Distributed Computing (2020) 33:349-366
https://doi.org/10.1007/500446-020-00376-1

®

Check for
updates

Derandomizing local distributed algorithms under bandwidth
restrictions

Keren Censor-Hillel' . Merav Parter? . Gregory Schwartzman?

Received: 21 August 2018 / Accepted: 27 March 2020 / Published online: 18 April 2020
© Springer-Verlag GmbH Germany, part of Springer Nature 2020

Abstract

This paper addresses the cornerstone family of local problems in distributed computing, and investigates the curious gap
between randomized and deterministic solutions under bandwidth restrictions. Our main contribution is in providing tools
for derandomizing solutions to local problems, when the n nodes can only send O (logn)-bit messages in each round of
communication. Our framework mostly follows by the derandomization approach of Luby (J Comput Syst Sci 47(2):250—
286, 1993) combined with the power of all to all communication. Our key results are as follows: first, we show that in the
congested clique model, which allows all-to-all communication, there is a deterministic maximal independent set algorithm
that runs in O (log> A) rounds, where A is the maximum degree. When A = O (n'/3), the bound improves to O (log A). In
addition, we deterministically construct a (2k — 1)-spanner with O (kn'T1/¥ log n) edges in O (k log n) rounds in the congested

clique model.

1 Introduction
1.1 Motivation

A cornerstone family of problems in distributed computing
are the so-called local problems. These include finding a
maximal independent set (MIS), a (A + 1)-coloring where
A is the maximal degree in the network graph, finding a

A preliminary version of these results appeared in the Proceedings of
The 31st International Symposium on Distributed Computing (DISC),
pages 11:1-11:16, 2017.

Keren Censor-Hillel: Supported in part by the Israel Science
Foundation (Grant 1696/14). This project has received funding from
the European Union’s Horizon 2020 Research And Innovation
Program under grant Agreement No. 755839. Gregory Schwartzman:
This work was supported by JSPS KAKENHI Grant Numbers
19K20216 and JP18H05291.

B Merav Parter
merav.parter @weizmann.ac.il

Keren Censor-Hillel
ckeren @cs.technion.ac.il

Gregory Schwartzman
gregory.schwartzman @ gmail.com
Technion, Haifa, Israel

Weizmann Institute, Rehovot, Israel

3 NII, Tokyo, Japan

maximal matching, constructing multiplicative spanners, and
more. Intuitively, as opposed to global problems, local prob-
lems admit solutions that do not require communication over
the entire network graph.

One fundamental characteristic of distributed algorithms
for local problems is whether they are deterministic or
randomized. Currently, there exists a curious gap between
the known complexities of randomized and determinis-
tic solutions for local problems. Interestingly, the main
indistinguishability-based technique used for obtaining the
relatively few lower bounds that are known seems unsuit-
able for separating these cases. A beautiful recent work of
Chang et al. [15] sheds some light over this, by proving that
the randomized complexity of any local problem is at least its
deterministic complexity on instances of size »/log 7. In addi-
tion, building upon a new lower bound technique of Brandt
et al. [11], they show an exponential separation between
the randomized and deterministic complexity of A-coloring
trees. These results hold in the LOCAL model, which allows
unbounded messages.

In this paper, we address the tension between the deter-
ministic and randomized complexities of local problems in
the congested clique model, where the communication graph
is complete but the size of messages is restricted to O (logn)
bits. The processed graph is an arbitrary input graph which,
in contrast to the LOCAL model, is not necessarily the same
as the communication graph. In some sense, the congested

@ Springer

http://crossmark.crossref.org/dialog/?doi=10.1007/s00446-020-00376-1&domain=pdf

350

K. Censor-Hillel et al.

clique model is orthogonal to the LOCAL model, because
the diameter of the communication graph is 1, but the size
of messages is restricted. By showing how to derandomize
known algorithms for the LOCAL model, we provide fast
deterministic algorithms for constructing an MIS and multi-
plicative spanners in the congested clique model.

Our starting observation concerns the improved random-
ized complexity of many local problem in the CONGEST
model. The state-of-the-art algorithms for most classical
local problems such as MIS, (A + 1) coloring, and maxi-
mal matching, follow a two phase structure: a randomized
phase which makes significant progress in parts of the graph,
followed by a deterministic phase that solves the remain-
ing unsolved pieces deterministically. The efficiency of this
approach is due to a shattering phenomena [7] which infor-
mally refers to the following situation. At the end of the
randomized phase, the unsolved pieces are “small” (of poly-
logarithmic size), and therefore these pieces can be solved
in parallel within Det (poly(log n)) rounds, where Det (n’) is
the deterministic round complexity of the problem in graphs
with n’ nodes. This is the source of the additive 20 (vloglogn)
term in the current randomized time complexity for many
of the local problems. We show that in the congested clique
model the shattering effect is even stronger in the sense that
the remaining unsolved part can be solved in O (1) rounds.
This is shown here for the MIS problem, and the same
approach has been taken later for other problems (e.g., (A+1)
coloring) in subsequent papers [14,51,52].

Equipped with the improved shattering complexity, in this
paper we mainly zoom into derandomizing the randomized
phase. Our approach is based on the derandomization toolbox
that was developed for parallel algorithms by [45,46] adapted
to the congested clique model. As we will see, in certain
cases, the power of all-to-all communication allows one to
discover a chunk of log n bits in the derandomized seed using
just O (1) number of rounds.

1.2 Our contribution

Maximal independent set (MIS) We begin by derandom-
izing the MIS algorithm of Ghaffari [26], which runs in
O(log A) + 20Wloglogn) 14ynds, w.h.p.1 In a nutshell, this
algorithm works in constant-round phases, in which nodes
choose to mark themselves with probabilities that evolve
depending on the previous probabilities of neighbors. A
marked node that does not have any marked neighbors joins
the MIS and all of its neighbors remove themselves from
the graph. The analysis shows that after O (log A) phases the
remaining subgraph consists of a convenient decomposition
into small clusters for which the problem can be solved fast.

U As standard, with high probability means with probability that is at
least 1 — 1/n¢ for a constant c.

@ Springer

We first show that a tighter analysis for the congested
clique model of Ghaffari’s MIS algorithm can improve its
running time from O (log A + log* n) (which follows from
combining [26] with the new connectivity result of [28]) to
O (log A) rounds.

Theorem 1 There is a randomized algorithm that computes
MIS in the congested clique model within O (log A) rounds
with high probability.

The first key ingredient is a slight modification of the
constants used by Ghaffari’s algorithm. Ghaffari’s analysis
is based on a definition of golden nodes, which are nodes
that have a constant probability of being removed in the
given phase. We show that, after our slight adaptation of
the constants used by the algorithm, this removal-probability
guarantee holds also with pairwise independence.

Second, the shattering effect that occurs after O (log A)
rounds of Ghaffari’s algorithm with full independence, no
longer holds under pairwise independence. Instead, we take
advantage of the fact that in the congested clique model,
once the remaining graph has a linear number of edges then
the problem can be solved locally in constant many rounds
using Lenzen’s routing algorithm [40]. Thus, we modify
the algorithm so that after O (log A) rounds, the remaining
graph (containing all undecided nodes) contains O (n) edges.
The crux in obtaining this is that during the first O (log A)
phases, we favor the removal of old nodes, which, roughly
speaking, are nodes that had many rounds in which they had
a good probability of being removed. This prioritized (or
biased) removal strategy allows us to employ an amortized
(or accounting) argument to claim that every node that sur-
vives O (log A) rounds, can blame a distinct set of A nodes
for not being removed earlier. Hence, the total number of
remaining nodes is bounded by O (n/A), implying a remain-
ing number of edges of O(n).

To simulate the O (log A) randomized rounds of Ghaffari’s
algorithm, we enjoy the small search space (due to pairwise
independence) and employ the method of conditional expec-
tations on a random seed of length O(logn). This follows
the same approach of Luby [45].

Note that once we start conditioning on random variables
in the seed, the random choices are no longer pairwise inde-
pendent as they are in the unconditioned setting. However,
we do not use the pairwise independence in the condition-
ing process. That is, the pairwise independence is important
in showing that the unconditional expectation is large, and
from that point on the conditioning does not reduce this
value. As typical in MIS algorithms, the probability of a node
being removed stems from the random choices made in its
2-neighborhood. With a logarithmic bandwidth, collecting
this information is too costly. Instead, we use a pessimistic
estimator to bound the conditional probabilities rather than
compute them. Interestingly, despite the fact that our algo-

Derandomizing local distributed algorithms under bandwidth restrictions

351

rithm derandomizes a different algorithm (that is, Ghaffari’s
algorithm rather than Luby’s), we can still use the clever
approach of Luby [45] in the definition of the local compu-
tation of the pessimistic estimator .

Finally, to make the decision of the partial assignment
and inform the nodes, we leverage the power of the con-
gested clique by having a leader that collects the relevant
information for coordinating the decision regarding the par-
tial assignment. Carefully placing all the pieces of the toolbox
we develop, gives the following.

Theorem 2 There is a deterministic MIS algorithm for the
congested clique model that completes in O(log Alogn)
rounds.

If the maximal degree satisfies A = O(n!/ 3) then we can
improve the running time in the congested clique model.

Theorem 3 If A = O (n'/3) then there is a deterministic MIS
algorithm for the congested clique model that completes in
O (log A) rounds.

Combining Theorems 2 and 3 directly gives that the com-
plexity is either O (log A) rounds in case A = O(n'/3), and
otherwise it is O (log? A) since log n is then asymptotically
equal to log A.

Corollary 1 There is a deterministic MIS algorithm for the
congested clique model that completes in O (log> A) rounds.

Our techniques immediately extend to the CONGEST model.
We show that MIS can be computed in O (D - log? n) rounds
where D is the diameter of the graph. Here, we simu-
late O(logn) rounds of Ghaffari’s algorithm rather than
O (log A) rounds as before. Each such randomized round
is simulated by using O(D - logn) deterministic rounds in
which the nodes compute an O (log n) seed. Computing each
bit of the seed requires aggregation of the statistics to a leader,
which can be done in O (D) rounds, and since the seed is of
length O (log), we have the following:

Theorem 1.5 There is a deterministic MIS algorithm for the
CONGEST model that completes in O (D 10g2 n) rounds.

This provides a complete proof for Theorem 2 in [2]
that claimed a deterministic O (D)-round for MIS using the
approach of Luby [45].

Multiplicative spanners We further exemplify our tech-
niques in order to derandomize the Baswana—Sen algorithm
for constructing a multiplicative spanner. For an integer &,
a k-spanner S of G = (V, E) is a subgraph (V, Eg) such
that for every two neighbors v, u in G, their distance in S is
at most k. This implies that also the distance for every other
pair of nodes is stretched in S by no more than a multiplica-
tive factor of k. The Baswana—Sen algorithm runs in 0 (k?)

rounds and produces a (2k — 1)-spanner with O (kn'*1/k)
edges. In a nutshell, the algorithm starts with a clustering
defined by all singletons and proceeds with k iterations, in
each of which the clusters get sampled with probability n~1/%
and each node joins a neighboring sampled cluster or adds
edges to unsampled clusters.

We need to make several technical modifications of our
tools for this to work. The key technical difficulty is that
we cannot have a single target function. This arises from the
very nature of spanners, in that a small-stretch spanner always
exists, but the delicate part is to balance between the stretch
and the number of edges. This means that a single function
which takes care of having a good stretch alone will simply
result in taking all the edges into the spanner, as this gives
the smallest stretch. We overcome this challenge by defining
two types of bad events which the algorithm tries to avoid
simultaneously. One is that too many clusters get sampled,
and the other is that too many nodes add too many edges to
the spanner in this iteration. The careful balance between the
two promises that we can indeed get the desired stretch and
almost the same bound on the number of edges.

Additional changes we handle are that when we reduce
the independence, we cannot go all the way down to pairwise
independence and we need to settle for d-wise independence,
where d = ©@ (logn). Further, we can improve the iterative
procedure to handle chunks of log»n random bits, and eval-
uate them in parallel by assigning a different leader to each
possible assignment for them. A careful analysis gives a log-
arithmic overhead compared to the original Baswana—Sen
algorithm, but we also save a factor of k since the congested
clique allows us to save the k rounds needed in an iteration
of Baswana—Sen for communicating with the center of the
cluster. This gives the following.

Theorem 1.6 There is a deterministic algorithm for the con-
gested clique model that completes in O (k log n) rounds and
produces a (2k — 1)-spanner with O (kn'*+1/k log n) edges.

The above algorithm works also in the broadcast con-
gested clique model, albeit here we lose the ability to
parallelize over many leaders and thus we pay another
logarithmic factor in the number of rounds, resulting in
O (klog? n) rounds.

1.3 Related work

Distributed computation of MIS The complexity of find-
ing a maximal independent set is a central problem in
distributed computing and hence has been extensively stud-
ied. The O (logn)-round randomized algorithms date back
to 1986, and were given by Luby [44], Alon et al. [1]
and Israeli and Itai [36] (the latter for maximal matching).
Barenboim et al. [7] showed a randomized MIS algorithm
with O (log? A) + 29Wloglogn) rounds. They also showed

@ Springer

352

K. Censor-Hillel et al.

the bound of O(log A) + 29Wlogloen) rounds for Maxi-
mal Matching and (A + 1)-coloring. Following [7], a recent
breakthrough by Ghaffari [26] obtained a randomized algo-
rithm in O (log A) 429 1oglogn) rounds. Recently, Ghaffari
[27] also provided an improved randomized MIS algorithm
in the congested clique model that completes in O (y/Iog A)
rounds.

The best deterministic algorithm is by Panconesi and
Srinivasan [49], and completes in 20WIogn) rounds. On
the lower bound side, Linial [42] gave an $2(log* n) lower
bounds for 3-coloring the ring, which also applies to
finding an MIS. Kuhn et al. [39] gave lower bounds of
$2(/logn/loglogn) and £2(y/Tog A/loglog A) for finding
an MIS.

Barenboim and Elkin [4] provide a thorough tour on col-
oring algorithms (naturally, excluding recent results). An
excellent survey on local problems is given by Suomela [59].

Distributed constructions of spanners The construc-
tion of spanners in the distribute setting has been studied
extensively both in the randomized and deterministic set-
ting [16—-19,55]. We emphasize that the construction of [19]
cannot be implemented in the congested clique by simply
applying Lenzen’s routing scheme because although each
node sends O (n logn) bits of information, this information
may need to be received by many nodes, and is not split
among receivers. A randomized spanner construction was
given by Baswana and Sen in [8]. They show that their
well-known centralized algorithm can be implemented in the
distributed setting even with small messages. In particular,
they show that a (2k — 1) spanner with an expected number of
o't/ k) edges can be constructed in O (k%) rounds in the
CONGEST model (and for unweighted graphs, the algorithm
takes O (k) rounds, see [23]).

Derandomization of similar randomized algorithms has
been addressed mainly in the centralized setting [56]. We
emphasize that we need entirely different techniques to
derandomize the Baswana—Sen algorithm compared with the
centralized derandomization of [56].

The existing deterministic distributed algorithms for span-
ner are not based on derandomization of the randomized
construction. They mostly use messages of unbounded size
and are mainly based on sparse partitions or network decom-
positions. The state of the art is due to Derbel et al. [18]. They
provide a tight algorithm for constructing (2k — 1)-spanners
with optimal stretch, size and construction time of k rounds.
This was complemented by a matching lower bound, showing
that any (even randomized) distributed algorithm requires k
rounds in expectation. Much less efficient deterministic algo-
rithms are known for the CONGEST model. [20] showed
a construction of a (2k — 1)-spanner in O (n'=1/%) rounds.
Deterministic construction with an improved tradeoff was
recently obtained by [5], they showed a construction of

@ Springer

0(logk_1 n)-spanners with O (n't+1/k) edges in 0(logk_1 n)
rounds.

Algorithms in the congested clique The congested clique
model was first addressed in Lotker et al. [43], who raised
the question of whether the global problem of constructing
a minimum spanning tree (MST) can be solved faster on a
communication graph with diameter 1. Since then, the model
gained much attention, with results about its computational
power given in [22], faster MST algorithms [28,31], distance
computation [34,35,47], subgraph detection [21], algebraic
computations [12,25], and routing and sorting [40,41,53].
Local problems were addressed in [33] who study ruling sets.
Connections to the MapReduce model is given in [32].

Derandomization in the parallel/distributed setting
Derandomization of local algorithms has attracted much
attention in the parallel setting [1,10,13,29,30,36,38,46,50,
58]. Luby [45] showed that his MIS algorithm (and more) can
be derandomized in the PRAM model using O (m) machines
and O (log> n log log) time. In fact, this much simpler algo-
rithm can also be executed on the congested clique model,
resulting in an O (log* n) running time. Similar variants of
derandomization for MIS, maximal matching and (A + 1)-
coloring were presented in [1,36]. Berger and Rompel [10]
developed a general framework for removing randomness
from RNC algorithms when polylogarithmic independence
is sufficient. The parallel setting bears some similarity to the
all-to-all communication model but the barriers in these two
models are different mainly because the complexity measure
in the parallel setting is the computation time while in our
setting local computation is for free. This raises the possibil-
ity of obtaining much better results in the congested clique
model compared to what is known in the parallel setting.

Turning to the distributed setting, Naor and Stockmeyer
[48] showed that constant-round randomized algorithms for
problems that are locally checkable can be derandomized
without an asymptotic overhead, extended by [15,24] for
larger time complexities and for a wider range of problems.
Finally, Awerbuch et al. [2] claim to use the derandomized
MIS algorithm of Luby [45] to obtain a deterministic CON-
GEST MIS algorithm. In this paper we provide a rigorous
proof for this claim.

2 Preliminaries and notation

Our derandomization approach consists of the following
ingredients: First we reduce the independence between the
coin flips of the nodes. Then, we find some target function we
wish to maintain during each iteration of the derandomized
algorithm. Finally, we find a pessimistic estimator for the
target function and apply the method of conditional expec-
tations to get a deterministic algorithm. Below we elaborate
upon the above ingredients.

Derandomizing local distributed algorithms under bandwidth restrictions

353

d-wise independent random variables In the algorithms
we derandomize in the paper, a node v € V flips coins with
probability p of being heads. As we show, it is enough to
assume only d-wise independence between the coin flips of
nodes. We show how to use a randomness seed of only t =
d[max {logn, log 1/p}] bits to generate a coin flip for each
v € V, such that the coin flips are d-wise independent.

We first need the notion of d-wise independent hash func-
tions as presented in [60].

Definition 1 ([60, Definition 3.31]) For N, M,d € N such
that d < N, a family of functions H = {h : [N] — [M]} is
d-wise independent if for all distinct x1, x2,...,xg € [N],
the random variables H (x1), ..., H(x4) are independent and

uniformly distributed in [M] when H is chosen randomly
from H.

In [60] an explicit construction of H is presented, with
parameters as stated in the next Lemma.

Lemma1 ([60, Corollary 3.34]) For every y,B,d € N,
there is a family of d-wise independent functions H, g =
{h :{0, 1} — {0, l}’g} such that choosing a random func-
tion from H, g takes d - max({y, B} random bits, and
evaluating a function from 'H,, g takes time poly(y, B, d).

Let us now consider some node v € V which needs to
flip a coin with probability p that is d-wise independent with
respect to the coin flips of other nodes. Using Lemma 1 with
parameters y = [logn] and 8 = [log1/p], we can con-
struct H such that every function & € H maps the ID of a
node to the result of its coin flip. Using only 7 random bits
we can flip d-wise independent biased coins with probability
p for all nodes in v.

We define Y to be a vector of + random coins. Note we
can also view Y as a vector of length #/logn where each
entry takes values in [logn]. We use the latter when deal-
ing with Y. From Y each node v can generate its random
coin toss by accessing the corresponding 4 € ‘H and check-
ing whether 2 (1 D(v)) = 0. From Definition 1 it holds that
Pr{h(ID(v)) = 0] = 1/p, as needed.

The method of conditional expectations Next, we con-
sider the method of conditional expectations. Let ¢ : A —
R, and let X = (Xy,..., X¢) be a vector of random vari-
ables taking values in A. If E[¢(X)] > « then there is an
assignment of values Z = (z1, ..., z¢) such that ¢ (Z) > «.
We describe how to find the vector Z. We first note that
from the law of total expectation it holds that E[¢(X)] =
Y aca El9(X) | X1 = a]Pr[X = a], and therefore for at
least some a € A it holds that E[¢(X) | X1 = a] > «.
We set this value to be z;. We then repeat this process for
the rest of the values in X, which results in the vector Z. In
order for this method to work we need it to be possible to
compute the conditional expectation of ¢ (X). We now wish

to use the method of conditional expectations after reduc-
ing the number of random bits used by the algorithm. Let us
denote by p the original vector of random bits used by the
algorithm. Taking Y as before to be the seed vector for p, we
have that p is a function of Y. We need to be able to com-
pute E[¢p(p(Y)) | ¥[1] = ay, ..., y[i] = a;] for all possible
values of i and a;, j < 1.

Computing the conditional expectations for ¢ might be
expensive. For this reason we use a pessimistic estimator.
A pessimistic estimator of ¢ is a function ¢’ : A® — R
such that that for all values of i and a;, j < i it holds
that E[¢(p(Y)) | y1 = b1,...,yi = bil = E[¢'(p(Y)) |
y1 = by,...,y = b;]. If ¢’ is a pessimistic estimator of
¢ whose expected value is still bounded by «, then we can
use the method of conditional expectations on ¢’ and obtain
Z1s--s 20, Such that ¢(z1, ..., z4) > @' (21, ..., 20) > .

Lenzen’s routing algorithm We make heavy use of the
deterministic routing algorithm of Lenzen [40], which guar-
antees that if each node needs to send at most O (nlogn)
bits and receive at most O (n log n) bits then O (1) rounds are
sufficient.

3 Randomized MIS as a starting point

To prove Theorem 1, we consider the following modification
of the randomized algorithm of Ghaffari [26]. The algorithm
of Ghaffari consists of two parts. The first part (shown to
have a good local complexity) consists of O (log A) phases,
each with O(1) rounds. After this first part, it is shown that
sufficiently many nodes are removed from the graph. The
MIS for what remains is computed in the second part deter-
ministically in time 20 (V1°g1ogm) "We only use the first part
of Ghaffari’s algorithm, and the only change to it is a slight
modification of the constants that are used.

Slight modification to the first part of Ghaffari’s MIS
Algorithm
Set po(v) = 1/4.

1/2- pi(v), ifd;(v) > 1/2
Pi+1(v) = . :

min{2p; (v), 1/4}, if dy(v) < 1/2,
where d; (v) = 3_, cn) Pt () is the effective degree of
node v in phase ¢. In each phase ¢, the node v gets marked
with probability p;(v) and if none of its neighbors is
marked, v joins the MIS and gets removed along with
its neighbors.

@ Springer

354

K. Censor-Hillel et al.

3.1 An O(log A) round randomized MIS algorithm in
the congested clique

We begin by observing that in the congested clique, what
remains after O (log A) phases of Ghaffari’s algorithm can
be solved in O(1) rounds. This provides an improved ran-
domized runtime compared to [26], and specifically, has no
dependence on n.

The algorithm consists of two parts. In the first part, we
run Ghaffari’s algorithm for O (log A) phases. We empha-
size that this works with both Ghaffari’s algorithm and with
our modified Ghaffari’s algorithm, since the values of the
constants do not affect the asymptotic running time and cor-
rectness of the randomized first part of the algorithm.

Then, in the second part, a leader collects all surviving
edges and solves the remaining MIS deterministically on that
subgraph. We show that the total number of edges incident to
these nodes is O (n) w.h.p., and hence using the deterministic
routing algorithm of Lenzen [40], the second part can be
completed in O (1) rounds w.h.p.

Lemma 2 ([26, Theorem 3.1]) For every € € (0, 1), there
exists a constant ¢’, such that for each node v, the probability
that v has not made its decision within the first ¢’ - (log A +
log 1/€) phases is at most €.

Since the decision whether to join the MIS or to be removed
by having a neighbor in the MIS depends only on the 2-
neighborhood of a node, decisions made by nodes that are at
least 4 hops from each other are independent. We make use
of the following variant of Chernoff’s bound.

Fact4 (Bounded dependency Chernoff bound [54]) Let
X1, ..., X, denote a set of binary random variables with
bounded dependency d, and let © = E(Zi X;). Then:

Pr |:Z Xi >+ 8),u:| < 0() L e—O@/d)

1

Corollary 2 After O (log A) phases, the number of edges inci-
dent to nodes that have not made their decisions is O (n).

Proof By Lemma 2, there is a constant c, such that the prob-
ability that a node has not made its decision after O (log A)
phases is at most 1/A€. Letting X denote the random vari-
able of the number of nodes that have not made their decision
after O (log A) phases gives that u = E[X] = n/A°.

Conditioned on the outcomes of the previous iterations,
each node is mutually independent from all nodes except in
its 4-neighborhood, in which there are up to A* nodes. By
using Fact 4 with § = @ (A°~!) and d = A* and taking ¢
to be large enough, we get that

Pr[X > n/A]l < O(A%) - e O™,

@ Springer

Hence, w.h.p., there are O (n/A) remaining nodes and there-
fore the number of their incident edges is at most O(n). O

We conclude:

Theorem 1 There is a randomized algorithm that computes
MIS in the congested clique model within O(log A) rounds
with high probability.

Note that the proof of Corollary 2 cannot be extended to
the case of pairwise independence, which is needed for deran-
domization, since the concentration guarantees are rather
weak. For this, we need to develop some new machinery,
as we describe in the following section.

3.2 Derandomizing the modified MIS algorithm

We first turn to consider the modified Ghaffari’s algorithm
when the random decisions made by the nodes are only pair-
wise independent.

3.2.1 Ghaffari’s algorithm with pairwise independence

We review the main terminology and notation from [26],
up to our modification of constants. Recall that d;(v) =
ZueN(v) p:(u). A node v is called light if d; (v) < 1/4.
Golden phases and golden nodes We define two types of
golden phases for a node v. This definition is a modification
of the corresponding definitions in [26].

Definition 2
di(v) <1/2;
Type-2 golden phase: d;(v) > 1/4 and at least d;(v)/10
of it arises from light nodes.

Type-1 golden phase: p;(v) = 1/4 and

A node v is called golden in phase ¢, if phase ¢ is a golden
phase for v (of either type). Intuitively, a node v that is golden
in phase ¢ is shown to have a constant probability of being
removed. Specifically, in a golden phase of type-1, v has a
constant probability to join the MIS and in a golden phase of
type-2, there is a constant probability that v has a neighbor
that joins the MIS and hence v is removed.

We now prove the analogue of Lemma 3.3 in [26] for the
setting in which the coin flips made by the nodes are not
completely independent but are only pairwise independent.
We show that a golden node for phase ¢ is still removed
with constant probability even under this weaker bounded
independence guarantee.

Lemma3 (Type-1 golden nodes with pairwise indepen-
dence) Consider the modified Ghaffari’s algorithm with
pairwise independent coin flips. If t is a type-1 golden phase
for a node v, then v joins the MIS in phase t with probability
at least 1/8.

Proof In each type-1 golden phase, v gets marked with prob-
ability p;(v) = 1/4. By the inclusion-exclusion principle,

Derandomizing local distributed algorithms under bandwidth restrictions

355

the probability that v is marked but none of its neighbors is
marked in phase ¢ can be bounded by:

Pr[v is the only marked node in N (v)]
> p)— Y pi)- piw)

ueN (v)
> p)(A —di(v)) > 1/4(1 = 1/2) = 1/8.

Hence, v joins the MIS with probability at least 1/8. O

We next show that also the golden nodes of type-2 are
removed with constant probability assuming only pairwise
independence.

Lemma4 (Type-2 golden nodes with pairwise indepen-
dence) Consider the modified Ghaffari’s algorithm with
pairwise independent coin flips. If t is a type-2 golden phase
for a node v then v is removed in phase t with probability at
least « = 1/160.

Proof For node v, fix a subset of light neighbors W (v) C
N (v) satisfying that Zuew(v) p:(u) € [1/40, 1/4]. Such a
set exists because by the definition of a type-2 golden phase,
the sum of probabilities of light neighbors of v is at least 1 /40,
and every single probability is at most 1/4 by the constants
taken in the algorithm (this probability either halves in each
phase, or is bounded from above by 1/4).

Foru € W(v),let 7; (v, u) denote the indicator variable of
the event thatin phase 7 the following happens: u gets marked,
none of u’s neighbors get marked and u is the only neighbor
of v in W(v) that got marked. For node u, v and phase ¢,
let m,, , ; be the indicator random variable that both « and v
get marked in phase 7. Due to the pairwise independence, we
have: Pr[m, ,; = 11 = p:(u) - p:(v). Hence, the probability
of the event indicated by 73 (v,) can be bounded by:

Pr[7; (v, u) = 1]
> piu)— Y Primy = 1]

weN (u)
-

u'eW (v)\{u}

=pw)— Y pwpw - Y

weN (u) u'eW(v)\{u}

>pw[1= > pwy— Y

weN (1) u'eW (v)\{u}
> prw) (A —di(u) —1/4) = p;(u) (1 = 1/2 —1/4)

Pr[mu,u’,t = 1]

Pt(u)l?t(u/)

Pt(u/)

Since the events indicated by 7; (v, u) are mutually exclusive
for different u, u’ € N (v), it holds that the probability that v

gets removed is at least

v

Pr[v is removed in phase ¢]

Z Pr[Y;(v, u) = 1]

ueW ()

1
1/4- Z Pt(u)Zﬁ

ueW()

v

Finally, we claim the analogue of Lemma 3.2 in [26].

Lemma 5 Consider the modified Ghaffari’s algorithm with
pairwise independent randomness ande = 1/ A°. Foralarge
enough ¢/, for every v, at the end of ¢’ - log A phases, either
v has joined the MIS, or it has a neighbor in the MIS, or at
least one of its golden phase counts reached c - log A.

The proof here is exactly that same as in [26]. The reason
is that the proof does not assume independence and is only
affected by the update rule of the probabilities. Note that
similarly to [26], we had to define type-2 with a threshold on
d;(v) which is factor 2 smaller than that of type-1. As aresult,
the following holds in the pairwise independence setting:

Lemma 6 Within O(log A) phases, every node remains with
probability at most 1/ A.

We emphasize that the proof of Corollary 2 cannot be
extended to pairwise independence since the concentra-
tion guarantees are rather weak. Our algorithm will use
pairwise independence but with some crucial modifications
required in order to guarantee that after O(log A) phases,
only O(n/A) nodes remain undecided.

4 Deterministic MIS

4.1 Deterministic O(log nlog A)-round algorithm in
the congested clique

We now turn to consider the derandomization procedure. We
show the following:

Theorem 2 There is a deterministic MIS algorithm for the
congested clique model that completes in O (log Alogn)
rounds.

The challenge Consider phase ¢ in the modified Ghaffari’s
algorithm and let V; be the set of golden nodes in this phase.
Our goal is to select additional nodes into the MIS so that
at least a constant fraction of the golden nodes are removed.
Let vy, ..., vy be the nodes that are not removed in phase
t. For each node, define corresponding random variables
X1, ..., Xy indicating whether v; is marked in phase ¢ or not.
Let X; = (x; = by, ..., x; = b;) define a partial assignment
for the nodes vy, .. ., v; (i.e., whether or not they are marked

@ Springer

356

K. Censor-Hillel et al.

in phase 7). Let X9 = ¢ denote the case where none of the
decisions is fixed.

For a golden node v, let r, ; be the random variable indi-

cating whether v gets removed in phase ¢, and let R; be the
random variable of the number of removed golden nodes. By
linearity of expectation, E(R;) =), E(ry ;) is the expected
number of removed golden nodes in phase ¢. By Lemmas 3
and 4, there is a constant ¢ such that E(R;) > c¢-|V;|. We then
use the similar approach of Luby [45] and in particular define
a local way to estimate some bound on the individual condi-
tional expectation of the local progress for each node. A new
challange that does not appear in Luby’s algorithm concerns
the shattering effect. Our goal is to show that after O (log A)
phases of the derandomizion the remaining unsolved graph
has O(n) edges. While this property holds in the full inde-
pendence setting, it does not necessary hold with pairwise
independence. That is, the proof of Corollary 2 inherently
needs full independence. To address this challange, we use of
a priority-based scheme for choosing the nodes that join the
MIS, which requires a novel age-based weighting approach
to be added to the MIS algorithm. Next, we describe our main
derandomization tool and then provide our algorithm.
Derandomization tools The first two tools described are fol-
lowed by Luby [45] adapted to Ghaffari’s algorithm, and the
third one is new in this context. We define a pessimistic esti-
mator to the conditional expectation E(R; | X;), which can
be computed efficiently in our model. Then, we describe how
to reduce the search space using pairwise independence. In
our algorithm, the nodes will apply the method of conditional
expectations on the estimator in order to find a “good” seed
of length O(logn).
Tool 1: The pessimistic estimator function Consider phase ¢
and recall that V; are the golden nodes in this phase. Similarly
to the clever approach of [45], we define a variable y, ; that
will satisfy that r,;, > ;. The idea is to account for a
removed node of type-2 only in the case that it is removed
because a single one of its neighbors joins the MIS. Since
this can only occur for one of its neighbors, we avoid double-
counting when computing the probabilities. Let m, ; be the
random variable indicating the event that v is marked in round
t. Let my_, , indicate the event that both # and v are marked
in round ¢. Define

Myt = D yeN@Mvurs if visof type-1.
Yo = ZueN(v)(mu,t - ZweN(u)mu,w,t
=2 weW)\ wyMuw',0), if v is of type-2.

Denoting ¥, = Zvev, Yy.r gives that ¥; is a lower bound
on the number of removed golden nodes, i.e., ¥; < R;.Fora
partial assignment X; = (x; = by, ..., x; = b;) indicating

@ Springer

which of the nodes are marked, we have

Prim,, =1 | X;]—

ZueN(v) Pr(my ., | Xil,

if v is of type-1.

Y uenw Primy, =11 Xil— (H
> wenw Primuwe =1 | Xil—
2wewnu Prlimuwe =11 Xil,

if v is of type-2,

EWn,: | Xi) =

where W(v) € N (v) is a subset of v’s neighbors satisfying
that Zwew(v) pi(w) € [1/40, 1/4] (as used in the proof of
Lemma 4). By Lemmas 3 and 4, it holds that E(y, ;) > «
for v € V;. Hence, we have that:

E(rv,t) = E(Wv,t) = a.

Since ry; > vy, even upon conditioning on the partial
assignment X;, we get:

E(Rus | Xi) = EW¥ | X)
=Y E@u | Xi) = a- V.

veV;

Our algorithm will employ the method of conditional expec-
tations on a weighted version of E(¥; | X;), as will be
discussed later.

Tool 2: Pairwise independence We now combine the method
of conditional expectations with a small search space. We use
Lemma | withd = 2,y = @ (logn) and a prime number 8 =
O (log A). This is because we need the marking probability,
p:(v), to be £2(1/poly A).

Consider phase ¢. Using the explicit construction of
Lemma 1, if all nodes are given a shared random seed
of length y, they can sample a random hash function % :
{0, 1}Y — {0, 1}# from H, g which yields n pairwise inde-
pendent choices. Specifically, flipping a biased coin with
probability of p;(v) can be trivially simulated using the hash
value i (I D,) where I D, is an O (logn)-bit ID of v.2 Since
h is a random function in the family, all random choices are
pairwise independent and the analysis of of the golden phases
goes through.

Even though using a seed of length O (log n) reduces the
search space to be of polynomial size, still, exploring all
possible 29U°¢m = 0 (n¢) seeds in a brute force manner
is too time consuming. Instead, we employ the method of
conditional expectations to find a good seed. That is, we will
consider E(W; | Y;) where ¥; = (yi = by,...,yi =

2 Flipping a biased coin with probability 1/27, is the same as getting a
uniformly distributed number y in [1, b] and outputting 1 if and only if
y e [1,2071.

Derandomizing local distributed algorithms under bandwidth restrictions

357

b;) is a partial assignment to the seed ¥ = (y1,..., Ya).
The crux here is that since a random seed is good, then so
is the expectation over seeds that are sampled uniformly at
random. Hence, the method of conditional expectations will
find a seed that is at least as good as the random selection.
Specifically, we still use the pessimistic estimator of Eq. (1),
but we condition on the small seed Y; rather than on X;.
Tool 3: An age-based weighted adaptation To handle the
shattering effect, we compute the expectation of a weighted
version of ¥;, which favors old nodes where the age of a node
is counted as the number of golden phases it experienced. Let
age; (v) be the number of golden phases v has till phase ¢ and
recall that a golden node is removed with probability at least
a. Define ¢, , = (1+ o)™ .y, and ¥/ = 3 oy ¥/,
We use the method of conditional expectations for:

EW/ |Y) =) E,, | Y)

veV;

rather than for E(¥; | Y;). The choice of this function will
be made clear in the proof of Lemma 7.

Algorithm description The first part of the algorithm con-
sists of ® (log A) phases, where in phase ¢, we derandomize
phase ¢ in the modified Ghaffari’s algorithm using O (logn)
deterministic rounds. In the second part, all nodes that remain
undecided after the first part, send their edges to the leader
using the deterministic routing algorithm of Lenzen. The
leader then solves locally and notifies the relevant nodes to
join the MIS. In the analysis section, we show that after the
first part, only O (n/A) nodes remain undecided, and hence
the second part can be implemented in O (1) rounds.

From now on we focus on the first part. Consider phase
t in the modified Ghaffari’s algorithm. Note that at phase
t, some of the nodes are already removed from the graph
(either because they are part of the MIS or because they have
a neighbor in the MIS). Hence, when we refer to nodes or
neighboring nodes, we refer to the remaining graph induced
on the undecided nodes.

Let Y = (y1,...,yy) be the y random variables that
are used to select a hash function and hence induce a deter-
ministic algorithm. We now describe how to compute the
value of y; in the seed, given that we already computed
y1 = by, ..., yi—1 = bj—1. By exchanging IDs (of ® (logn)
bits), as well as the values p;(v) and d;(v) with its neigh-
bors, a node can check if it is a golden type-1 or type-2 node
according to the conditions of Definition 2. In addition, every
node maintains a counter, age(v) referred to as the age of v,
which measures the number of golden phases it had so far.

Depending on whether the node v is a golden type-1 or
type-2 node, based on Eq. (1), it computes a lower bound on
the conditional probability that it is removed given the partial
seed assignment Y; , = (y1,...,y; = b) for every b €

{0, 1}. These lower bound values are computed according to
the proofs of Lemmas 3 and 4.

Specifically, a golden node v of type-1, uses the IDs of its
neighbors and their p;(u) values to compute the following:

E(wv,t | Yi,b)

=Prlm, =11 Yipl— Y Prlma =11 Yipl,
ueN(v)

where Pr[m,; =1 | Y;p]1is the conditional probability that
v is marked in phase ¢ (see Sect. A for full details about this
computation).

For a golden node v of type-2 the lower bound is computed
differently. First, v defines a subset of neighbors W (v) C
N (v), satisfying that), cy,y Pr(w) € [1/40,1/4], as in
the proof of Lemma 4. Let M; ,(u) be the conditional prob-
ability on Y; ;, that u is marked but none of its neighbors are
marked. Let M; ,(u, W (v)) be the conditional probability on
Y; » that another node other than u is marked in Ww).3 By
exchanging the values M; ;(u), v computes:

EWos | Yip)=)

ueW(v)
Prmy: =11 Yipl = M p(u) — My p(u, W(v)).

Finally, asin Eq. (2), the node sends to the leader the values
E@W,, | Yip) = 1/ —)W B, | Yip) for
b € {0, 1}. The leader computes the sumoftheE(w{u | Yip)
values of all golden nodes V;, and declares that y; = O if
Do, E@Wy | Yin) =D ey By, | Yip),and y; =1
otherwise. This completes the description of computing the
seed Y.

Once the nodes compute Y, they can simulate phase ¢ of
the modified Ghaffari’s algorithm. In particular, the seed Y
defines a hash function € 'H,, g and h(I D(v)) can be used
to simulate the random choice with probability p;(v). The
nodes that got marked send a notification to neighbors and if
none of their neighbors got marked as well, they join the MIS
and notify their neighbors. Nodes that receive join notifica-
tion from their neighbors are removed from the graph. This
completes the description of the first part of the algorithm.
For completeness, a pseudocode appears in Appendix A.
Analysis The correctness proof of the algorithm uses a dif-
ferent argument than that of Ghaffari [26]. Our proof does
not involve claiming that a constant fraction of the golden
nodes are removed, because in order to be left with O(n/A)
undecided nodes we have to favor removal of old nodes. The
entire correctness is based upon the following lemma, which
justifies the definition of the expectation given in Eq. (2).

3 The term M; p(u, W(v)) is important as it is what prevents double
counting, because the corresponding random variables defined by the
neighbors of v are mutually exclusive.

@ Springer

358

K. Censor-Hillel et al.

Lemma 7 The number of undecided nodes after ® (log A)
phases is O (n/A) and hence the total number of edges inci-
dent to these nodes is O(n).

Proof For every phase ¢, denote by V/ as the set of undecided
nodes at the beginning of phase ¢, and let V; C V/ be the set of
golden nodes in that phase. We also define a potential function
d; = Zvev,’(l + a)?8¢ () where age; (v) is the number of
golden phases v € V; had till phase ¢ (notincluding 7). Hence,
intuitively, a node is old if it has experienced many golden
phases.

We first show that the potential function &; is non-
increasing with 7. Fix a phase ¢, and recall that r; , is the
random variable indicating the event that a golden node
v € V;isremoved at phase ¢, and v, ; is used to obtain a pes-
simistic estimator for v being removed. The nodes compute
the conditional expectation for:

E(Wt’) — Z Pr[wv’t >1]- (1 + a)aget(v).

veV;

By Lemmas 3 and 4, Pr[v,; > 1] > «, hence:

E(W) = a) (1 +ayset. ®)

veV;

Let A = V/\V; be the non-golden vertices at the beginning
of phase r. Let B € V; be the set of removed golden nodes
in this phase, and let C = V;\ B be the remaining undecided
golden nodes. We will now bound @, by considering the
contribution of each subset A, B and C separately.

Let @,(A) = Y ,ca(1 +)®W) and define @,(B)
and &,(C) analogously. We then have that ®; = &,(A) +
@;(B) + &;(C). Since the nodes in A did not age in this
phase, we have that @,41(A) = &;(A). In addition by Eq.
(3), we have that @;(B) > a(®;(B) + ®;(C)), and therefore

@:(C) = (I —a)(P1(B) + P:(C)).

Finally, &;41(C) = (14a)®,(C) < (1+a)(1-a)(P;(B)+
D,(C)) < &,(B) + &,(C). Overall, we have:

Dr1 = Dr11(A) + P 41(C) < D1 (A) + D(B) + D:(C) = Dy,

as desired.

We are now ready to complete the proof. By Lemma 5, for
a sufficiently large constant 8, a node that remains undecided
after t = B log A phases is of age at least log A/ log(1 4+).
Since @ = n, and by the above argument we have that

NE @y =Pz Y (1 a)ed/lelte —jy A,

veV]

@ Springer

Thus, we get that the number of remaining undecided vertices
after t = O(log A) phases is |V/| = O(n/A), concluding
that the size of unsolved subgraph is O (n) as desired. O

The remaining O(n) edges incident to the undecided
nodes can be collected at the leader in O (1) rounds using the
deterministic routing algorithm of Lenzen [40]. The leader
then solves MIS for the remaining graph locally and informs
the nodes. This completes the correctness of the algorithm.
Theorem 2 follows.

4.2 An O(log A) deterministic MIS algorithm for
A =0(n"3)

In the case where the maximal degree is bounded by A =
O (n'/3), our deterministic bounds match the randomized
ones.

Theorem 3 I[f A = O(n'/3) then there is a deterministic MIS
algorithm for the congested clique model that completes in
O (log A) rounds.

Proof The algorithm consists of two parts as before, namely,
O (log A) phases that simulate the modified Ghaffari’s algo-
rithm and collecting the remaining topology at a leader and
solving MIS for it locally. The second part works exactly
the same as before, and so we focus on the first part
which simulates the O (log A) phases of the modified Ghaf-
fari’s algorithm in O (log A) deterministic rounds. The main
advantage of having a small degree A = O(n'/3) is that in
the congested clique, it is possible for each node to collect
the entire topology of its 2-neighborhood in O(1) rounds.
This because the 2-neighborhood of a node contains O (A?%)
nodes and O (A3) edges, and hence there are 043 =0®m)
messages a node needs to send or receive, which can be done
in O(1) rounds using Lenzen’s routing algorithm [40].

We now consider phase ¢ of the modified Ghaffari’s algo-
rithm and explain how the seed of length O(logn) can be
computed in O(1) rounds. Unlike the algorithm of the pre-
vious section, which computes the seed bit by bit, here the
nodes compute the assignment for a chunk of z = |logn |
variables at a time.

To do so, consider the i’th chunk of the seed Yi’ =
(¥1s---»¥.). For each of the n possible assignments
(b}, ...,b}) € {0, 1}% to the z variables in Y, we assign a
node u that receives the conditional expectation values from
all the golden nodes, where the conditional expectation is
computed based on assigning y| = b},...,y. = b}. The
node u then sums up all these values and obtains the expected
number of removed nodes conditioned on the assignment
yi = b}, ..., y. = b.. Finally, all nodes send to the leader
their computed sum and the leader selects the assignment
(7, ..., b}) € {0, 1}* of largest value. O

As mentioned in the introduction, combining Theorems 2
and 3 directly gives that the complexity is either O (log A)

Derandomizing local distributed algorithms under bandwidth restrictions

359

rounds in case A = O(n!/3), and otherwise it is 0(log2 A)
since log n is then asymptotically equal to log A.

Corollary 1 There is a deterministic MIS algorithm for the
congested clique model that completes in O (log> A) rounds.

43 AnO(D Iog2 n) deterministic MIS algorithm for
CONGEST

Here we provide a fast deterministic MIS algorithm for
the harsher CONGEST model. For comparison, in terms of
n alone, the best deterministic MIS algorithm is by Pan-
conesi and Srinivasan [49] from more than 20 years ago
and is bounded by 20(/10gn) rounds. However, the algorithm
requires large messages and hence is suitable for the LOCAL
model but not for CONGEST. The only known non-trivial
deterministic solution for CONGEST is to use any (A + 1)-
coloring algorithm running in O(A + log* n) rounds (for
example [3,6]) to obtain the same complexity for determin-
istic MIS in CONGEST (notice that there are faster coloring
algorithms, but the reduction has to pay for the number of
colors anyhow).
The following is our main result for CONGEST.

Theorem 1.5 There is a deterministic MIS algorithm for the
CONGEST model that completes in O(D log? n) rounds.

Proof The algorithm is very similar to that of Theorem 2 with
two main differences. First, we run Ghaffari’s algorithm for
O (log n) rounds instead of O (log A) rounds. Each round is
simulated by a phase with O (D log n) rounds. Specifically, in
each phase, we need to compute the seed of length O (log),
this is done bit by bit using the method of conditional expecta-
tions exactly as described earlier and aggregating the result at
some leader node (aggregation is done in the standard way).
The leader then notifies the assignment of the bit to the entire
graph. Since each bit in the seed is computed in O (D) rounds,
overall the run time is O (D log2 n.

The correctness follows by applying the proof of Lemma 7
with A = n. O

5 Deterministic spanner construction

In this section we present a derandomization algorithm in the
congested clique for the spanner construction of Baswana—
Sen [8]. We use the same general outline as in the MIS
derandomization: We first reduce the dependence between
the coins used by the algorithm and then use the method of
conditional expectations for every iteration of the algorithm.
However, here we face different challenges that we need to
overcome.
The following is the main theorem of this section.

Theorem 1.6 There is a deterministic algorithm for the con-
gested clique model that completes in O (k logn) rounds and
produces a (2k — 1)-spanner with O (kn't1/¥logn) edges.

We first present the original algorithm of Baswana—Sen

[8], which constructs a (2k — 1)-spanner with O(an‘l/ k)
edges in O (k%) rounds. Next, we consider the same algo-
rithm with only limited independence between its coin tosses.
We prove some properties of the algorithm and show it
can be derandomized. Finally we present our determin-
istic algorithm for the congested clique which constructs
a (2k — 1)-spanner with O (knlt1/k logn) edges within
O (k log n) rounds.
The randomized spanner algorithm We begin by presenting
a simplified version of the Baswana—Sen algorithm. For the
full details of the Baswana—Sen algorithm we refer the reader
to [8].4

At each iteration of this phase, the algorithm maintains a
clustering of the vertices. A cluster is a subset of vertices, and
a clustering is a set of disjoint clusters. In the distributed set-
ting each cluster has a leader, and a spanning tree rooted at the
leader is maintained inside the cluster. We will abuse notation
and say that a cluster performs a certain action. When we say
this, it means that the leader gathers the required information
from the cluster vertices to make a decision, and propagates
relevant data down the cluster tree. We will also refer at times
to the ID of a cluster, which is the ID of the cluster leader.

We denote the clustering maintained at iteration i by C;,
where initially Co = {{v} | v € V}. At each iteration, C; is
sampled from C;_1, by having every cluster in C;_{ join C;
with probability n~ !/, In the final iteration we force C; =
@. A vertex v that belongs to a cluster C € C; is called i-
clustered, and otherwise it is i-unclustered.

The algorithm also maintains a set of edges, E’, initialized
to E. For every edge ¢ = (u, v) removed from E’ during the
algorithm, it is guaranteed that there is a path from u to v in
the constructed spanner, H, consisting of at most (2k — 1)
edges, each of weight not greater than the weight of e.

Let v € V be a vertex that stopped being clustered at
iteration i, and let E'(v, C) = {(v, u) e E |ue C} be the
set of edges between a vertex and a cluster C, for every C €
Ci. Let e, ¢ be the lightest edge in E' (v, C).

Let L be the set of lightest edges e, ¢ between v and
the clusters C in C;_1. We go over L in ascending order
of edge weight, adding an edge connecting v to cluster C
and then discarding E’(v, C) from E’. We say that v adds
these edges at iteration i. If we reach a cluster C € C;, we
continue to the next vertex. Since in the last iteration, we

4 The simplified version that we describe consists of only one phase that
includes both phases mentioned in [8]. This is because the number of
clusters in the last iteration k is forced to be zero and hence all vertices
are unclustered in the last iteration and so they connect to all clusters
of the previous iteration.

@ Springer

360

K. Censor-Hillel et al.

force the number of clusters to be zero, all vertices become
unclustered at some iteration i € {1, ..., k} and hence their
incident edges are taken care at that point. The pseudocode
appears in Algorithms 1 and 2.

Algorithm 1: Randomized (2k — 1)-spanner construc-
tion

1H=0
2 Co={{v}veV}
3E =E

4 for i from I to k do

5 if i = k then

6 Cr = ¥ // This means that in the last iteration no node is
{ covered, i.e., we add edges for all nodes to the clusters of
Cr—1.

7 else

8 C; is sampled from C;_1 by sampling each cluster with

L probability n—1/%

9 | Run Algorithm 2

Algorithm 2: Baswana—Sen iteration

1 foreach vertex v that stopped being clustered at iteration i
simultaneously do

L={enc|CeCii)

Let e; be the j-th edge in L in ascending weight

for j =11t |L| do

H=HU {ej}

Let C be the cluster of the other endpoint of e;.

E' =E'\E'(v,C)

if C € C; then
break // This means that we added also one edge
E(v, C*) to the cluster C* € C; with the minimum
weight edge.

e ® N AU R W N

Algorithm 1 is guaranteed to finish after O (k%) com-
munication rounds in the distributed setting, and return a
(2k — 1)-spanner of expected size O (kn't1/ky,
d-wise independence and derandomization Our main focus
is devoted to the first phase that forms the clustering in a
randomized manner. This phase does not work as is with
reduced independence, because the bound on the spanner
size relies on full independence between the coin flips of the
clusters. However, we proceed by establishing properties of
the Baswana—Sen algorithm (Algorithm 1) that do hold in
the case of limited independence between its coin tosses. We
use following result of Benjamini et al. [9].

Theorem 5 Let M(n, d, p) be the maximal probability of the

AND event for n binary d-wise independent random vari-
ables, each with probability p of having the value 1. If d is

@ Springer

even, then:

n

Mn.d,p) < o ,
Pr[Bin(n,1 — p) <d/2]

and if d is odd, then:
M(n,d,p)=pMmn —1,d —1, p).

We also use the following Chernoff bound for d-wise inde-
pendent random variables from [57].

Theorem 6 Let X1, ..., X, be d-wise independent random
variables taking values in [0, 1], where X = Z?:l X; and
E[X] = . Thenforalle < 1wehavethatifd < Lezue_1/3j
then:

Pr{|X — u| > ep] < e 142,
And ifd > |€?pe= /3] then:
Pr{|X — | > eu] < e 13,

We implement Algorithm 1 with only O (log n)-wise inde-
pendence between the coin tosses of clusters at each iteration.
We also assume that & < 0.51logn. We prove the following
two lemmas that will be used later for derandomization.

Let d = 2log2n be the independence parameter, and
define £ = e'/321log2n, and o; =]_[3-:1(1 + 1/(k — j)).

Lemma8 For every 1 < i < k — 1, if |Ci—1|] <
Ea;_1n' =D then Pr(|C;| > Ea;n' /%] < 0.5. In addi-
tion, Eax_1n/* = O (kn'/* logn).

Proof We define for every cluster C the indicator random
variable X (C) for the event that the cluster remains for the
next iteration. Note that |C;| = > X(C) and E[X(C)] =
n~!/k_ By the assumption of the lemma, for the (i — 1)-
th iteration we know that we have at most &q;_n!~(¢—D/k
clusters left from the previous iteration. Thus E[Y_ X (C)] <
Eoy_n' =Dk =1k < g pl=i/k,

We wish to apply Theorem 6 with d = 2log2n, u; =
Eaj_n'"/% and ¢ = 1/(k — i). We note that o; > 1
for every i. We now show that it is always the case that
d< |_el.2,u,-e_1/3J , S0 we can use the first case of Theorem 6.
Plugging in €;, u;, d gives that we need to prove that:

2log2n < 2log(2n) - e'Pe ™ Pa_1n' =k j(k — i)?,
which holds if and only if

ai—in' = =) = 1.

We bound the left hand side from below by

ai_n' R (e —)2 = n' TR —)2

Derandomizing local distributed algorithms under bandwidth restrictions

361

To prove that the above is at least 1, we claim that (a) the
function n!—i/k J(k—i)2 is monotonically decreasing for 1 <
i <k—1,and (b)thatn'=/*/(k—i)> > 1 wheni = k—1.To
prove (a), we prove that nl_i/k/(k —i)2< nl_(i_l)/k/(k —
(i — 1))%. Taking the square root of both sides gives that we
need to prove that

nl/zfi/Zk/(k —i< n1/27(i71)/2k/(k —G—1)),
which holds if and only if
(k= (i —1)/(k = i) <n'/.
For the left hand side of the above, it holds that
k=G —1)/(k—i)<1+1/(k—i) <2,
and since we assumed that k < 0.5logn, we have that
nl/%k > pl/logn — 3 Therefore, n'/? > (k—(i—1))/(k—i)
as required for (a).

We now show (b), that is, that n' =/ /(k — i)? > 1 when
i = k— 1. This holds since fori = k—1wehaven!~/k/(k—
i)? = n'=*k=D/k sk — (k—1))? = n'/¥ > 1, giving (b). This
establishes thatd < Leizu,-e_l/ 3|, and thus the first condition

of Theorem 6 always holds.
Sincea; = (1 +1/(k —i))aj—1 = (1 4+ €;)aj—1 we have

Pr{|Ci| = §ayn' /%]
=Pr[Y X(O) 2 01 + eaiin' /]
=Pr[YX(©) = (1 +eu].

We now apply Theorem 6 and obtain

Pr [Z X(C)—ui = ei,ui] < el 0.5,

which proves the first part of the lemma, that Pr[|C;| >

éozinlfi/k] < 0.5.
Finally, we have

k—1
a1 = [[a+ 1/ = j)
j=1
< oXim V=) _ TS0 ok,

Which implies the second part of the lemma, that

Eay_1n'/* = O(kn'/*logn), and completes the proof. O

Fix an iteration i and consider an i-unclustered vertex v.
Denote by X, the indicator variable for the event that vertex
v adds more than t = 2n'/% log n edges in this iteration.

Lemma 9 The probability that there exists a vertex v at some
iteration which adds more than t edges to the spanner is less
than 0.5. Formally, Pr[V,ey Xy, = 1] < 0.5.

Proof Let v be the node that maximizes Pr[X, = 1]. From
the union bound it holds that Pr[Vv,cy X, = 1] < Pr[X, =
1] - n. Next, we bound) Pr[X, = 1]. We show that every
Pr[X, = 1] is smaller than 1/2n, completing the proof by
applying a union bound over all vertices. Let £ be the number
of neighboring clusters of v in C;_;. If £ < ¢ then Pr[X, =
1] = 0. Otherwise, we might add 7 edges to H, if and only
if the clusters corresponding to the ¢ lightest edges in L are
not in C;. This is the value M (¢, 2d, p) (we use 2d to avoid
fractions in the binomial coefficient) with p = 1 — n~ /X,
Let us bound M (¢, 2d, p) as follows.

t

p
M(t,2d, <
(0.2 P) = S BinG 1= p) <d]

- pt _ pd

T (A =pip=d (G = p)

B 1 - 1

= (A -pd = @0 —py
dd

= {d—py-

Pluggingin p = 1 —n~ Y% and r = 2n'/* logn gives

dd
~1/ky <
~ 2nVklogn)d(n—1/kyd
dd
~ Qlogn)d

M(2n1/k logn,2d,1—n

Now let us plug in d = 21log 2n and we get:
M@2n"*logn, 2log2n, 1 —n= %) < (1/2)21°22" < 1/2n.

Finally, as explained, we use a union bound to get that
PriVyev Xy =11 <) oy PrIX, =11 < 0.5. O

The above lemmas do not guarantee that the algorithm
yields the same expected spanner size as the algorithm with
full independence, but using these lemmas we can now con-
struct a deterministic algorithm.

@ Springer

362

K. Censor-Hillel et al.

Let us define two bad events that can occur during some
iteration i of the algorithm. Let A be the event that not enough
clusters were removed during the iteration, and let B be the
event that there exists a vertex that adds too many edges to
the spanner. We will define these events formally later on. Let
X 4, X p be the corresponding indicator random variables for
the events. Assume that it holds that E[X 4]+ E[Xg] < 1.In
this case we can use the method of conditional expectations
in order to get an assignment to our random coins such that
no bad event occurs.

Let p be the vector of coin flips used by the clusters. Let
Y be the seed randomness from Lemma 1 used to generate
p such that its entries are d-wise independent, where d =
O(logn). We use Y to select a function & € H, g, where
y = lognand 8 = logn'/¥. Each vertex v uses Y to generate
h and then uses the value k(I D(v)) to generate p[v].

LetZ = (z1, ..., zn) be the final assignment generated by
the method of conditional expectations. Then, E[X4 | Y =
Z1+ E[Xp | Y = Z] < 1. Because X4 and Xp are binary
variables that are functions of Y, it must be the case that both
are zero. We can write our expectation as follows:

E[Xa] +E[Xp] = Pr[X4 = 1]+ Pr[Xp = 1]
— Pr[X, = 1]+ Pr[vX, = 1]

At every iteration of the algorithm we would like to keep
E[X 4] + E[Xg] below 1, which would guarantee both bad
events do not occur. Unfortunately, it is unclear how to com-
pute Pr[VX, = 1] conditioned on some assignment to Y.
Thus, we must use a pessimistic estimator. We consider
>, Pr[X,, = 1], and we have that:

Pr[X4 = 1]+ Pr[vX, = 1]
<Pr[X4=1]+ ZPr[XU =1].

v

We define our pessimistic estimator ¥ = X4 + > X,.
Note that the above inequality holds conditioned on any par-
tial assignment to Y, because it is derived via a union bound.
Thus, if we show that E[¥] = Pr[X4 = 1]+) _Pr[X, =
1] < 1, it is enough to apply the method of conditional
expectations for ¥, keeping the expression below 1. For the
assignment Z resulting from this process it will hold that
EX4 | Y=Z]4+EXp | Y=Z]<EV¥ |Y=Z] <1,
as required.

It remains only to bound the pessimistic estimator ¥ . This
canbe achieved using Lemmas 8 and 9. In each iteration of the
algorithm, because the bad event A did not occur in the pre-
vious iteration, the condition that |C;_1| < Ea;_lnl_(i_l)/k
holds for Lemma 9. This yields Pr[X4 = 1]+ > Pr[X, =
1] < 1.

The deterministic spanner construction in the congested
clique We are now ready to describe our algorithm in the

@ Springer

congested clique. We first show the we can indeed compute
the conditional expectation of our pessimistic estimator ¥.

We are interested in Pr[X4 = 1 | y1 = b1,...,y =
bil and Pr[X, = 1 | y1 = b1,...,yi = b;]. Knowing
some partial assignment to Y, we can iterate over all possible
selections of i € H, g and compute the coin flip for every
cluster using its ID alone. The expression Pr[X4 =1 | y; =
bi,...,yi = b;] is just the probability of enough clusters
getting removed given some partial assignment. It does not
depend on the graph topology, and can easily be computed
by a vertex only knowing the IDs of clusters currently active.
To compute Pr[X, =1 | y1 = b1, ..., y;i = b;] the vertex
v can collect all of the IDs from neighboring clusters and go
over all possibilities for calculating the probability of adding
too many edges.

Algorithm 3: deterministic (2k — 1)-spanner algorithm

1H=10
2 Co = {{v}|veV}
3E =E

4 for i from I to k do

5 ¢ =) //partial assignment

6 foreach v € V simultaneously do

7 if v is cluster leader for C € C;_; then

8 | Send ID(v) to all vertices

9 for j € [logn] do

10 for 7 € [logn] do

1 Compute x; = Pr[X, | ¢, y; = 7]
12 | Send (x;,7)tou € V,ID(u) =1
13 if ID(v) =1, t € [logn] then

14 s=Pr[Xalg,y; =11+ X
15 L Send (7, s) to main leader

16 if v is a leader then

17 Tmin = argming{s | (z,s)}

18 ¢:¢U{yj:‘rmin}

19 | send updated ¢ to all vertices

20 if i = k then

21 L Ci =0

22 else

23 L C; sampled from C;_; using ¥

24 | Run Algorithm 2

Algorithm 3 is the pseudocode, where before running an
iteration of the Baswana—Sen algorithm we first find a seed
randomness Y, such that both bad events A and B do not
occur. We then execute an iteration of the Baswana—Sen algo-
rithm using the seed to assign a random coin for each cluster.
Because neither of the bad events occur in any iteration, no
vertex adds more than 2n'/% log n edges in any iteration, and
we reach the final iteration with O (n 17k) clusters. Therefore,
each iteration adds no more than O (n!11/¥ log n) edges, and
the final iteration adds no more than O (kn'T1/¥ logn) edges

Derandomizing local distributed algorithms under bandwidth restrictions

363

(assuming a loose bound of having all vertices connect to all
remaining clusters). Since in the second phase of the algo-
rithm, we add one edge for each pair of vertex and cluster in
Cr—_1, since there are O(nl/ k) such cluster, we conclude that
our spanner has O (kn'*!/*logn) edges.

We find Y via the method of conditional expectations,
keeping the pessimistic estimator below 1. We consider
the value of the pessimistic estimator under some partial
assignment to Y, and extend the assignment such that the
pessimistic estimator is kept below 1.

When finding Y we bring the power of the congested
clique to our aid. The sequential approach would go over
Y bit by bit, setting it to the value which optimizes the pes-
simistic estimator until all values of Y are fully set. In the
congested cliques we can go over blocks of Y of size logn,
calculating the value of the pessimistic estimator for each
one of the n possible assignments of the block. We achieve
this by assigning each vertex to be responsible for aggregat-
ing the data in order to calculate the pessimistic estimator for
one of the possible n values. This speeds up our calculation
by a log n factor.

The above is implemented in the algorithm as follows:
each vertex v € V iterates over all logn blocks of Y, each
of size log n. For each block it computes Pr[X,] conditioned
on all n values of the block. For every value 7 of the block it
sends each the conditional probability to u, which is respon-
sible for computing the value of the pessimistic estimator
conditioned on the value t for the block. Knowing the con-
ditional value of Pr[X,] for every v € V and the IDs of the
active clusters, the vertex u; can now compute the value of
the conditional pessimistic estimator. All of the conditional
values of the pessimistic estimator are then aggregated to a
leader vertex which picks the value that minimizes the pes-
simistic estimator. Finally, the leader broadcasts the selected
value for the block to all vertices. All vertices then continue
to the next iteration. After computing ¥ we run an iteration of
Baswana—Sen where the coin tosses of clusters are generated
fromY.

Another benefit of running the Baswana—Sen algorithm
in the congested clique is that we save an O (k) factor in
our round complexity. This is because cluster vertices may
now communicate with the cluster leader directly, instead
of propagating their message via other cluster vertices. This
takes O (k) in the standard distributed setting because the
distance to the center of each cluster is at most the iteration
number.

We conclude that the round complexity of our algorithm is
the number of iterations of the Baswana—Sen main loop in the
congested clique, which is O (k), multiplied by the overhead
of guaranteeing the bad events A, B will not happen during
the iteration. We guarantee this by applying the method of
conditional expectation over Y, using a block of size log n at
each step of the method of conditional expectations.

We note that each cluster flips a biased coin with proba-
bility n =1/, and we require d-wise independence between
the coin flips. We conclude from Lemma 1 that the size of
Y is O(d max {lognl/k, logn}) = O(log2 n) bits. Because,
we pay O (1) rounds for every log n chunk of Y, we conclude
from the above that our algorithm takes a total of O (k logn)
communication rounds. This completes the proof of Theo-
rem 1.6.

6 Discussion

We have shown how to derandomize an MIS algorithm and
a spanner construction in the congested clique model, and
derandomize an MIS algorithm in the CONGEST model.
This greatly improves upon the previously known results.
Whereas our techniques imply that many local algorithms
can be derandomized in the congested-clique (e.g., hitting
set, ruling sets, coloring, matching etc.), the situation appears
to be fundamentally different for global tasks such as connec-
tivity, min-cut and MST. For instance, the best randomized
MST algorithm in the congested-clique has time complex-
ity of O(1) rounds [37], but the best deterministic bound is
O (loglogn) rounds [43]. Derandomization of such global
tasks might require different techniques.

The importance of randomness in local computation lies
in the fact that recent developments [15] show separations
between randomized and deterministic complexities in the
unlimited bandwidth setting of the LOCAL model. While
some distributed algorithms happen to use small messages,
our understanding of the impact of message size on the com-
plexity of local problems is in its infancy.

This work opens a window to many additional intrigu-
ing questions. First, we would like to see many more local
problems being derandomized despite congestion restric-
tions. Alternatively, significant progress would be made by
otherwise devising deterministic algorithms for this setting.
Finally, understanding the relative power of randomiza-
tion with bandwidth restrictions is a worthy aim for future
research.

Acknowledgements We are very grateful to Mohsen Ghaffari for many
helpful discussions and useful observations involving the derandomiza-
tion of his MIS algorithm.

A Pseudocode of the deterministic MIS
algorithm

Let H = H, g with y = @(logn) and 8 = @ (log A) be

given by Lemma 1. Let H(Y;) € 'H, g be the collection of
all hash functions that agree with the partial seed Y;. Each

@ Springer

364

K. Censor-Hillel et al.

function i € H(Y;) corresponds to a deterministic MIS algo-
rithm.

For a hash function 7 € H and value p = 1/2' rep-
resenting the probability of a node to be marked, define
mp(v, p) = 1if h(ID®)) € [1,287] and m; (v, p) = 0
otherwise. That is, marking a node v with probability p is
simulated deterministically by computing m, (v, p), since we
output 1 only if the value /(I D(v)) appears in the top 1/2/
fraction of the range [1, B]. For p = 1/2/ and p’ = 1/27,
define my (v, u, p, p') = 1if h(ID()) € [1,2f7] and
h(ID(u)) € [1,2P~" and mj, (v, u, p, p’) = 0 otherwise.
That is my (v, u, p, p’) = 1 is the deterministic simulation
of having both v and u being marked when v, u are marked
with probability p, p’. Let @ € (0, 1] be the constant such
that every golden node is removed with probability at least
o when using pairwise independence. Algorithm 5 gives the
pseudocode of our deterministic MIS algorithm.

Algorithm 4: DetMIS(z, Y;): Code for node v in step i
of phase .

1 Input:

2 A partial graph induced on the undecided nodes

3 A partial assignment Y; = (y; = by, ...,y = b;)

4 Output:

5 Anassignment Y;11 = (y1 = b1, ..., i = bi, Yi+1 = bit1)

6 // the goal is to extend the assignment for one more variable
in the seed

7 foru € N(v) U {v}andb € {0, 1} do

8 L me p(u) < Zth(Y,-‘b)mh(M: P (u))

9 for u € N(v), and b € {0, 1} do
L myp(v, u) < ZheH(Y,-'j) mp (v, u, pr(v), p;(u))

=
=

=Y

1 Mip(V) < 3 ey MV, 1)

2 Exchange M; o(v), M, 1(v) with neighbors

3 if v is a golden type-1 node then

14 x(, b) < m;p(v) — M; p(v) for b € {0, 1}
15 /I x (v, b) corresponds to E(yry; | Yip)

—

16 if v is a golden type-2 node then
17 Define W (v) € N (v) such that ZMGW(U) pr(u) € [1/40, 1/4]
18 for u € W(v), and b € {0, 1} do
19 M; p(u, W()) <
L ZheH(Y,,,) D wew () Mr W, w, pr), pr(w))
20 | x(,b) < 3, mp() — My p(u) — My p(u, W(0))
211 | /I x(v,b) corresponds to E(¢ry; | Yip)
22 if v is golden then
23 Send to the leader (1 4+ a)®8¢® . x (v, b) for b € {0, 1}
24 /I All of the above fits in an O (log n)-bit message
25 | age(v) < age(v) +1

9

6 Receive j* from the leader
27 yiy1 < j*

@ Springer

Algorithm 5: DetMIS(#): Code for node v in phase .

1
2
3
4

5

6

7

10
11
12

13
14
15

Input:

A partial graph induced on the undecided nodes
Output:

Decide whether to join the MIS, be removed from the graph, or
remain undecided
Let p;(v) be the desired level for joining MIS, initially
po(v) < 1/2
Letd;(v) =) cn () Pr(u) be the effective degree of node v in
phase ¢
Let age(v) be the number of golden phases it had so far. Initially,
age(v) <0
Exchange the p;(v) , d;(v) and ID with neighbors
Yo < 0,8 < ©(logn)
fori =0,...,8do

L (biy1) < DetMIS(t, Y;)
Yie1 < 1 =b1,...,i+1 = bit1)

Let h; be selected from H,, g using Y
Let m;(v) < myp, (v, p;(v))
Exchange m, (v) with neighbor
if m;(v) = 1 and none of your neighbors has m;(u) = 1 then
join MIS
L notify neighbors
if 3 neighbor that joins MIS then
L notify neighbors of being removed from graph

References

10.

. Alon, N., Babai, L., Itai, A.: A fast and simple randomized parallel

algorithm for the maximal independent set problem. J. Algorithms
7(4), 567-583 (1986)

. Awerbuch, B., Goldberg, A.V., Luby, M., Plotkin, S.A.: Network

decomposition and locality in distributed computation. In: FOCS,
pp. 364-369 (1989)

. Barenboim, L.: Deterministic (A + 1)-coloring in sublinear (in A)

time in static, dynamic and faulty networks. In: PODC, pp. 345—
354 (2015)

. Barenboim, L., Elkin, M.: Distributed graph coloring: fundamen-

tals and recent developments. Synth. Lect. Distrib. Comput. Theory
4(1), 1-171 (2013)

. Barenboim, L., Elkin, M., Gavoille, C.: A fast network-

decomposition algorithm and its applications to constant-time
distributed computation. In: SIROCCO, pp. 209-223 (2015)

. Barenboim, L., Elkin, M., Kuhn, F.: Distributed (A + 1)-coloring

in linear (in A) time. SIAM J. Comput. 43(1), 72-95 (2014)

. Barenboim, L., Elkin, M., Pettie, S., Schneider, J.: The locality of

distributed symmetry breaking. In: FOCS, pp. 321-330 (2012)

. Baswana, S., Sen, S.: A simple and linear time randomized algo-

rithm for computing sparse spanners in weighted graphs. Random
Struct. Algorithms 30(4), 532-563 (2007)

. Benjamini, I., Gurel-Gurevich, O., Peled, R.: On k-wise inde-

pendent distributions and Boolean functions. arXiv preprint
arXiv:1201.3261 (2012)

Berger, B., Rompel, J.: Simulating (log CN)-wise independence in
NC.J. ACM (JACM) 38(4), 1026-1046 (1991)

http://arxiv.org/abs/1201.3261

Derandomizing local distributed algorithms under bandwidth restrictions

365

11.

12.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

217.

28.

29.

30.

31.

32.

33.

Brandt, S., Fischer, O., Hirvonen, J., Keller, B., Lempidinen, T.,
Rybicki, J., Suomela, J., Uitto, J.: A lower bound for the distributed
Lovasz local lemma. In: STOC, pp. 479488 (2016)
Censor-Hillel, K., Kaski, P., Korhonen, J.H., Lenzen, C., Paz, A.,
Suomela, J.: Algebraic methods in the congested clique. In: PODC,
pp. 143-152 (2015)

. Chandrasekaran, K., Goyal, N., Haeupler, B.: Deterministic algo-

rithms for the Lovédsz local lemma. SIAM J. Comput. 42(6),
2132-2155 (2013)

Chang, Y.-J., Fischer, M., Ghaffari, M., Uitto, J., Zheng, Y.: The
complexity of (A + 1) coloring in congested clique, massively
parallel computation, and centralized local computation. In: Pro-
ceedings of the 2019 ACM Symposium on Principles of Distributed
Computing, PODC 2019, Toronto, ON, Canada, July 29-August
2,2019, pp. 471-480 (2019)

Chang, Y.-]., Kopelowitz, T., Pettie, S.: An exponential separation
between randomized and deterministic complexity in the LOCAL
model. In: FOCS, pp. 615-624 (2016)

Derbel, B., Gavoille, C.: Fast deterministic distributed algorithms
for sparse spanners. In: SIROCCO, pp. 100-114 (2006)

Derbel, B. Gavoille, C., Peleg, D.: Deterministic distributed con-
struction of linear stretch spanners in polylogarithmic time. In:
DISC, pp. 179-192 (2007)

Derbel, B., Gavoille, C., Peleg, D., Viennot, L.: On the locality of
distributed sparse spanner construction. In: PODC, pp. 273-282
(2008)

Derbel, B., Gavoille, C., Peleg, D., Viennot, L.: Local computation
of nearly additive spanners. In: DISC, pp. 176-190 (2009)
Derbel, B., Mosbah, M., Zemmari, A.: Sublinear fully distributed
partition with applications. Theory Comput. Syst. 47(2), 368—404
(2010)

Dolev, D., Lenzen, C., Peled, S.: “tri, tri again”: finding triangles
and small subgraphs in a distributed setting—(extended abstract).
In: DISC, pp. 195-209 (2012)

Drucker, A., Kuhn, F., Oshman, R.: On the power of the congested
clique model. In: PODC, pp. 367-376 (2014)

Elkin, M.: A near-optimal distributed fully dynamic algorithm for
maintaining sparse spanners. In: PODC, pp. 185-194 (2007)
Feuilloley, L., Fraigniaud, P.: Randomized local network comput-
ing. In: SPAA, pp. 340-349 (2015)

Le Gall, E.: Further algebraic algorithms in the congested clique
model and applications to graph-theoretic problems. In: DISC, pp.
57-70 (2016)

Ghaffari, M.: An improved distributed algorithm for maximal inde-
pendent set. In: SODA, pp. 270-277 (2016)

Ghaffari, M.: Distributed MIS via all-to-all communication. In:
Proceedings of the ACM Symposium on Principles of Distributed
Computing, PODC 2017, Washington, DC, USA, July 25-27,
2017, pp. 141-149 (2017)

Ghaffari, M., Parter, M.: MST in log-star rounds of congested
clique. In: PODC, pp. 19-28 (2016)

Goldberg, M., Spencer, T.: A new parallel algorithm for the max-
imal independent set problem. SIAM J. Comput. 18(2), 419427
(1989)

Han, Y.: A fast derandomization scheme and its applications. SIAM
J. Comput. 25(1), 52-82 (1996)

Hegeman, J.W., Pandurangan, G., Pemmaraju, S.V., Sardeshmukh,
V.B., Scquizzato, M.: Toward optimal bounds in the congested
clique: graph connectivity and MST. In: PODC, pp. 91-100 (2015)
Hegeman, J.W., Pemmaraju, S.V.: Lessons from the congested
clique applied to mapreduce. In: SIROCCO, pp. 149-164 (2014)
Hegeman, J.W., Pemmaraju, S.V., Sardeshmukh, V.. Near-
constant-time distributed algorithms on a congested clique. In:
DISC, pp. 514-530 (2014)

34.

35.

36.

37.

38.

39.

40.

41.

42.

43.

44,

45.

46.

47.

48.

49.

50.

51.

52.

53.

54.

55.

56.

Henzinger, M., Krinninger, S., Nanongkai, D.: A deterministic
almost-tight distributed algorithm for approximating single-source
shortest paths. In: STOC, pp. 489-498 (2016)

Holzer, S., Pinsker, N.: Approximation of distances and shortest
paths in the broadcast congest clique. In: OPODIS, pp. 6:1-6:16
(2015)

Israeli, A., Itai, A.: A fast and simple randomized parallel algorithm
for maximal matching. Inf. Process. Lett. 22(2), 77-80 (1986)
Jurdzinski, T., Nowicki, K.: MST in O(1) rounds of congested
clique. In: SODA, pp. 2620-2632. SIAM (2018)

Karp, R.M., Wigderson, A.: A fast parallel algorithm for the max-
imal independent set problem. In: STOC, pp. 266-272 (1984)
Kuhn, F., Moscibroda, T., Wattenhofer, R.: Local computation:
lower and upper bounds. J. ACM 63(2), 17 (2016)

Lenzen, C.: Optimal deterministic routing and sorting on the con-
gested clique. In: PODC, pp. 42-50 (2013)

Lenzen, C., Wattenhofer, R.: Tight bounds for parallel randomized
load balancing: extended abstract. In: STOC, pp. 11-20 (2011)
Linial, N.: Locality in distributed graph algorithms. SIAM J. Com-
put. 21(1), 193-201 (1992)

Lotker, Z., Pavlov, E., Patt-Shamir, B., Peleg, D.: MST construc-
tion in O(log /ogn) communication rounds. In: SPAA, pp. 94—-100
(2003)

Luby, M.: A simple parallel algorithm for the maximal independent
set problem. SIAM J. Comput. 15(4), 1036-1053 (1986)

Luby, M.: Removing randomness in parallel computation without
a processor penalty. J. Comput. Syst. Sci. 47(2), 250-286 (1993)
Motwani, R., Naor, J., Naor, M.: The probabilistic method yields
deterministic parallel algorithms. J. Comput. Syst. Sci. 49(3), 478—
516 (1994)

Nanongkai, D.: Distributed approximation algorithms for weighted
shortest paths. In: STOC, pp. 565-573 (2014)

Naor, M., Stockmeyer, L.J.: What can be computed locally? SIAM
J. Comput. 24(6), 1259-1277 (1995)

Panconesi, A., Srinivasan, A.: Improved distributed algorithms for
coloring and network decomposition problems. In: STOC, pp. 581—
592 (1992)

Pantziou, G., Spirakis, P., Zaroliagis, C.: Fast parallel approxima-
tions of the maximum weighted cut problem through derandom-
ization. In: FSTTCS, pp. 20-29 (1989)

Parter, M.: (A + 1) coloring in the congested clique model. In: 45th
International Colloquium on Automata, Languages, and Program-
ming, [CALP 2018, July 9-13, 2018, Prague, Czech Republic, pp.
160:1-160:14 (2018)

Parter, M., Su, H.-H.: Randomized (A + 1)-coloring in O (log xA)
congested clique rounds. In: 32nd International Symposium on Dis-
tributed Computing, DISC 2018, New Orleans, LA, USA, October
15-19, 2018, pp. 39:1-39:18 (2018)

Patt-Shamir, B., Teplitsky, M.: The round complexity of distributed
sorting: extended abstract. In: PODC, pp. 249-256 (2011)
Pemmaraju, S.V.: Equitable coloring extends Chernoff-hoeffding
bounds. In: Approximation, Randomization and Combinatorial
Optimization: Algorithms and Techniques, 4th International Work-
shop on Approximation Algorithms for Combinatorial Optimiza-
tion Problems, APPROX 2001 and 5th International Workshop on
Randomization and Approximation Techniques in Computer Sci-
ence, RANDOM 2001 Berkeley, CA, USA, August 18-20, 2001,
Proceedings, pp. 285-296 (2001). https://doi.org/10.1007/3-540-
44666-4_31

Pettie, S.: Distributed algorithms for ultrasparse spanners and linear
size skeletons. Distrib. Comput. 22(3), 147-166 (2010)

Roditty, L., Thorup, M., Zwick, U. Deterministic constructions of
approximate distance oracles and spanners. In: ICALP, pp. 261-
272 (2005)

@ Springer

https://doi.org/10.1007/3-540-44666-4_31
https://doi.org/10.1007/3-540-44666-4_31

366

K. Censor-Hillel et al.

57. Schmidt, J.P., Siegel, A., Srinivasan, A.: Chernoff-hoeffding
bounds for applications with limited independence. SIAM J. Dis-
crete Math. 8(2), 223-250 (1995)

58. Srivastav, A., Kliemann, L.: Parallel algorithms via the probabilistic
method. In: Rajasekaran, S. (ed.) Handbook of Parallel Computing:
Models. Algorithms and Applications. Chapman and Hall/CRC,
Boca Raton (2007)

59. Suomela, J.: Survey of local algorithms. ACM Comput. Surv. 45(2),
24(2013)

@ Springer

60. Vadhan, S.P.: Pseudorandomness. Found. Trends Theor. Comput.
Sci. 7(1-3), 1-336 (2012)

Publisher’s Note Springer Nature remains neutral with regard to juris-
dictional claims in published maps and institutional affiliations.

	Derandomizing local distributed algorithms under bandwidth restrictions
	Abstract
	1 Introduction
	1.1 Motivation
	1.2 Our contribution
	1.3 Related work

	2 Preliminaries and notation
	3 Randomized MIS as a starting point
	3.1 An O(logΔ) round randomized MIS algorithm in the congested clique
	3.2 Derandomizing the modified MIS algorithm
	3.2.1 Ghaffari's algorithm with pairwise independence

	4 Deterministic MIS
	4.1 Deterministic O(lognlogΔ)-round algorithm in the congested clique
	4.2 An O(logΔ) deterministic MIS algorithm for Δ=O(n1/3)
	4.3 An O(Dlog2 n) deterministic MIS algorithm for CONGEST

	5 Deterministic spanner construction
	6 Discussion
	Acknowledgements
	A Pseudocode of the deterministic MIS algorithm
	References

