
https://doi.org/10.1007/s00446-021-00393-8

Optimistically tuning synchronous byzantine consensus: another win
for null messages

Guy Goren1 · Yoram Moses1

Received: 24 September 2020 / Accepted: 12 April 2021
© The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2021

Abstract
Modular methods that transform Byzantine consensus protocols for the synchronous model into ones that are fast and
communication efficient in failure-free executions are presented. Small and short protocol segments called layers are custom
designed to act as a highly efficient preliminary stage that solves Consensus if no failures occur. When composed with a
Byzantine consensus protocol of choice, they allow considerable control over the tradeoff in the combined protocol’s behavior
in the presence of failures and its performance in their absence. In failure-free executions, they are more efficient than all
existing Byzantine consensus protocols. In the presence of failures, they incur a small cost over the complexity of the original
consensus protocol being transformed. A key ingredient underlying the efficiency of the new layers is the judicious use of
null messages for broadcasting information in failure-free runs. In particular, the notion of a silent validation round, which
implements such a broadcast, is defined and used in several ways.

Keywords Null messages · Fault-tolerance · Byzantine Consensus · Silent validation round · Synchronous systems

“I am prepared for the worst, but
hope for the best”

Benjamin Disraeli [9]

1 Introduction

Byzantine-faulty processes are able collude arbitrarily and
can, in particular, send arbitrary messages. Consequently,
tolerating Byzantine failures can be costly. In their sem-
inal paper [38] Pease, Shostak and Lamport defined the
Byzantine consensus problem (originally called Interactive
Consistency), and presented a protocol in which processes
send Ω(nt ) bits of information to each other, and decide at
the end of t +1 synchronous rounds. (n is the number of pro-
cesses, and t < n/3 is a bound on the number of faults that the
protocol tolerates.) While the complexity of Byzantine Con-
sensus protocols has been reduced in the four decades since
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then, it is still much higher than that of solving Consensus
in the crash failure model and in other benign models. Since
faulty processors can lie arbitrarily, messages in the Byzan-
tine model carry significantly less useful information. The
contents of a message cannot be trusted, and so even when
no failures occur, just the a priori possibility of failures sig-
nificantly complicates protocols. Of course, communication
is not completely useless in the Byzantine model, since a
process can derive useful conclusions when it receives many
messages stating the same fact. Indeed, Consensus protocols
in thismodel usemanymoremessages than ones in lessmali-
cious settings such as the authenticated Byzantine or crash
models. (In the absence of signatures, Byzantine processes
can readily lie about what other processes sent them.)

Whereas the damage that malicious cyber attacks may
cause is considerable and tolerating Byzantine faults is
important, in many settings such faults are typically rare.
Consequently, paying a high premium for fault-tolerance
even when failures do not occur is clearly undesirable. Dolev
et al. [11], introduced “early stopping” solutions whose com-
plexity depends in an adaptive manner on the number of
actual failures f in an execution. In many settings, however,
executions in which no failures occur, i.e., where f = 0,
are much more prevalent than ones with f ≥ 1. This paper
shows that Consensus protocols can be tuned to be extremely

123

Distributed Computing (2021) 34:395–410

/ Published online: 10 June 2021

http://crossmark.crossref.org/dialog/?doi=10.1007/s00446-021-00393-8&domain=pdf
http://orcid.org/0000-0003-2158-161X


G. Goren, Y. Moses

efficient in failure-free executions, with no significant effect
on their complexity when failures do occur.

One way to reduce the number of messages sent by a pro-
tocol is to use synchrony to our advantage. For example, it is
possible to encode information by the time, or round num-
ber, in which a message is sent. This trades 2k rounds in
exchange for saving k bits, which is rather costly. A more
effective way to exploit synchrony is by using null mes-
sages. In a synchronousmessage-passingmodelwith reliable
links, the fact that no message is received implies that none
was sent. Lamport argued that this provides a natural way
to transmit information by not sending a message [29]. He
considered not sending a message as a form of sending a null
message, which is received once the bound on transmission
time is reached. The advantage of sending a null message
over sending a very short message is considerable. Prepar-
ing and sending an explicit message incurs costs in memory,
computation and bandwidth. Indeed, using the popular IEEE
802.3 standard [23], for example, requires more than 690 bits
of traffic even for a message with single bit content. (IEEE
802.3 Ethernet is the most widely used link-layer protocol.)
A natural question then becomes how to utilize nullmessages
effectively in protocol design.

In this paper, we define a new primitive based on null mes-
sages,which is called a silent validation round (svr). It allows
all processes to detect that a certain milestone (a global prop-
erty of interest) has been reached. As we show, in failure-free
runs this can be used to provide useful information and allow
progress at a cost of a single round, and no communication
costs whatsoever. In essence, an svr “sends” a quadratic num-
ber of null messages to achieve an all-to-all broadcast among
the processes. By extensively using null messages and svrs,
we design elegant layers consisting of three or four rounds
that can be used to modify any Consensus protocol to be very
quick and efficient in failure-free executions. In executions
with failures, the tuned protocol maintains similar complex-
ity to the original protocol.

This work makes two different, but complementary, types
of contributions. First, from an algorithmic perspective, the
tuning layers.

– We provide a general transformation for Consensus pro-
tocols that, in failure-free runs, decides optimally fast
(after 2 rounds), and requires a factor of Ω(n) less com-
munication than the best previously-knownoptimally fast
protocol.

– We provide a second general transformation that results
in better communication costs in failure-free runs than
any known protocol. Its communication complexity (bits
and messages) in failure-free runs is a factor of 24 bet-
ter than the next best protocol. Moreover, our protocol
decides after 3 rounds, whereas the previous protocol
requires up to 8.

– In addition to providing exceptional efficiency in failure-
free rounds, our transformations allow the designer to
choose any protocol of her liking to execute in case fail-
ures do occur. In this manner, she can determine the most
suitable complexity tradeoffs for the latter case.

Second, from the perspective of principles and techniques
for protocol design, this work initiates an investigation of
how null messages can be used effectively in the Byzantine
model. To this end,

– We present methods for using null messages in a Byzan-
tine setting.

– In particular, we present and formalize the notion of a
silent validation round. svr is a powerful tool for failure-
free optimization.

– The power of the above techniques is demonstrated by
their successful use in the design of our new efficient
Consensus protocols.

1.1 Related work

Optimizing for specific cases of interest is a well known
concept. Indeed, Hadzilacos and Halpern in [20] use the
term cautiously optimistic to describe protocols that assume
failure-free operation, but providemechanisms to handle fail-
ures if they do occur. The fast-path slow-path approach was
originally applied in the shared-memory domain by Lam-
port [30].Additional examples in the shared-memory domain
can be found in, e.g., [25,39]. In message-passing systems,
optimizing for failure-free executions plays a significant role
in various problems [13,19,27,31,33], as well as in well-
known practical solutions to the state replication problem
(e.g., [6,26]).

Null messages are particularly useful for optimizing the
communication costs of failure-free executions. In a previous
work [18], we used null messages for a different problem—
Atomic Commitment—in the more benign crash failure
model. In this setting, [18] identified the silent choirpattern in
which a set of (possibly faulty) processes refrain from send-
ing a message to a given process. A silent choir was shown
to be the only way in which the process can gain knowl-
edge regarding certain facts about another process without
an explicit message chain between the two. In this work
we tackle the more challenging Byzantine-failure model, in
which themessage patterns necessary for knowledge gain are
substantially different than those in the crash-failure model.
We focus on the popular Consensus problem and provide
general primitives for using null messages efficiently.

Hadzilacos and Halpern [21] studied efficient solutions to
theByzantineAgreement problem (BA) in a variety of failure
models, ranging from crash to Byzantine failures. Their work
makes extensive and judicious use of null messages to obtain
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protocols that are message-optimal in failure-free runs. In
particular, [21] uses null messages in a flexible manner to
encode different facts in different rounds, and even to report
different values to different processes in the same round. For
the Byzantine model, their Byzantine Agreement protocol
achieves the tight bound of n(t + 1)/4 messages in failure-
free executions, but requiresmore than t rounds to halt.While
Consensus can be solved by simply invoking n instances of
their BA protocol, this does not provide an efficient solution
to Consensus.

Dolev et al. [11], introduced the concept of “early stop-
ping” protocols, whose complexity is adaptive to the number
of actual failures f in an execution. Such protocols for
Consensus often decide after min{t + 1, f + 2} rounds
[1,11,34,37]. These solutions provide a form of graceful per-
formance degradation as the number of failures increases.
In many early stopping protocols, failure-free executions
incur complexity costs in order to ensure that executions
with failures would decide early as well. In particular, all
of the early-stopping protocols cited above cost Ω(n3) bits
in failure-free runs, compared to our O(nt) bits.

Our solutions come in the form of short modular layers
similar in spirit to the short and elegant layer used by Turpin
and Coan [40], which provided a general transformation of
binary Consensus protocols into multi-valued ones.

The remainder of the paper is organized as follows. The
next section formally defines our systemmodel. In Sect. 3 we
provide efficient techniques for using null messages to con-
vey information in Byzantine synchronous message-passing
systems. Section 4 applies themethods fromSect. 3 to design
short layers for Byzantine Consensus. It starts by presenting
two layers for binary Consensus, and shows how to modify
them to handle a multi-valued Consensus. Finally, conclud-
ing remarks are discussed in Sect. 5. Proofs of all statements
appear either in the main text or in the Appendix.

2 Model and preliminaries

2.1 Consensus

Reaching agreement on values is a fundamental problem in
distributed systems. While voting is a natural mechanism for
this purpose, it is not implementable when failures are pos-
sible. The Byzantine Consensus problem (originally called
Interactive Consistency) was defined in the seminal paper of
Pease, Shostak and Lamport [38] in 1980. Broadly speak-
ing, Byzantine Consensus considers the problem of reaching
agreement among a group of n parties, up to t of which can
be Byzantine faults and deviate from the protocol arbitrarily.
Pease, Shostak and Lamport presented a protocol that solves
the problem in t + 1 rounds whenever n > 3t , and proved
that no solution for n ≤ 3t exists [32,38]. Fischer and Lynch

later showed that t + 1 rounds are necessary in the worst-
case run of any Byzantine Consensus protocol [16]. In the
original solution of [32,38], processes never decide before
the end of t + 1 rounds. Moreover, each process sends an
exponential number of bits of information (and performs an
exponential amount of computation) in every execution. The
authors leave as an open problem the design of more efficient
solutions to Byzantine Consensus, and the quest for efficient
solutions to this problem has received a great deal of atten-
tion over the last four decades. For a recent partial survey,
see [1].

In this paperwe use the standard definition for theConsen-
sus problem. Each process i starts with some initial proposal
vi ∈ V , and all correct processes need to reach a common
decision. All runs of a Consensus protocol are required to
satisfy the following conditions:
Consensus

Decision Every correct process must eventually decide,
Agreement All correct processes make the same decision,

and
Validity If all correct processes have the same initial pro-

posal, then all correct processes decide on this
value.

When V = {0, 1} the problem is called binary Consensus,
and when |V | > 2 we refer to it as multi-valued Consensus.
AByzantineConsensus protocol is a Consensus protocol that
can tolerate up to t Byzantine failures per run.

2.2 Model of computation

We consider the standard synchronous message-passing
model forByzantine failures (without signatures).Weassume
a set P = {0, 1, . . . , n − 1} of n > 2 processes. Each pair
of processes is connected by a two-way communication link,
and for each message the receiver knows the identity of the
sender. All processes share a discrete global clock that starts
at time 0 and advances by increments of one. At any given
time m ≥ 0, each process is in a well-defined local state. For
simplicity, we assume that the local state of each process i
at a given point consists of its initial proposal vi , the current
time m, and the finite sequence of the actions that i has per-
formed up to that time (including the messages it has sent)
as well as the messages that process i has received so far. In
particular, its local state at time 0 has the form (vi , 0, {}).

A protocol P specifies what messages a process should
send and what decisions it should take, as a deterministic
function of its local state. Communication in the system pro-
ceeds in a sequence of rounds, with round m +1 taking place
between time m and time m + 1, for m ≥ 0. A message sent
from a process i to j at time m will reach j by time m + 1.
We think of such a message as being sent in round m + 1,

123

397



G. Goren, Y. Moses

and as being received in the same round. In a given execu-
tion, a process is either correct or faulty. Correct processes
faithfully follow the protocol. In contrast, faulty processes
may deviate from the protocol in an arbitrary manner. In par-
ticular, a faulty process can act maliciously and send bogus
messages in an attempt to sabotage the correct operation of
the system.

We will consider the design of protocols that are required
to withstand up to t failures. Given 1 ≤ t < n, we denote
by γ t the model described above in which it is guaranteed
that no more than t processes are faulty in any given run. We
assume that a protocol P has access to the values of n and t ,
typically passed to P as parameters.

A run is a description of a (possibly infinite) execution
of the system. We call a set of runs R a system. We will be
interested in systems of the form RP = R(P, γ t ) consisting
of all runs of a given protocol P in which no more than t
processes are faulty. Observe that a protocol P solves Con-
sensus in the model γ t if and only if every run of RP satisfies
the Decision, Agreement and Validity conditions described
above. Given a run r and a time m, we denote the local state
of process i at time m in run r by ri (m). Notice that a pro-
cess i can be in the same local state in different runs of the
same protocol. But ri (m) = r ′

i (m
′) can hold only if m = m′

since the current time m is represented in the local state.

2.3 Indistinguishability and knowledge

Our analysis makes limited use of the theory of knowledge
in distributed systems. This section introduces just enough of
the theory of knowledge to support the analysis in this paper.
More details can be found, e.g., in [14]. The formal defini-
tions reviewed in this section are used only in Theorem 1 and
in the proofs in the appendix. The reader can safely skip this
section in a first reading.

Two runs r and r ′ are said to be indistinguishable to pro-
cess i at timem if ri (m) = r ′

i (m). We denote this by r ≈m
i r ′.

Notice that since we assume that correct processes follow
deterministic protocols, if r ≈m

i r ′ then a correct process i is
guaranteed to perform the same actions at time m in both r
and r ′.

Problem specifications typically impose restrictions on
actions, based on properties of the run. Moreover, since the
actions that a correct process performs are a function of its
local state, the restrictions can depend on properties of other
runs as well. For example, the Agreement condition implies
that a correct process i cannot decide on v at time m in a
run r if there is an indistinguishable run r ′ ≈m

i r in which
some correct process decides on u �= v. Similarly, by the
Validity condition a correct process i cannot decide on v

if there is a run r ′ that is indistinguishable from r (to i at
time m) in which all correct processes have the same initial
proposal v′ �= v. These examples illustrate how indistin-

guishability might inhibit actions — performing an action
might be prohibited because of what may be true at indistin-
guishable runs.

Rather than considering when actions are prohibited, we
can choose to consider what is required in order for an action
to be allowed by the specification. To this end, we can view
the Agreement condition as implying that a correct process i
is allowed to decide on v at time m in r only if in every
run r ′ ≈m

i r there is no correct process that decides otherwise.
This is much stronger than stating that no correct process
decides otherwise in the run r itself, of course. Roughly
speaking, the stronger statement is true because at time m
process i cannot tell whether it is in r or in any of the runs
r ′ ≈m

i r . When this condition holds, we say that i knows
that no correct process decides otherwise. Generally, it will
be convenient to define the dual of indistinguishability, i.e.,
what is true at all indistinguishable runs, as what the process
knows. More formally, following in the spirit of [14,22], we
proceed to define knowledge in our distributed systems as
follows.

Definition 1 (Knowledge) Fix a system R, a run r ∈ R, a
process i and a fact ϕ. We say that Kiϕ (which we read as
“process i knows ϕ”) holds at time m in r iff ϕ is true of all
runs r ′ ∈ R such that r ′ ≈m

i r .

We useBoolean operators such as¬ (Not),∧ (And), and∨
(Or) freely in the sequel. Notice that knowledge is defined
with respect to a given system R. Often, the system is clear
from context and is not stated explicitly. Definition 1 immedi-
ately implies the so-calledKnowledge property: If Kiϕ holds
at (any) time m in r , then r satisfies ϕ.

Our analysis will involve, in part, i-local facts, which are
facts about the local states of a process i . Formally, a fact ϕi

is an i-local fact in a system R if there is a set Zi of local
states of i such that ϕi holds if and only if i’s local state is
a member of Zi . Examples of i-local facts are “vi = x” (i’s
initial proposal is x), “i received message μ from j” (in the
current run), and “i has decided v” (in the current run).

3 Using null messages

Recall that sending a null message is, in general, consid-
erably cheaper than sending an explicit message. But what
information can a null message convey? In a reliable syn-
chronous model, a process j that does not receive a message
from i is guaranteed that i purposely sent j a null message.
Moreover, if i’s protocol is such that a null message would be
sent only if some condition holds, then j is informed by i’s
null message that the condition holds. If processes can fail,
then a null message can result from the fact that i is faulty,
regardless of what its protocol specifies. Consequently, the
only information that j learns from i’s null message arrives is
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that if i is correct then the condition holds. In the crash fail-
ure model, explicit (non-null) messages are only ever sent
according to the protocol. This makes null messages qualita-
tively different from explicit messages in the crash model, as
discussed by [18]. In the Byzantine model, however, faulty
processes may send arbitrary messages. Consequently, the
only information that j learns from an explicit message μ it
receives from i in this model is that if i is correct then the
conditions under which the protocol specifies that i should
sendμholds. Essentially, in theByzantinemodel the status of
a null message is similar to that of an explicit message. This
is not because null messages are promoted in the Byzantine
case, but rather because the information content of explicit
messages is demoted there. (In the authenticated model [12],
signed messages are no longer similar to null messages.)

Suppose that a given process j receives from every pro-
cess i a message reporting an i-local fact ϕi . Then, as
discussed above, j learns that the ϕi ’s of all correct pro-
cesses i are true. Although j’s uncertainty regarding the
identity of the correct processes may cause it to be unsure
which of these facts holds, the information obtained in this
manner can still be valuable. The success of a protocol in the
Byzantine model is typically defined in terms of events that
take place at correct processes (after all, the protocol does
not control the faulty processes). In Consensus, for example,
the three conditions of Decision, Agreement and Validity are
all stated in terms of the correct processes. Indeed, a process
may be able to terminate in Consensus once it discovers that
every correct process has all of the information it needs in
order to decide.

Coordinated use of nullmessages bymanyprocesses gives
rise to a powerful primitive. We use a silent round, involving
no communication, as an efficient tool for detecting global
system properties about the correct processes, and will be
especially useful in failure-free runs. We proceed as follows.

Definition 2 For every i ∈ P, let ϕi be an i-local fact in the
system RP = R(P, γ t ). Denote ϕ̄c �

∧

correct i
ϕi , and fix

some time m ≥ 0. A protocolP is said to implement a silent
validation round for ϕ̄c (denoted by svr(ϕ̄c)) in round m +1
if in every run r ∈ RP , each correct i ∈ P sends messages to
everyone in round m + 1 in case ϕi does not hold at time m,
and sends no message to anyone in round m + 1 if ϕi does
hold.

The fact ϕ̄c states that for every correct process i (in the
current run) the fact ϕi holds. Clearly, its truth depends on the
identity of the correct processes which, in turn, is determined
by the run. By design, silent validation rounds satisfy the
following:

Theorem 1 Assume that P implements an svr(ϕ̄c) in round
m + 1, and fix a run r of P. A process j that receives no

messages whatsoever in round m + 1 knows at time m + 1
that ϕ̄c was true at time m.

Proof Suppose that the assumptions hold and j does not
receive any round m + 1 message in a run r ∈ RP . We need
to show that, at time m + 1 in r , process j knows that ϕ̄c was
true at time m. Fix a run r ′ ∈ RP such that r ′ ≈m+1

j r (i.e., r ′
is j-indistinguishable from r at time m +1). It follows that j
does not receive any round m + 1 message in r ′ (otherwise it
would distinguish r ′ from r ). Since j receives no roundm+1
messages in r ′, no correct process sends j any message in
round m + 1 of r ′. Given that P implements an svr(ϕ̄c) in
round m +1, we have by Definition 2 that ϕi holds at time m
in r ′ for all correct i ∈ P. Consequently, ϕ̄c also holds at
time m in r ′. Since this is true for every run r ′ ≈m+1

j r , we
have by Definition 1 that j knows at time m + 1 in r that ϕ̄c
was true at time m. 
�

We shall refer to properties of the form ϕ̄c as global mile-
stones. Knowing that a global milestone has been reached
is often valuable in distributed protocols. For example, in
many popular Consensus protocols, the processes maintain
a local estimate of the decision value. Once the estimates of
all correct processes are the same, the decision value is deter-
mined. The fact that all estimates are the same corresponds to
a global milestone. As we will see later on, this global mile-
stone can be detected by all correct processes, following a
properly designed silent validation round. Existing protocols
in the literature often employ other means to detect global
milestones. Indeed, a variety of fault-tolerant protocols use
long silent phases consisting of more than t rounds to verify
that a specific milestone has been reached (e.g., [2,19,21]).
The time complexity of these protocols can easily be reduced
if the multi-round phase is replaced by a single-round svr.

While silent validation rounds have not been defined
explicitly before, they have implicitly appeared in several
distributed protocols in the literature. One interesting appli-
cation of this technique is in broadcast-based protocols for
radio networks, where such rounds are used to overcome
possible malicious behavior (see, e.g., [8,17]). Moreover,
the Atomic Commitment protocols in [18] use silent vali-
dation rounds to gain communication efficiency. We remark
that although silent validation rounds can sometimes convey
the global information ϕ̄c practically for free, it is clear that
they might induce high costs when ϕ̄c does not hold. This is
inherent in using null messages effectively. At best, such use
will shift costs among executions; it does not eliminate them
totally (cf. [18]). As shown in Sect. 4, silent validation can
allow us to reduce the communication costs of Consensus
considerably in failure-free runs.

We use nullmessages in Sect. 4 in two additionalmanners:
Encoding a fixed value A trivial way to benefit from null
messages is by having i encode a specific value (say 1) by a
null message. If i encodes the same value by null messages in
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its communications to all processes, then the cost of reporting
its value greatly improves (over not using null messages) in
the best case, but no real gain is made in the worst case, in
which its value differs from the chosen one. The worst-case
performance can often be improved by using null messages
to represent different values, in a manner that depends on the
recipient. Thus, for example, in binary Consensus, process i
couldusenullmessages to report 0 to onehalf of the processes
(sending an explicit message to the other half), and reverse
the role of null messages in reporting 1. Doing so allows i to
broadcast its value using n/2 messages in every case. (This
idea is not new; see [2,21] for such a use of null messages).
On-the-fly endcoding A null message from j to i need not
be restricted to encoding an a priori fixed value. In fact, it is
possible for a null message from j to i to refer to different
values in distinct runs of the same protocol. In our protocols,
there are typically processes that belong to a committee that
collects initial proposals, and recommends a decision value.
If a process i reports a value v to such a committeemember j ,
then j sends i a null message to encode a recommendation
of v (and an explicit message to encode recommendations
of values v′ �= v). A null message from j to i thus dynam-
ically encodes a value whose identity is based on their past
communication.

4 Improving Byzantine consensus protocols

We now use the insights from Sect. 3 to design a method for
improvingByzantineConsensus protocols.Weuse amodular
approach, in which the protocol designer is free to choose a
Byzantine Consensus protocol of her liking (which we refer
to as the base protocol). If no failures occur, a very short
and efficient protocol layer is executed and Consensus is
achieved with relative ease. Execution reverts to the base
protocol if failures prevent the layer from reaching Consen-
sus quickly. This affords the designer with the best of both
worlds—excellent behavior in the failure-free runs, and exe-
cution of a base protocol with the properties that the designer
favors most when failures do occur. Crucially, when failures
occur, executing the optimizing layer adds a negligible cost
to runs of the base protocol. In a similar manner, Turpin and
Coan used a layer to convert binary Consensus protocols into
multi-valued ones [40].

Onemay argue that it is preferable inmany applications to
have aConsensus algorithmdecideon themajority value (i.e.,
produce a fair vote). The possibility of failures makes this
impossible in general, and the specification of Consensus can
be viewed as an approximation of voting. Interestingly, all
of our solutions have the additional quality that they emulate
a fair voting mechanism in the absence of failures. I.e., they
decide on the majority values in binary Consensus, and on a
plurality value in multi-valued Consensus.

Throughout this section we use the following notations.
Given a protocol P and a layer L , we denote the composi-
tion of L and P by L � P . In figures depicting a layer we
use a dashed underline to mark a command that is the only
operation the process performs in the current round, if the
execution is failure free. Moreover, we depict the call to the
base protocol by painting a box around the base protocol (see,
e.g., line 28 of Algorithm 1).We start by presenting two opti-
mizing layers for binary Consensus, followed by extensions
that modify them to handle multi-valued Consensus.

4.1 Better time-optimal solutions to consensus

There is a well known lower bound stating that Byzantine
Consensus protocols require 2 rounds of communication
prior to deciding in failure-free executions [11,24]. Our first
layer is GreatSanhedrin (GtSn for short). In failure-free
runs, this layer decides optimally fast (at time 2), and uses
significantly fewermessages than any previously known pro-
tocol.

Roughly speaking, GreatSanhedrin works as follows:
(See Algorithm 1 for the pseudocode.) A large committee,
consisting of 2t+1 processes (whichwe call the Sanhedrin),1

is defined a priori. We use {0, 1, . . . , 2t} in Algorithm 1. In
the first round, every process informs each member of the
Sanhedrin of its initial proposal. Every Sanhedrin member j
computes the majority of the values it received, which then
serves as its recommendation. (MAJ(values j ) denotes the
majority of values received by j on line 11 of Algorithm 1. It
evaluates to 1 in case of a tie.) In the second round, j informs
all processes of its recommendation.A process that receives a
unanimous recommendation from the Sanhedrin in the sec-
ond round decides on this recommendation at time 2, and
sends no messages in the third round. A process that receives
a recommendation for more than one value will, in the third
round, broadcast a ¡help! message to alert everyone that it
does not know what to decide. Any process that receives
a ¡help! message in the third round will participate in an
instance of the base Consensus protocol, starting from time 3
(i.e., from the fourth round on). The value used by a process
in the base protocol, denoted by esti , is determined at time 2.

Following the principles discussed in Sect. 3, processes
convey certain values using null messages, rather than by
explicit messages. Specifically, in the first round a process
will use a null message to encode a fixed value for every
intended recipient. This is done in a balanced manner, to
improve the worst-case complexity. In the second round a
Sanhedrin member encodes values “on-the-fly” by null mes-
sages. Namely, a null message will be sent from a Sanhedrin

1 The Great Sanhedrin was perhaps the greatest deliberative body and
supreme court in the Holyland between the 1st century BC and the 5th
century AD.
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Algorithm 1: GreatSanhedrin (GtSn)
time 0

∀i ∈ P:
1 foreach j ∈ {0, 1, 2, ..., 2t} do
2 if j mod 2 = vi then
3 be silent
4 else
5 send vi to j

/* when vi = 0, send nothing to Even numbered processes. */

/* when vi = 1, send nothing to Odd numbered processes. */

time 1
∀ j ∈ {0, 1, 2, ..., 2t}:

6 foreach i ∈ P do
7 if no message was received from i then
8 values j [i] ← j mod 2
9 else

10 values j [i] ← ( j + 1) mod 2

11 rec j ← MAJ(values j )

12 foreach i ∈ P do
13 if values j [i] = rec j then
14 be silent // encode “rec j = vi” by a null message

15 else
16 send rec j to i // rec j �= vi

time 2
∀i ∈ P:

17 if rec j = rec j ′ for all j , j ′ ∈ {0, 1, . . . , 2t} then
18 esti ← rec0; decide(esti ) and be silent
19 else

/* not a unanimous recommendation */

20 if ∃ ˆrec such that rec j = ˆrec for more than t out of j ∈ {0, . . . , 2t} then
21 esti ← ˆrec
22 else

/* no legitimate recommendation */

23 esti ← vi

24 send ‘¡help!’ to all

time 3 and beyond
∀i ∈ P:

25 if received no ‘¡help!’ message then
26 halt
27 else

28 dec ← Base.Protocol(esti ) // may take multiple rounds

29 if undecided after time 2 then
30 decide(dec)

31 halt

member to process i in order to encode that the value rec-
ommended by the Sanhedrin member equals the value that i
proposed. An explicit message is sent if the recommendation
differs from i’s proposal. The third round forms a silent val-
idation round (Definition 2) for the global fact “all correct
processes have decided.”

In failure-free executions, all members of the Sanhedrin
receive the same messages in the first round, and make
unanimous recommendations. Consequently, all processes
decide at time 2, are silent in the third round, and halt
at time 3. In addition to deciding at time 2 in failure-free
runs (which is optimal), GtSn also does so with roughly
2nt bits. (Correct processes only ever send single-bit mes-
sages). All previously known time-optimal protocols send

Ω(n3) bits (e.g., [1,11,34,37]). We note that these solu-
tions were designed to ensure early stopping, and were
not designed to optimize failure-free executions. Optimizing
explicitly for the failure-free case, where the actual number
of faults is f = 0, yields greater efficiency. Using GtSn
improves on the state-of-the-art by a factor of n2/t > n.
Notice that this improvement in the failure-free case does
not impose substantial costs in case failures do occur. The
layer adds only three rounds and O(n2) bits of communica-
tion, which does not affect the asymptotic complexity of any
known base protocol. Thus, a designer can ensure optimally
fast and highly efficient majority voting in failure-free runs,
while reverting to her protocol of choice at a negligible cost
in case failures occur.

Theorem 2 Let k ≥ 3 and let Base be a binary Consensus
protocol for n > kt. Then GtSn � Base yields a binary
Consensus protocol for n > kt in which

1. In failure-free runs decisions occur after 2 rounds and at
most 2n(t + 1) bits are communicated, while

2. When failures cause Base to be invoked, at most 2n(t +
1) + n2 bits are sent by correct processes, and 3 rounds
elapse before control reverts to Base.

3. In failure-free runs, the composed protocol decides on
the majority value.

Sketch of Proof. 2 When all correct processes decide in the
course of the base protocol phase, correctness follows from
the base protocol’s guarantees. When all correct processes
decide early (at time 2), then they all decide according to the
same unanimous recommendation in line 18; two unanimous
recommendations cannot conflict. So again, Consensus is
satisfied.

Finally, suppose that a correct process i decides on v early
(in line 18) but another correct process j is unable to decide at
that time.Observe that i decided in line 18due to a unanimous
recommendation on v. The unanimous recommendation on v

implies that all correct Sanhedrin members (at least t + 1)
recommended v in the second round and that all processes
have received these recommendations by time 2. Therefore,
all correct processes set their estimations to v in lines 18
and 21.Moreover, the protocol implements a silent validation
round for the global fact “all correct processes have decided”
in the third round. Thus, by Theorem 1 and line 26, a correct
process participates in the base protocol unless it knows at
time 3 that all correct processes have decided already. This
ensures that all correct processes (decided or undecided) will
participate in the base protocol phase, and as they all propose
the same estimate v, the consensus value of the base protocol
is v. Therefore, j will decide on v in agreement with i’s

2 The full proof is in the Appendix.
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decision. Finally, establishing the bit count and failure-free
majority voting claims (1)–(3) is rather straightforward.

Theorem 2 is stated with respect to protocols Base that
solve Consensus for n > kt (as do later Theorems in the
paper). This makes the result more general than a statement
for every protocol that solves Consensus for n > 3t , since
there are multiple Byzantine Consensus protocols in the lit-
erature whose resilence is worse than n > 3t . Thus, for
example, Theorem 2 implies that GtSn can be used to opti-
mize Algorithm B of [3], which solves binary Consensus for
n > 4t .

4.2 Halving themessage costs

Our second layer, called SmallCouncil (denoted SlCl for
short), uses an extra silent validation round to further reduce
the comunication costs in failure-free runs to approximately
nt bits. This allows the protocol designer to emulate majority
voting in failure-free runs with half of the number bits at the
price of a single additional round compared to GtSn. Algo-
rithm 2 presents the full pseudocode. The ideas underlying
the design of SlCl are similar to those of GtSn.

A committee of t +1 processes (this time called theCoun-
cil ) is defined a priori. In the first round, all processes report
their initial proposals to the Council. Each Council member
then calculates the majority value among the reported votes,
and sends a recommendation to all processes accordingly. At
time 2, a process that received a unanimous recommendation
from the Council sets its estimation to be that recommenda-
tion and remains silent in the third round. Otherwise (if it
receives conflicting recommendations), it sets its estimation
to be its initial proposal, and broadcasts an err message to
alert all of the problem. A process that receives no err mes-
sage in the third round decides at time 3 on its estimation. If
it does receive a third round err message, then it broadcasts
a ¡help! message to alert everyone that it does not knowwhat
to decide. Any process that receives a ¡help! message in the
fourth round will participate in an instance of the base pro-
tocol, starting from time 4. The process uses its estimation
value as a proposal in the base protocol.

In terms of communication, in this layer, both the third
and fourth rounds serve as silent validation rounds. The third
round is an svr for the global fact “all correct processes have
received a unanimous recommendation,” and the fourth for
“all correct processes have decided.”

Theorem 3 Let k ≥ 3 and let Base be a binary Consensus
protocol for n > kt. Then SlCl � Base yields a binary
Consensus protocol in which

1. In failure-free runs, decisions occur after 3 rounds and
at most n(t + 1.5) bits are communicated, while

Algorithm 2: SmallCouncil (SlCl)
time 0

∀i ∈ P:
1 foreach j ∈ {0, 1, 2, ..., t} do
2 if j mod 2 = vi then
3 be silent
4 else
5 send vi to j

/* when vi = 0, send nothing to Even numbered processes. */

/* when vi = 1, send nothing to Odd numbered processes. */

time 1
∀ j ∈ {0, 1, 2, ..., t}:

6 foreach i ∈ P do
7 if no message was received from i then
8 values j [i] ← j mod 2
9 else

10 values j [i] ← ( j + 1) mod 2

11 rec j ← MAJ(values j )

12 foreach i ∈ P do
13 if values j [i] = rec j then
14 be silent // encode “rec j = vi” by a null message

15 else
16 send rec j to i // rec j �= vi

time 2
∀i ∈ P:

17 if rec j = rec j ′ for all j, j ′ ∈ {0, 1, ..., t} then
18 esti ← rec0 // send nothing

19 else
20 esti ← vi
21 send ‘err’ to all

time 3
∀i ∈ P:

22 if received no ‘err’ message then
23 decide(esti ) // send nothing

24 else
25 send ‘¡help!’ to all

time 4 and beyond
∀i ∈ P:

26 if received no ‘¡help!’ message then
27 halt
28 else

29 dec ← Base.Protocol(esti ) // may take multiple rounds

30 if undecided after time 3 then
31 decide(dec)

32 halt

2. When failures cause Base to be invoked, at most n(t +
1.5)+2n2 bits are sent by correct processes, and 4 rounds
elapse before control reverts to Base.

3. In failure-free runs, the composed protocol decides on
the majority value.

The bit complexity of the SmallCouncil layer is 4 times
the best-known lower bound of Ω(nt/4) bits for this case
from [10,21]. The best previously-known communication
behavior is by the Early Stopping Phase King protocol of
[5], which requires up to 8n2 bits and takes up to 8 rounds
to decide in failure-free runs. Our SlCl layer achieves a
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24-fold improvement in bit complexity, while also reduc-
ing the decision time (from 8 to 3 rounds). Moreover, the
Phase King protocol (and the like) are far from emulating
majority in failure-free runs. Even in failure-free executions,
the King’s proposal typically wins. Finally, in problematic
cases involving failures, SlCl adds only 4 rounds and fewer
than 3n2 bits to the complexity of the run. Consequently, as
for GtSn, prepending SlCl does not change the asymptotic
complexity of any possible base protocol.

Prepending aGtSn or aSlCl layer to existing protocols is
simple to realize and gives rise to a rich family of Byzantine
Consensus protocols with desirable properties. For exam-
ple, a designer that seeks time-optimal and cheap failure-free
behavior, together with fast decisions in case of failures, can
compose GtSn onto the protocol of [1]. This yields excel-
lent failure-free behavior (optimally fast decision in 2 rounds,
high efficiency, and majority voting emulation), while ensur-
ing that fault-laden executions decide within f +5 rounds (at
a high polynomial bit cost in the worst case), where f > 0 is
the number of actual failures in an execution. A designer
wishing to optimize communication could compose GtSn
onto the Early Stopping Phase King protocol of [5]. In a
failure-free execution, this implements amajority votewithin
three rounds, using the lowest known communication com-
plexity. In the presence of failures, it becomes somewhat
slower but remains efficient, decidingwithin 4( f +3) rounds
and using at most n2(4 f + 6) bits of communication.

4.3 Multi-valued consensus

So far we have dealt with binary Consensus. Recall that
in multi-valued Consensus |V | > 2. Hence, the benefit of
encoding specific values by null messages is reduced (lin-
early) as the size of the set V of values grows. Fortunately,
the more subtle uses of null messages for reporting values
“on the fly,” and for performing silent validation rounds do
not depend on |V | in a similar fashion. As it turns out, the
techniques used above in the binary case can still provide
significant benefits for multi-valued Consensus.

Layers GtSnmv and SlClmv, which handle multi-valued
Consensus, differ from GtSn and SlCl in two minor ways.
One is that the majority computation on line 11 of the orig-
inal layers is replaced by a plurality computation. The other
difference is even smaller. For ease of exposition, null mes-
sages are used in the first rounds of the new layers to encode
a single, fixed, proposed value (the most likely one, say).
No further changes are needed. As for the binary case,
efficiency is obtained by using the techniques in Sect. 3
for employing null messages. Algorithm 3 below presents
SlClmv while the pseudocode of GtSnmv appears in Algo-
rithm 4 in Appendix A. Properties of the multi-valued layers
are summarized by:

Theorem 4 Let k ≥ 3, and let Base be a multi-valued Con-
sensus protocol for n > kt. Then composing each of GtSnmv

andSlClmv withBase yields a multi-valued Consensus pro-
tocol. Moreover,

1. In failure-free runs of GtSnmv (resp. SlClmv) deci-
sions occur after 2 (resp. 3) rounds, and at most 4n(t +
1) log2 |V | (resp. 2n(t + 1) log2 |V |) bits are communi-
cated, while

2. When failures cause Base to be invoked, at most 4n(t +
1) log2 |V | + n2 (resp. 2n(t + 1) log2 |V | + 2n2) bits are
sent in total by correct processes, and 3 (resp. 4) rounds
elapse before control reverts to Base.

3. In a failure-free run, both protocols are guaranteed to
decide on a plurality value.

Previous time-optimal multi-valued Consensus protocols
send Ω(n3 log2 |V |) bits in their failure-free runs (e.g., [1]).
Hence, just as in the case of binary Consensus, our layers
offer a factor of Ω(n) improvement in communication com-
plexity for failure-free executions. For protocols that are not
time optimal, the Turpin and Coan approach [40], when com-
bined with the (binary) Early Stopping Phase King protocol
(ESPK), is the most efficient previously known solution. It
transmits as many as n2 log2 |V | + 9n2 bits in failure-free
runs, and can require as many as 10 rounds to decide when
no failure occurs.OurSlClmv layer guarantees slightly better
communication complexity (roughly by a factor of n/t) and
faster decision time (3 rounds instead of 10) in failure-free
runs.

Contrary to the situation for binary Consensus, in multi-
valued Consensus it is often impossible to guarantee that the
correct processes will decide on a valid proposal (i.e., on
a value proposed by a correct process). Indeed, [36] shows
the impossibility whenever t · |V | ≥ n. This is typically
handled by allowing decisions on a default value ‘⊥’ (so
that the set of possible decision values is V ∪ {⊥}). While
deciding on the default value provides a consistent outcome
for the correct processes, it does not provide much shared
information about the proposed values. Many protocols for
multi-valued Consensus are designed to opt for the default
value unless an overwhelming number of values are the same.
This is true even for the popular reduction frommulti-valued
to binary Consensus by Turpin and Coan in [40]. Both of our
layers for multi-valued Consensus ensure that, in failure-free
executions, the processes always decide on a valid plurality
value, and not on the default value ‘⊥.’

4.4 Redundant executions

The layers we have introduced all guarantee that Consensus
is obtained in failure-free executions without the base proto-
col ever being called into action. In other executions, if any
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Algorithm 3: SmallCouncilmv (SlClmv)
time 0

∀i ∈ P:
1 if vi = v̂i then
2 be silent // v̂i – a common proposal of i
3 else
4 send vi to processes {0, 1, 2, ..., t} // vi �= v̂i

time 1
∀ j ∈ {0, 1, 2, ..., t}:

5 foreach i ∈ P do
6 if received no valid message from i then
7 values j [i] ← v̂i
8 else
9 values j [i] ← proposal received from i

10 rec j ← PLUR(values j )

11 foreach i ∈ P do
12 if values j [i] = rec j then
13 be silent // encode “rec j = vi” by a null message

14 else
15 send rec j to i // rec j �= vi

time 2
∀i ∈ P:

16 if rec j = rec j ′ for all j , j ′ ∈ {0, 1, ..., t} then
17 esti ← rec0 // send nothing

18 else
19 esti ← vi
20 send ‘err’ to all

time 3
∀i ∈ P:

21 if received no ‘err’ message then
22 decide(esti ) // send nothing

23 else
24 send ‘¡help!’ to all

time 4 and beyond
∀i ∈ P:

25 if received no ‘¡help!’ message then
26 halt
27 else

28 dec ← Base.Protocol(esti ) // may take multiple rounds

29 if undecided after time 3 then
30 decide(dec)

31 halt

of the correct processes reverts to the base protocol in order
to determine its decision value, it first alerts all correct pro-
cesses, and they all participate in the execution of the base
protocol. There is a third possibility, in which all correct pro-
cesses have decided, but a malicious process falsely alerts
some of the correct processes. This can initiate an execu-
tion of the base protocol in which fewer than n − t correct
processes participate. We will refer to the executions of the
base protocol in this case as redundant executions. Since the
correctness of the base protocol may rely on the existence
of sufficiently many correct participants, such an execution
might, in general, fail to satisfy the conditions for Consen-
sus. Crucially, since all correct processes have aleady decided
within the prepended layer, the base protocol does not affect

any of their decisions. Consequently, the redundant execu-
tion does not affect the correctness of our solution. (Hence the
name redundant.) It can, however, affect the communication
costs and halting times in redundant executions.

In most popular Consensus protocols in the literature,
redundant executions, in which a subset of the processes
are initially crashed and at most t act maliciously, do not
have greater time and communication costs than “standard”
executions of the protocol. If the protocol designer chooses
to use a (base) Consensus protocol P for which redundant
executions may be costly, she can often slightly modify the
protocol to alleviate this cost. For example, recall that a cor-
rect process i participates in a redundant execution only if it
has decided before entering the base protocol. All of our lay-
ers ensure that, in this case, all correct processes participating
in the protocol propose the same value as i does. The designer
can therefore make a correct process that has decided before
entering P simply stop executing P once it observes a sce-
nario that is inconsistent with all correct processes proposing
the same initial proposal as its own. Another possibility is
simply monitoring the costs. A process that participates in
the base protocol monitors the time elapsed and the amount
of messages it has sent. If any of these exceeds the worst-
case cost for the base protocol with all correct processes
participating, the process can safely halt. The execution is
redundant.
Acomment on randomizedConsensusApopular approach
to achieve efficiency is by using randomized algorithms.
While such solutions do not satisfy the standard definition
of Consensus, they typically offer reduced complexity in
expectation. Our deterministic layers can be used to tune the
performance of these algorithms, just as they do for determin-
istic ones. Prepending our layers to a randomized algorithm
yields outstanding deterministic performance in failure-free
runs, while preserving their randomized guarantees for runs
with failures. Clearly, redundant executions are still possi-
ble, and all of the above applies to randomized algorithms as
well. For example, consider using the randomized algorithm
of Feldman and Micali [15] as the base protocol P . In this
case, redundant executions of P do not incur higher costs
than “standard” executions. Moreover, as suggested above,
the designer can make a correct process i that has decided
before enteringP simply stop executingP once it observes a
scenario that is inconsistentwith all correct processes propos-
ing i’s decision value. In this case, redundant executions ofP
would halt after a single round.

5 Discussion

We have offered a modular approach to tuning the perfor-
mance of Byzantine Consensus protocols. Short protocols,
called layers solve Consensus efficiently in the absence
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of failures, and transfer control to a chosen base protocol
when failures do occur. Focusing on the failure-free case
offers advantages over the more common approach of early
stopping advocated by [11]. The optimal decision time for
Consensus in the absence of failures is known to be two
rounds. While the most efficient protocols that decide opti-
mally fast in this case has been early stopping protocols, and
they required Θ(n3) bits of communication. The Great-
Sanhedrin layer, in comparison, improves on this by a factor
of Ω(n2/t).

If we relax the constraint of deciding in two rounds, while
the lower bound on the number of bits required to reach Con-
sensus in failure-free executions is ∼ nt/4 [10,21], the best
previously known upper bound was 8n2 [5]. The Small-
Council layer improves this by a multiplicative factor of
24, while reducing the decision time from 8 to 3 rounds.
A factor of 4 gap remains, and closing this gap is an open
problem. If the tight bound is better than the nt messages
of SmallCouncil, it will be interesting to see whether the
techniques that we have identified suffice, or whether new
techniques will be required.

A central tool driving the communication efficiency of our
solutions has been the use of null messages to convey infor-
mation. In a previous work, null messages were used for this
purpose in the crash-failure model [18]. Unfortunately, the
main theorem there does not apply to the Byzantine model,
since there are essential differences in the way in which
information flows in benign models and in Byzantine mod-
els. In the former, messages are only ever sent according to
the protocol, in contrast to models with potentially malis-
cious failures. In fact, the Byzantine model is, in a sense,
more favorable for using null messages than the crash-failure
model is: While receiving a null message is less persuasive
than receiving an explicit one in the crash model, the two are
equally persuasive in the Byzantine case. This is not because
null messages are more informative in the latter, but rather
because explicit messages are less informative there.

We identified a primitive, called a silent validation round
(svr), which allows all processes to detect a global property
regarding all correct processes, using a single silent round.
As the use of such silent rounds in our layers shows, this is an
effective primitive for coordination in distributed protocols
for the Byzantine setting. It would be interesting to explore
the use of silent validation rounds for other models and appli-
cations. For example, the Bitcoin blockchain setting is one
in which timing and synchrony play a central role, while par-
ticipants cannot be trusted. Indeed, the set of participants in
such settings is not fixed and is in general even unknown [35].
Silent validation rounds can inform all processes about the
state of all correct participants, without even knowing who
the participants are.

In a broader sense, there is a key principle underlying our
techniques here and in [18]. In asynchronous systems, infor-

mation flows only via message chains [7,28]. Synchronous
systems, however, allow information to flow in many (some-
times complicated) different patterns. Syncausality and the
centipede pattern of [4] facilitate coordination in reliable sys-
tems,while silent choirs can be used effectivelywhen failures
are limited to crashing [18]. In this paper, we identified the
svr pattern as an efficient means to broadcast global mile-
stones in the Byzantine setting. This is another testimony for
the power of timing and silence in distributed computing.

A Multi-valued variants

In multi-valued Consensus, the decision value domain is
commonly defined as V ∪ {⊥}, where ⊥ is some default
value. A key technical difference between the two Consen-
sus problems is that in the multi-valued case it is sometimes
impossible to guarantee that processes decide on a value pro-
posed by a correct process. More precisely, if n

|V | ≤ t then
it is impossible to guarantee that in every execution, all pro-
cesses decide on some correct proposal.

Many multivalued Byzantine protocols circumvent this
issue by having a strong tendency to decide on the default
value ⊥. (These protocols decide ⊥ in all runs, except when
there is a value v that is proposed by at least n − t processes.)
In a practical sense, deciding on ⊥ often means a “no-op”
or a “blank” result. As stated in Theorem 4(3), our multival-
ued layers do not produce this effect. On the contrary, they
allow a designer to improve her solution’s time and commu-
nication costs while also emulating a fair voting mechanism
(plurality) in failure-free runs. Formally, the plurality func-
tion PLUR(·) : V n → V is defined as

PLUR(v) � most common v in v.

If several values are tied for the most common value,
PLUR(v) is the minimal such value.

While implementing plurality voting in is desirable in
most cases, it may also be desirable not to decide on val-
ues that no correct process proposed and to decide on ‘⊥’
(no-op) in that case instead. If the designer wishes to guar-
antee this “correct decision” criteria, she can replace normal
pluralitywith the t-thresholded plurality function tPLUR(·) :
V n → V ∪ {⊥}, which we define as

tPLUR(v) �

⎧
⎨

⎩

⊥ if no value in v has more
than t occurrences

most common v in v otherwise

⎫
⎬

⎭
.

A Consensus protocol that guarantees the “correct decision”
criteria in every execution, and emulates t-thresholded plu-
rality in failure-free runs, conforms with plurality as much
as possible in these runs.
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Algorithms 4 and 3 present GtSnmv and SlClmv, which
are slight modifications of the layers presented in Sects. 4.1
and4.2 that handlemulti-valuedConsensus.As stated before,
this is achievable due to the generality of the techniques
from Sect. 3 in employing null messages. The new layers
differ from the original ones in two minor ways. One is that
the majority computation on line 11 of the original layers is
replaced by a plurality computation. The other difference is
even smaller. For ease of exposition, null messages are used
in the first round to encode a single, fixed, proposed value
(e.g., the most likely one). No further changes are needed.
We remark that in the first round of the layers for binary
Consensus we bounded the worst-case message complex-
ity by sending null messages to half of the recipients both
when proposing 0 and when proposing 1. It is clearly possi-
ble to use null messages selectively for different values in the
multi-valued case. But as |V | grows, the advantage of doing
so diminishes.

B Correctness proofs for the protocols

The Proofs of Theorems 2 and 3 make use of the following
lemma:

Lemma 1 Fix a run r ofGtSn�Base (resp. SlCl�Base).
If a correct process i does not decide at time 2 (resp. 3), then
all the correct processes participate in the Base phase from
time 3 on (resp. 4 on).

Proof Let r and i satisfy the assumptions, and let j be a
correct process in r . Denote by all_decided the fact “all
correct processes have decided”. Then, line 18 ofGtSn (resp.
line 23 of SlCl) implements an svr(all_decided) in the
third round (resp. in the fourth round). Suitably, line 25 (resp.
line 26) dictates that j halts and does not participate in the
base protocol only if j received no third round (resp. fourth
round) messages whatsoever. By line 25 (resp. 26) and Theo-
rem 1we have that j participates in the base protocol unless it
knows at time 3 (resp. time 4) that all_decided was true
at time 2 (resp. 3). Since i does not decide at time 2 (resp. 3)
in r , thenall_decided is not true at time 2 (resp. 3). By the
knowledge property, j does not know that all_decided
was true at time 2 (resp. 3), because it is false. Consequently,
no correct process j halts at time 3 (resp. 4) in r , and they
all participate in the Base.Protocol phase from time 3
(resp. 4) on. 
�

We now turn to prove the algorithm properties stated in
Theorems 2–4.While, for ease of exposition, the Algorithms
include messages sent from a process to itself, the analysis
will assume that these are implemented without explicit mes-
sages being sent.

Algorithm 4: GreatSanhedrinmv (GtSnmv)
time 0

∀i ∈ P:
1 if vi = v̂i then
2 be silent // v̂i – a common proposal of i
3 else
4 send vi to all j ∈ {0, 1, 2, ..., 2t} // vi �= v̂i

time 1
∀ j ∈ {0, 1, 2, ..., 2t}:

5 foreach i ∈ P do
6 if received no valid message from i then
7 values j [i] ← v̂i
8 else
9 values j [i] ← proposal received from i

10 rec j ← PLUR(values j )

11 foreach i ∈ P do
12 if values j [i] = rec j then
13 be silent // encode “rec j = vi” by a null message

14 else
15 send rec j to i // rec j �= vi

time 2
∀i ∈ P:

16 if rec j = rec j ′ for all j, j ′ ∈ {0, 1, ..., 2t} then
17 esti ← rec0; decide(esti ) and be silent
18 else

/* not a unanimous recommendation */

19 if ∃ ˆrec such that rec j = ˆrec for more than t out of j ∈ {0, 1, ..., 2t}
then

20 esti ← ˆrec
21 else

/* no legitimate recommendation */

22 esti ← vi

23 send ‘¡help!’ to all

time 3 and beyond
∀i ∈ P:

24 if received no ‘¡help!’ message then
25 halt
26 else

27 dec ← Base.Protocol(esti ) // may take multiple rounds

28 if undecided after time 2 then
29 decide(dec)

30 halt

Theorem 2 Let k ≥ 3 and let Base be a binary Consensus
protocol for n > kt. Then GtSn � Base yields a binary
Consensus protocol in which

1. In failure-free runs decisions occur after 2 rounds and at
most 2n(t + 1) bits are communicated, while

2. When failures cause Base to be invoked, at most 2n(t +
1) + n2 bits are sent by correct processes, and 3 rounds
elapse before control reverts to Base.

3. In failure-free runs, the composed protocol decides on
the majority value.

Proof We now prove thatGtSn�Base is a binary Consen-
sus protocol. Fix a run r of GtSn � Base. We show that r
satisfies Decision, Validity and Agreement:
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Decision Let i be a correct process in r . If i decides at
time 2 we are done. If it doesn’t, then by Lemma 1 all correct
processes participate in the Base phase. By the Decision
property of the Base protocol, process i completes the exe-
cution of line 28 and decides on line 30.
Validity Let i be a correct process in r and assume that all
correct processes propose the same value v. Recall that, since
n > 3t by assumption, the correct processes consist of a strict
majority. By the pigeonhole principle, at least t+1 Sanhedrin
members are correct. These correct Sanhedrin members fol-
low the protocol on lines 06–11 and compute the majority of
votes reported to them, which is v, thus, they recommend v

to all by lines 12–16. Thereafter, by time 2, every correct
process receives at least those t + 1 recommendations on v

and sets its estimation to v either by line 18 (in case of a
unanimous recommendation), or by line 21. If i decides at
time 2, it decides on its estimation v by line 18, and we are
done. Assume it didn’t, then by Lemma 1 i and all other cor-
rect process participate in the base protocol on line 28. As
we have shown, the estimation of all correct processes is set
to v on lines 18 and 21. Thus, all correct processes enter the
base protocol with a proposal of v. From Validity of the base
protocol, this ensures that i performs dec ← v on line 28
and decides on v in line 30.
Agreement Let i and j be correct processes in r . Assume
w.l.o.g. that i decides no later than j . If i does not decide
at time 2 then both it and j participate in the base proto-
col and decide according to it. In particular, their decisions
satisfy Agreement. Let us assume that i decides at time 2
on v. Specifically, line 18 is the only line in which a cor-
rect process decides at time 2. A correct process (such as i)
decides in line 18 iff it received a unanimous recommen-
dation on v. Recall that every unanimous recommendation
includes a report of at least t +1 correct processes. It follows
that every correct process receives at least t + 1 recom-
mendations on v and therefore sets its estimation to v in
lines 18 or 21. Moreover, since no unanimous recommenda-
tion on u �= v is possible, if j also decides at time 2, then
it decides on v as well, and Agreement holds. If j does not
decide at time 2, then, by Lemma 1, all correct processes
participate in the Base.Protocol phase. And, since all
correct processes fixed their estimations to v at time 2, they
all enter the base protocol with est = v. The Validity of the
base protocol ensures that j will decide v in line 30, uphold-
ing Agreement.

1. In a failure-free run at time 0 every process transmits
its proposal to half of the Sanhedrin by silence and the
other half bymessages. Sanhedrinmembers have one less
message to send in half the cases (to themselves), thus
at most n�(2t + 1)/2� − �(2t + 1)/2� ≤ n(t + 1) bits
are sent in total during the first round. Since no failures
occur MAJ(values j ) is the same for every Sanhedrin

member j ∈ {0, . . . , 2t} and they all recommend the
same value v = MAJ(values). At time 1, by lines 12–
16, Sanhedrinmembers send their recommendations on v

to at least half of the processes by silence and the other
part by messages. Thus, the Sanhedrin sends at most a
total of (2t +1)�(n −1)/2� ≤ n(t +1) bits in the second
round. The unanimous recommendation of the second
round causes every i ∈ P to decide v at time 2 by line 18,
remain silent in the third round and halt at time 3 by
line 26.

2. Again, correct processes send their proposals to the San-
hedrin at a cost of at most n(t + 1) bits in the first round,
and correct Sanhedrin members send their recommenda-
tions to processes with a total cost of at most n(t + 1)
bits in the second round. The difference lays in the third
round, when correct processes may not receive a unani-
mous recommendation and would therefore send ¡help!
messages (that can be implemented using a single bit) by
line 24. This costs in the worst case n(n − 1) bits. After
this, all remaining communication is due to the base pro-
tocol.

3. In a failure-free run, all processes transmit their pro-
posals according to protocol at time 0 and a Sanhedrin
member calculates its majority at time 1 on lines 06–11.
The majority value v is unique and therefore all San-
hedrin members send the same recommendations of v by
lines 12–16 at time 1. All processes receive the unan-
imous recommendation on v by time 2 and therefore
decide on it in line 18. 
�

Theorem 3 Let k ≥ 3 and let Base be a binary Consensus
protocol for n > kt. Then SlCl � Base yields a binary
Consensus protocol in which

1. In failure-free runs, decisions occur after 3 rounds and
at most n(t + 1.5) bits are communicated, while

2. When failures cause Base to be invoked, at most n(t +
1.5)+2n2 bits are sent by correct processes, and 4 rounds
elapse before control reverts to Base.

3. In failure-free runs, the composed protocol decides on
the majority value.

Proof Wenowprove thatSlCl�Base is a binaryConsensus
protocol. Fix a run r ofSlCl�Base.We show that r satisfies
Decision, Validity and Agreement:
Decision Let i be a correct process in r . If i decides at
time 3 we are done. If it doesn’t, then by Lemma 1 all correct
processes participate in the base protocol. By the Decision
property of the base protocol, process i completes the exe-
cution of line 29 and decides on line 31.
Validity Let i be a correct process in r and assume that
all correct processes propose the same value v. Recall that,
since n > 3t by assumption, the correct processes consist
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of a strict majority. By the pigeonhole principle, at least one
process jc ∈ {0, 1, 2, . . . , t} is correct. Process jc follows
the protocol and at time 1 on lines 06–11 it computes the
majority of votes as reported to it. This value is v, obvi-
ously. Consequently, by lines 12–16 jc recommends v in
the second round. Thereafter, at time 2 every correct process
receives jc’s recommendation on v and therefore sets its esti-
mation to v (est ← v), either in line 18 due to a unanimous
recommendation, or in line 20 because its own initial pro-
posal is v. If i decides at time 3, by line 23 it decides on its
estimation, which we have established is v. The only other
option for i to decide is on line 31 by using the base protocol.
It remains to show that if i decides using the base protocol,
then its decision is also v. Assume that i decides using the
base protocol. Since i is a correct process that does not decide
at time 3, by Lemma 1 all correct processes participate in the
base protocol. As we have shown, the estimation of every
correct process is set to v at time 2 by lines 18 and 20, and
so all correct processes enter the base protocol on line 29 at
time 4 with the proposal v. The Validity of the base protocol
ensures that i sets dec ← v on line 29 and that i decides v

on line 31. Hence, we are done.
Agreement Let i and j be correct processes in r . Assume
w.l.o.g. that i decides no later than j . If i does not decide
at time 3 then both it and j participate in the base protocol
and decide according to it. In particular, their decisions sat-
isfy Agreement. Let’s assume that i decides at time 3 on a
value v. The third round of layerSlCl (line 21), implements a
silent validation round for the global fact ϕ̄c �“a unanimous
recommendation was received by all correct processes.” The
svr information transfer guarantees of Theorem 1 and line 22
at time 3, imply that i decides at time 3 only if ϕ̄c was true
at time 2. In particular,if i decides in line 23, then it decides
on its estimate value (esti = v). Recall that every unanimous
recommendation includes at least one correct process’ rec-
ommendation which it recommended to all. It follows that if
two correct processes receive unanimous recommendations,
then these recommendations are the same. Thus, the svr(ϕ̄c)

in the third round informs i that all correct processes have
their estimations set to v. If j also decides at time 3 (in
line 23), then it decides on its estimation v, and Agreement
holds. If j does not decide at time 3, then, by Lemma 1,
all correct processes participate in base protocol. Moreover,
since all correct processes have the same estimate v, they all
propose v to the base protocol in line 29. Validity of the base
protocol guarantees that dec ← v in line 29 and j decides v

by line 31, ensuring Agreement.

1. In a failure-free run at time 0 every process transmits its
proposal to half of the Council by silence and to the other
half by messages. Council members have one less mes-
sage to send in half the cases (to themselves), thus at most
a total of n�(t + 1)/2�−�(t + 1)/2� ≤ n(t + 2)/2− t/2

bits are sent during the first round. Since no failures
occur MAJ(values j ) is the same for every Council
member j ∈ {0, . . . , t} and they all recommend the
same value v = MAJ(values). At time 1, lines 12–
16, Council members send their recommendation on v

to at least half of the processes by silence and to the
other part by messages. Thus, sending at most a total
of (t + 1)�(n − 1)/2� ≤ n(t + 1)/2 bits in the sec-
ond round. The unanimous recommendation on v of the
second round causes every i ∈ P to set its estimate
to esti ← v at time 2, and remain silent in the third
round. Thus, in a failure-free run, no message is sent in
the third round. At time 3, no message is received and
in particular no ‘err’ message, therefore, every process
decides on its estimate, remains quiet in the fourth round
and halts at time 4. In conclusion, the total number of
messages/bits sent in a failure-free run of SlCl� Base
is at most n(t + 2)/2 − t/2 + n(t + 1)/2 < n(t + 1.5).

2. Again, correct processes send their proposals to the
Council at a total cost of at most n(t + 2)/2− t/2 bits in
the first round, and correct Council members send their
recommendations to processes with a total cost of at most
n(t + 1)/2 bits in the second round. The difference lies
in the third and fourth rounds, when correct processes
maynot receive a unanimous recommendation andwould
therefore send ‘err’messages by line 21 in the third round
and ¡help! messages by line 25 in the fourth round (each
message can be implemented using a single bit). In the
worst case, this adds a total cost of 2n(n − 1) bits in the
third and fourth rounds. After this, starting at time 4, all
remaining communication is due to the base protocol.

3. In a failure-free run, all processes transmit their proposals
according to protocol at time 0. ACouncilmember calcu-
lates the correct majority value v at time 1 on lines 06–11.
The majority value v is unique and therefore all Council
members send the same recommendation v at time 1 by
lines 12–16. All processes receive the unanimous rec-
ommendation on v by time 2 and therefore set their
estimation to v by line 18 and remain silent. In the third
round, nomessages are sent in a failure-free run, in partic-
ular no ‘err’ messages. Therefore, every process decides
in line 23 on its estimate v which is the majority value.
�

Theorem 4 Let k ≥ 3, and let Base be a multi-valued Con-
sensus protocol for n > kt. Then composing each of GtSnmv

andSlClmv withBase yields a multi-valued Consensus pro-
tocol. Moreover,

1. In failure-free runs of GtSnmv (resp. SlClmv) deci-
sions occur after 2 (resp. 3) rounds, and at most 4n(t +
1) log2 |V | (resp. 2n(t + 1) log2 |V |) bits are communi-
cated, while
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2. When failures cause Base to be invoked, at most 4n(t +
1) log2 |V | + n2 (resp. 2n(t + 1) log2 |V | + 2n2) bits are
sent in total by correct processes, and 3 (resp. 4) rounds
elapse before control reverts to Base.

3. In a failure-free run, both protocols are guaranteed to
decide on a plurality value.

Proving GtSnmv � Base (resp. SlClmv � Base) is
a Consensus protocol stems directly from the proof for
GtSn � Base in Theorem 2 (resp. SlCl � Base in Theo-
rem 3). The only minor modification is in Validity, replacing
majority with plurality. However, since when all correct pro-
cesses propose the same value v both plurality and majority
have the same result, thismodification is insignificant.Hence,
Validity is maintained for the multi-valued as well. We are
thus left only with proving the rest:

Proof (for GreatSanhedrinmv � Base)

1. In a failure-free run at time 0 every process transmits
its proposal to all Sanhedrin members by messages or
silence (a messages can encode any value by at most
log2 |V | bits). Sanhedrin members have one less mes-
sage to send (to themselves). A message encodes a
value by log2 |V | bits. Thus a total of at most (n −
1)(2t + 1) log2 |V | bits are sent during the first round.
Since no failures occur PLUR(values j ) is the same
for every Sanhedrin member j ∈ {0, . . . , 2t} and they
all recommend the same value v = PLUR(values).
At time 1, Sanhedrin members send their recommen-
dations of v to all processes. Thus, sending at most
(2t + 1)(n − 1) log2 |V | bits in the second round. The
unanimous recommendation of the second round causes
every i ∈ P to decide v at time 2 by line 17, remain silent
during the third round and halt at time 3 by line 25.

2. Again, correct processes send their proposals to the San-
hedrin at a total cost of at most (n − 1)(2t + 1) log2 |V |
bits in the first round, and correct Sanhedrin members
send their recommendations to processes with a cost of
at most (2t +1)(n −1) log2 |V | bits in the second round.
The difference lies in the third round, when correct pro-
cessesmaynot receive a unanimous recommendation and
would therefore send ¡help!messages (that can be imple-
mented using a single bit) by line 23. This costs in the
worst case n(n − 1) bits. After this, all remaining com-
munication is due to the base protocol.

3. In a failure-free run, all processes transmit their proposals
according to protocol at time 0 and a Sanhedrin member
calculates their plurality at time1on lines 05–10.Theplu-
rality value v is unique (a known tie-breaker exists), and
therefore all Sanhedrin members send the same recom-
mendations on v by lines 11–15 at time 1. All processes

receive the unanimous recommendation on v by time 2
and therefore decide on it in line 17. 
�

Proof (for SmallCouncilmv � Base)

1. In a failure-free run at time 0 every process sends its pro-
posal to the Council by an explicit or a null messages
(an explicit message can encode any value by at most
log2 |V | bits). Council members have one lessmessage to
send (to themselves), thus at most (n −1)(t +1) log2 |V |
bits are sent during the first round. Since no failures occur
PLUR(values j ) is the same for every Council mem-
ber j ∈ {0, . . . , t} and they all recommend the same
value v = PLUR(values). At time 1, lines 10–15,
Council members send their recommendation of v to
all the processes. Thus, the number of bits sent in the
second round is at most (t +1)(n−1) log2 |V |. The unan-
imous recommendation of v in the second round causes
every i ∈ P to set its estimate to esti ← v at time 2, and
remain silent during the third round. Thus, in a failure-
free run, no message is sent in the third round. At time 3,
nomessage is received and in particular no ‘err’message,
therefore, every process decides on its estimate, remains
quiet in the fourth round and halts at time 4.

2. Again, correct processes send their proposals to the
Council at a total cost of at most (n − 1)(t + 1) log2 |V |
bits in the first round, and correct Council members send
their recommendations to processes with a total cost of
at most (t + 1)(n − 1) log2 |V | bits in the second round.
The difference lies in the third and fourth rounds, when
correct processes might not receive a unanimous recom-
mendation and would therefore send ‘err’ messages by
line 20 in the third round and ¡help! messages by line 24
in the fourth round (each of these messages can be imple-
mented using a single bit). In the worst case, this adds a
total cost of 2n(n −1) bits in the third and fourth rounds.
After this, starting at time 4, all remaining communica-
tion is due to the base protocol.

3. In a failure-free run, all processes transmit their propos-
als according to protocol at time 0 and a Council member
calculates their plurality at time 1 (on lines 05–10). The
plurality value v is unique (a known tie-breaker exists),
and therefore all Council members send the same recom-
mendations of v by lines 11–15 at time 1. All processes
receive the unanimous recommendation of v by time 2
and by line 17 set their estimate to v and remain silent.
Thereafter, at time 3 by line 22 the processes decide
on v. 
�
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