
Distributed Computing (2020) 33:327–348
https://doi.org/10.1007/s00446-019-00363-1

Extending hardware transactional memory capacity via rollback-only
transactions and suspend/resume

POWER8 TM

Shady Issa1 · Pascal Felber2 · Alexander Matveev3 · Paolo Romano1

Received: 15 January 2018 / Accepted: 10 October 2019 / Published online: 11 November 2019
© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Abstract
Transactional memory (TM) aims at simplifying concurrent programming via the familiar abstraction of atomic transactions.
Recently, Intel and IBM have integrated hardware based TM (HTM) implementations in commodity processors, paving the
way for the mainstream adoption of the TM paradigm. Yet, existing HTM implementations suffer from a crucial limitation,
which hampers the adoption of HTM as a general technique for regulating concurrent access to shared memory: the inability
to execute transactions whose working sets exceed the capacity of CPU caches. In this article we propose P8TM, a novel
approach that mitigates this limitation on IBM’s POWER8 architecture by leveraging a key combination of hardware and
software techniques to support different execution paths. P8TM also relies on self-tuning mechanisms aimed at dynamically
switching between different execution modes to best adapt to the workload characteristics. In-depth evaluation with several
benchmarks indicates that P8TM can achieve striking performance gains in workloads that stress the capacity limitations of
HTM, while achieving performance on par with HTM even in unfavourable workloads.

Keywords Hardware transactional memory · Parallel programming · Concurrency · Self-tuning

1 Introduction

Transactional memory (TM) has emerged as a promising
paradigm that aims at simplifying concurrent programming
by bringing the familiar abstraction of atomic and isolated
transactions to the domain of parallel computing. Unlike
when using locks to synchronize access to shared data or
code portions, with TMprogrammers need only specifywhat
is synchronized and not how synchronization should be per-

B Pascal Felber
pascal.felber@unine.ch

Shady Issa
shadi.issa@tecnico.ulisboa.com

Alexander Matveev
amatveev@csail.mit.edu

Paolo Romano
romano@inesc-id.pt

1 INESC-ID/Instituto Superior Técnico, University of Lisbon,
Lisbon, Portugal

2 University of Neuchâtel, Neuchâtel, Switzerland

3 MIT, Cambridge, USA

formed.This results in simpler designs that are easier towrite,
reason about, maintain, and compose [41].

Over the last years, the relevance of TM has been growing
along with the maturity of available implementations for this
new paradigm, both in terms of integration at the program-
ming language as well as at the architectural level. On the
front of integration with programming languages, a recent
milestone has been the official integration of TM in main-
stream languages, such as C/C++ [5]. On the architecture’s
side, the appearance of hardware implementations of the TM
abstraction (HTM) in Intel’s [46] and IBM’s [31,44] proces-
sors represented another major breakthrough.

Commercially available hardware implementations share
various architectural choices, although they do come in dif-
ferent flavours [27,31,46]. The key common trait of current
HTM systems is their best effort nature: current imple-
mentations maintain transactional metadata (e.g., memory
addresses read/written by a transaction) in the processor’s
cache and rely on relatively non-intrusive modification to
the pre-existing cache coherency protocol to detect con-
flict among concurrent transactions. Due to the inherently

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s00446-019-00363-1&domain=pdf

328 S. Issa et al.

Fig. 1 ROTs do not track reads and may, as such, observe different
values when reading the same variable multiple times

limited nature of processor caches, current HTM implemen-
tations impose stringent limitations on thenumber ofmemory
accesses that can be performed within a transaction,1 hence
providing no progress guarantee even for transactions that
run in absence of concurrency. As such, HTM requires a fall-
back synchronization mechanism (also called fallback path),
which is typically implemented via a pessimistic scheme
based on a single global lock.

Despite these common grounds, current HTM imple-
mentations have also several relevant differences. Besides
internal architectural choices (e.g., where and how in the
cache hierarchy transactional metadata are maintained),
Intel’s and IBM’s implementations differ notably by the
programming interfaces they expose. In particular, IBM
POWER8’s HTM implementation extends the conventional
transactional demarcation API (to start, commit and abort
transactions) with two additional, unique features [6]:

– Suspend/resume the ability to suspend and resume a
transaction, allowing, between the suspend and resume
calls, for the execution of instructions/memory accesses
that escape from the transactional context.

– Rollback-only transaction (ROT) a lightweight form of
transaction that has lower overhead than regular trans-
actions but also weaker semantics. In particular ROTs
avoid tracking in hardware the addresses accessed by load
operations. As such, ROTs cannot detect write-after-read
conflicts and do not guarantee isolation, as illustrated in
Fig. 1. However, they still ensure the atomicity of the
stores issued by a transaction, which appear to be all exe-
cuted as a unit or not executed at all.

In this work we present POWER8 TM (P8TM), a novel
TM that exploits these two specific features of POWER8’s
HTM implementation in order to overcome (or at least mit-
igate) what is, arguably, the key limitation stemming from
the best-effort nature of existing HTM systems: the inabil-
ity to execute transactions whose working sets exceed the
capacity of CPU caches. P8TM pursues this objective via an
innovative hardware-software co-design that leverages sev-
eral novel techniques, which we overview in the following.
Uninstrumented read-only transactions (UROs). P8TM exe-
cutes read-only transactions outside of the scope of hardware

1 The list of restrictions is actually longer, including the lack of support
for system calls and other non-undoable instructions, context switches
and ring transitions.

Fig. 2 In order to preserve consistency, the write back of shared vari-
ables updated by an update transaction must be delayed until after any
URO transaction has completed execution

transactions, hence sparing them from the spurious aborts
and capacity limitations that affect HTM, while still allow-
ing them to execute concurrently with update transactions,
as depicted in Fig. 2. This result is achieved by exploit-
ing POWER8’s suspend/resume mechanism to implement a
quiescence scheme, similar in spirit to Read-Copy Update
(RCU) [24,25,34], which shelters UROs from observing
inconsistent snapshots that reflect the commit events of con-
current update transactions.
ROT-based update transactions. In typical TM workloads
the read/write ratio tends to follow the 80/20 rule, i.e., trans-
actified methods tend to have large read-sets and much
smaller write sets [15]. This observation led us to develop
a novel concurrency control scheme based on a novel
hardware-software co-design. It combines the hardware-
based ROT abstraction—which tracks only transactions’
write sets, but not their read-sets, and, as such, does not guar-
antee isolation—with software based techniques aimed to
preserve correctness in the presence of concurrently execut-
ing ROTs, UROs, and plain HTM transactions. Specifically,
P8TM relies on a novel mechanism, which we call Touch-
To-Validate (T2V), to execute concurrent ROTs safely. T2V
relies on a lightweight software instrumentation of reads
within ROTs’ and a hardware aided validation mechanism
of the read-set during the commit phase.
HTM-friendly (software-based) read-set tracking. A key
challenge that we had to tackle while implementing P8TM is
to develop a “HTM-friendly” software-based read-set track-
ing, i.e., designed to be highly efficient when employed
in the context of a hardware transaction. In fact, all the
memory writes issued from within a ROT are transparently
and automatically tracked by the hardware, including the
writes issued by the software-based read-set tracking mech-
anism for ROTs. Thus, the read-set tracking mechanism can
consume cache capacity that could be otherwise used to
accommodate application-level writes issued from within
a ROT. P8TM tackles this issue by integrating two read-
set tracking mechanisms that explore different trade-offs
between space and time efficiency.
Self-tuning. In order to ensure robust performance in a broad
range of workloads, P8TM integrates a lightweight rein-
forcement learningmechanism (based on the UCB algorithm
[30]) that automates the decision of whether to: (i) use

123

Extending hardware transactional memory capacity via rollback-only transactions and… 329

upfront ROTs and UROs, avoiding using the HTM at all;
(ii) first attempt transactions in HTM, and then fallback to
ROTs/UROs in case of capacity exceptions; or (iii) com-
pletely switch off ROTs/UROs, using only HTM.

The use of self-tuning allows P8TM to identify the
scheduling policy that best fits the workload characteristics
in a fully transparent way to programmers.

We evaluated P8TM by means of extensive study that
encompasses synthetic micro-benchmarks, the benchmarks
in the STAMP suite [36], as well as a porting to TM of the
popular TPC-C benchmark [43]. The results of our study
show that P8TM can achieve up to ∼ 7× throughput gains
with respect to plain HTM and extend its capacity by more
than one order of magnitude, while remaining competitive
even in unfavorable workloads.

2 Related work

The quiescence mechanism employed by P8TM to protect
UROs from witnessing inconsistent states is similar in spirit
to Read-Copy-Update (RCU) [34]. RCU is a synchronization
mechanism which eliminates the need for acquiring locks
when accessing shared datawithoutmodifying it.With RCU,
readers, or threads that access shared data without modifying
it, only need to advertise their status atomically, before and
after the read-only critical section. To shelter readers from
inconsistent states, a writer, or a thread that would modify
shared data, creates a copy of the data to be modified and
apply its updates to the copy. The new copy must be applied
in a way such that readers that existed before the writer con-
tinue to access the old data, while new readers get to witness
the updated state. The old data can only be discarded when it
is safe to do so, i.e., when all the readers that existed prior to
the writer have finished their critical section . Compared to
P8TM,RCUhas twomajor limitations: it allows only a single
writer at a time and can only support data structures where
switching between old and updated versions can be per-
formed atomically. The latter is arguably the reason behind
the small number of RCU-based data structures [2,8,35]. We
compare P8TM against RCU in our micro-benchmarks and
we show that P8TM does yield higher throughput in both
read and write-dominated workloads.

Since the introduction of HTM support in mainstream
commercial processors by Intel and IBM, several experi-
mental studies have aimed to characterize their performance
and limitations [18,22,37]. An important conclusion reached
by these studies is that HTM’s performance excels with
workloads that fit the hardware capacity limitations. Unfor-
tunately, though, HTM’s performance and scalability can be
severely hampered in workloads that contain even a small
percentage of transactions that do exceed the hardware’s
capacity. This is due to the need to execute such transac-

tions using a sequential fallbackmechanismbased on a single
global lock (SGL), which causes the immediate abort of any
concurrent hardware transactions and prevents any form of
parallelism.

Hybrid TM [10,29] (HyTM) attempts to address this
issue by falling back to software-based TM (STM) imple-
mentations when transactions cannot successfully execute
in hardware. Hybrid NOrec (HyNOrec) is probably one of
the most popular and effective HyTM designs proposed in
the literature. HyNOrec [9] falls back on using the NOrec
STM, which lends itself naturally to serve as fallback for
HTM. In fact, NOrec uses a single versioned lock for syn-
chronizing (software) transactions. Synchronization between
HTM and STM can hence be attained easily, by having
HTM transactions update the versioned lock used by NOrec.
Unfortunately, the coupling via the versioned lock introduces
additional overheads on both the HTM and STM side, and
can induce spurious aborts of HTM transactions. Further,
HyNOrec prohibits concurrency between HTM and commit-
ting STM, even in the absence of conflict.

Recently, RHyNOrec [33] proposed to decompose a
transaction running on the fallback path into multiple hard-
ware transactions: a read-only prefix and a single post-fix
that encompasses all the transaction’s writes, with regu-
lar NOrec shared operations in between. This can reduce
the false aborts that would otherwise affect hardware trans-
actions in HyNOrec. Unfortunately, though, this approach
is only viable if the transaction’s post-fix, which may
potentially encompass a large number of reads, does fit in
hardware. Further, the technique used to enforce atomicity
between the read-only and the remaining reads relies on fully
instrumenting every read within the prefix hardware trans-
action. This utterly limits the capacity—and consequently
the practicality—of these transactions. Unlike RHyNOrec,
P8TM can execute read-only transactions of arbitrary length
in a fully uninstrumented way. Further, the T2V mechanism
employed by P8TM to validate update transactions relies on
a much lighter and efficient read-set tracking and validation
schemes that can even further increase the capacity of trans-
actions.

Our work is also related to the literature aimed to enhance
HTM’s performance by optimizing the management of the
SGL fallback path. A simple, yet effective optimization,
which we include in P8TM, is to avoid the so called lemming
effect [14] by ensuring that the SGL is free before starting
a hardware transaction. An alternative solution to the same
problem is the use of an auxiliary lock [1]. In our experience,
these two solutions provide equivalent performance, so we
opted to integrate in P8TM the former, simpler, approach.
Calciu et al. [7] suggested lazy subscription of the SGL in
order to decrease the vulnerability window of HTM trans-
actions. However, this approach was shown to be unsafe in

123

330 S. Issa et al.

subtle scenarios that are hard to fix using automatic compiler-
based techniques [13].

P8TM integrates a self-tuning approach that shares a com-
mon theoretical framework (the UCB reinforcement learning
algorithm [30]) with Tuner [16]. However, Tuner addresses
an orthogonal self-tuning problem to the one we tackled in
P8TM: Tuner exploits UCB to identify the optimal retry pol-
icy before falling back to the SGL path upon a capacity
exception; in P8TM, conversely, UCB is to determine which
synchronization to use (e.g., ROTs/UROs vs. plain HTM).
Another recent work that makes extensive use of self-tuning
techniques to optimize HTM’s performance is SEER [17].
Just like Tuner, SEER addresses an orthogonal problem—
defining a scheduling policy that seeks an optimal trade-off
between throughput and contention probability—and could,
indeed, be combined with P8TM.

Finally, P8TM builds on and extends on HERWL [20],
where we introduced the idea of using POWER8’s suspend-
resume and ROT facilities to elide read-write locks. Besides
targeting a different application domain (transactional pro-
grams vs. lock elision), P8TM integrates a set of novel
techniques. Unlike HERWL, P8TM supports the concurrent
execution of update transactions in ROTs. Achieving this
result implied introducing a novel concurrency controlmech-
anism (which we named Touch-To-Validate). Additionally,
P8TM integrates self-tuning techniques that ensure robust
performance also in unfavorable workloads.

3 Background on HTM

From the software perspective, Hardware Transactional
Memory (HTM) extends a processor’s instruction set with
new instructions (typically, begin, commit and abort) that
allows for demarcating blocks of code as transactions. The
hardware, then, guarantees strong atomicity of these trans-
actions, i.e., all the operations executed within a transaction
(transactional accesses) would either appear executed or not
at all to any other concurrent code (whether transactional or
non-transactional). Current HTM implementations achieve
this by extending the cache coherency protocol to detect con-
flicts between code executed from within a transaction and
any concurrent code. Accesses from within a transaction are
tracked, either in theCPU caches or dedicated buffers. A con-
flict is detected when one of those tracked accesses overlap
with another transactional or non-transactional access that
took place after the tracked access and before the transac-
tion has successfully committed, while at least one of the
accesses is a store. When a conflict is detected, the hardware
automatically triggers the abort of the transaction (in case
of a conflict between two transactions, at least one of them
is guaranteed to be aborted). The available HTM systems
detect conflicts at the granularity of a single cache line [37],

i.e., accesses overlap when they reference bytes that lie on
the same cache line. Throughout the lifetime of a transac-
tion, updates are buffered and applied only upon successful
commit of the transaction during a write-back phase, which
guarantees that these updates appear atomically. In case of
an abort, the buffered updates are discarded without any side
effects.

HTM transactions may still abort even in the absence of
conflicts due to several reasons such as timer interrupts, exe-
cuting non-supported operations, page faults and exceeding
the capacity of the hardware resources dedicated for tracking
transactional accesses. The latter is arguably one of the main
limitations that hinder the practical adoption of HTM as a
general purpose synchronization mechanism [18,22]. In this
paper we are proposing P8TM to tackle this limitation in the
POWER8 HTM. The transactional capacity (64 cache lines)
in POWER8 is bounded by an 8KB cache, called TMCAM,
which stores the addresses of the cache lines read or written
within the transaction.

When programs request to start a transaction, a started
code is placed in the, so called, status buffer by the hard-
ware. If, later, the transaction aborts, the hardware stores in
the status buffer a code describing the cause of the abort
and alters the program counter to jump back to the instruc-
tion immediately following the transaction begin. Hence, in
order to distinguish whether a transaction has just started, or
has undergone an abort, programs must test the status code
returned after beginning the transaction.

Asmentioned, in addition toHTM transactions, POWER8
also supports Rollback-Only Transactions (ROT). ROTs are
a special type of transactions supported by POWER8 that
are meant to provide single thread failure-atomicity, i.e., the
ability to roll-back the execution of a code block. The main
difference being that in ROTs, only the writes are tracked
in the TMCAM, giving virtually infinite read-set capacity.
Reads performed by ROTs are essentially treated as non-
transactional reads. As a consequence, ROTs have a larger
capacity than normal transactions, but they do not guarantee
safety in presence of concurrent executions .In fact, since
with ROTs reads are not tracked, it is not possible to detect
write-after-read conflicts, i.e., conflicts that manifest when
a location that is accessed in read mode by a ROT is then
updated (by a different thread) before the ROT commits.

In POWER8, both HTM transactions and ROTs detect
conflict eagerly, i.e., they are aborted as soon as they incur
a conflict. The only exception is when they incur a con-
flict while in suspend mode: in this case, they abort only
once they resume. Finally, P8TM exploits how POWER8
manages conflicts that arise between non-transactional code
and HTM transactions/ROTs, i.e., if a HTM transaction/ROT
issues awrite onXand, before it commits, a non-transactional
read/write is issued onX, theHTM transaction/ROT is imme-
diately aborted by the hardware.

123

Extending hardware transactional memory capacity via rollback-only transactions and… 331

4 P8TM overview

The key challenge in designing execution paths that can run
concurrently with HTM is efficiency: it is hard to provide
a software-based path that executes concurrently with the
HTMpath,while preserving correctness and speed. Themain
problem is that the protocol must make the hardware aware
of concurrent software memory reads and writes, which
requires to introduce expensive tracking mechanisms in the
HTM path.

P8TM tackles this issue by exploiting two unique features
of the IBM POWER8 architecture: (1) suspend/resume for
hardware transactions, and (2) ROTs. P8TM combines these
new hardware features with a RCU-like quiescence scheme
in a way that avoids the need to track reads in hardware.
This can in particular reduce the likelihood of capacity aborts
that would otherwise affect transactions that perform a large
number of reads.

Thekey idea is to provide twonovel executionpaths along-
side theHTMpath: (i) aUROpath, which executes read-only
transactionswithout any instrumentation, and (ii) aROTpath,
which executes update transactions that do not fit in HTM as
ROTs.

HTM transactions and ROTs exploit the speculative hard-
ware support to hide writes from concurrent reads. This
allows coping with read-write conflicts that occur during
ROTs/UROs, but it does not cover writer-after-read conflicts
that occur after the commit of an update transaction. For
this purpose, before an update transaction (running either
as a HTM transaction or a ROT) commits, it first suspends
itself and then executes a quiescence mechanism that waits
for the completion of currently executing ROTs/UROs. In
addition to that, in case the committing update transac-
tion is enclosed in a ROT, it further executes an original
touch-based validation step, which is described later, before
resuming and committing. This process of “suspending and
waiting” ensures that the writes of an update transaction
will be committed only if they do not target/overwrite any
memory location that was previously read by any concurrent
ROT/URO.

4.1 Uninstrumented read-only transactions

P8TM exploits the suspend/resume mechanism to execute
read-only transactions without resorting to the use of hard-
ware transactions or performing instrumentation of read
operations on shared data (URO path). This provides the key
benefit of ensuring strong progress guarantees for read-only
transactions, which are spared by spurious (and repeated)
aborts caused by the underlying HTM implementation.

Let us assume, for simplicity, that update transactions
execute only using HTM (the case of ROT-based update
transactions is analogous andwill be discussed inmore detail

Fig. 3 A read access to a shared variable updated by a suspended update
transaction will abort the latter (when it resumes)

in Sect. 5.3). HTM transactions (and ROTs) buffer memory
writes until the point of commit, hence, concurrent read-only
transactions can safely execute with update transactions, as
long as the latter ones do not commit. In fact, any read per-
formed by a URO after a conflicting write of a concurrent
update transaction will immediately abort the latter.

However, it is unsafe for update transactions to commit
when there are concurrent UROs. This is illustrated in Fig. 2
where an uninstrumented read-only transaction (T1) and an
update transaction (T2) concurrently access two shared vari-
ables. As T2 fully executes between two read accesses by T1,
T2 cannot detect the concurrent execution of T1 and, by com-
mitting, T2 would expose T1 to an inconsistent snapshot that
may contain a mix of old and new values (if r(?) = r(y) in
the figure). To overcome this problem, a key idea in P8TM is
to suspend the hardware speculation of an update transaction,
and then wait for all current UROs to complete by using an
RCU-like (epoch-based) quiescence mechanism [24,25,34].
This suspend-wait sequence has a two-fold effect. First, it
drains all current read-only transactions that may read a loca-
tion written by a suspended update transaction, as these may
be exposed to inconsistent snapshots if the update transaction
committed before their completion (as illustrated in Fig. 2).
Second, any read issued to a location previously written by
a suspend hardware transaction will cause the abort of the
latter, as illustrated in Fig. 3. As a result, after thewait is com-
plete, it is safe to commit the update transaction, so P8TM
simply resumes hardware speculation and issues a commit
request.

4.2 Touch-based validation

Touch-To-Validate (T2V) is another core mechanism of
P8TM that enables safe and concurrent execution of ROT-
based update transactions. As already mentioned, in fact,
ROTs do not track read accesses in hardware. As such, their
concurrent execution is generally unsafe, as illustrated by the
example in Fig. 1. Thread T1 starts a ROT and reads x . At this
time, thread T2 starts a concurrent ROT, writes a new value to
x , and commits. As ROTs do not track reads, they are unable
to detect write-after-read conflicts. As such, the ROT of T1
does not get aborted and can read inconsistent values (e.g.,
the new value of x). To avoid such scenarios T2V leverages
two key mechanisms that couple: (i) software-based track-

123

332 S. Issa et al.

Fig. 4 By re-reading x during rot-rset validation at commit time
(denoted by v:r), T1 forces the abort of T2 that has updated x in the
meantime

ing of read accesses; and (ii) hardware- and software-based
read-set validation during the commit phase.

For the sake of clarity, assume that threads only exe-
cute ROTs—we will consider other execution modes later.
A thread can be in one of three states: inactive, active, and
committing. A thread that executes non-transactional code is
inactive. When the thread starts a ROT, it enters the active
phase and starts tracking, in software, each read access to
shared variables by logging the associated memory address
in a special data structure called rot-rset . Finally, when the
thread finishes executing its transaction, it enters the commit-
ting phase. At this point, it has to wait for concurrent threads
that are in the active phase to either enter the commit phase
or become inactive (upon abort). Thereafter, the committing
thread traverses its rot-rset and re-reads each address before
eventually committing.

The goal of this validation step is to “touch” each previ-
ously read memory location in order to abort any concurrent
ROT that might have written to the same address. For exam-
ple, in Fig. 4, T1 re-reads x during rot-rset validation. At that
time, T2 has concurrently updated x but has not yet commit-
ted, and it will therefore abort (remember that ROTs track and
detect conflicts for writes). This allows T1 to proceed with-
out breaking consistency: indeed, ROTs buffer their updates
until commit and hence the new value of x written by T2 is
not visible to T1. Note that adding a simple quiescence phase
before commit, without performing the rot-rset validation,
cannot solve the problem in this scenario.

The originality of the T2V mechanism is that the ROT
does not use read-set validation for verifying that its read-
set is consistent, as many STM algorithms do, but to trigger
hardware conflicts detection mechanisms. This also means
that the values read during rot-rset validation are irrelevant
and ignored by the algorithm.

5 P8TM algorithm

This section provides a detailed description of P8TM’s algo-
rithm. For the sake of clarity, we present P8TM in an
incremental fashion. We start by describing the management
of the URO path (Sect. 5.1) and of the ROT path (Sect. 5.2),
each on its own. Then, in Sect. 5.3 we provide a complete
description of the algorithm, by discussing (i) how to extend

Algorithm 1 P8TM: URO path only algorithm
1: Shared variables:
2: status[N] ← {⊥,⊥, . . . ,⊥} � One per thread
3: Local variables:
4: tid ∈ [0..N] � Identifier of current thread
5: function synchronize
6: s[N] ← status � Read all statuses
7: for i ← 0 to N−1 do � Wait until all threads...
8: if s[i] is ACTIVE then � ...running UROs...
9: wait until status[N] �= s[i] � ...end
10: function begin_ro
11: status[tid] ← ACTIVE � Update thread’s status
12: mem_fence � Ensure visibility to update txs.
13: function commit_ro
14: mem_fence � Avoid re-ordering.
15: status[tid] ← ⊥ � Reset thread’s status
16: function begin_w � Start update tx.
17: repeat until tx_begin = STARTED

18: function commit_w
19: tx_suspend � Suspend transaction
20: synchronize() � Let UROs drain their reads
21: tx_resume � Resume transaction
22: tx_commit � Write back updates

the ROT path to first attempt using HTM transactions, and
(ii) how to synchronize the URO and ROT paths with the
pessimistic fallback path (based on a single global lock).

Finally, we discuss the correctness, fairness and progress
guarantees of our proposed solution in Sects. 5.4 and 5.5,
respectively.

5.1 URO path

Let us start by considering an initial version of the P8TM
algorithm (Algorithm 1) that assumes that read-only transac-
tions execute in the URO path, and that update transactions
execute using plain HTM transactions. For simplicity, this
version of the algorithm blindly retries failed update trans-
actions, irrespective of the abort cause.

To ensure proper synchronization with update transac-
tions, P8TM must keep track of which UROs are executing.
This is achieved by having every thread maintain a status
variable that is set and unset in the begin_ro() and com-
mit_ro() functions when respectively starting and ending a
read-only transaction.

Update transactions are started and committed by calling
the begin_w() and commit_w() functions. They execute as
plain HTM transactions, hence, throughout the execution of
an update transaction, the memory writes are buffered and,
thus, hidden from UROs.

Assume there is an update transaction and a concurrent
URO that, respectively, update and read the same shared vari-
able. If the memory access in the URO path occurs after the
update transaction has written the variable, then the update

123

Extending hardware transactional memory capacity via rollback-only transactions and… 333

transaction will immediately abort and restart. If however
the read occurs before the update transaction issues the write
access, then no conflict will be detected and the URO will be
serialized before the update transaction.

When an update transactions completes its execution, it
must issue a commit request in order to write back its (specu-
lative) updates. Yet, doing sowithout precautionwould break
consistency, since aUROmight see amix of old and new data
(prior and after the commit of the update transaction).

Therefore, before committing, an update transaction waits
for all UROs that might have read any of the locations it has
written to. Since P8TMdoes not keep track ofwhichmemory
locations have been accessed by UROs (which would require
software instrumentation of memory accesses), it relies on a
lightweight, RCU-like, quiescence mechanism that waits for
the completion of any URO found active at the beginning
of the quiescence phase. This is implemented in the syn-
chronize() function by reading the status of each thread
once and waiting for all active to change value. Note that
this quiescence mechanism does not prevent the start of new
read-only transactions, nor forces a suspended update trans-
action to wait for read-only transactions activated after the
start of its quiescence phase. This is safe, since read-after-
write conflicts will be handled as described above, i.e., by
aborting the update transaction.

An additional challenge is that the quiescence barrier
cannot be implemented straightforwardly in the context of
hardware transaction. The problem is that if a URO updates
its status that is being monitored by some concurrent update
transaction, thiswill be detected as awrite-after-read conflict,
and lead to the abort of the update transaction.

To tackle this issue, P8TM exploits the suspend/resume
feature of the POWER8 micro-architecture, which allows
to temporarily suspend the active transaction, perform non-
transactional operations, and later resume the transaction.
P8TM relies on this feature to execute the quiescence phase
and allow update transactions to monitor the status of con-
current UROs without incurring spurious aborts.

Note that any conflict occurring while a transaction is
suspended will trigger an abort upon its resume, hence pro-
tecting concurrent UROs from seeing inconsistent snapshots.
Indeed, consider a URO that starts after calling synchro-
nize(), i.e., which has not been found active by an update
transaction upon the start of its quiescence phase. This URO
will execute concurrently with the write-back phase of the
update transaction. If the URO reads any memory location
that has been updated by the update transaction before this
completes its write-back phase (which is atomic), then the
latter will abort; else, if the read is issued after the com-
pletion of the write-back phase, the URO will see the new
version.

5.2 ROT path

We now present a version of the P8TM algorithm (Algo-
rithm 2) assuming only the existence of update transactions
running in the ROT path. Also in this case, for simplicity, we
blindly retry to execute failed ROTs irrespective of the abort
cause.

Algorithm 2 P8TM: ROT path only algorithm
1: Shared variables:
2: status[N] ← {⊥,⊥, . . . ,⊥} � One per thread

3: Local variables:
4: tid ∈ [0..N] � Identifier of current thread
5: rot-rset ← ∅ � Transaction’s read-set

6: function begin_rot
7: repeat � Blindly retry ROT
8: status[tid] ← ACTIVE � Update status
9: mem_fence � Make sure others know
10: rot-rset ← ∅ � Clear read-set
11: t x ← tx_begin_rot � Start ROT
12: until t x = STARTED � Repeat until success...

13: function read(addr) � Read shared variable
� Track ROT reads

14: rot-rset ← rot-rset ∪{addr}
15: function synchronize

� Read and copy all status variables
16: s[N] ← status
17: for i ← 0 to N−1 do � Wait until all threads...
18: if s[i] = ACTIVE then � ...that are active...
19: wait until status[i] �= s[i] � ...end

20: function touch_validate
21: for addr ∈ rot-rset do � Re-read all elements...
22: read ∗addr � ...from read-set

23: function commit_rot
24: tx_suspend � Suspend ROT
25: status[tid] ← ROT-COMMITTING � Tell others...
26: mem_fence � ...we are committing
27: tx_resume � Resume ROT
28: synchronize() � Quiescence inside ROT
29: touch_validate() � Touch to validate
30: tx_commit_rot � Commit ROT
31: status[tid] ← ⊥

To start an update transaction, a thread first lets others
know that it is active and initializes its data structures before
actually starting a ROT (Lines 8–11). Then, during ROT exe-
cution, it just keeps track of reads to shared data by adding
them to the thread-local rot-rset (Line 14). To complete the
ROT, the threadfirst announces that it is committingby setting
its shared status variable. Note that this is performed while
the ROT is suspended (Lines 24–27) because otherwise the
write would be buffered and invisible to other threads.

Next, the algorithm quiesces by waiting for all threads
that are in a ROT to at least reach their commit phase
(Lines 15–19). It then executes the touch-based validation

123

334 S. Issa et al.

mechanism, which simply consists in re-reading all address
in the rot-rset (Lines 20–22), before finally committing the
ROT (Line 30) and resetting the status.

5.3 Complete algorithm

The naive approach of the basic algorithm to only use ROTs
is unfortunately not practical nor efficient in real-world set-
tings for two main reasons: (1) ROTs only provide “best
effort” properties and thus a fallback is needed to guarantee
liveness; and (2) using ROTs for short transactions that fit
in a regular HTM transaction is inefficient because of the
overhead of the software-based read tracking and validation
mechanisms. Therefore, we extend the algorithm so that if
first tries to use regular hardware transactions, then upon fail-
ure switches to ROTs, and finally falls back to a global lock
(GL) in order to guarantee progress. Note that when execut-
ing using plain HTM or in the GL, threads do not need to
set their status variable. The pseudo-code of the complete
algorithm is shown in Algorithms 3 and 4.

For HTM transactions and ROTs to execute concurrently,
the former must delay their commit until completion of all
active ROTs. This is implemented using an RCU-like quies-
cence mechanism as in the URO algorithm (Lines 69–73).
Note that a simple quiescence, without a validation step after-
wards, is sufficient in this case.

In this version, we do not blindly retry aborted hard-
ware transactions and ROTs. Conversely, we exploit the
status code returned by tx_begin/tx_begin_rot to deter-
mine which retry policy to use. If the return code of
tx_begin/tx_begin_rot is STARTED, indicating success,
the HTM transaction/ROT can start executing speculatively.
If an abort happens during execution of a HTM transac-
tion/ROT, then control jumps back to just after the call
to tx_begin/tx_begin_rot and the status code contains
information about the failure cause. For the sake of sim-
plicity, we assume that the status code can be STARTED,
TRANSIENT-ABORT, or CAPACITY-ABORT to respec-
tively indicate if the transaction executes speculatively, or has
aborted due to a problem that is unlikely (e.g., contention)
or likely (capacity) to be encountered again in a subsequent
attempt.

Transactions try to run in HTM and ROT modes a limited
number of times, switching immediately if the cause of the
failure is a capacity abort (Lines 24 and 39). The GL fallback
uses a basic spin lock, which is acquired upon transaction
begin (Lines 43–44) and released upon commit (Line 68).
Observe that the quiescence mechanism must also be called
after acquiring the lock to wait for completion of ROTs that
are in progress and might otherwise see inconsistent updates
(Line 47), and that theGLpathmust actuallywait forROTs to
fully complete, not just enter the commit phase as for the the

other execution modes (Line 72). The rest of the algorithm
is relatively straightforward.

To understand the intuition behind how URO path can be
integrated safely with concurrent update transactions, con-
sider first that transactions that do not modify shared data
cannot modify the state witnessed by a HTM transaction or
a ROT. Furthermore, because HTM transactions and ROTs
buffer their writes and quiesce before committing, they can-
not propagate inconsistent updates to UROs.

Finally, GL and UROs cannot conflict with each other
as long as they do not run concurrently. This is ensured by
the quiescence phase after acquiring the global lock, and the
fact that UROs do not start executing until the lock is free
(Line 6). Note that, if the lock is taken, UROs defer to the
update transaction holding the global lock by resetting their
status (Line 5) before waiting for the lock to be free and
retrying the whole procedure. Otherwise we could run into a
deadlock situation with a URO waiting for the lock held by
a GL transaction, while the latter is blocked in quiescence
waiting for the former to complete its execution.

5.4 Correctness

In this section we present informal arguments on the safety
guarantees provided by P8TM in the presence of concur-
rent2 transactions and assuming a data race-free model, i.e.,
accesses to shared data are only performed from within
transactions. Specifically, we show that P8TM guarantees
opacity [23].

When the GL path is active, concurrency is disabled. This
is guaranteed since: (i) transactions in HTM path subscribe
eagerly to the GL, and are thus aborted upon the activation
of this path; (ii) after the GL is acquired, a quiescence phase
is performed to wait for active ROTs or UROs (and both are
not allowed to start if the lock is held).

Correctness of a transaction in the HTM path is provided
by the hardware against concurrent HTM transactions/ROTs
and by the eager GL subscription.

As for the UROs, the quiescence mechanism guarantees
two properties:

– UROs activated after the start of an update transaction T ,
and before the start of T ’s quiescence phase, can be safely
serialized before T because they are guaranteed not to
see any of T ’s updates, which are only made atomically
visible when the corresponding HTM transaction/ROT
commits;

– UROs activated after the start of the quiescence phase of
an update transaction T can be safely serialized either
before T because they are guaranteed to abort T in case

2 Two transactions are concurrent if the begin call of either of them
happens in real time between the begin and commit calls of the other.

123

Extending hardware transactional memory capacity via rollback-only transactions and… 335

Algorithm 3 P8TM: complete algorithm

1: Shared variables:
2: status[N] ← {⊥,⊥, . . . ,⊥} � One per thread
3: glock ← FREE � Spin lock to serialize transactions
4: Local variables:
5: tid ∈ [0..N] � Identifier of current thread
6: mode ∈ {HTM,ROT,GL} � Transaction mode
7: rot-rset ← ∅ � Transaction’s read-set

8: function begin_w
9: wait until glock = FREE � GL must be free
10: begin_htm() � Try HTM first
11: if mode �= HTM then � If HTM fails...
12: begin_rot() � ...fall back to ROT
13: if mode �= ROT then � If ROT also fails...
14: begin_gl() � ...default to global lock

15: function begin_htm
16: tr ials ← 0
17: repeat � Retry HTM a few times
18: tr ials ← tr ials+1
19: t x ← tx_begin � HTM begin
20: if t x = STARTED then � Success?
21: if glock �= FREE then � Add lock to read-set
22: tx_abort � Abort if lock taken
23: mode ← HTM � Run in HTM mode
24: until mode = HTM � Repeat until success...

∨ t x = CAPACITY-ABORT � ...or capacity abort...
∨ tr ials > MAX-HTM-TRIALS � ...or too many trial

25: function begin_rot
26: tr ials ← 0
27: repeat � Retry ROT a few times
28: tr ials ← tr ials+1
29: status[tid] ← ACTIVE � Update status
30: mem_fence � Make sure others know
31: if glock �= FREE then � Global lock taken?
32: status[tid] ← ⊥ � Yes: defer to GL...
33: wait until glock = FREE � ...wait...
34: go to 29 � ...and retry
35: rot-rset ← ∅ � Clear read-set
36: t x ← tx_begin_rot � HTM ROT begin
37: if t x = STARTED then � Success?
38: mode ← ROT � Run in ROT mode
39: until mode = ROT � Repeat until success...

∨ t x = CAPACITY-ABORT � ...or capacity abort...
∨ tr ials > MAX-ROT-TRIALS � ...or too many trial

40: function begin_gl
41: status[tid] ← ⊥ � Not using TM
42: mem_fence � Make sure others know
43: repeat � Acquire global lock
44: wait until glock = FREE � Test and...
45: until CAS(glock,FREE,LOCKED) � ...test and set
46: mode ← GL � Run in GL mode
47: synchronize() � Perform quiescence phase

48: function read(addr) � Read shared variable
49: if mode = ROT then
50: rot-rset ← rot-rset ∪{addr} � Track ROT reads

51: function commit_w
52: switch mode do
53: case HTM
54: tx_suspend � Suspend transaction
55: synchronize() � Perform quiescence phase
56: tx_resume � Resume transaction
57: tx_commit � End transaction
58: case ROT
59: tx_suspend � Suspend transaction
60: status[tid] ← ROT-COMMITTING � Tell others...
61: mem_fence � ...we are committing
62: tx_resume � Resume transaction
63: synchronize() � Quiescence inside ROT
64: touch_validate() � Touch to validate
65: tx_commit � End transaction
66: status[tid] ← ⊥
67: case GL
68: glock ← FREE � Release global lock

69: function synchronize
70: s[N] ← status � Read and copy all status variables
71: for i ← 0 to N−1 do � Wait until all threads...
72: if s[i] = ACTIVE � ...that are active...

∨ (mode = GL ∧ s[i] = ROT-COMMITTING) then
73: wait until status[i] �= s[i] � ...cross barrier

74: function touch_validate
75: for addr ∈ rot-rset do � Re-read all elements...
76: read ∗addr � ...from read-set

they read a value written by T before T commits, or after
T as theywill see all the updates producedby T ’s commit.
It is worth noting here though that this is only relevant
when a URO may conflict with T , in case of disjoint
operation both serialization orders are equivalent.

Now we are only left with transactions running on the
ROT path. The same properties of quiescence for UROs
apply here and avoid ROTs reading inconsistent states pro-
duced by concurrent HTM transactions. Nevertheless, since
ROTs do modify the shared state, they can still produce non-
serializable histories; such as the scenario in Fig. 1. Assume
a ROT, say T1, issued a read on X , developing a read-write

conflict, with some concurrently active ROT, say T2. There
are two cases to consider: T1 commits before T2, or vice
versa.

If T1 commits first, then if it reads X after T2 (which is
still active) wrote to it, then T2 is aborted by the hardware
conflict detection mechanism. Else, we are in the presence of
awrite-after-read conflict. T1 finds status[T2] := ACT IV E
(because T2 issues a fence before starting) and waits for T2 to
enter its commit phase (or abort). Then T1 executes its T2V,
during which, by re-reading X , would cause T2 to abort.

Consider now the case in which T2 commits before T1. If
T1 reads X , as well as any other memory position updated
by T2, before T2 writes to it, then T1 can be safely serialized

123

336 S. Issa et al.

Algorithm 4 — P8TM: URO path
1: function begin_ro
2: status[tid] ← ACTIVE � Update thread’s status
3: mem_fence � Ensure visibility to update txs.
4: if glock �= FREE then � Global lock taken?
5: status[tid] ← ⊥ � Yes: defer to GL...
6: wait until glock = FREE � ...wait...
7: go to 2 � ...and retry
8: function commit_ro
9: mem_fence � Avoid re-ordering.
10: status[tid] ← ⊥ � Reset thread’s status

before T2 (as T1 observed none of T2’s updates). If T1 reads
X , or any other memory position updated by T2, after T2
writes to it and before T2 commits, then T2 is aborted by
the hardware conflict detection mechanism; a contradiction.
Finally, it is impossible for T1 to read X after T2 commits:
in fact, during T2’s commit phase, T2 must wait for T1 to
complete its execution; hence, T1 must read X after T2 writes
to it and before T2 commits, falling in the above case and
yielding another contradiction.

Finally, because update transactions either execute in
hardware (HTM or ROT) or in a global lock, it is guaran-
teed that there are no side effects for aborted transactions.
For transactions executing using HTM and ROT, this is guar-
anteed by the hardware which buffers all the updates and
discards them upon abort (asmentioned in Sect. 3). For trans-
actions that acquire the global lock, it is guaranteed by the
fact that transactions run solo.

5.5 Progress and fairness

The HTM implementation of POWER8 (as most of com-
mercially available HTM implementations) only provide
best-effort progress guarantees, i.e., transactions may never
commit in hardware. Similar to other HTM-based systems,
P8TM relies on a software fallback to guarantees liveness.
The software fallback of P8TM is lock-based, therefore,
P8TM inherits the progress and fairness guarantees of the
lock being used. In our implementation we used a simple
spinlock, which as we will see in Sect. 8, works well in prac-
tice across a wide range of workloads and benchmarks. It is
worth noting, though, that a simple spin lockmay cause read-
only transactions executing in the URO path to starve. This
can happen since UROs defer to update transactions when
they find the lock busy. Thus, in the presence of a stream of
update transactions acquiring the lock, UROs may never get
to execute. To solve this issue, one could rely on a versioned
lock that is incremented every time it is acquired—a tech-
nique used, e.g., for fair implementations of read-write locks
[28]. With this approach, when a URO starts, after advertis-
ing its status, it reads the lock’s version and stores it locally.

If the URO finds the lock acquired, it must wait until either
the lock is released or the lock’s version becomes larger than
the one initially observed by the URO. When a new update
transaction T acquires the lock, it can only start after all
the active UROs that have read an older version of the lock
have finished, i.e., all UROs that started before the lock was
acquired by T . This avoids the starvation of UROs as they
will only defer to at most one update transaction.

6 Self-tuning

In workloads where transactions fit the HTM’s capacity lim-
itations, P8TM still forces HTM transactions to incur the
overhead of suspend/resume, in order to synchronize them
with possible concurrent ROTs. In these workloads, the ideal
decision would be to just disable the ROT path, so to spare
the HTM path from any overhead. However, it is not trivial
to determine when it is beneficial to do so; this decision is
workload dependent and it can be hard to determine via static
analysis, especially in applications that make intensive use
of pointers.

We address this issue by integrating into P8TM a self-
tuning mechanism based on a lightweight reinforcement
learning technique, UCB [30], which we shall describe
shortly. UCB determines, in an automatic fashion, which of
the following modes to use:

– M1: HTM falling back to ROT, and then to GL;
– M2: HTM falling back directly to the GL;
– M3: starting directly in ROT before falling back to the
GL.

Note that UROs and ROTs impose analogous overheads to
HTM transactions. Thus, in order to reduce the search space
to be explored by the self-tuning mechanism, whenever the
ROT path is disabled, the URO path is also disabled. In such
cases read-only transactions are treated as update transac-
tions.

Figure 5 shows the three paths and the rules for switch-
ing between them. When ROTs are disabled (M1⇒M2), the
quiescence call within transactions can be skipped only once
there are no more active ROTs. When switching from M2
to M3, instead, it is enough to enable ROTs after having
ensured, via a memory fence, that all threads are informed
about the need to enable quiescence. This forces any active
HTM transaction to perform the quiescence once it reaches
its commit phase, while it will abort any active transaction
that has reached commit stage and has not yet committed
(since the flag is already part of the read-set). The other rules
are straightforward.
UCB.Upper confidence bounds (UCB) [3] is a provably opti-
mal solution to the multiarmed bandit problem [4], i.e., a

123

Extending hardware transactional memory capacity via rollback-only transactions and… 337

Fig. 5 Different execution paths that can be used by transactions and
rules for switchingbetween them.Lineswithin rules represent necessary
memory barriers

classical reinforcement-learning problem that embodies the
trade-off between exploration and exploitation. In the mul-
tiarmed bandit problem, a gambler tries to maximize the
reward obtained from playing different levers of a multiarm
slot machine, where the levers’ rewards are random variables
with a priori unknown distributions. After an initial phase,
in which every lever is sampled once, UCB estimates the
expected reward for lever i as x̄i + √

(2logn)/ni , where: x̄i
is the average reward for lever i ; n is the number of the cur-
rent trial; and ni is the number of times the lever i has been
tried.

In order to useUCB in P8TM,we associate each execution
mode to a different lever, and its reward to the throughput
obtained by using that mode during a sampling interval of
100 microseconds.

We opted for using the UCB technique given that it
provides strong theoretical guarantees3 while imposing neg-
ligible computational overheads. Another key advantage of
UCB is its generic, parameter-free, black box nature, which
makes it not only easy to use/fully automatic, but also
robust to architectural changes (e.g., deployments on alter-
native architectures equipped with a different number of
slower/faster cores). This is in contrast with domain spe-
cific, threshold-based heuristics [32,38,40] that determine the
strategy to adopt based on on-line gathered statistics, such as
abort rate, frequency of capacity exception, ratio of read-only
versus update transactions. In fact, the effectiveness of the lat-
ter approaches hinges on the correct tuning of the threshold
values that are used to decide which modes to adopt—

3 Logarithmic bounds on the cumulative error, called regret, from play-
ing non-optimal levers even in finite time horizons [3].

a non-trivial problem which is sometimes approached by
developing ad-hoc analytical models, e.g., [11,12], and that
can be totally circumvented thanks to adopting a pure black-
box approach such as UCB.

A noteworthy limitation of the UCB method is that it
assumes that the distribution of the levers (i.e., the workload)
to be static, i.e., not to vary over time. In practice, this implies
that if the workload changes after a long time, UCB is likely
to react slowly to changes. In fact, in such settings, UCBwill
tend to stick with the “old” optimal configuration and seldom
test alternative configurations. As a consequence, UCB may
fail to detect the emergence of a different optimum strategy
in a prompt fashion. Note that more sophisticated variants of
UCB do exist that detect statistically signifying changes in
the levers’ distribution [21,39,47], but they typically intro-
duce additional parameters (e.g., to control the reactivity of
the self-tuning scheme) that require appropriate tuning—thus
loosing one of the key appealing features of UCB, namely
its parameter-free nature. As we shall see in Sect. 8, though,
the UCB method works pretty well in practice, despite its
simplicity. In fact, even in benchmarks whose workloads is
known to shift over time, such as Genome [36], the UCB-
based approach improves consistently over a static approach
that always operates according to mode M1 (see above).

7 Read-set tracking

The T2V mechanism requires to track the read-sets of ROTs
for later replaying them at commit time. The implementation
of the read-set tracking scheme is crucial for the performance
of P8TM. In fact, as discussed in Sect. 3, ROTs do not track
loads at the TMCAM level, but they do track stores and
the read-set tracking mechanism must issue stores in order
to log the addresses read by a ROT. The challenge, hence,
lies in designing a software mechanism that can exploit the
TMCAM’s capacity in a more efficient way than the hard-
ware would do. In the following we describe two alternative
mechanisms that tackle this challenge by exploring different
trade-offs between computational and space efficiency.
Time-efficient implementation uses a thread-local cache-
aligned array, where each entry is used to track a 64-bit
address. Since the cache lines of the POWER8 CPU are 128
bytes long, thismeans that 16 consecutive entries of the array,
each storing an arbitrary address, will be mapped to the same
cache line andoccupy a singleTMCAMentry. Therefore, this
approach allows for fitting up to 16× larger read-sets within
the TMCAM as compared to the case of HTM transactions.
Given that they track 64 cache lines, thread-local arrays are
statically sized to store exactly 1024 addresses. It is worth
noting here that since conflicts are detected at the cache line
level granularity, it is not necessary to store the 7 least signifi-
cant bits, as addresses point to the same cache line. However,

123

338 S. Issa et al.

weomit this optimization as thiswill add extra computational
overhead, yielding a space saving of less than 10%.
Space-efficient implementation seeks to exploit the spatial
data locality in the application’s memory access patterns to
compress the amount of information stored by the read-set
trackingmechanism. This is achieved by detecting a common
prefix between the previously tracked address and the current
one, and by storing only the differing suffix and the size (in
bytes) of the common prefix. The latter can be conveniently
stored using the 7 least significant bits of the suffix, which,
as discussed, are unnecessary. With applications that exhibit
high spatial locality (e.g., that sequentially scan memory),
this approach can achieve significant compression factors
with respect to the time-efficient implementation. However,
it introduces additional computational costs, both during the
logging phase (to identify the common prefix) and in the
replay phase (as addresses need to be reconstructed).

8 Evaluation

In this section we evaluate P8TM against state-of-the-art TM
systems using a set of synthetic micro-benchmarks and com-
plex, real-life applications. First, we start by evaluating both
variants of read-set tracking to show how they are affected
by the size of transactions and degree of contention. Then
we conduct a sensitivity analysis aimed to investigate vari-
ous factors that affect the performance of P8TM. To this end,
we used a micro-benchmark that manipulates a hashmap via
lookup, insert, and delete transactions. Finally, we test P8TM
using two complex, realistic workloads: the popular STAMP
benchmark suite [36] and a port to the TM domain of the
TPC-C benchmark for in-memory databases [19].

We compare our solution with the following baselines:
(i) plain HTM with a global lock fallback (HTM-SGL), (ii)
NOrec with write back configuration, (iii) the Hybrid NOrec
algorithm with three variables to synchronize transactions
and NOrec fallback, and finally, (iv) the hardware read-write
lock elision algorithm HERWL [20], where we have update
transactions acquiring the write lock and read-only transac-
tions acquiring the read lock. To demonstrate how P8TM
fares against non-TM solutions, we added RCU as another
baseline in the sensitivity study. Note that it is hard to devise
a hand-tuned concurrency implementation for STAMP and
TPC-C benchmarks.

Regarding the retry policy, we execute HTMpath 10 times
and the ROT path 5 times before falling back to the next
path, except upon a capacity abort when the next path is
directly activated. These values and strategies were chosen
after doing an extensive offline experiment and selecting the
best on average with different number of retries and different
capacity aborts handling policies (e.g., fallback immediately
vs. treating it as a normal abort). All results presented in this

section represent themean value of at least 5 runs. The exper-
iments were conducted on a machine equipped with IBM
POWER8 8284-22A processor that has 10 physical cores,
with 8 hardware threads each.

The source code, which is publicly available [26], was
compiled with GCC 6.2.1 using -O2 flag on top of Fedora
24 with Linux 4.5.5. Thread pinning was used to pin a thread
per core at the beginning of each run for all the solutions, and
threads were distributed evenly across the cores.

8.1 Read-set tracking

The goal of this section is to understand the trade-off between
the time-efficient and the space-efficient implementations of
read-set tracking that were explained earlier in Sect. 7. We
compare three variants of P8TM: (i) a time-efficient read-
set tracking (TE), (ii) a variant of space-efficient read-set
tracking that only checks for prefixes of length 4 bytes, and
otherwise stores the whole address (SE), and, finally, (iii) a
more aggressive version of space-efficient read-set tracking
that looks for prefixes of either 6 or 4 bytes (SE++).

Throughout this section, we fixed the number of threads to
10 (number of physical cores) and the percentage of update
transactions at 100%, disabled the self-tuning module, and
varied the transaction length across orders of magnitude to
stress the ROT-path.

First, we consider an almost contention-free workload to
highlight the effect of capacity aborts alone. The speed-up
with respect to HTM-SGL, breakdown of causes of aborts
and commits for this workload is shown in Fig. 6. For
the breakdown of causes of aborts, we report the follow-
ing: (i) conflict aborts between HTM transactions (HTM
tx); (ii) conflict aborts between HTM transactions and
non-transactional code (HTM non-tx); (iii) aborts due to
exceeding the capacity limit of HTM transactions (HTM
capacity); (iv) aborts triggered when the lock is found held
after the beginning ofHTM transactions (GLAbort); (v) con-
flict aborts between ROT and (non-)transactional code (ROT
conflict); (vi) aborts due to exceeding the capacity limit of
ROTs (ROT capacity). For the breakdown of commit modes,
we report the following: (i) commits using HTM transactions
(HTM); (ii) commits using ROTs (ROT); (iii) commits using
global lock (GL).

As we can notice, the three variants of P8TM achieve
almost the same performance as HTM-SGLwith small trans-
action sizes that fit inside regular HTM transactions, as seen
from the speed-up. However, when moving to larger transac-
tions, the three variants start outperformingHTM-SGL by up
to 5.5× due to their ability to fit transactionswithinROTs. By
looking at the aborts breakdown with larger transactions, we
see that all P8TM variants suffer from almost 50% capacity
aborts when first executing in HTM, and almost no capacity
aborts when using the ROT path. This shows the clear advan-

123

Extending hardware transactional memory capacity via rollback-only transactions and… 339

Fig. 6 Evaluation of different
implementations of read-set
tracking in the absence of
contention

 0.5
 1

 1.5
 2

 2.5
 3

 3.5
 4

 4.5
 5

 5.5
 6

 100 1000

Speedup wrt. HTM-SGL

TE
HTM-SGL
SE
SE++

 0

 20

 40

 60

 80

 100

Commits (%)

Average bucket length
(20,40,50,66,100,200,266,400,800,1000,1333,2000,2666)

HTM ROT GL

SE++SETE

Aborts (%)

HTM tx
HTM non-tx
HTM capacity
GL abort
ROT conflict
ROT capacity

SE++SETE

Fig. 7 Evaluation of different
implementations of read-set
tracking in the presence of
contention

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 1.6

 1.8

 2

 100 1000

Speedup wrt. HTM-SGL

TE
HTM-SGL
SE
SE++

 0

 20

 40

 60

 80

 100

Commits (%)

Average bucket length
(20,40,50,66,100,200,266,400,800,1000,1333,2000,2666)

HTM ROT GL

SE++SETE

Aborts (%)

HTM tx
HTM non-tx
HTM capacity
GL abort
ROT conflict
ROT capacity

SE++SETE

tage of the T2Vmechanism and how it can fit more than 10×
larger transactions in hardware.

Comparing TEwith SE and SE++, we see that both space-
efficient variants are able to execute even larger transactions
as ROTs. Nevertheless, they incur an extra overhead, which
is reflected as a slightly lower speed-up than TE, before this
starts to experience ROT capacity aborts; only then their abil-
ity to further compress the read-set within TMCAMpays off.
Again, by looking at the commits and aborts breakdown, we
see that both space-efficient variants manage to commit all
transactions as ROTs when TE is already forced to execute
using the GL. Finally, when comparing SE and SE++, we
notice that trying harder to find longer prefixes is not useful,
as in this workload there is a very low probability that the
accessed addresses share 6 bytes long prefixes.

Figure 7 shows the results for a workload that exhibits a
higher degree of contention. In this case, with transactions
that fit inside regular HTM transactions, we see that HTM-
SGL can outperform both SE and SE++ by up to 2× and TE
by up to∼ 30%. Since P8TM tries to execute transactions as
ROTs after failing 10 times with HTM due to conflicts, the
ROT path may be activated even in the absence of capacity
aborts; hence, the overhead of synchronizingROTs andHTM
transaction becomes relevant even with small transactions.
With larger transactions, we notice that the computational
costs of SE and SE++ are more noticeable in this workload

where they are always outperformed by TE, as long as this
is able to fit at least 50% of transactions inside ROTs. Fur-
thermore, the gains of SE and SE++ with respect to TE are
much lowerwhen compared to the contention-free workload.
From this, we deduce that TE is more robust to contention.
This was also confirmed with the other workloads that will
be discussed next.

8.2 Sensitivity analysis

We now report the results of a sensitivity analysis that aimed
to assess the impact of the following factors on P8TM’s
performance: (i) the size of transactions, (ii) the degree of
contention, and (iii) the percentage of read-only transactions.
We explored these three dimensions using the following
configurations: (i) high capacity, low contention, (ii) high
capacity, high contention, and (iii) low capacity, low con-
tention, with 10%, 50%, and 90% update transactions.We do
not report the results for low capacity, high contention work-
load, since they do not convey any extra information with
respect to the low capacity, low contention scenario (which
is actually even more favorable for HTM).

To design these workloads we set the number of buckets
of the hashmap to 10 for high contention scenario and 1000
for low contention scenario. The total number of items in the
hashmap, which determines the length of each bucket con-

123

340 S. Issa et al.

Fig. 8 High capacity-low
contention configuration:
throughput, abort rate, and
breakdown of commit modes at
10%, 50% and 90% update
ratios

 0

 5

 10

 15

 20

 25

 30

 35

 2 4 8 16 32 64

10% update

T
hr

ou
gh

pu
t (

10
5 T

x/
s) P8TM

HERWL

P8TMUCB

HTM-SGL
NoRec
HyNoRec
RCU

 0

 2

 4

 6

 8

 10

 12

 2 4 8 16 32 64

50% update

Number of threads

 1

 2

 3

 4

 5

 6

 7

 8

 2 4 8 16 32 64

90% update

 0

 20

 40

 60

 80

 100
A

bo
rt

s
(%

)
HTM tx
HTM non-tx
HTM capacity
GL/STM abort
ROT conflict
ROT capacity

HyNoRec
HTM-SGL

UCB
P8TM

Number of threads (2,4,8,16,32,64,80)
HyNoRec

HTM-SGL
UCB

P8TM
HyNoRec

HTM-SGL
UCB

P8TM

 0

 20

 40

 60

 80

 100

C
om

m
its

 (
%

)

HTM
ROT
GL/STM
URO

HyNoRec
HTM-SGL

UCB
P8TM

Number of threads (2,4,8,16,32,64,80)
HyNoRec

HTM-SGL
UCB

P8TM
HyNoRec

HTM-SGL
UCB

P8TM

trols the degree at which capacity aborts are being triggered.
For the scenario with low probability of triggering capacity
aborts (∼ 2%), we set the total number of items such that
each bucket has 50 items. Whereas, for the workload with
high probability (∼ 50%) of triggering capacity aborts, we
set the total number of items such that each bucket has 500
items. To maintain a fixed size of the hashmap throughout
the experiment, update transactions alternate between insert
and delete operations. All three types of transactions, insert,
delete and lookup access the hashmap following a uniform
access pattern.

In these experiments we show two variants of P8TM, both
equipped with the TE read-set tracking: with (P8TMUCB)
and without (P8TM) the self-tuning module enabled.
High capacity, low contention. Figure 8 shows the through-
put, as well as the breakdown of abort causes and commit
modes for the high capacity, low contention configuration.
The considered abort causes are similar to the one included
in Fig. 6 except that forGL Abort that is now GL/STM Abort
to refer the STM aborts for HyNOrec. For the breakdown of
commits, we now also show (i) commits using the uninstru-

mented read-only execution path (URO), and (ii) commits
using either global lock (forHTM-SGL, P8TMandHERWL)
or using STM (for HyNOrec) (GL/STM).

We observe that for the read-dominated workload, all
variants of P8TM are able to outperform all the other TM
solutions by up to 7×. This can be easily explained by look-
ing at the commits breakdown, where P8TM and P8TMUCB

commit 90% of their transactions as UROs while the other
10% are committed as ROTs. Compared to RCU, P8TM is
capable of achieving ∼ 3.5× higher throughput. Although
RCU is designed for such workloads, the fact that P8TM
can executed update transactions concurrently, unlike RCU,
allows it to achieve better performance.

On the contrary, HTM-SGL commits only 10% of the
transactions in hardware and falls back to GL in the rest, due
to the high capacity aborts it incurs. It is worth noting that
the decrease in the percentage of capacity aborts, along with
the increase of number of threads, is due to the activation of
the fallback path, which forces other concurrent transactions
to abort.

123

Extending hardware transactional memory capacity via rollback-only transactions and… 341

Fig. 9 High capacity, high
contention configuration:
throughput, abort rate, and
breakdown of commit modes at
10%, 50% and 90% update
ratios

 0

 10

 20

 30

 40

 50

 60

 70

 2 4 8 16 32 64

10% update

T
hr

ou
gh

pu
t (

10
5 T

x/
s) P8TM

HERWL

P8TMUCB

HTM-SGL
NoRec
HyNoRec
RCU

 0

 5

 10

 15

 20

 25

 30

 35

 2 4 8 16 32 64

50% update

Number of threads

 0

 5

 10

 15

 20

 25

 2 4 8 16 32 64

90% update

 0

 20

 40

 60

 80

 100
A

bo
rt

s
(%

)
HTM tx
HTM non-tx
HTM capacity
GL/STM abort
ROT conflicts
ROT capacity

HyNoRec
HTM-SGL

UCB
P8TM

Number of threads (2,4,8,16,32,64,80)
HyNoRec

HTM-SGL
UCB

P8TM
HyNoRec

HTM-SGL
UCB

P8TM

 0

 20

 40

 60

 80

 100

C
om

m
its

 (
%

)

HTM
ROT
GL/STM
URO

HyNoRec
HTM-SGL

UCB
P8TM

Number of threads (2,4,8,16,32,64,80)
HyNoRec

HTM-SGL
UCB

P8TM
HyNoRec

HTM-SGL
UCB

P8TM

Although HERWL is designed for such workloads, P8TM
was able to achieve ∼ 2.4× higher throughput, thanks to its
ability of executing ROTs concurrently. Another interesting
point is that P8TMUCB can outperform P8TM thanks to its
ability to decrease the abort rate, as shown in the aborts break-
down. This is achieved by deactivating the HTM path, which
spares P8TM from the cost of trying once in HTM before
falling back to ROT (upon a capacity abort).

We can see a similar trend when moving to the workloads
with more update transactions: P8TM and P8TMUCB out-
perform HTM-SGL by ∼ 2.2× and ∼ 1.4× in the 50% and
90% workloads, respectively. They also achieve the high-
est throughput in all workloads among all the considered
baselines. By looking at the breakdown of commits, we can
see that P8TM executes almost all update transactions using
either HTMs or ROTs up to 8 threads, unlike HTM-SGL
that only executes 10% of transactions in hardware. At high
thread count we notice that NOrec and HyNOrec start to out-
perform both P8TM and P8TMUCB , especially in the 90%
workload. This can be explained by two reasons: (i) with
larger numbers of threads there is higher contention on hard-

ware resources (note that starting from 32 threads ROT
capacity aborts start to become frequent) and (ii) the cost of
quiescence becomes more significant as threads have to wait
longer. Despite that, P8TM variants achieve 2× and ∼ 1.4×
higher throughput than NOrec and HyNOrec, when compar-
ing theirmaximum throughput regardless of the thread count.
RCU is designed for read-dominated workloads, hence, its
poor performance in update-intensive workloads as it allows
a single writer at a time, unlike TM-based solutions
High capacity, high contention. Figure 9 reports the results
for the high capacity, high contention configuration. Trends
for read-dominated workload are similar to the case of lower
contention degree. However, scalability is much lower here
due to the higher conflict rate. When considering the work-
loads with 50% and 90% update transactions, we notice
that P8TM still achieves the highest throughput. Moreover,
unlike in the low contention scenario, P8TM outperforms
both NOrec and HyNOrec even at high thread count. This is
due to the fact that handling contention is more efficiently
done at the hardware level than in software.

123

342 S. Issa et al.

Fig. 10 Low capacity, low
contention configuration:
throughput, abort rate, and
breakdown of commit modes at
10%, 50% and 90% update
ratios

 0

 5

 10

 15

 20

 25

 30

 2 4 8 16 32 64

10% update

T
hr

ou
gh

pu
t (

10
6 T

x/
s) P8TM

HERWL

P8TMUCB

HTM-SGL
NoRec
HyNoRec
RCU

 0

 2

 4

 6

 8

 10

 12

 14

 2 4 8 16 32 64

50% update

Number of threads

 0
 1
 2
 3
 4
 5
 6
 7
 8
 9

 10

 2 4 8 16 32 64

90% update

 0

 20

 40

 60

 80

 100
A

bo
rt

s
(%

)
HTM tx
HTM non-tx
HTM capacity
GL/STM abort
ROT conflict
ROT capacity

HyNoRec
HTM-SGL

UCB
P8TM

Number of threads (2,4,8,16,32,64,80)
HyNoRec

HTM-SGL
UCB

P8TM
HyNoRec

HTM-SGL
UCB

P8TM

 0

 20

 40

 60

 80

 100

C
om

m
its

 (
%

)

HTM
ROT
GL/STM
URO

HyNoRec
HTM-SGL

UCB
P8TM

Number of threads (2,4,8,16,32,64,80)
HyNoRec

HTM-SGL
UCB

P8TM
HyNoRec

HTM-SGL
UCB

P8TM

Although HERWL uses URO to execute read-only trans-
actions, it was unable to scale even in the 90% read-only
workload, where its throughput is more than 2× lower than
P8TM’s. Again this is due to its inability to execute con-
current ROTs. This clearly indicates that T2V is beneficial
even in read-dominated workloads. In such workloads, how-
ever, we can see that RCU achieves better performance than
HERWL as RCU’s pessimistic execution path for update
transactions avoids wasting time with speculative execution.
Nevertheless, it still yields lower throughput when compared
to P8TM.
Low capacity, low-contention. In workloads where trans-
actions fit in HTM, it is expected that HTM-SGL will
outperform all other TM solutions and that the overheads
of P8TM will prevail. Results in Fig. 10 confirm this expec-
tation: HTM-SGL outperforms all other solutions, regardless
of the ratio of read-only transactions, achieving up to 2.5×
higher throughput than P8TM. However, P8TMUCB , thanks
to its self-tuning ability, is the, overall, best performing solu-
tion, achieving performance comparable toHTM-SGLat low
thread count, and outperforming all other approaches at high

thread count. By inspecting the commits breakdown plots we
see that P8TMUCB does not commit any transaction using
ROTs up to 8 threads, avoiding the synchronization over-
heads that, instead, affect P8TM.

It is worth noting, though, that P8TM, with 90% read-
only transactions, does outperform HTM-SGL beyond 16
threads. By inspecting the breakdown of aborts and commits
we notice that when hardware multithreading is enabled the
performance of HTM-SGL deteriorates dramatically, due to
the increased contention on hardware resources. Conversely,
P8TM can still execute transactions in UROs/ROTs, hence
achieving higher throughput.

We note that, even though HyNOrec commits the same or
higher percentage of HTM transactions than HTM-SGL, it is
consistently outperformed by P8TM. This can be explained
by looking at the performance of NOrec, which fails to scale
due to the high instrumentation overheads it incurs with such
short transactions. As for HyNOrec, its poor performance
is a consequence of the inefficiency inherited by its NOrec
fallback.

123

Extending hardware transactional memory capacity via rollback-only transactions and… 343

Fig. 11 Throughput, abort rate,
and breakdown of commit
modes of STAMP benchmarks
(1)

 0
 2
 4
 6
 8

 10
 12
 14
 16
 18

 2 4 8 16 32 64

GENOME

T
hr

ou
gh

pu
t (

10
5 T

x/
s) P8TM

HERWL

P8TMUCB

HTM-SGL
NoRec
HyNoRec

 0

 1

 2

 3

 4

 5

 6

 7

 8

 2 4 8 16 32 64

VACATION

Number of threads

 2
 4
 6
 8

 10
 12
 14
 16
 18
 20

 2 4 8 16 32 64

INTRUDER

 0

 20

 40

 60

 80

 100
A

bo
rt

s
(%

)
HTM tx
HTM non-tx
HTM capacity
GL/STM abort
ROT conflict
ROT capacity

HyNoRec
HTM-SGL

UCB
P8TM

Number of threads (2,4,8,16,32,64,80)
HyNoRec

HTM-SGL
UCB

P8TM
HyNoRec

HTM-SGL
UCB

P8TM

 0

 20

 40

 60

 80

 100

C
om

m
its

 (
%

)

HTM
ROT
GL/STM
URO

HyNoRec
HTM-SGL

UCB
P8TM

Number of threads (2,4,8,16,32,64,80)
HyNoRec

HTM-SGL
UCB

P8TM
HyNoRec

HTM-SGL
UCB

P8TM

8.3 STAMP benchmark suite

STAMP is a popular benchmark suite in the TM domain,
that encompasses applications with different characteristics
that share a common trait: they do not have any read-only
transactions. Therefore, P8TM will not utilize the URO path
and any gain it can achieve stems solely fromexecutingROTs
in parallel. We omitted the results of the Bayes benchmark
due to its high variance [45]. Labyrinth is also omitted, as
its transactions do not fit in neither HTM nor ROT—hence,
exhibiting very similar performance trend to Yada.

Genome and Vacation are two applications with medium
sized transactions and low contention; hence, they behave
similarly to the previously analyzed high capacity, low con-
tentionworkloads.When looking at Fig. 11,we can see trends
very similar to theworkloadswith high update ratios in Fig. 8.
P8TM is capable of achieving the highest throughput and out-
performing HTM-SGL by up to 4.5× in case of Genome and
∼ 3.2× in the case of Vacation. Again P8TMUCB is even
able to achieve higher throughput than P8TM due to deacti-
vating the HTM path when capacity aborts are encountered,

thus decreasing the abort rate. When looking at the break-
down of commits, we notice also the ability of P8TM to
execute most of transactions in either HTM or ROT at low
thread counts. One difference betweenGenome andVacation
is that, in Vacation, HTM-SGL never manages to commit
transactions in hardware.

We also notice the same drawback at high number of
threads when comparing P8TM to NOrec and HyNOrec.
Nevertheless, it isworth noting that themaximum throughput
achieved by P8TM (at 16 threads) is 1.5× and 2× higher than
NOrec (at 32 threads) in Genome and Vacation, respectively.
This is due to instrumentation overheads of these solutions.
These overheads are completely eliminated in case of write
accesses within P8TM and are much lower for read accesses.

Intruder generates transactions with medium read/write
sets and high contention. This results in a similar perfor-
mance for both P8TM and HTM-SGL: they achieve almost
the same peak throughput at 8 threads and follow the same
pattern with increasing number of threads. Although P8TM
manages to execute all transactions as either HTM transac-
tions or ROTs at low numbers of threads, given the low level

123

344 S. Issa et al.

Fig. 12 Throughput, abort rate,
and breakdown of commit
modes of STAMP benchmarks
(2)

 0

 2

 4

 6

 8

 10

 12

 14

 16

 2 4 8 16 32 64

SSCA2

T
hr

ou
gh

pu
t (

10
6 T

x/
s) P8TM

HERWL

P8TMUCB

HTM-SGL
NoRec
HyNoRec

 0

 2

 4

 6

 8

 10

 12

 14

 2 4 8 16 32 64

KMEANS

Number of threads

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 2 4 8 16 32 64

YADA

 0

 20

 40

 60

 80

 100
A

bo
rt

s
(%

)
HTM tx
HTM non-tx
HTM capacity
GL/STM abort
ROT conflict
ROT capacity

HyNoRec
HTM-SGL

UCB
P8TM

Number of threads (2,4,8,16,32,64,80)
HyNoRec

HTM-SGL
UCB

P8TM
HyNoRec

HTM-SGL
UCB

P8TM

 0

 20

 40

 60

 80

 100

C
om

m
its

 (
%

)

HTM
ROT
GL/STM
URO

HyNoRec
HTM-SGL

UCB
P8TM

Number of threads (2,4,8,16,32,64,80)
HyNoRec

HTM-SGL
UCB

P8TM
HyNoRec

HTM-SGL
UCB

P8TM

of parallelism, the synchronization overheads incurred by
P8TM are not outweighed by its ability to run ROTs concur-
rently. Nevertheless, P8TMUCB manages to overcome this
limitation by disabling the ROT path and avoid these over-
heads. Both NOrec and HyNOrec were outperformed, which
is again simply due to their high instrumentation costs.

SSCA2 and KMeans generate transactions with small
read/write sets and low contention. These are HTM friendly
characteristics, and by looking at the throughput results in
Fig. 12 we see that HTM-SGL is able to outperform all the
other baselines and scale up to 80 threads in case of SSCA2
and up to 16 threads in case of Kmeans. Although HyNOrec
was able to achieve performance similar to HTM up to 32
threads in SSCA2 and 8 threads in KMeans, it was then out-
performed due to the extra overheads it incurs to synchronize
with the NOrec fallback. These overheads lead to increased
capacity aborts as seen in the aborts breakdown.

Although P8TM commits almost all transactions using
HTM up to 64 threads, it performed worse than both
HTM-SGL and HyNOrec in SSCA2 due to the costs of syn-
chronization. An interesting observation is that the overhead

is almost constant up to 32 threads, since up to 32 threads
there are noROTs running and the overhead of the quiescence
call is dominated by the cost of suspending and resuming the
transaction. At 64 and 80 threads P8TM started to suffer also
from capacity aborts similarly to HyNOrec. This led to a
degradation of performance, with HTM-SGL achieving 7×
higher throughput at 80 threads. Similar trends can be seen
for KMeans, however with different threads counts and with
lower adverse effects for P8TM. Again, these are workloads
where P8TMUCB comes in handy as it manages to disable
the ROT path and thus tends to employ HTM-SGL, which is
the most suitable solution for these workloads.

Yada has long transactions, large read/write set and
medium contention. This is an example of a workload that
is not hardware friendly and where hardware solutions are
expected to be outperformed by software based ones. Fig-
ure 12 shows the clear advantage of NOrec over any other
solution, achieving up to 3× higher throughput than hard-
ware based solutions.When looking at the commits and abort
breakdown, one can see that up to 8 threads P8TM commits
∼ 80% of the transactions as either HTM or ROTs. More-

123

Extending hardware transactional memory capacity via rollback-only transactions and… 345

over, unlike Intruder where HTM-SGL was able to commit a
smaller percentage of transactions in hardware, HTM-SGL
is unable to scale with Yada. This can be related to the dif-
ference in the nature of workloads, where the transactions
that trigger capacity abort form the critical path of execu-
tion; hence with such workloads it is not preferable to use
hardware-based solutions.

8.4 TPC-C benchmark

TPC-C represents a wholesale supplier benchmark for rela-
tional databases [43]. In this work we use a version ported to
work on an in-memory database [19,42], which we adapted
to support TM. TPC-C has 5 different types of transactions,
two of which are long read-only transactions that have a high
chance of generating capacity exceptions. Figure 13 shows
the results for workloads with 10%, 50%, and 90% update
transactions that consists of a mix of the five types of transac-
tions. For TPC-C, we also report the average latency of both
update and read-only transactions. We use the CPU time-
stamp counters tomeasure the time it takes for a transaction to
execute, starting from the first begin call until it successfully
commits, eventually. Note that we omitted showing latency
results for NOrec and HyNOrec to enhance visualization, as
they incur significantly higher latency values.4

Throughput results show clear advantage of P8TM over
all the other baselines in all workloads, regardless of the
number of active threads. When compared with software
based solutions, P8TM is able to achieve up to 5× higher
throughput thanbothNOrec andHyNOrec at 16 threads in the
90% update workload. Although both NOrec and HyNOrec
can scale up to 16 threads, their lower performance can
be explained by the much lower instrumentation overheads
that P8TM incurs when compared to software-based solu-
tions. When compared to HTM-SGL, P8TM achieves 5.5×
higher throughput with workloads that have a high percent-
age of read-only transactions, thanks to the URO path. When
moving to workloads with higher percentages of update
transactions, P8TM still outperforms HTM-SGL by 2× and
1.25× on the 50% and 90% update workloads, respectively.
Again, looking at the breakdown plots, we can notice that
P8TM is able to commit all update transactions either as
HTM or ROTs up to 8 threads. We notice that P8TMUCB

manages to achieve even further improvement in throughput
by disabling the HTM path, hence decreasing the abort rate
significantly.

When comparing the latency of read-only transactions, we
can notice that in read-dominatedworkloads, P8TMachieves

4 To minimize instrumentation overhead, latency measurements were
only performed on a single thread. Since in this benchmarks all threads
execute all type of transactions, this approach does not introduce any
bias in the results we gathered.

up to one order of magnitude lower latency than HTM-
SGL at 32 threads and an average (geometric mean) latency
reduction of ∼ 6.2× across all thread counts. We can also
notice that both P8TM and HERWL consistently achieve,
on average, a slightly lower latency for read-only trans-
actions compared to P8TMUCB . This can be attributed to
the overhead imposed by P8TMUCB for determining which
execution path transaction should follow. For the update
transactions, in the read-dominated workload, HTM-SGL
achieves up to ∼ 1.8× lower latency compared to P8TM at
32 threads and an average (geometric mean) latency reduc-
tion of 7% across all thread counts. Update transactions with
P8TM execute the synchronize() function before commit-
ting, which can impose a non-negligible delay if there is a
large number of active long-running transactions using the
URO path. It is worth recalling here that update transactions
do not wait for newly activated read-only transactions, which
places an upper bound on the delay and justifies why the
latency of update transaction does not grow significantly.
Overall, we note that the gains in terms of reduced latency
for read-only transactions largely outweighs the slow-down
imposed to update transactions, which explains why P8TM
and P8TMUCB achieve much higher throughput with respect
to HTM-SGL.

Finally, thanks to its ability to choose the most effec-
tive execution path, P8TMUCB yields an increased latency
for update transactions, when compared to HTM-SGL, only
with low number of threads. However, P8TMUCB manages
to achieve up to ∼ 3× lower latency with higher number of
threads with respect to both HTM-SGL and P8TM. These
gains stem from the fact that P8TMUCB opts for using ROTs
for update transactions, thus avoiding wasting time in unsuc-
cessful attempts using HTM.

9 Conclusion

We presented P8TM, a TM system that tackles what is,
arguably, the key limitation of existing HTM systems: the
inability to execute transactions whose working sets exceed
the capacity of CPU caches. This is achieved by novel
techniques that exploit hardware capabilities available in
POWER8 processors. Via an extensive experimental evalua-
tion, we have shown that P8TM provides robust performance
across a wide range of benchmarks, ranging from simple data
structures to complex applications, and achieves remarkable
speedups.

The importance of P8TM stems from the consideration
that the best-effort nature of current HTM implementations
is not expected to change in the near future. Therefore, tech-
niques that mitigate the intrinsic limitations of HTM can
broaden its applicability to a wider range of real-life work-
loads. We conclude by arguing that the performance benefits

123

346 S. Issa et al.

Fig. 13 Throughput, abort rate,
breakdown of commit modes
and latency of read-only and
update transactions of TPC-C at
10%, 50% and 90% update
ratios

 0

 50

 100

 150

 200

 250

 300

 2 4 8 16 32 64

10% update

T
hr

ou
gh

pu
t (

10
6 T

x/
s) P8TM

HERWL

P8TMUCB

HTM-SGL
NoRec
HyNoRec

 0
 0.5

 1
 1.5

 2
 2.5

 3
 3.5

 4
 4.5

 2 4 8 16 32 64

50% update

Number of threads

 0

 1

 2

 3

 4

 5

 6

 2 4 8 16 32 64

90% update

 0

 20

 40

 60

 80

 100
A

bo
rt

s
(%

)
HTM tx
HTM non-tx
HTM capacity
GL/STM abort
ROT conflict
ROT capacity

HyNoRec
HTM-SGL

UCB
P8TM

Number of threads (2,4,8,16,32,64,80)
HyNoRec

HTM-SGL
UCB

P8TM
HyNoRec

HTM-SGL
UCB

P8TM

 0

 20

 40

 60

 80

 100

C
om

m
its

 (
%

)

HTM
ROT
GL/STM
URO

HyNoRec
HTM-SGL

UCB
P8TM

Number of threads (2,4,8,16,32,64,80)
HyNoRec

HTM-SGL
UCB

P8TM
HyNoRec

HTM-SGL
UCB

P8TM

 0.01

 0.1

 1

 2 4 8 16 32 64

La
te

nc
y

-
R

ea
d-

on
ly

 T
xs

(1

05 c
pu

 c
yc

le
s)

P8TM
HERWL

P8TMUCB

HTM-SGL

 1

 10

 2 4 8 16 32 64

Number of threads

 1

 10

 2 4 8 16 32 64

 0.01

 0.1

 1

 2 4 8 16 32 64La
te

nc
y

-
U

pd
at

e
T

xs

(1
05 c

pu
 c

yc
le

s)

P8TM
HERWL

P8TMUCB

HTM-SGL

 1

 10

 2 4 8 16 32 64

Number of threads

 0.1

 1

 10

 2 4 8 16 32 64

123

Extending hardware transactional memory capacity via rollback-only transactions and… 347

achievable by P8TM thanks to the use of the ROT and sus-
pend/resume mechanisms represent a relevant motivation
for integrating these features in future generations of HTM-
enabled processors (like Intel’s ones).

Acknowledgements This work was supported by Portuguese funds
through Fundação para a Ciência e Tecnologia via projects UID/CEC/
50021/2019 and PTDC/EEISCR/1743/2014.

References

1. Afek, Y., Levy, A.,Morrison, A.: Programmingwith hardware lock
elision. In: Proceedings of the 18th ACM SIGPLAN Symposium
on Principles and Practice of Parallel Programming, PPoPP ’13,
pp. 295–296. ACM, New York (2013). https://doi.org/10.1145/
2442516.2442552

2. Arbel,M., Attiya, H.: Concurrent updateswith RCU: Search tree as
an example. In: Proceedings of the 2014ACMSymposiumon Prin-
ciples of Distributed Computing, PODC ’14, pp. 196–205. ACM,
New York (2014). https://doi.org/10.1145/2611462.2611471

3. Auer, P.: Using confidence bounds for exploitation-exploration
trade-offs. J. Mach. Learn. Res. 3, 397–422 (2003)

4. Berry, D., Fristedt, B.: Bandit Problems. Chapman and Hall, Lon-
don (1985)

5. Boehm, H., Gottschlich, J., Luchangco, V., Michael, M., Moir, M.,
Nelson, C., Riegel, T., Shpeisman, T., Wong, M.: Transactional
language constructs for C++. ISO/IEC JTC1/SC22 WG21 (C++)
(2012)

6. Cain, H.W.,Michael,M.M., Frey, B.,May, C.,Williams,D., Le,H.:
Robust architectural support for transactional memory in the power
architecture. In: Proceedings of the 40thAnnual International Sym-
posium on Computer Architecture, ISCA ’13, pp. 225–236. ACM,
New York (2013). https://doi.org/10.1145/2485922.2485942

7. Calciu, I., Shpeisman, T., Pokam, G., Herlihy, M.: Improved single
global lock fallback for best-effort hardware transactional mem-
ory. In: 9th ACM SIGPLANWkshp. on Transactional Computing
(2014)

8. Clements, A.T., Kaashoek, M.F., Zeldovich, N.: Scalable address
spaces using RCU balanced trees. In: Proceedings of the Sev-
enteenth International Conference on Architectural Support for
Programming Languages and Operating Systems, ASPLOS XVII,
pp. 199–210. ACM, New York (2012). https://doi.org/10.1145/
2150976.2150998

9. Dalessandro, L., Carouge, F., White, S., Lev, Y., Moir, M., Scott,
M.L., Spear, M.F.: Hybrid NOrec: A case study in the effectiveness
of best effort hardware transactional memory. In: Proceedings of
the Sixteenth International Conference on Architectural Support
for Programming Languages and Operating Systems, ASPLOS
XVI, pp. 39–52. ACM, New York (2011). https://doi.org/10.1145/
1950365.1950373

10. Damron, P., Fedorova, A., Lev, Y., Luchangco, V., Moir, M.,
Nussbaum, D.: Hybrid transactional memory. In: Proceedings of
the 12th International Conference on Architectural Support for
Programming Languages and Operating Systems, ASPLOS XII,
pp. 336–346. ACM, New York (2006). https://doi.org/10.1145/
1168857.1168900

11. Di Sanzo, P., Ciciani, B., Palmieri, R., Quaglia, F., Romano, P.:
On the analytical modeling of concurrency control algorithms for
software transactionalmemories: the case of commit-time-locking.
Perform. Eval. 69(5), 187–205 (2012). https://doi.org/10.1016/j.
peva.2011.05.002

12. di Sanzo, P., Quaglia, F., Palmieri, R.: Analytical modelling of
commit-time-locking algorithms for software transactional mem-
ories. In: Int. CMG Conference (2010)

13. Dice, D., Harris, T.L., Kogan, A., Lev, Y., Moir, M.: Hardware
extensions to make lazy subscription safe. CoRR arXiv:1407.6968
(2014)

14. Dice, D., Lev, Y., Moir, M., Nussbaum, D.: Early experience with
a commercial hardware transactional memory implementation. In:
Proceedings of the 14th International Conference on Architec-
tural Support for Programming Languages and Operating Systems,
ASPLOS XIV, pp. 157–168. ACM, New York (2009). https://doi.
org/10.1145/1508244.1508263

15. Dice, D., Shavit, N.: Understanding tradeoffs in software transac-
tional memory. In: Proceedings of the International Symposium
on Code Generation and Optimization, CGO ’07, pp. 21–33.
IEEE Computer Society, Washington, DC (2007). https://doi.org/
10.1109/CGO.2007.38

16. Diegues, N., Romano, P.: Self-tuning intel transactional syn-
chronization extensions. In: 11th International Conference on
Autonomic Computing (ICAC 14), pp. 209–219. USENIX Asso-
ciation, Philadelphia (2014). https://www.usenix.org/conference/
icac14/technical-sessions/presentation/diegues

17. Diegues, N., Romano, P., Garbatov, S.: Seer: probabilistic schedul-
ing for hardware transactional memory. In: Proceedings of the 27th
ACMSymposium on Parallelism in Algorithms and Architectures,
SPAA ’15, pp. 224–233. ACM, New York (2015). https://doi.org/
10.1145/2755573.2755578. http://doi.acm.org.focus.lib.kth.se/10.
1145/2755573.2755578

18. Diegues, N., Romano, P., Rodrigues, L.: Virtues and limitations
of commodity hardware transactional memory. In: Proceedings of
the 23rd International Conference on Parallel Architectures and
Compilation, PACT ’14, pp. 3–14. ACM,NewYork (2014). https://
doi.org/10.1145/2628071.2628080

19. Evan Jones: tpccbench. https://github.com/evanj/tpccbench
(2007). Accessed 23 Sept 2019

20. Felber, P., Issa, S., Matveev, A., Romano, P.: Hardware read-write
lock elision. In: Proceedings of the Eleventh European Conference
on Computer Systems, EuroSys ’16, pp. 34:1–34:15. ACM, New
York (2016). https://doi.org/10.1145/2901318.2901346

21. Garivier, A., Moulines, E.: On upper-confidence bound policies
for switching bandit problems. In: Proceedings of the 22nd Inter-
national Conference onAlgorithmic Learning Theory, ALT’11, pp.
174–188. Springer, Berlin (2011). http://dl.acm.org/citation.cfm?
id=2050345.2050365

22. Goel, B., Titos-Gil, R., Negi, A., McKee, S.A., Stenstrom, P.:
Performance and energy analysis of the restricted transactional
memory implementation on haswell. In: 2014 IEEE 28th Inter-
national Parallel and Distributed Processing Symposium, pp.
615–624 (2014). https://doi.org/10.1109/IPDPS.2014.70

23. Guerraoui, R., Kapalka, M.: On the correctness of transactional
memory. In: Proceedings of the 13th ACM SIGPLAN Symposium
on Principles and Practice of Parallel Programming, PPoPP ’08,
pp. 175–184. ACM, New York (2008). https://doi.org/10.1145/
1345206.1345233

24. Harris, T.L.: A pragmatic implementation of non-blocking linked-
lists. In: Proceedings of the 15th International Conference on
Distributed Computing, DISC ’01, pp. 300–314. Springer, London
(2001). http://dl.acm.org/citation.cfm?id=645958.676105

25. Hart, T.E.,McKenney, P.E., Brown,A.D.,Walpole, J.: Performance
of memory reclamation for lockless synchronization. J. Parallel
Distrib. Comput. 67(12), 1270–1285 (2007). https://doi.org/10.
1016/j.jpdc.2007.04.010

26. Issa, S.: P8TM source code and benchmarks. https://github.com/
shadyalaa/POWER8TM (2017). Accessed 23 Sept 2019

27. Jacobi, C., Slegel, T., Greiner, D.: Transactional memory archi-
tecture and implementation for IBM System Z. In: Proceedings

123

https://doi.org/10.1145/2442516.2442552
https://doi.org/10.1145/2442516.2442552
https://doi.org/10.1145/2611462.2611471
https://doi.org/10.1145/2485922.2485942
https://doi.org/10.1145/2150976.2150998
https://doi.org/10.1145/2150976.2150998
https://doi.org/10.1145/1950365.1950373
https://doi.org/10.1145/1950365.1950373
https://doi.org/10.1145/1168857.1168900
https://doi.org/10.1145/1168857.1168900
https://doi.org/10.1016/j.peva.2011.05.002
https://doi.org/10.1016/j.peva.2011.05.002
http://arxiv.org/abs/1407.6968
https://doi.org/10.1145/1508244.1508263
https://doi.org/10.1145/1508244.1508263
https://doi.org/10.1109/CGO.2007.38
https://doi.org/10.1109/CGO.2007.38
https://www.usenix.org/conference/icac14/technical-sessions/presentation/diegues
https://www.usenix.org/conference/icac14/technical-sessions/presentation/diegues
https://doi.org/10.1145/2755573.2755578
https://doi.org/10.1145/2755573.2755578
http://doi.acm.org.focus.lib.kth.se/10.1145/2755573.2755578
http://doi.acm.org.focus.lib.kth.se/10.1145/2755573.2755578
https://doi.org/10.1145/2628071.2628080
https://doi.org/10.1145/2628071.2628080
https://github.com/evanj/tpccbench
https://doi.org/10.1145/2901318.2901346
http://dl.acm.org/citation.cfm?id=2050345.2050365
http://dl.acm.org/citation.cfm?id=2050345.2050365
https://doi.org/10.1109/IPDPS.2014.70
https://doi.org/10.1145/1345206.1345233
https://doi.org/10.1145/1345206.1345233
http://dl.acm.org/citation.cfm?id=645958.676105
https://doi.org/10.1016/j.jpdc.2007.04.010
https://doi.org/10.1016/j.jpdc.2007.04.010
https://github.com/shadyalaa/POWER8TM
https://github.com/shadyalaa/POWER8TM

348 S. Issa et al.

of the 2012 45th Annual IEEE/ACM International Symposium
on Microarchitecture, MICRO-45, pp. 25–36. IEEE Computer
Society, Washington, DC (2012). https://doi.org/10.1109/MICRO.
2012.12

28. Java docs: ReentrantReadWriteLock. https://docs.
oracle.com/javase/7/docs/api/java/util/concurrent/locks/
ReentrantReadWriteLock.html (2018). Accessed 23 Sept 2019

29. Kumar, S., Chu, M., Hughes, C.J., Kundu, P., Nguyen, A.: Hybrid
transactional memory. In: Proceedings of the Eleventh ACM
SIGPLAN Symposium on Principles and Practice of Parallel Pro-
gramming, PPoPP ’06, pp. 209–220. ACM, New York (2006).
https://doi.org/10.1145/1122971.1123003

30. Lai, T., Robbins, H.: Asymptotically efficient adaptive allocation
rules. Adv. Appl. Math. 6, 4–22 (1985)

31. Le, H.Q., Guthrie, G.L., Williams, D.E., Michael, M.M., Frey,
B.G., Starke, W.J., May, C., Odaira, R., Nakaike, T.: Transactional
memory support in the IBM POWER8 processor. IBM J. Res.
Dev. 59(1), 8:1–8:14 (2015). https://doi.org/10.1147/JRD.2014.
2380199

32. Marathe, V.J., Scherer, W.N., Scott, M.L.: Adaptive software
transactional memory. In: Proceedings of the 19th International
Conference on Distributed Computing, DISC’05, pp. 354–368.
Springer, Berlin (2005). https://doi.org/10.1007/11561927_26

33. Matveev, A., Shavit, N.: Reduced Hardware NOrec: a safe and
scalable hybrid transactionalmemory. In: Proceedings of the Twen-
tieth International Conference on Architectural Support for Pro-
gramming Languages and Operating Systems, ASPLOS ’15, pp.
59–71. ACM, New York (2015). https://doi.org/10.1145/2694344.
2694393

34. Mckenney, P.E., Slingwine, J.D.: Read-copy update: using exe-
cution history to solve concurrency problems. In: Parallel and
Distributed Computing and Systems, pp. 509–518. Las Vegas, NV
(1998)

35. McKenney, P.E.,Walpole, J.:What is RCU, fundamentally? https://
lwn.net/Articles/262464/ (2007). Accessed 23 Sept 2019

36. Minh, C.C., Chung, J., Kozyrakis, C., Olukotun, K.: Stamp: Stan-
ford transactional applications for multi-processing. In: IEEE
International Symposium on Workload Characterization, 2008.
IISWC 2008, pp. 35–46. IEEE (2008)

37. Nakaike, T., Odaira, R., Gaudet, M., Michael, M.M., Tomari,
H.: Quantitative comparison of hardware transactional memory
for Blue Gene/Q, zEnterprise EC12, Intel Core, and POWER8.
In: Proceedings of the 42nd Annual International Symposium on
Computer Architecture, ISCA ’15, pp. 144–157. ACM, New York
(2015). https://doi.org/10.1145/2749469.2750403

38. Nussbaum, D., Lev, Y., Moir, M.: PhTM: Phased trans-
actional memory. In: The Second ACM SIGPLAN
Workshop on Transactional Computing, TRANS-
ACT ’07. ACM, New York (2007). https://urresearch.
rochester.edu/institutionalPublicationPublicView.action?
institutionalItemId=4058

39. Ortner, R., Ryabko, D., Auer, P., Munos, R.: Regret bounds for
restless markov bandits. In: Proceedings of the 23rd International
Conference on Algorithmic Learning Theory, ALT’12, pp. 214–
228. Springer, Berlin (2012). https://doi.org/10.1007/978-3-642-
34106-9_19

40. Raminhas, P., Issa, T., Romano, P.: Enhancing efficiency of hybrid
transactional memory via dynamic data partitioning schemes. In:
Proceedings of the 18th IEEE/ACM International Symposium on
Cluster, Cloud and Grid Computing, CCGrid ’18, pp. 1–11 (2018).
https://doi.org/10.1109/CCGRID.2018.94

41. Rossbach, C.J., Hofmann, O.S., Witchel, E.: Is transactional pro-
gramming actually easier? In: Proceedings of the 15th ACM
SIGPLAN Symposium on Principles and Practice of Parallel Pro-
gramming, PPoPP ’10, pp. 47–56. ACM,NewYork (2010). https://
doi.org/10.1145/1693453.1693462

42. Stonebraker, M., Madden, S., Abadi, D.J., Harizopoulos, S.,
Hachem, N., Helland, P.: The end of an architectural era: (it’s
time for a complete rewrite). In: Proceedings of the 33rd Inter-
national Conference on Very Large Data Bases, VLDB ’07, pp.
1150–1160. VLDB Endowment (2007). http://dl.acm.org/citation.
cfm?id=1325851.1325981

43. TPCCouncil: TPC-CBenchmark. http://www.tpc.org/tpcc (2011).
Accessed 23 Sept 2019

44. Wang, A., Gaudet, M., Wu, P., Amaral, J.N., Ohmacht, M., Barton,
C., Silvera, R., Michael, M.: Evaluation of Blue Gene/Q hardware
support for transactional memories. In: Proceedings of the 21st
International Conference on Parallel Architectures and Compila-
tion Techniques, PACT ’12, pp. 127–136. ACM, NewYork (2012).
https://doi.org/10.1145/2370816.2370836

45. Wang, Q., Kulkarni, S., Cavazos, J., Spear, M.: A transactional
memory with automatic performance tuning. ACM Trans. Archit.
Code Optim. 8(4), 54:1–54:23 (2012). https://doi.org/10.1145/
2086696.2086733

46. Yoo, R.M., Hughes, C.J., Lai, K., Rajwar, R.: Performance
evaluation of Intel® transactional synchronization extensions for
high-performance computing. In: Proceedings of the International
Conference on High Performance Computing, Networking, Stor-
age andAnalysis, SC ’13, pp. 19:1–19:11. ACM,NewYork (2013).
https://doi.org/10.1145/2503210.2503232

47. Yu, J.Y., Mannor, S.: Piecewise-stationary bandit problems with
side observations. In: Proceedings of the 26th Annual Interna-
tional Conference on Machine Learning, ICML ’09, pp. 1177–
1184. ACM, New York (2009). https://doi.org/10.1145/1553374.
1553524

Publisher’s Note Springer Nature remains neutral with regard to juris-
dictional claims in published maps and institutional affiliations.

123

https://doi.org/10.1109/MICRO.2012.12
https://doi.org/10.1109/MICRO.2012.12
https://docs.oracle.com/javase/7/docs/api/java/util/concurrent/locks/ReentrantReadWriteLock.html
https://docs.oracle.com/javase/7/docs/api/java/util/concurrent/locks/ReentrantReadWriteLock.html
https://docs.oracle.com/javase/7/docs/api/java/util/concurrent/locks/ReentrantReadWriteLock.html
https://doi.org/10.1145/1122971.1123003
https://doi.org/10.1147/JRD.2014.2380199
https://doi.org/10.1147/JRD.2014.2380199
https://doi.org/10.1007/11561927_26
https://doi.org/10.1145/2694344.2694393
https://doi.org/10.1145/2694344.2694393
https://lwn.net/Articles/262464/
https://lwn.net/Articles/262464/
https://doi.org/10.1145/2749469.2750403
https://urresearch.rochester.edu/institutionalPublicationPublicView.action?institutionalItemId=4058
https://urresearch.rochester.edu/institutionalPublicationPublicView.action?institutionalItemId=4058
https://urresearch.rochester.edu/institutionalPublicationPublicView.action?institutionalItemId=4058
https://doi.org/10.1007/978-3-642-34106-9_19
https://doi.org/10.1007/978-3-642-34106-9_19
https://doi.org/10.1109/CCGRID.2018.94
https://doi.org/10.1145/1693453.1693462
https://doi.org/10.1145/1693453.1693462
http://dl.acm.org/citation.cfm?id=1325851.1325981
http://dl.acm.org/citation.cfm?id=1325851.1325981
http://www.tpc.org/tpcc
https://doi.org/10.1145/2370816.2370836
https://doi.org/10.1145/2086696.2086733
https://doi.org/10.1145/2086696.2086733
https://doi.org/10.1145/2503210.2503232
https://doi.org/10.1145/1553374.1553524
https://doi.org/10.1145/1553374.1553524

	Extending hardware transactional memory capacity via rollback-only transactions and suspend/resume
	POWER8 TM
	Abstract
	1 Introduction
	2 Related work
	3 Background on HTM
	4 P8TM overview
	4.1 Uninstrumented read-only transactions
	4.2 Touch-based validation

	5 P8TM algorithm
	5.1 URO path
	5.2 ROT path
	5.3 Complete algorithm
	5.4 Correctness
	5.5 Progress and fairness

	6 Self-tuning
	7 Read-set tracking
	8 Evaluation
	8.1 Read-set tracking
	8.2 Sensitivity analysis
	8.3 STAMP benchmark suite
	8.4 TPC-C benchmark

	9 Conclusion
	Acknowledgements
	References

