty parties throughout S, their actions are
distributed identically to the setting in which C is faulty and
silent. In this setting, the event long takes placewith probabil-
ity 1−ε′ at the very least. If this event takes place, then party
B sees that the messages m̂ AB can be exchanged in some
run in which the event long takes place, and thus executes
the attack and samples some values. Therefore, conditioned
upon the event long:

Pr[m̂ AB = m′
AB, m̂ AD = m′

AD, ŝBD = m′
BD, r̂A = r ′

A,

ŝB = r ′
B |long]

= Pr[m̂ AB = m′
AB, m̂ AD = m′

AD, r̂A = r ′
A|long]

× Pr[ŝB = r ′
B |m̂ AB = m′

AB, m̂ AD = m′
AD,

r̂A = r ′
A, long]Pr[m̂BD = m′

BD|m̂ AB = m′
AB,

m̂ AD = m′
AD, r̂A = r ′

A, ŝB = r ′
B, long]

= Pr[m0
AB = m′

AB,m0
AD = m′

AD, r0A = r ′
A|long]

× Pr[r1B = r ′
B |m1

AB = m′
AB, long]

× Pr[m1
BD = m′

BD|m1
AB = m′

AB, r1B = r ′
B, long]

Where the last equality stems from similar arguments. First
of all, note that from A’s point of view, partyC is acting like a
faulty party which is staying silent throughout protocol S and
parties B, D are acting as nonfaulty parties with D sharing
the value 0. Therefore, Pr[m̂ AB = m′

AB, m̂ AD = m′
AD, r̂A =

r ′
A|long] = Pr[m0

AB = m′
AB,m0

AD = m′
AD, r0A = rA|long].

This also means that if the event long takes place, party A’s
view is distributed according to V 0

A|long. From the way ŝB
is sampled, given m̂ AB , the random variable ŝB is entirely
independent of m̂ AD, r̂A. Taking that fact into consideration,
and looking at the definition of ŝB , Pr[ŝB = r ′

B |m̂ AB =
m′

AB, m̂ AD = m′
AD, r̂A = r ′

A, long] = Pr[r1B = r ′
B |m1

AB =
m′

AB, long]. A similar argument can be made for ŝBD .
Party B’s behaviour is identical to the behaviour it would

have in the attack described in the first part, and party A’s
view is identical to that view as well. From this point on,
protocol R is run in the exact same way, and neither party A
nor party C can tell the difference between the runs in which
party B was faulty and the event long occurred, and the runs

in which party D was faulty, given that event G occurred. In
the previous attack, parties A andC output some value before
receivingmessages from party D during protocol R, and thus
must do so in this scenario as well. In order for the scheduling
to be valid, all of the messages to and from party D are
received some finite time after party A and party C output a
value. The distribution of A andC’s views in the beginning of
protocol R is identical to the distribution of their views in the
previous attack. Furthermore, party B’s actions are defined
by the view it is simulating in the beginning of protocol R as
well. Since parties A, B and C’s actions are determined by
their view at any point in time, the distribution of their views
throughout the rest of protocol R is identical in both runs
as well, and thus the distributions of their outputs must be
the same as well. Therefore, if the event long occurred, the
probability that partyC outputs 0 is 1

2 or less. The event long
takes place with probability 1− ε′ or more, which completes
the lemma. 	


Now assume that Pr [OC = 1] ≤ 1
2 . In that case:

Lemma 8 If Pr [OC = 1] ≤ 1
2 , there exist an adversary con-

trolling party A and a scheduling such that with probability
1− ε′ or greater the following things hold when a nonfaulty
dealer D shares the value 1:

– party B’s view during protocol S is distributed according
to V 1

B |long,
– partyC outputs 1 at the end of protocol R with probability

1
2 or less.

Proof The scheduling is identical to the scheduling described
in the previous lemma, and party A similarly acts as a non-
faulty party throughout all of protocol S. Following the exact
same arguments, parties A, B and D must complete protocol
S without party C sending or receiving any messages. Simi-
larly define m̂XY to be themessages party X andY exchanged
throughout protocol S, and r̂X to be party X ’s randomness
throughout the protocol.

After completing protocol S, party A simulates all runs
in which long takes place when a nonfaulty dealer shares
the value 0. If there is no such run in which the mes-
sages m̂ AB are exchanged between parties A and B, party
A acts as a nonfaulty party throughout protocol R. Oth-
erwise, using those simulations, party A samples random
values ŝA ← R0

A|m0
AB = m̂ AB, long and messages ŝAD ←

M0
AD|m0

AB = m̂ AB, r0A = ŝA, long. Note that in this
case clearly Pr

[
m1

AB = mAB |long] �= 0, and thus also
Pr
[
m0

AB = mAB |long] �= 0 from Corollary 1. This means
that the above distributions are well-defined. From this point
on, party A acts as a nonfaulty party would act with a view
consisting of m̂ AB, ŝAD, ŝA. The scheduling from this point
on is identical to the scheduling described in the previous
lemma.
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Recall that mXY is defined as the messages exchange
by parties X and Y and rx is defined as X ’s randomness
throughout the attack described in Lemma 1. Now observe
a snapshot of the values party A saw throughout proto-
col S and the values party B claims it saw throughout the
protocol. For any values r ′

A, r
′
B , m

′
AB , m

′
BD , m

′
AD such

that Pr[mAB = m′
AB,mAD = m′

AD,mBD = m′
BD, rA =

r ′
A, rB = r ′

B |G] �= 0 first analyse the variable sA. For the
analysis, define the distribution X = R0

A|long:

Pr
[
sA = r ′

A|sAB = m′
AB, sBD = m′

BD, sB = r ′
B

]

= Pr
[
sA = r ′

A|sAB = m′
AB

]

= Pr
[
sAB = m′

AB |sA = r ′
A

]
Pr
[
sA = r ′

A

]

∑

r̄A∈X
Pr
[
sAB = m′

AB |sA = r̄A
]
Pr [sA = r̄A]

= Pr
[
m0

AB = m′
AB |r0A = r ′

A, long
]
Pr
[
r0A = r ′

A|long]
∑

r̄A∈X
Pr[m0

AB =m′
AB |r0A= r̄A, long]Pr [r0A= r̄A|long]

= Pr
[
r0A = r ′

A|m0
AB = m′

AB, long
]

Where the first equality stems from the fact that given
sA, sAB is independent of sBD, sB , from which the reverse
also follows. In addition, the third equality stems from the
definition of sAB . Now continue the analysis in a similar
fashion to the one in the previous lemma:

Pr[mAB = m′
AB,mAD = m′

AD,mBD = m′
BD,

rA = r ′
A, rB = r ′

B |G]
= Pr[sAB = m′

AB, sAD = m′
AD, sBD = m′

BD, rA = r ′
A,

rB = r ′
B |G]

= Pr[sAB = m′
AB, sBD = m′

BD, rB = r ′
B |G]

× Pr[sA = r ′
A|sAB = m′

AB, sBD = m′
BD, sB = r ′

B]
× Pr[sAD = m′

AD|sAB = m′
AB, sBD = m′

BD, sA = r ′
A,

sB = r ′
B]

= Pr[m1
AB = m′

AB,m1
BD = m′

BD, r1B = r ′
B |long]

× Pr[r0A = r ′
A|m0

AB = m′
AB, long]

× Pr[m0
AD = m′

AD|m0
AB = m′

AB, rA = rA, long]

Where the last equality stems from several facts. From
Lemma 5, Pr[sAB = m′

AB, sBD = m′
BD, rB = r ′

B |G] =
Pr[m1

AB = m′
AB,m1

BD = m′
BD, r1B = r ′

B |long]. From the
definition of sA, given sAB , it is independent of the vari-
ables sBD, SB , and then from the way sA is sampled Pr[sA =
r ′
A|sAB = m′

AB] = Pr[r0A = r ′
A|m0

AB = m′
AB, long]. Also,

from the definition of the randomvariable sAD , given sAB and
sA, the variable sAD is independent of the variables sBD, sB ,
and then the equality stems from the definition of sAD and
from the previous analysis.

On the other hand, note that since parties A, B and D
are acting as nonfaulty parties throughout S, their actions
are distributed identically to the setting in which C is faulty
and silent. In this setting, the event long takes place with
probability 1 − ε′ at the very least. Note that if this event
takes place, then party A sees that the messages m̂ AB can
be exchanged in some run in which the event long takes
place, and thus executes the attack and samples some values.
Therefore, conditioned upon the event long:

Pr[m̂ AB = m′
AB, ŝAD = m′

AD, m̂BD = m′
BD, ŝA = r ′

A,

r̂B = r ′
B |long]

= Pr[m̂ AB = m′
AB, m̂BD = m′

BD, r̂B = r ′
B |long]

× Pr[ŝA = r ′
A|m̂ AB = m′

AB, m̂BD = m′
BD, r̂B

= r ′
B, long]Pr[ŝAD = m′

AD|m̂ AB = m′
AB, m̂BD

= m′
BD, ŝA = r ′

A, r̂B = r ′
B, long]

= Pr[m1
AB = m′

AB,m1
BD = m′

BD, r1B = r ′
B |long]

× Pr[r0A = r ′
A|m0

AB = m′
AB, long]

× Pr[m0
AD = m′

AD|m0
AB = m′

AB, r0A = r ′
A, long]

Where the last equality stems from similar arguments. First
of all note that from B’s point of view, partyC is acting like a
faulty party which is staying silent throughout protocol S and
parties A, D are acting as nonfaulty parties with D sharing
the value 1. Therefore, Pr[m̂ AB = m′

AB, m̂BD = m′
BD, r̂B =

r ′
B |long] = Pr[m1

AB = m′
AB,m1

BD = m′
BD, r1B =

r ′
B |long]. This also means that if the event long occurs, party
B’s view is distributed according to V 1

B |long. From the way
ŝA is sampled, given m̂ AB , the random variable ŝA is entirely
independent of m̂BD, r̂B . Taking that into consideration, from
the definition of ŝA, Pr[ŝA = r ′

A|m̂ AB = m′
AB, m̂BD =

m′
BD, r̂B = r ′

B, long] = Pr[r0A = r ′
A|m0

AB = m′
AB, long].

A similar argument can be made for ŝAD .
From this point on the rest of the argument is identical

to the argument in the previous lemma, finding that if event
long occurs, the probability that party B outputs 0 is 1

2 or
less. Since the event long occurs with probability 1 − ε′ at
the very least, this completes the proof. 	


If Pr [OC = 0] ≤ 1
2 , Lemma 7 shows that Lemma 2 holds

when s = 0 with the adversary controlling B. On the other
hand, if Pr [OC = 1] ≤ 1

2 , Lemma 8 shows that Lemma 2
holds when s = 1 with the adversary controlling A. Since
either Pr [OC = 0] ≤ 1

2 or Pr [OC = 1|G] ≤ 1
2 , Lemma 2

must hold. Assume w.l.o.g that Pr [OC = 0] ≤ 1
2 . Then, if

a nonfaulty dealer D shares the value 0, an adversary has a
strategy controlling B such that for any 1 > ε′ > 0 party C
outputs 0 with probability no greater than 1

2 if an event occurs
with probability 1 − ε′ or more. If that event doesn’t occur
(with probability ε′ or less), party C might output 0 with any
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probability. So in total, the probability that C outputs 0 is
no greater than

(
1 − ε′) · 1

2 + 1 · ε′ All nonfaulty parties,
including C , must output 0 with probability 1

2 + ε or more.
Therefore, pick an ε′ such that:

(
1 − ε′) · 1

2
+ 1 · ε′ <

1

2
+ ε

1

2
− 1

2
· ε′ + ε′ <

1

2
+ ε

1

2
+ 1

2
· ε′ <

1

2
+ ε

ε′ < 2ε

which reaches a contradiction, completing our proof.

2.3 Extending the impossibility result

This subsection completes the proof of the main theorem:

Theorem 1 For any ε ∈ (0, 1
2 ] and n, t ∈ N such that

4t ≥ n > t there does not exist an almost-surely termi-
nating

( 1
2 + ε

)
-correct t-resilient Byzantine AVSS protocol

(S, R) for n parties.

This is done by showing how to extend the result of
Theorem 2 to multivalued secrets and to any n, t such that
4t ≥ n > t . In order to extend the proof to a multival-
ued secret, it is enough to note that any protocol in which the
dealer can share values from some set V can be used for shar-
ing binary values. For example, this can be done by mapping
the possible values to the values 0 and 1 in some determinis-
tic fashion. Using this mapping, all parties can participate in
the protocol for multivalued secrets, and then convert their
output to 0 or 1, achieving the wanted result. Clearly a non-
faulty dealer could have just been trusted to share the value
0 or 1 in the first place, but this technique also forces a faulty
dealer to essentially share either 0 or 1 as well.

Extending the result to any n, t ∈ N such that 4t ≥ n
requires more intricate arguments. One could hope that it is
enough to show impossibility for any n, t such that 4t ≥
n ≥ 3t + 1. That is because for any n, t such that 3t ≥ n,
an adversary can choose to corrupt only t ′ parties such that
4t ′ ≥ n ≥ 3t ′ + 1 following the same strategy, and the
impossibility result should hold in this case aswell. However,
if an adversary attempts to do that for n = 2 or n = 3, it may
not corrupt any party for the inequality to hold. Therefore,
separate arguments need to bemade at least for n = 2, t = 1,
and for n = 3, t = 1. The proofs in those cases are very
similar to the general case in which 2t ≥ n > t and 3t ≥
n > 2t , so the general proof is provided instead. First observe
the case that 2t ≥ n > t .

Lemma 9 For any ε ∈ (0, 1
2 ], and n, t ∈ N such that 2t ≥

n > t there does not exist an almost-surely terminating ( 12 +

ε)-correct t-resilient Byzantine AVSS protocol (S, R) for n
parties.

Proof Assumebywayof contradiction such a protocol exists.
Assume that the dealer is nonfaulty and that the adversary
corrupts t ≥ n

2 parties. Throughout protocol S, the adversary
instructs all parties to act as nonfaulty parties would. Since
this setting is identical to one in which all parties are non-
faulty and are participating in the protocol, all parties must
complete the protocol. Now, the adversary instructs the par-
ties it controls to proceed immediately to protocol R, and all
of the nonfaulty parties are delayed until the faulty parties
complete the protocol. The exact same run could have taken
place if the nonfaulty parties were faulty, acted correctly
throughout protocol S, and then went silent in the beginning
of protocol R. In that case, from the Termination property,
all of the other parties must complete protocol R even if the
faulty parties are silent. From the Correctness property, once
the nonfaulty parties complete protocol S, every nonfaulty
party that completes protocol R outputs s with probability
( 12 + ε) or greater. The adversary instructs the faulty parties
to act as nonfaulty parties would, and thus they all output
s with the aforementioned probability. Therefore, the adver-
sary can perform a test to distinguish between the case in
which s = 0 and s = 1 with an advantage of 2ε at the
very least, even before any nonfaulty party calls R. In other
words, the adversary’s view is not distributed independently
of s even before some nonfaulty party calls R, contradicting
the Secrecy property. 	


Next observe the case of n, t ∈ N such that 3t ≥ n > 2t .
The argument in this case closely follows ideas from the
DLS lower bound [10]. As stated in [4], any AV SS protocol
trivially yields a reliable broadcast protocol with the same
probability of termination and correctness. This is achieved
by the dealer first sharing the value s, and all nonfaulty
parties participating. Then, once a party completes proto-
col S it participates in protocol R, and outputs s with the
desired probability. Therefore, the proof of impossibility
closely resembles proofs of the impossibility of broadcast
if 3t ≥ n > 2t .

Lemma 10 For any ε ∈ (0, 1
2 ] and n, t ∈ N such that 3t ≥

n > 2t , there is no almost-surely terminating ( 12 +ε)-correct
t-resilient Byzantine AVSS protocol (S, R) for n parties.

Proof Assume by way of contradiction such a protocol
exists. Start by partitioning the parties into 3 sets, PA =
{P1, . . . , Pt }, PB = {Pt+1, . . . P2t } and PC = {P2t+1, . . . ,

Pn}. Now, note that there are t parties in PA and in PB , and
n−2t parties in PC . Assume that the dealer is Pn , and that the
adversary controls all parties in PC . It is important to note that
t ≥ n−2t ≥ 1, so Pn is in the set PC , and the adversary does
not control more than t parties. Now, the adversary instructs
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all of the parties in PC to communicate with all parties in
PA as nonfaulty parties would with Pn sharing the value 0.
At the same time, the adversary instructs all of the parties
in PC to communicate with all parties in PB as nonfaulty
parties would with Pn sharing the value 1. It is important
to note that parties in PC do not send messages to parties
parties in PA that they should have as a result of receiving
messages from parties in PB and vice-versa. All communi-
cation between parties in PA and parties in PB is delayed,
and all other communication is delivered instantly.

Now, note that from the point of view in all parties in PA,
this run could have taken place if the parties in PB were faulty
and silent and all of the parties in PA and PC were nonfaulty.
From the Termination property, this means that all parties in
PA and PC must almost-surely complete the run of protocol
S. For similar reasons, all parties in PB and PC must almost-
surely complete their run of protocol S as well. Afterwards,
all parties participate in protocol R, with the parties in PC
continuing to act as if they were nonfaulty with the dealer
having shared the value 0 when communicating with parties
in PA. Similarly, they continue to act as if theywere nonfaulty
with the dealer having shared the value 1 when communicat-
ing with parties in PB . Again, from the point of view of all
parties in PA, this run could have taken place if all parties in
PA and PC were nonfaulty, the parties in PB were faulty, and
the dealer shared the value 0.Therefore, from theTermination
property, all of the parties in PA must complete protocol R,
and from theCorrectness property, theymust output the value
0 in the end of it with probability ( 12 +ε) or greater. Using the
exact same argument, all parties in PB must complete proto-
col R and output the value 1 in the end of it with probability
( 12 + ε) or greater. After all parties in PA and PB complete
protocol R, all of the delayed communication between them
is delivered. Now, since some nonfaulty parties output 0 with
probability ( 12 +ε) or greater and some nonfaulty parties out-
put 1 with probability ( 12 +ε), there is no value r such that all
nonfaulty parties output r with probability ( 12 +ε) or greater,
contradicting the Correctness property of AV SS.

Using slight simplification of the arguments, it is possible
to show that no asynchronous reliable broadcast protocol
exists with ( 12 + ε) probability of success if 3t ≥ n > 2t . 	


Finally, observe the case that 4t ≥ n > 3t . In order to
prove that no almost-surely terminating ( 12 + ε)-correct t-
resilient AVSS protocol exists, we show that if one exists,
then such a protocol exists for n = 4, t = 1 as well. How-
ever, from Theorem 2 no such protocol exists, which proves
Theorem1. In otherwords, it is enough to prove the following
lemma:

Lemma 11 If for some n, t ∈ N such that 4t ≥ n > 3t and
ε ∈ (0, 1

2 ] there exists an almost-surely terminating ( 12 +
ε)-correct t-resilient Byzantine AVSS protocol (S, R) for n

parties, then such a protocol exists for 4 parties, out of which
1 is faulty.

Proof Assume that for some ε ∈ (0, 1
2 ] and n, t ∈ N such

that 4t ≥ n > 3t , there exists an almost-surely terminat-
ing ( 12 + ε)-correct t-resilient Byzantine AV SS protocol
(S, R) for n parties. Assume without loss of generality
that Pn is the dealer in this protocol. Now we will con-
struct a protocol for 4 parties, A, B,C, D such that D is
the dealer and one party is faulty. Partition all of the par-
ties into 4 sets PA = {P1, . . . , Pt }, PB = {Pt+1, . . . , P2t },
PC = {P2t+1, . . . , P3t }, PD = {P3t+1, . . . , Pn}. Intuitively,
party X is responsible for simulating all of the parties in PX .
This simulation should be constructed in such a way that all
of the runs in the original n-party protocol are mapped to
equivalent runs in the 4-party protocol.

Note that in this setting, adversaries can only choose to
corrupt one of the 4 PX sets in the n-party protocol. The
sets PA, PB, PC are each of size t , and the set PD is of size
n−3t < t , meaning that in each of those cases the adversary
simulates no more than t corrupt parties. Furthermore, n −
3t > 0, so A, B,C and D each simulate at least one party.
Clearly if no such protocol can exists when dealing with an
adversary limited to corrupting one of the PX sets, no such
protocol exists when the adversary has free rein to choose
any subset of t parties to corrupt.

The simulation takes place as follows: the parties A, B,C
and D each internally run all of the parties in the sets PA, PB ,
PC and PD respectively. Party D is the dealer in the protocol,
so it receives some input s. D runs the dealer Pn with the
input s as well. When in the simulation some Pi ∈ PX sends
a message m to some party Pj ∈ PX (i.e. one party that X
simulates sends amessage to another party that X simulates),
party X sees that event taking place and continues simulating
Pj after having received themessagem from Pi . When in the
simulation some Pi ∈ PX sends a message m to some party
Pj ∈ PY such that X �= Y (i.e. one party that X simulates
sends a message to a party that Y simulates), party X sees
that event taking place, and sends PY the message (m, i, j).
Now, if PY receives a message (m, i, j) from PX such that
Pi ∈ PX and Pj ∈ PY , then Y continues simulating Pj after
having received the message m from Pi . Finally, when party
X sees that all of the parties in PX completed protocol S it
completes protocol S. In addition, when party X sees that all
of the parties in PX completed protocol R, it sets oi to be
Pi ’s output for every Pi ∈ PX ,outputs majorityPi∈PX {oi },
breaking ties arbitrarily, and terminates.

Now observe all possible runs in the simulation by parties
A, B,C and D. Those runs map directly to all possible runs
between parties P1, . . . , Pn where the adversary controls one
of the sets PX of size no greater than t , and the scheduling
is exactly the scheduling in which the parties were simulated
to receive the messages. Since there is a direct one-to-one
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mapping between runs in the original protocol and in the
simulation, the probability that all of the AV SS properties
hold in the simulated run is exactly the same as the probabil-
ity in the original run. Let parties X ,Y , Z be the nonfaulty
parties. The fact that each property holds in the new protocol
is shown individually:

Termination If D is nonfaulty and all nonfaulty parties par-
ticipate in S, then Pn , the dealer in the simulated protocol, is
nonfaulty and all simulated nonfaulty parties participate in
the protocol as well. In that case, all parties in PX , PY , PZ
almost-surely complete the protocol in the simulation, after
which parties X ,Y , Z see that the parties they simulate com-
pleted protocol S and complete it as well. Similarly, assume
without loss of generality that party X completed the proto-
col. In that case, it saw that all of the parties in PX completed
protocol S. If party Y participates in protocol S, then all
nonfaulty parties in PY participate in the simulated run of pro-
tocol S and almost-surely complete the simulated protocol as
well, at which point Y completes protocol S. The same holds
for party Z . Finally, if parties X ,Y and Z complete protocol
S and start protocol R, then in the simulation all parties in
PX , PY , PZ complete protocol S and start protocol R. Those
are all of the nonfaulty parties in the simulation, so all of
them complete protocol R as well. After that, parties X ,Y
and Z see that all of the parties they simulate completed the
protocol R, perform some local computations, and complete
protocol R as well.

Correctness Assume the first nonfaulty party to complete
protocol S is X . Before completing protocol S, it sees that all
of the parties in PX completed protocol S in the simulated run
as well. At that time, there exists some value r ∈ F such that
with probability ( 12 + ε) or greater, all parties in PX , PY , PZ
that complete protocol R output r . Furthermore, if D is non-
faulty, then so is the simulated dealer Pn , inwhich case r = s.
Now if some nonfaulty party Y completes protocol R, it first
saw that all of the parties in PY completed the protocol and
output some values. As noted above, with probability ( 12 +ε)

all parties in PY output r . If that happens,Y sees that the value
output by the majority is r and outputs r as well.

Secrecy Let the faulty party be F . If F = D, then the
secrecy property holds trivially. Otherwise, Pn , the dealer in
the simulated protocol, is not in PF . F’s view consists of the
view of all of the parties it simulates in PF . In the simulated
protocol, the adversary’s view is distributed independently of
the secret s because the adversary doesn’t control the dealer.
In other words, the collective view of all parties in PF is
distributed independently of s, completing the proof. 	


3 Strong common coin

Themain goal of this section is to construct a strong common
coin primitive. This primitive is defined as follows:

Definition 3 Protocol CC is an ε-biased almost-surely ter-
minating common coin protocol if the following properties
hold:

1. Termination If all nonfaulty parties participate in the CC
protocol they almost-surely complete it. Furthermore,
if some nonfaulty party completes protocol CC , every
nonfaulty party that begins the protocol almost-surely
completes it as well.

2. Correctness For every value b ∈ {0, 1}, there is at least a
1
2−ε probability that everynonfaulty party that completes
the protocol outputs b. Regardless, all nonfaulty parties
that complete the protocol output the same value with
probability 1.

This definition has three natural desired properties of a
common coin protocol: the protocol almost-surely termi-
nates, it has an arbitrarily small bias (as a parameter of the
protocol), and the output value is always agreed upon by all
parties. Previous works have achieved some subset of those
properties, but not all three together. For example, the pro-
tocol in [9] doesn’t always terminate and the parties don’t
always agree on the output value. On the other hand, the pro-
tocol described in [2] always terminates, but can completely
fail O

(
n2
)
times. This also means that if just one common

coin instance is required, there is no guarantee that the pro-
tocol will yield the desired properties.

Throughout the following sections assume the number of
nonfaulty parties is t such that 3t+1 ≤ n. The following pro-
tocols use the protocols SV SS and BA, which are resilient to
this number of faulty parties. The Shunning Verifiable Secret
Sharing protocol (SV SS), as defined in [2], has a designated
dealer with some input s and it consists of two sub-protocols,
SV SS − Share and SV SS − Rec.

Definition 4 A pair (SV SS − Share, SV SS − Rec) is said
to be an SV SS protocol if it has the following properties:

1. Validity of termination If a nonfaulty dealer initiates
SV SS − Share and all nonfaulty parties participate in
the protocol, then every nonfaulty party eventually com-
pletes SV SS − Share.

2. Termination If a nonfaulty party completes either proto-
col SV SS − Share or SV SS − Rec, then all nonfaulty
parties that participate in the protocol eventually com-
plete it. Moreover, if all nonfaulty parties begin protocol
SV SS − Rec, then all nonfaulty parties eventually com-
plete protocol SV SS − Rec.

3. BindingOnce the first nonfaulty party completes an invo-
cation of SV SS − Share with session id (c, d), there is
a value r such that either:

– the output of each nonfaulty party that completes pro-
tocol SV SS − Rec is r ; or
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– there exists a nonfaulty party Pi and a faulty party
Pj such that Pj is shunned by Pi starting in session
(c, d).

4. Validity If the dealer is nonfaulty with input s, then the
binding property holds with r = s.

5. Hiding If the dealer is nonfaulty and no nonfaulty party
invokes protocol SV SS − Rec, then the faulty parties
learn nothing about the dealer’s value.

Party Pi shuns party Pj if it accepted messages from it in
the current invocation, but won’t accept any messages from
it in future interactions. For our purposes it is enough to note
that fewer than n2 shunning events can take place overall.

Definition 5 A protocol is said to be an almost-surely termi-
nating binary Asynchronous Byzantine Agreement protocol
if each nonfaulty party has an input from {0, 1}, and the fol-
lowing properties hold:

1. Termination If all nonfaulty parties participate in the
protocol, all nonfaulty parties almost-surely eventually
complete the protocol. Furthermore, if some nonfaulty
party completes the protocol, all nonfaulty parties that
participate in it do so as well.

2. Validity If all nonfaulty parties have the same input σ ∈
{0, 1}, every nonfaulty party that completes the protocol
outputs σ .

3. Correctness All nonfaulty parties that complete the pro-
tocol output the same value σ ∈ {0, 1}.

Let SV SS be a protocol with the SV SS properties, and
BA be an almost-surely terminating binary Asynchronous
Byzantine Agreement protocol, as described in [2]. Both of
these protocols are resilient to t faulty parties such that 3t +
1 ≤ n.

In addition to these two protocols, the common coin pro-
tocol requires a protocol for agreeing on a common subset of
parties for which some condition holds. In order to do that,
in the protocol each party Pi employs a “dynamic predicate”
Qir for each round r . Intuitively Qir ( j) denotes whether
Pi saw that some irreversible condition holds with regard
to Pj . For every value j ∈ [n], Qir ( j) ∈ {0, 1} at any
given point in time. Initially, ∀ j ∈ [n] Qir ( j) = 0, and for
any such j , Qir ( j) can turn into 1, but not back to 0. We
generally think of these conditions as ones that “spread” in
the following manner: if some nonfaulty party Pi sees that
Qir (k) = 1, then eventually every nonfaulty party Pj also
sees that Q jr (k) = 1. The idea of a dynamic predicate and
for the protocol below are described in [7].

Definition 6 Protocol CS is a common subset protocol, with
a dynamic predicate Qi and a number k ≤ n as input, if it
has the following properties:

1. TerminationAssume that for every pair of nonfaulty par-
ties Pi , Pj that participate in the CS protocol and value
k ∈ [n] if Qi (k) = 1 then eventually Q j (k) = 1. If all
nonfaulty parties invoke the protocol, and there exists a
set I ⊆ [n] such that:

– |I | ≥ k, and
– for every nonfaulty party Pi , eventually ∀ j ∈

I Qi ( j) = 1,

then all nonfaulty parties almost-surely complete the
invocation of CS. Furthermore, if some nonfaulty party
completes protocol CS, then every nonfaulty party that
participates in the protocol almost-surely completes it as
well.

2. Correctness All nonfaulty parties that complete an invo-
cation of CS output the same set S ⊆ [n]. Furthermore,
|S| ≥ k and for every j ∈ S there exists a nonfaulty party
Pi such that Qi ( j) = 1.

A construction of a common subset protocol resilient to t
faulty parties such that 3t + 1 ≤ n is shown and proven with
slight changes in [7]. For completeness, another construction
and proof with the aforementioned properties is provided
below.

Algorithm 1 CommonSubsetr (Qir , k)
Code for Pi :

1. Initialize cir = 0.
2. For every j ∈ [n], once Qir ( j) becomes 1, if cir < k, begin BA jr

with input 1.
3. If at any point BA jr terminates with output 1 for any j ∈ [n], set

cir = cir + 1.
4. Once cir ≥ k, begin BA jr with input 0 for every j ∈ [n] such that

Qir ( j) = 0 at this point in time.
5. Denote b jr to be the output of BA jr . Output

{
j |b jr = 1

}
.

6. Continue participating in BA jr for every j ∈ [n] until they termi-
nate even after completing this invocation of CommonSubsetr .

Note that throughout this discussion we assume k ≤ n
and 3t + 1 ≤ n.

Lemma 12 Assume there exists a set I ⊆ [n], such that
|I | ≥ k and that for every nonfaulty party Pi , eventually
for every j ∈ I , Qir ( j) = 1. In addition, assume that for
every pair of nonfaulty parties Pi , Pj that participate in the
CommonSubsetr protocol and value k ∈ [n] if Qi (k) = 1
then eventually Q j (k) = 1. If all nonfaulty parties invoke
CommonSubsetr for a given r, then at least k invocations of
BA jr almost-surely terminate with output 1.

Proof Note that cir is incremented only when BA jr termi-
nates with output 1. In addition, every nonfaulty party Pi
inputs 0 to any BA jr invocation only after having cir ≥ k.
This means that if some nonfaulty party inputs 0 to some
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invocation of BA jr then it must have completed at least k
prior invocations with output 1. From the Validity property
of the BA jr protocol, at least one nonfaulty party Pi input
the value 1 to the protocol, and this only happens if it sees
that Qir ( j) = 1. By assumption, every other nonfaulty party
Pl that participates in the CommonSubsetr protocol even-
tually sees that Qlr ( j) = 1 and begins the BA jr protocol
with input 1 if it hasn’t done so earlier with the input 0.
From the Correctness property of protocol BA, every other
nonfaulty party also outputs 1 for the same invocations of
BA, which proves our lemma. Therefore, assume no non-
faulty party inputs the value 0 to any invocation of BA jr

ever for any j ∈ [n]. In that case, every nonfaulty party Pi
invokes CommonSubsetr , and eventually for every j ∈ I
Qir ( j) = 1. Every nonfaulty party then begins participating
in BA jr with input 1 for every j ∈ I . From the Validity and
Termination properties of BA all nonfaulty parties almost-
surely complete those invocations of BA jr with output 1.
Since |I | ≥ k, this completes the proof. 	


Theorem 3 The CommonSubset protocol is a common sub-
set protocol resilient to any number of faulty parties t such
that 3t + 1 ≤ n and k ≤ n.

Proof Each property is proven separately.
Correctness If two nonfaulty parties Pi , Pl complete

CommonSubsetr then they must have completed BA jr for
every j ∈ [n]. From the Correctness property of BA, they
completed each of those invocation with the same output b jr

and thus both output Sr = {
j |b jr = 1

}
. Next, show that

for every j ∈ Sr , Qir ( j) = 1 for at least one nonfaulty
party Pi . Assume by way of contradiction Qir ( j) = 0 for
every nonfaulty party Pi for some j ∈ Sr . If that is the
case, and some nonfaulty party completedCommonSubsetr ,
every nonfaulty party that participated in BA jr at that point
must have input 0. From those parties’ point of view, this run
is identical to one in which all nonfaulty parties’ inputs are
0, and some might be slow. From the Validity property of
BA, all nonfaulty parties must have then output 0 in BA jr .
However, in that case b jr �= 1, and thus j /∈ Sr reaching a
contradiction. Finally, show that |Sr | ≥ k. Assume by way
of contradiction |Sr | < k. In that case, all parties completed
all invocations of BA jr , with at most k − 1 terminating with
output 1. Since nonfaulty parties increment cir exactly once
for every BA session that outputs the value 1, this means that
for every nonfaulty party Pi , cir < k. Since k ≤ n, BA jr

terminated with output 0 for at least one j ∈ [n]. Observe
BA jr for that j . Nonfaulty parties participate in any BA jr

session only if either Qir ( j) = 1 or ci ≥ k. Since ci < k,
Qir ( j) must equal 1 at the time of invoking BA jr for every
nonfaulty party Pi , and Pi input 1 to the BA jr call. From the
Validity property of BA jr , all nonfaulty parties must output
1 in BA jr reaching a contradiction.

Termination First assume that all nonfaulty parties partic-
ipate in the protocol, and that there exists some set I ⊆ [n]
such that |I | ≥ k, and that for every nonfaulty party Pi
and j ∈ I eventually Qir ( j) = 1 almost-surely. From
Lemma 12, all nonfaulty parties almost-surely eventually
complete at least k invocations of BA jr with output 1. At that
point, cir ≥ k holds for every nonfaulty party Pi . Because
of line 4, every nonfaulty party Pi participates in BA jr for
every j ∈ [n] such that Qir ( j) = 0 at that point in time. It
is important to note that if Qir ( j) �= 0 then it must equal 1,
which means that Pi has already invoked BA jr with input 1
previously. In other words, all nonfaulty parties have invoked
BA jr for every j ∈ [n], so from the Termination property
of BA they almost-surely complete all of those invocations.
At that point they reach line 6 of the protocol, and complete
CommonSubsetr .

For the second part of the property observe some non-
faulty party Pl that participates inCommonSubsetr . If some
nonfaulty party Pi completed the protocol, it must have com-
pleted the BA jr invocation for every j ∈ [n]. Let Sr be
Pi ’s output in this invocation of the CommonSubsetr pro-
tocol. From the Correctness property of CommonSubsetr ,
for every j ∈ Sr , Qkr ( j) = 1 for some nonfaulty party
Pk . Since for some nonfaulty party Pk Qkr ( j) = 1, by
assumption eventually Qlr ( j) = 1 as well. At that point,
if Pl hasn’t started participating in BA jr with input 0, it
starts participating in it with input 1. Pi completed each of
those BA invocations, so from the Termination property of
BA, Pl almost-surely completes them as well. Note that after
completing the CommonSubsetr invocation, all nonfaulty
parties continue participating in all relevant BA invocations
until they terminate. From the Correctness property of BA,
party Pl outputs 1 in every BA jr invocation such that j ∈ Sr
because Pi must have output 1 in that invocation as well.
From the Correctness Property ofCommonSubsetr , |S| ≥ k
and thus at that point clr ≥ k. At that point, Pl inputs 0 to
every BA invocation it hasn’t started participating in yet. Fol-
lowing similar arguments, from the Termination property of
BA Pl almost-surely completes all of those invocations and
then completes the protocol. 	


Using the previously discussed primitives, the rest of this
section describes and proves the Correctness of a common
coin protocol. Intuitively, in the protocol several weak coins
are flipped using the SV SS protocol. These coins should
behave as fully unbiased coin in most cases, but n2 of these
coins could fail because the SV SS protocol could fail n2

times. In this context a coin failing means that it can be
totally biased, or not agreed upon. This means that enough
weak coins need to be flipped so that the n2 failures are not
significant. The number of weak coin flips is set to be pro-
portional to n4 and to a function of the acceptable bias in
the final coin, and each party outputs the value it saw in a
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majority of the rounds. From the properties of the binomial
distribution the n2 faulty coin flips should not significantly
bias the result given that around n4 coins are flipped.

Algorithm 2 CoinFlip (ε)

Code for Pi :

– Let k = 4
⌈( e

ε·π
)2

n4
⌉

– For r = 1 to k:

1. Sample bir ← {0, 1} uniformly. Call SV SS − Shareir (bir )
as dealer.

2. Participate in SV SS − Share jr with Pj as dealer for every
j ∈ [n].
Note this means the party begins participating in iteration r ’s
SV SS − Share invocations only after completing iteration
r − 1.

3. Define the dynamic predicate Qir as follows for every j ∈ [n]:

Qir ( j) =
{
1 SV SS − Share jr has been completed

0 else
4. Participate inCommonSubsetr (Qir , n − t), denote its output

as Sir .
5. AfterCommonSubsetr terminates, invoke SV SS− Rec jr for

every j ∈ Sir , let the reconstructed value be bi jr .
6. For every j ∈ Sir compute b′

i jr = bi jr mod 2.
Compute b′

ir = ⊕
j∈Sir b

′
i jr and continue to the next iteration.

– After completing the final iteration, compute b′
i =

majorityr∈[k]
{
b′
ir

}
.

– Participate in a final BA invocation with input b′
i . After com-

pleting the BA invocation, output its output. In addition, con-
tinue participating in all relevant invocations of BA, SV SS and
CommonSubset until they terminate.

Theorem 4 For every ε ∈ (
0, 1

2

)
protocol CoinFlip (ε) is

an ε-biased almost-surely terminating common coin protocol
resilient to t faulty parties such that 3t + 1 ≤ n.

Proof Each property is proven individually. Throughout this

proof let k = 4
⌈( e

ε·π
)2

n4
⌉
as defined in the protocol.

Termination First show that if all nonfaulty parties par-
ticipate in the CoinFlip (ε) protocol they all almost-surely
complete it. In order to do that, we first show that if all
nonfaulty parties start the r ’th iteration of the loop in pro-
tocol CoinFlip (ε), then they all almost-surely complete
it. Note that all nonfaulty parties continue participating
in all calls to the SV SS and CommonSubset protocol
until they terminate, so if all nonfaulty parties started par-
ticipating in them, their Termination properties continue
to hold. If all nonfaulty parties start the r ’th iteration of
CoinFlip (ε), every nonfaulty party Pi samples a random
value bir , invokes SV SS − Shareir as dealer, and partic-
ipates in SV SS − Share jr with Pj as dealer for every
j ∈ [n]. From theValidity of Termination property of SV SS,
since all nonfaulty parties participate in SV SS − Share jr
for every nonfaulty dealer Pj , all nonfaulty parties eventu-
ally complete SV SS − Share jr . Once party Pi completes

SV SS− Share jr , Qir ( j) becomes 1. This means that there
exists a set I ⊆ [n],such that |I | ≥ n − t and for every non-
faulty party Pi , eventually ∀ j ∈ I Qir ( j) = 1. In addition,
let Pi , Pj be a pair of nonfaulty parties, and let Qir (k) = 1
for some k ∈ [n]. Pi only sets Qir (k) to 1 if it completed the
SV SS − Sharekr call, and from the Termination property
of the protocol, Pj eventually completes SV SS − Sharekr
and updated Q jr (k) to 1. In other words, all conditions of
the Termination property of the CommonSubsetr protocol
hold. All nonfaulty parties participate in CommonSubsetr
because they started iteration r and continue participating
in it even after completing CoinFlip until the invocation
of CommonSubsetr terminates locally. From the Termi-
nation property of CommonSubset , all nonfaulty parties
almost-surely complete CommonSubsetr . From the Cor-
rectness property of CommonSubset , for every j ∈ Sr ,
Qir ( j) = 1 for at least one nonfaulty party Pi . This
means that for every j ∈ Sr at least one nonfaulty party
completed SV SS − Share jr . Therefore, from the Termina-
tion property of SV SS, all other nonfaulty parties complete
SV SS − Share jr as well. After that, all nonfaulty parties
reach step 5 of the iteration, and invoke SV SS − Rec jr
for every j ∈ Sr . Again, from the Termination property of
SV SS, all nonfaulty parties complete SV SS − Rec jr for
every j ∈ Sr . After that, all nonfaulty parties perform local
computations in step 6, and reach the end of the iteration.

Since all parties start with the same parameter ε they all
compute the same value k. Note that this means that all
nonfaulty parties begin the first iteration, and won’t stop
before completing the k’th iteration. Using a simple induc-
tive argument and the previous claim, all nonfaulty parties
almost-surely complete k iterations. After completing all k
iteration, every nonfaulty party then performs a local com-
putation and participates in the last BA invocation. From
the Termination property of the BA protocol, all nonfaulty
parties almost-surely complete that BA invocation, and then
output its value and complete the protocol.

For the secondpart of the property, assume somenonfaulty
party Pi completed the CoinFlip protocol. Before complet-
ing theprotocol, itmust have completed theCommonSubsetr
protocol for every r ∈ [k] and output some set Sr . It also com-
pleted the SV SS−Rec jr protocol for every r ∈ [k] , j ∈ Sr ,
and the final BA protocol.Nowobserve someother nonfaulty
party Pl that participates in the protocol. For every nonfaulty
party Pk and value j ∈ [n], if Qkr ( j) = 1 it must have first
completed the invocation of SV SS−Share jr . From the Ter-
mination property of SV SS, every other nonfaulty party Pm
that participates in SV SS− Share jr completes the protocol
as well and sets Qmr ( j) = 1. Therefore, if Pl participates in
CommonSubsetr it almost-surely completes it as well, and
from the Correctness property it outputs Sr as well. Pl then
calls SV SS − Rec jr for every j ∈ Sr and since those are
the same invocations that Pi completed, Pl completes them
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as well. This means that for every r ∈ [k], Pl almost-surely
completes CommonSubsetr and SV SS − Rec jr for every
j ∈ Sr , after which it continues to the next iteration. After
completing all k iterations, Pl performs some local compu-
tations and participates in the BA protocol as well. Since Pi
completed the BA protocol, Pl must almost-surely complete
the protocol as well, and then complete the protocol.

Correctness Every nonfaulty party that completes the pro-
tocol participates in the final call to the BA protocol and
outputs its output. From the Correctness property of BA, all
nonfaulty parties output the same value in the BA protocol,
and thus they all output the same value in the CoinFlip
protocol. This proves the second part of the property

We now turn to deal with the first part of the property.
Every nonfaulty party that completes CoinFlip must have
completed all iterations of the loop in protocol CoinFlip.
In each iteration, from the Correctness property of Common
Subset there exists some set Sr such that every nonfaulty
party that completes the call toCommonSubsetr outputs Sr .
From the Correctness property of CommonSusbet , at the
time some party completes CommonSubsetr , for every j ∈
Sr there exists somenonfaulty party Pi such that Qir ( j) = 1.
Pi only sets Qir ( j) = 1 if it has has already completed
SV SS − Share jr . In other words, at the time some non-
faulty party completes CommonSubsetr there exists some
nonfaulty party that completes SV SS − Share jr for every
j ∈ Sr . From the binding property of SV SS, at that time
some value s′

jr is set such that every nonfaulty party that
completes SV SS − Rec jr either outputs s′

jr , or some non-
faulty party shuns some faulty party starting in that SV SS
session. Denote c′

jr = s′
jr mod 2, and c′

r = ⊕
j∈Sr c

′
jr .

Note that s′
jr is supposed to be either 0 or 1 but in the case of

sharing over a large field, this cannot be enforced for faulty
dealers.

For every j ∈ Sr , no nonfaulty party calls SV SS− Rec jr
before completing theCommonSubsetr invocation, atwhich
time Sr is set already. From the hiding property of SV SS,
before some nonfaulty party invokes SV SS − Rec jr for any
nonfaulty dealer Pj , the faulty (and nonfaulty) parties’ view
is distributed independently of the value b jr shared by Pj .
This alsomeans that the values shared by any nonfaulty party
Pj such that j ∈ Sr are entirely independent of other values
shared by all other parties in Sr . From theValidity property of
SV SS, c′

jr = b jr for every nonfaulty Pj . Since |Sr | ≥ n− t ,
there exists at least one nonfaulty party Pj such that j ∈ Sr .
Note that c′

r = 0 if and only if
⊕

l∈Sr \{ j} c
′
lr = c′

jr = b jr . b jr

is sampled uniformly from {0, 1} and entirely independently
from the rest of the values, and thus theprobability that c′

r = 0
for any r ∈ [k] is exactly 1

2 . Using similar arguments it can
also be shown that the values c′

r are independent of values
computed in all other iterations.

For each r ∈ [k] either every nonfaulty party Pi that com-
pletes the r ’th iteration computes b′

ir = c′
r or some nonfaulty

party shuns some faulty party starting in iteration r . Overall,
there can occur fewer than n2 shunning events, and thus for at
least k − n2 different iterations every nonfaulty party Pi that
completes the r ’th iteration computes b′

ir = c′
r . This means

that if
∣∣{r |c′

r = 1
}∣∣ > k

2 + n2, then regardless of the faulty
parties’ actions, every nonfaulty party Pi that completes all k
iterations outputs b′

ir = c′
r = 1 for at least

⌊ k
2

⌋+ 1 of those
iterations, and thus inputs 1 to the BA invocation at the end of
the protocol. From the Correctness property of BA, if every
nonfaulty party that participates in a BA invocation inputs
the value 1, then every nonfaulty party that completes the
invocation outputs 1. In that case, all nonfaulty parties out-
put 1 in the end of the CoinFlip protocol. The exact same
argument can bemade stating that all nonfaulty parties output
0 if there are k

2 +n2 rounds in which c′
r = 0. It is left to show

that Pr
[∣∣{r |c′

r = 1
}∣∣ > k

2 + n2
] ≥ 1

2 − ε. If that is the case,
every nonfaulty party that completes the protocol outputs 1.
Since for every r ∈ [k], Pr

[
c′
r = 1

] = 1
2 = Pr

[
c′
r = 0

]
, the

case for 0 is entirely symmetric. Define the random variable
X = ∣∣{r |c′

r = 1
}∣∣. Each c′

r is an independent Bernoulli vari-
able with probability 1

2 of being 1, and thus X ∼ Bin
(
k, 1

2

)
.

In this analysis we use the fact that:

n! ≤ e · nn+ 1
2 · e−n

n! ≥ √
2π · nn+ 1

2 · e−n

Start by bounding the size of
(2n
n

)
for any n:

(
2n

n

)
= (2n)!

(n!)2

≤ e (2n)2n+ 1
2 e−2n

(√
2π (n)n+ 1

2 e−n
)2

= e

2π
· (2n)2n+ 1

2

(n)2n+1

= e

2π
· 22n+ 1

2 · 1√
n

Denote k = 4
⌈
c2n4

⌉
with c = e

ε·π , and μ = k
2 = 2

⌈
c2n4

⌉
.

Now bound the probability that X is very close to μ:

Pr
[
μ − n2 ≤ X ≤ μ + n2

]

=
∑

μ−n2≤l≤μ+n2

(
2μ

l

)(
1

2

)2μ

≤
(
2n2 + 1

)(2μ
μ

)(
1

2

)2μ
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≤
(
2n2 + 1

) e

2π
· 22μ+ 1

2 · 1√
μ

(
1

2

)2μ

=
(
2n2 + 1

)
· e

2π
· 1√

μ
· √

2

Substituting back μ = 2
⌈
c2n4

⌉
:

Pr
[
μ − n2 ≤ X ≤ μ + n2

]

≤
(
2n2 + 1

)
· e

2π
· 1√

μ
· √

2

=
(
2n2 + 1

)
· e

2π
· 1
√
2
⌈
c2n4

⌉ · √
2

≤
(
2n2 + 1

)
· e

2π
· 1

cn2

= 2n2 + 1

n2
· e

2π
· 1
c

≤ 4 · e

2π
· 1
c

= 2e

π
· 1
c

Since the cases that X > μ+n2 and X < μ−n2 are entirely
symmetric:

Pr
[
X > μ + n2

]
= 1

2

(
1 − Pr

[
μ − n2 ≤ X ≤ μ + n2

])

≥ 1

2

(
1 − 2e

π
· 1
c

)

= 1

2
− e

π
· 1
c

Finally, substituting c = e
ε·π and μ = k

2 :

Pr

[
X >

k

2
+ n2

]
≥ 1

2
− e

π
· 1
c

= 1

2
− e

π
· ε · π

e

= 1

2
− ε

which completes the proof. 	


4 Fair agreement

This section deals with constructing a Byzantine Agree-
ment protocol with strong properties. First of all, the regular
notions of Correctness (i.e. agreement) and Termination are
preserved. In addition to that, a stronger notion of Valid-
ity is achieved in the case of multivalued agreement. If all
nonfaulty parties have the same input σ , they all output σ ;
however, if that is not the case, the probability that all non-
faulty parties output some nonfaulty party’s input is at least

1
2 . This also nicely extends to natural notions of fairness in
the case of a non-Byzantine adversary.

Definition 7 A protocol is said to be a Fair Byzantine Agree-
ment protocol if it has the following properties:

1. Termination If all nonfaulty parties participate in the pro-
tocol, they all almost-surely complete it. Furthermore, if
some nonfaulty party completes the protocol, all other
nonfaulty parties that participate in it almost-surely com-
plete it as well.

2. Validity If all nonfaulty parties have the same input to
the protocol, they output that value. Otherwise, with
probability at least 1

2 , all nonfaulty parties output some
nonfaulty party’s input.

3. Correctness All nonfaulty parties that complete the pro-
tocol output the same value.

This notion of fairness is closely related to other notions
of fairness, such as having a 1

n probability (or close to such
a probability) of choosing any nonfaulty party’s input [13].
As stated, this notion of fairness is identical to the quality
property of [3]. In an asynchronous setting achieving full
fairness is not possible, because a faulty party’s messages
could be delayed until all other parties have completed the
protocol, and thus the probability of its input being chosen is
0. However, close inspection of the arguments below shows
that there is nearly a uniform probability of choosing the
input of some nonfaulty party that was allowed to participate
in the protocol, leading to a property very close to the fairness
property of [13]. The goal in this section is to design a Fair
Byzantine Agreement protocol. In order to do so, a protocol
for choosing one element out ofm elements in an almost fair
way is described.

Definition 8 A Fair Choice protocol has the following prop-
erties if all nonfaulty parties that participate in it have the
same input m ≥ 3:

1. Termination If all nonfaulty parties participate in the pro-
tocol they all almost-surely complete it. Furthermore, if
some nonfaulty party completes the protocol, all non-
faulty parties that participate in it almost-surely complete
it as well.

2. Validity For any set G ⊆ {0, . . . ,m − 1} such that |G| >
m
2 the probability that all nonfaulty parties that complete
the protocol output some i ∈ G is at least 1

2 .
3. Correctness All nonfaulty parties that complete the pro-

tocol output the same value i ∈ {0, . . . ,m − 1}.
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Algorithm 3 FairChoice(m)

Code for Pi :

1. Set N = 2l for the smallest l ∈ N such that 4m2 ≥ N ≥ 2m2 and
set ε = 1

100m log2 m
.

2. For every i ∈ [l] participate inCoinFlipi (ε) and let the i’th output
be bi .

3. Let r be the number whose binary representation is b1b2 . . . bl .
Output r mod m and terminate.

Theorem 5 FairChoice is a Fair Choice protocol resilient to
any number of faulty parties t such that 3t + 1 ≤ n.

Proof Each property is proven individually. Throughout the
analysis, unless explicitly stated differently all logarithms are
treated as logarithms with base 2.

Termination If all nonfaulty parties participate in the pro-
tocol and have the same input m, they all compute the same
values l and ε. They then all participate in the CoinFlip
protocol l times with the same parameter ε and from the
Termination property of theCoinFlip protocol, they almost-
surely complete those calls to the protocol. Afterwards every
nonfaulty party performs some local computations and com-
pletes the protocol. On the other hand, if some nonfaulty
party completes the FairChoice protocol, it must have first
completed all l invocations of the CoinFlip protocol with
parameter ε. Observe some other nonfaulty party Pi that par-
ticipates in the FairChoice protocol with the same inputm.
It must have computed the same values l and ε, and then
participated in l invocations of the CoinFlip protocol with
the same parameter ε. Since some nonfaulty party completed
all l of those invocations, from the Termination property of
the CoinFlip protocol, Pi almost-surely completes them as
well. Finally Pi performs some local computations and com-
pletes the protocol.

Correctness Observe two nonfaulty parties that complete
the protocol. Since they both have the same input m, they
must have computed the same value l, and participated in
l invocations of the CoinFlip protocol. From the Correct-
ness property of the CoinFlip protocol, for every i ∈ [l]
they must have output the same value bi ∈ {0, 1} in the
i’th invocation of the CoinFlip protocol. This means that
they compute the same number r , and then output output r
mod m ∈ {0, . . . ,m − 1}.

Validity Intuitively, there are more values inG than values
not in G and each value i ∈ G has almost the same number
of values k ∈ {0, . . . , N − 1} such that k ≡ i mod m.
Furthermore, each value in {0, . . . , N − 1} has nearly the
same probability of being sampled. If every number had the
exact same probability of being sampled, and each value i ∈
G had exactly the same number of values k ∈ {0, . . . , N −1}
such that k ≡ i mod m it is clear that the property holds.
It is only left to show that these slight differences aren’t big
enough for the property not to hold.

Consider the case in which all nonfaulty parties that par-
ticipate in the protocol have the same input m. Let N , l, ε
be defined as they are in the protocol. Consider some
G ⊆ {0, . . . ,m − 1} such that |G| > m

2 . For every i ∈
{0, . . . ,m − 1}define the set Si = { j ∈ {0, . . . , N − 1} | j ≡
i mod m}. Define S = ∪i∈GSi . First, bound the size of S.
For every i ∈ {0, . . . ,m − 1}, |Si | ≥ � N

m � ≥ N
m − 1. Since

|G| ,m ∈ N:

|G| >
m

2
2 |G| > m

2 |G| ≥ m + 1

|G| ≥ m

2
+ 1

2

Note that for every i �= j Si ∩ S j = ∅ and thus:

|S| =
∑

i∈G
|Si |

≥
(
N

m
− 1

)
|G|

≥
(
N

m
− 1

)(
m

2
+ 1

2

)

= (N − m)

(
1

2
+ 1

2m

)

As shown in the proof of the Correctness property, all
nonfaulty parties that complete the protocol first complete l
invocations of theCoinFlip protocol, output the same bits bi
for every i ∈ [l], then compute the same value r and output
r mod m. In that case, all nonfaulty parties output some
i ∈ G if and only if r ∈ S. From the Correctness property
of the CoinFlip protocol, for every j ∈ [l] and b ∈ {0, 1},
Pr
[
b j = b

] ≥ 1
2 − ε regardless of the adversary’s actions.

For every number r denote ri to be the i ′th bit in its binary
representation. Therefore:

Pr [i ∈ G]

= Pr [r ∈ S]

=
∑

r ′∈S
Pr
[
r = r ′]

=
∑

r ′∈S
Pr

⎡

⎣
l∧

j=1

r j = r ′
j

⎤

⎦

≥
∑

r ′∈S

(
1

2
− ε

)l

= |S|
(
1

2
− ε

)l
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≥ (N − m)

(
1

2
+ 1

2m

)(
1

2
− ε

)log N

= (N − m)

(
1

2
+ 1

2m

)(
1

2

)log N

(1 − 2ε)log N

=
(
1 − m

N

)(1
2

+ 1

2m

)(
1 − 2

100m logm

)log N

≥
(
1 − m

2m2

)(1
2

+ 1

2m

)(
1 − 1

50m logm

)log 4m2

=
(
1

2
+ 1

2m
− 1

4m
− 1

4m2

)

×
((

1 − 1

50m logm

)m logm
) 2 logm+2

m logm

At this point recall that m ≥ 3. Clearly 2 logm+2
m logm ≤

4 logm
m logm = 4

m for any m ≥ 2. Secondly, note that the expres-

sion
(
1 − x

n

)n approaches e−x frombelow in amonotonously
increasing manner for 1 > x > 0. Plugging in m = 3,(
1 − 1

50·3 log 3
)3 log 3 ≥ 99

100e
− 1

50 , and from the previous

observation
(
1 − 1

50m logm

)m logm ≥ 99
100e

− 1
50 for everym ≥

3. Combining these observations:

Pr [i ∈ G]

≥
(
1

2
+ 1

2m
− 1

4m
− 1

4m2

)

×
((

1 − 1

50m logm

)m logm
) 2 logm+2

m logm

≥
(
1

2
+ 1

4m
− 1

4m2

)(
99

100
e− 1

50

) 4
m

First, note that clearly:

lim
m→∞

(
1

2
+ 1

4m
− 1

4m2

)(
99

100
e− 1

50

) 4
m = 1

2
· 1 = 1

2

In addition, setting m = 3 and checking numerically:

(
1

2
+ 1

4 · 3 − 1

4 · 32
)(

99

100
e− 1

50

) 4
3 ≈ 0.534 > 0.5

Next observe the derivative of the expression with respect to
m and check when it is negative.

d

dm

(
1

2
+ 1

4m
− 1

4m2

)(
99

100
e− 1

50

) 4
m

=
(

− 1

4m2 + 1

2m3

)(
99

100
e− 1

50

) 4
m

+
(
1

2
+ 1

4m
− 1

4m2

)(
99

100
e− 1

50

) 4
m

×
⎛

⎝
−4 ln

(
99
100e

− 1
50

)

m2

⎞

⎠

=
(

99

100
e− 1

50

) 4
m

×
⎛

⎝2 − m

4m3 −
16m

(
1
2 + 1

4m − 1
4m2

)
ln
(

99
100e

− 1
50

)

4m3

⎞

⎠

= 1

4m3

(
99

100
e− 1

50

) 4
m

×
(
2 − m −

(
8m + 4 − 4

m

)
ln

(
99

100
e− 1

50

))

Now note that for any m ≥ 3:

1

4m3

(
99

100
e− 1

50

) 4
m

> 0

and thus the whole expression is negative if:

0 > 2 − m −
(
8m + 4 − 4

m

)
ln

(
99

100
e− 1

50

)

= 2 − m +
(
8m + 4 − 4

m

)
ln

(
100

99
e

1
50

)

Numerically we can find that 0.031 ≥ ln
(
100
99 e

1
50

)
> 0 and

thus:

2 − m +
(
8m + 4 − 4

m

)
ln

(
100

99
e

1
50

)

≤ 2 − m + (8m + 4) ln

(
100

99
e

1
50

)

≤ 2 − m + (8m + 4) 0.031

= 2 − m + 0.248m + 0.124

= 2.124 − 0.752m

Finally check if this term is negative:

2.124 − 0.752m < 0

2.124 < 0.752m

2.124

0.752
≈ 2.824 < m

Since m ≥ 3:

2 − m +
(
8m + 4 − 4

m

)
ln

(
100

99
e

1
50

)
< 0

123



Revisiting asynchronous fault tolerant computation with optimal resilience 353

and thus for every m ≥ 3:

d

dm

(
1

2
+ 1

4m
− 1

4m2

)(
99

100
e− 1

50

) 4
m

< 0

Combining the fact that atm = 3 the expression is greater
than 1

2 , that the derivative is negative for any m ≥ 3 and that
the expression approaches 1

2 as m approaches infinity, for
any m ≥ 3:

Pr [i ∈ G] ≥
(
1

2
+ 1

4m
− 1

4m2

)(
99

100
e− 1

50

) 4
m

>
1

2

completing the proof. 	

A Fair Byzantine Agreement protocol that uses the Fair

Choice protocol is described below. In this Fair Byzantine
Agreement protocol, each party Pi has some input xi . The
construction makes use of a Broadcast protocol.

Definition 9 ABroadcast protocol is a protocol with a desig-
nated sender Pi with some input v, which has the following
properties:

1. Termination If Pi is nonfaulty and all nonfaulty parties
participate in the protocol, they all complete the proto-
col. Furthermore, if some nonfaulty party completes the
protocol, every other nonfaulty party that participates in
it does so as well.

2. Validity If Pi is nonfaulty, every nonfaulty party that com-
pletes the protocol outputs v.

3. Correctness All nonfaulty parties that complete the pro-
tocol output the same value.

Let A-Cast be a Broadcast protocol, for example as described
in [8].

Algorithm 4 FBA
Code for Pi with input xi :

1. A-Cast xi and participate in every other party’s A −Cast . Denote
the output of Pj ’s A-Cast to be x ′

j .
2. Define the dynamic predicate Qi as follows:

Qi ( j) =
{
1 Pj ’s A-Cast has been completed

0 else
3. Participate in CommonSubset (Qi , n − t).
4. After completing the CommonSubset protocol, let S be the pro-

tocol’s output and let m = |S|. Wait to complete Pj ’s A-Cast for
every j ∈ S.

5. If there exists some value x such that
∣
∣∣
{
x ′
j = x | j ∈ S

}∣∣∣ > m
2 ,

output x and complete the protocol. Otherwise, continue to the
next step.

6. Participate in FairChoice (m), and let the output be k.
7. Let j be the k’th biggest value in S, with the 0’th being understood

as the biggest value, 1’st as the second biggest, etc.
8. Output x ′

j and terminate.

Theorem 6 Protocol FBA is a Fair Byzantine Agreement
protocol for any number of faulty parties t such that 3t+1 ≤
n.

Intuitively, each party A-Casts its input value, and the
parties agree on a subset of parties of size n−t at the very least
whose values have been received using the CommonSubset
protocol. If all nonfaulty parties have the same input, they
will see that a majority of the parties sent the same value
and output that value in line 5, achieving the first part of the
Validity property.Otherwise, the parties choose the value sent
by one of those parties “almost fairly” using the FairChoice
Protocol. Since more than half of the parties in the agreed
upon subset are nonfaulty, the probability that a nonfaulty
party will be chosen is at least 1

2 . A formal proof is provided
below.

Proof Again, each property is proven individually.
Termination If all nonfaulty parties participate in the FBA

protocol, they all A-Cast some values in step 1 and partici-
pate in each other’s A-Casts. Since all of the senders in those
A-Casts are nonfaulty and all nonfaulty parties participate
in all of those A-Casts, from the Termination property of A-
Cast they all complete each of those calls. Thismeans that for
every pair of nonfaulty parties Pi , Pj eventually Qi ( j) = 1.
In other words, since there are at least n − t nonfaulty par-
ties there exists a set I ⊆ [n] such that for every nonfaulty
party Pi , eventually ∀ j ∈ I Qi ( j) = 1. From the Ter-
mination property of CommonSubset , all nonfaulty parties
almost-surely eventually complete the protocol. From the
Correctness property of CommonSubset , all nonfaulty par-
ties output the same S ⊆ [n] and for every j ∈ S there exists
some nonfaulty party Pi such that Qi ( j) = 1. A nonfaulty
party sets Qi ( j) = 1 only if it completed Pj ’s A-Cast, and
from the Termination property of A-Cast, all nonfaulty par-
ties that participate in that A-Cast complete it as well. This
means that all nonfaulty parties complete all relevant A-Cast
invocations and then finish step 4 of the protocol. From the
Correctness property of A-Cast, all nonfaulty parties receive
the same value x ′

k in Pk’s A-Cast for every k ∈ S. If some
nonfaulty party completes the protocol in step 5, then there

exists some x such that
∣∣∣
{
x ′
j = x | j ∈ S

}∣∣∣ > m
2 . Every other

nonfaulty party sees that this holds as well and completes the
protocol in step 5. Otherwise, all nonfaulty parties participate
in FairChoice (m) with the same m = |S|. Note that from
the Correctness property of the CommonSubset protocol,
they all output some set S such that |S| ≥ n − t ≥ 3. There-
fore, from the Termination property of the FairChoice
protocol, they all almost-surely complete the FairChoice
protocol as well. Afterwards they perform some local com-
putations and complete the protocol.

For the second part of the property, assume some non-
faulty party Pi completed the FBA protocol. This means it
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must have completed the CommonSubset protocol and if it
didn’t complete the FBA protocol in step 5, it completed the
FairChoice protocol as well. Observe some other nonfaulty
party Pj that participates in the protocol. First, Pj A-Casts
some value and participates in every other party’s A-Cast.
Pj then participates in the CommonSubset protocol. Every
nonfaulty party that participates in the CommonSubset
protocol also participates in each of the A-Cast calls. For
every pair of nonfaulty parties Pk, Pl that participate in
CommonSubset and value m ∈ [n], if Qk (m) = 1 Pk must
have completed Pm’s A-Cast. From the Termination property
of A-Cast, Pl will eventually complete Pm’s too A-Cast and
set Ql (m) = 1. Therefore, the conditions of the second part
of the Termination property of theCommonSubset protocol
hold, and thus since Pi completed the CommonSubset pro-
tocol Pj almost-surely completes it as well with some output
S. From the Correctness property of CommonSubset , for
every k ∈ S, Ql (k) = 1 for some nonfaulty party Pl . This
means that Pl completed Pk’s A-Cast, which means Pj does
so as well. If Pj completes the protocol in step 5 after com-
pleting all of the A-Cast invocations we are done. Otherwise,
after completing all of the relevant A-Casts, Pj participates
in the FairChoice protocol. In that case there must not exist
any x such that

∣∣{x ′
k = x |k ∈ S

}∣∣ > m
2 . From the Correct-

ness property of A-Cast, Pi must have output the same value
in each of those A-Casts, seen that there does not exist any
x such that |{x ′

k = x |k ∈ S}| > m
2 , and then invoked and

completed the FairChoice protocol. From the Termination
property of the FairChoice protocol, Pj almost-surely com-
pletes it as well, performs some local computations, and then
finally completes the FBA protocol.

Correctness Let Pi , Pj be two nonfaulty parties that com-
pleted the protocol. They must have both first completed the
CommonSubset protocol and from its Correctness property
output the same set S ⊆ [n]. They then completed Pk’s
A-Cast for every k ∈ S. From the Correctness property of
A-Cast, they both received the same value x ′

k for every k ∈ S.
If there exists some x such that

∣
∣{x ′

k = x |k ∈ S
}∣∣ > m

2 then
they both must output that value and complete the protocol.
Note that clearly there cannot bemore than one such value. If
there isn’t any such value x , then they both participated in the
FairChoice protocol and from the Correctness property of
the protocol output the same value k ∈ {0, . . . ,m − 1}. They
then both took the k’th biggest value in S and output the value
corresponding to that party’s A-Cast. Again, from the Cor-
rectness property of A-Cast Pi , Pj must have received the
same value in that A-Cast and thus output the same value.

Validity First assume that all nonfaulty parties have the
same input x . In that case, in the beginning of the proto-
col each nonfaulty party that participates in the protocol
A-Casts x . Let Pi be some nonfaulty party that completed
the protocol. Before completing the protocol it participated
in all relevant A-Casts and in protocol CommonSubset ,

and completed it with some output S. The input to the
CommonSubset protocol is n − t , so from the Correctness
property ofCommonSubset , |S| ≥ n− t . Pi then completed
Pj ’s A-Cast for every j ∈ S. From the Validity property of
A-Cast, Pi received the value x ′

j = x from every nonfaulty
party Pj such that j ∈ S. Let G be the set of all j ∈ S
such that Pj is nonfaulty. Since there are at most t faulty
parties Pk such that k ∈ S, |G| ≥ |S| − t = m − t . Note
that m ≥ n − t > 2t and thus m

2 > t ⇒ m − t > m
2 . Since|G| ≥ m− t > m

2 , and for every j ∈ G, Pi received the value

x ′
j = x , Pi sees that

∣∣
∣
{
x ′
j = x | j ∈ S

}∣∣
∣ > m

2 . Thismeans that

in step 5, Pi outputs x and completes the protocol.
On the other hand, if it is not the case that all nonfaulty

parties had the same input, for every nonfaulty party Pj let
x j be its input. Observe some nonfaulty party Pi that com-
pleted the protocol. Following the exact same arguments as
above, Pi must have participated in all A-Casts, completed
the CommonSubset protocol with some output S such that
m = |S| ≥ n−t , and completed Pj ’s A-Cast for every j ∈ S.
Note that from the Validity property of A-Cast, for every
nonfaulty party Pj , Pi received the value x j = x ′

j in Pj ’s
A-Cast. If Pi output some value in step 5, it must have found

some value x such that
∣∣∣
{
x ′
j = x | j ∈ S

}∣∣∣ > m
2 . As previ-

ously shown m
2 > t , and thus

∣∣∣
{
x ′
j = x | j ∈ S

}∣∣∣ ≥ t + 1.

There are t faulty parties at most, which means that there
must be some nonfaulty party Pj such that x j = x ′

j = x .
In other words, if Pi completed the protocol in step 5 the
property holds. Otherwise, Pi must have invoked and com-
pleted protocol FairChoice before completing the FBA
protocol. Define G as defined above. As previously shown
|G| > m

2 . Let SG ⊆ {0, . . . ,m − 1} be all of the num-
bers k ∈ {0, . . . ,m − 1} such that the k’th biggest value
in S (as defined in the protocol) is in G. Note that each
k ∈ {0, . . . ,m − 1} corresponds to a unique value j ∈ S,
and thus |SG | = |G| > m

2 . From the Correctness property
of FairChoice, Pi outputs some k ∈ SG with probability
1
2 at the very least. Pi then finds the corresponding j ∈ G
and outputs x ′

j = x j . Since by definition Pj is a nonfaulty
party, Pi output some nonfaulty party’s input, completing the
proof. 	
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