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Abstract
An execution of a distributed algorithm is often seen as a game between the algorithm and a conceptual adversary causing
specific distractions to the computation. In this work we define a class of ordered adaptive adversaries, which cause
distractions—in particular crashes—online according to some partial order of the participating stations, which is fixed by the
adversary before the execution. We distinguish: Linearly-Ordered adversary, restricted by some pre-defined linear order of
(potentially) crashing stations; Anti-Chain-Ordered adversary, previously known as the Weakly-Adaptive adversary, which
is restricted by some pre-defined set of crash-prone stations (it can be seen as an ordered adversary with the order being an
anti-chain, i.e., a collection of incomparable elements, consisting of these stations); k-Thick-Ordered adversary restricted
by partial orders of stations with a maximum anti-chain of size k. We initiate a study of how they affect performance of
algorithms. For this purpose, we focus on the well-knownDo-All problem of performing t tasks by p synchronous crash-prone
stations communicating on a shared channel. The channel restricts communication by the fact that no message is delivered to
the operational stations if more than one station transmits at the same time. The question addressed in this work is how the
ordered adversaries controlling crashes of stations influence work performance, defined as the total number of available pro-
cessor steps during the whole execution and introduced by Kanellakis and Shvartsman (Distrib Comput 5(4):201–217, 1992)
in the context of Write-All algorithms. The first presented algorithm solves the Do-All problem with workO(t + p

√
t log p)

against the Linearly-Ordered adversary. Surprisingly, the upper bound on performance of this algorithm does not depend on
the number of crashes f and is close to the absolute lower bound Ω(t + p

√
t) proved in Chlebus et al. (Distrib Comput

18(6):435–451, 2006). Another algorithm is developed against the Weakly-Adaptive adversary. Work done by this algorithm
is O(t + p

√
t + pmin {p/(p − f ), t} log p), which is close to the lower bound Ω(t + p

√
t + pmin {p/(p − f ), t})

proved in [11] and answers the open questions posed there. We generalize this result to the class of k-Thick-Ordered
adversaries, in which case the work of the algorithm is bounded by O(t + p

√
t + pmin {p/(p − f ), k, t} log p).
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1 Introduction

We consider the problem of performing t similar and inde-
pendent tasks in a distributed system prone to processor
crashes. This problem, called Do-All, was introduced by
Dwork et al. [16] in the context of a message-passing sys-
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tem. Over the years the Do-All problem became a pillar of
distributed computing and has been studied widely from dif-
ferent perspectives [20,21].

The distributed system studied in our paper is based on
communication over a shared channel, also called amultiple-
access channel, and was first studied in the context ofDo-All
problem by Chlebus et al. [11].

The communication channel and the p crash-prone pro-
cessors, also called stations, connected to it are synchronous.
They have access to a global clock, which defines the same
rounds for all operational stations. A message sent by a sta-
tion at a round is received by all operational (i.e., not yet
crashed) stations only if it is the only transmitter in this round;
we call such a transmission successful. Otherwise, unless
stated differently, we assume that no station receives any
meaningful feedback from the channel medium, except an
acknowledgment of its successful transmission; this setting
is calledwithout collisiondetection, oppose to the settingwith
collision detection in which stations can distinguish between
no transmission and simultaneous transmission of at least
two stations (we will refer to the latter in few places of this
work).

Stations are prone to crash failures. Allowable patterns
of failures are determined by abstract adversarial models.
Historically, the main distinction was between adaptive and
oblivious adversaries; the former can make decisions about
failures during the computation while the latter has to make
all decisions prior the computation. Another characteristic of
an adversary is its size-boundedness, or more specifically f -
boundedness, if it may fail at most f stations, for a parameter
0 ≤ f < p; a linearly-bounded adversary is simply a c · p-
bounded adversary, for some constant 0 < c < 1.

We introduce the notion of the ordered adaptive adversary,
or simply ordered adversary, which can crash stations online
but according to some preselected1 order (unknown to the
algorithm) from a given class of partial orders, e.g., linear
orders (i.e., all elements are comparable), anti-chains (i.e.,
no two elements are comparable), k-thick partial orders (i.e.,
at most k elements are incomparable). On the other hand, a
strongly-adaptive adversary is not restricted by any constraint
other than being f -bounded for some f < p.

Adversaries described by a partial order are interesting
on their own right. To the best of our knowledge, such gen-
eral adversaries were not considered in literature so far and
hence offer novel framework for evaluating performance and
better understanding of reliable distributed algorithms. For
instance, in hierarchical architectures, such as clouds or net-
works, a crash at an upper level may result in cutting off
processors at lower levels, what could be seen as a crash

1 Throughout the paper, by “preselected” we mean selected prior the
execution of a given algorithm, as will be clarified later in the model
description in Sect. 2.

of lower levels from the system perspective. Linear orders
of crashes could be motivated by the fact that each station
has its own duration, unknown to the algorithm, and a crash
of some station means that all with smaller duration should
crash as well. Independent, e.g., located far away, systems
could be seen as a set of linearly ordered chains of crashes,
each chain for a different independent part of the system.
Furthermore, the study in this paper indicates that different
partial orders restricting the adversary may require different
algorithm design and yield different complexity formulas.

Another form of restricting adversarial power is to delay
the effect of its actions by a number of time steps—we
call such adversaries round-delayed. Such adaptive adver-
saries are motivated by various reactive attacking systems,
especially in analyzing security aspects. We show that this
parameter can influence performance of algorithms, indepen-
dently of the partial-order restrictions on the adversary.

Due to the specific nature of the Do-All problem, the
most accurate measure considered in the literature is work,
accounting the total number of available processor steps
in the computation. It was introduced by Kanellakis and
Shvartsman in the context of the related Write-All problem
[26]. We assume that algorithms are reliable in the sense that
they must perform all the tasks for any pattern of crashes
such that at least one station remains operational in an exe-
cution. Chlebus et al. [11] showed that Ω(t + p

√
t) work is

inevitable for any reliable algorithm, even randomized, even
for the channel with collision detection (i.e., when opera-
tional stations can recognize no transmission from at least
two transmitting stations in a round), and even if no failure
occurs. This is the absolute lower bound on the work com-
plexity of theDo-All problemon a shared channel. It is known
that this bound can be achieved even by a deterministic algo-
rithm for channels with enhanced feedback, such as collision
detection, cf., [11], and therefore such enhanced-feedback
channels are no longer interesting from perspective of reli-
able task performance.

Our goal is to check how different classes of adversaries,
especially those constrained by a partial order of crashes,
influenceworkperformance ofDo-All algorithmson a simple
shared channel with acknowledgments only.

1.1 Previous work

The Do-All problem was introduced by Dwork, Halpern and
Waarts [16] in the context of a message-passing model with
processor crashes.

Chlebus, Kowalski and Lingas (CKL) [11] were the first
who considered Do-All in a multiple-access channel. Apart
from the absolute lower bound for work complexity, dis-
cussed earlier, they also showed a deterministic algorithm
matching this performance in case of channel with col-
lision detection. Regarding the channel without collision
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detection, they developed a deterministic solution that is
optimal for such weak channel with respect to the lower
bound they proved Ω(t + p

√
t + pmin { f , t}). The lower

bound holds also for randomized algorithms against the
strongly adaptive adversary, that is, the adversary who can
see random choices and react online, which shows that
randomization does not help against a strongly adaptive
adversary.

Furthermore, their paper contains a randomized solu-
tion that is efficient against a weakly adaptive adversary
who can fail only a constant fraction of stations. A weakly
adaptive adversary is such that it needs to select f crash-
prone processors in advance, based only on the knowledge
of algorithm but without any knowledge of random bits;
then, during the execution, it can fail only processors from
that set. This algorithm matches the absolute lower bound
on work. If the adversary is not linearly bounded, that is,
f < p could be arbitrary, they only proved a lower bound of

Ω
(
t + p

√
t + pmin

{
p

p− f , t
})

.

Clementi et al. [13] investigated Do-All in the communi-
cation model of a multiple-access channel without collision
detection. They studied F-reliable protocols, which are
correct if the number of crashes is at most F , for a param-
eter F < p. They obtained tight bounds on the time and
work of F-reliable deterministic protocols. In particular, the
bound on work shown in [13] is Θ(t + F · min{t, F}). In
this paper, we consider protocols that are correct for any
number of crashes smaller than p, which is the same as
(p − 1)-reliability. Moreover, the complexity bounds of our
algorithms, for the channel without collision detection, are
parametrized by the number f of crashes that actually occur
in an execution. Results shown in [13] also referred to the
time perspective with a lower bound on time complexity
equal

Ω

(
t

p − F
+ min

{
t F

p
, F + √

t

})
.

However the protocols make explicit use of the knowledge
of F . In this paper we give some remarks on time and
energy complexity but, opposed to results in [13], those
statements are correct for an arbitrary f , which does not
need to be known by the system (see details in Sect. 9).
Observe that, opposed to the worst case time complex-
ity, the considered work complexity could be seen as an
average processors time multiplied by the number of pro-
cessors.

1.2 Related work

Do-All problem. After the seminal work by Dwork, Halpern
and Waarts [16], the Do-All problem was studied in a num-
ber of follow-up papers [7,8,10,14,17] in the context of a

message-passingmodel, inwhich every node can send ames-
sage to any subset of nodes in one round. Dwork et al. [16]
analyzed task-oriented work, in which each performance of
a task contributes a unit to complexity, and the communi-
cation complexity defined as the number of point-to-point
messages.

De Prisco et al. [14] were the first to use the available
processor steps [26] as the measure of work for solutions
of Do-All. They developed an algorithm which has work
O(t+( f +1)p) andmessage complexityO(( f +1)p). Galil
et al. [17] improved the message complexity to O( f pε +
min{ f + 1, log p}p), for any positive ε, while maintaining
the same work complexity. This was achieved as a by-
product of their investigation of the Byzantine agreement
with crash failures, for which they found a message-efficient
solution. Chlebus et al. [7] studied failure models allowing
restarts.

Chlebus and Kowalski [10] studied the Do-All prob-
lem when occurrences of failures are controlled by the
weakly-adaptive linearly-bounded adversary. They devel-
oped a randomized algorithm with the expected effort (effort
= work + number of messages) O(p log∗ p), in the case
p = t , which is asymptotically smaller than the lower bound
Ω(p log p/ log log p) on work of any deterministic algo-
rithm. Chlebus et al. [8] developed a deterministic algorithm
with effort O(t + pa), for some specific constant a, where
1 < a < 2, against the unbounded adversary, which is the
first algorithm with the property that both work and com-
munication are o(t + p2) against this adversary. They also
gave an algorithm achieving both work and communication
O(t+ p log2 p) against a strongly-adaptive linearly-bounded
adversary.All the previously knowndeterministic algorithms
had either work or communication performance Ω(t + p2)
when as many as a linear fraction of processing units could
be failed by a strongly-adaptive adversary. Georgiou et al.
[19] developed an algorithm with workO(t + p1+ε), for any
fixed constant ε, by an approach based on gossiping. Kowal-
ski and Shvartsman [30] studied Do-All in an asynchronous
message-passing mode when executions are restricted such
that every message delay is at most d. They showed lower
bound Ω(t + pd logd p) on the expected work. They devel-
oped several algorithms, among them a deterministic one
with work O((t + pd) log p). For further developments
we refer the reader to the book by Georgiou and Shvarts-
man [21].

Related problems on a shared channel. Most of work in
this model focused on communication problems, see the sur-
veys [6,18]. Among the most popular protocols for resolving
contention on the channel are Aloha [1] and exponential
backoff [33]. The two most related research problems are
as follows.
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The selection problem is about how to have an input
message broadcast successfully if only some among the
stations hold input messages while the other do not. It is
somehow closely related to the leader election problem.
Willard [36] developed protocols solving this problem in
the expected time O(log log n) in the channel with colli-
sion detection. Kushilevitz andMansour [31] showed a lower
bound Ω(log n) for this problem in case of a lack of colli-
sion detection, which explains the exponential gap between
this model and the one with collision detection. Martel [32]
studied the related problem of finding maximum within the
values stored by a group of stations.

Jurdziński et al. [25] considered, the leader election prob-
lem for the channel without collision detection, giving a
deterministic algorithm with sub-logarithmic energy cost.
They also proved log-logarithmic lower bound for the prob-
lem.

The contention resolution problem is about a subset of
some k among all n stations which have messages. All these
messages need to be transmitted successfully on the channel
as quickly as possible. Komlós and Greenberg [28] proposed
adeterministic solution allowing to achieve this in timeO(k+
k log(n/k)), where n and k are known. Kowalski [29] gave
an explicit solution of complexity O(kpolylogn), while the
lower bound Ω(k(log n)/(log k)) was shown by Greenberg
and Winograd [22]. The work by Chlebus et al. [9] regarded
broadcasting spanning forests on a multiple-access channel,
with locally stored edges of an input graph.

Significant part of recent results on the communication
model considered in the literature is focused on jamming-
resistant protocols motivated by applications in single-hop
wireless networks. To the best of our knowledge this line
of research was initiated in [2] by Awerbuch, Richa and
Scheideler, wherein authors introduced a model of adversary
capable of jamming up to (1 − ε) of the time steps (slots).
The following papers [34,35] by Richa, Scheideler, Schmid
and Zhang proposed several algorithms that can reinforce the
communication even for a very strong, adaptive adversary.
For the same model Klonowski and Pająk [27] proposed an
optimal leader election protocol, using a different algorith-
mic approach.

The similarmodel of a jamming adversarywas considered
by Bender et al. [3]. The authors consider a modified, robust
exponential backoff protocol that requires O(log2 n + T )

attempts to the channel if there are at most T jammed slots.
Motivated by saving energy, the authors try to find maximal
global throughput while reducing device costs expressed by
the number of attendants in the channel.

Finally, there are several recent results on finding approx-
imations of the network. Brandes et al. [4] proposed an
algorithm for the network of n stations that returns (1 + ε)-
approximation of n with probability at least 1 − 1/ f . This
procedure takes O(log log n + log f /ε2) time slots. This

result was also proved to be time-optimal in [4]. Chen et al.
[5] demonstrated a size approximation protocol for seem-
ingly different model (namely RFID system) that needs

Ω
(

1
ε2 log 1/ε

+ log log n
)

slots for ε ∈ [1/√n, 0.5] and

negligible probability of failure. In fact, this result can be
instantly translated into the MAC model.

1.3 Our results

We introduce a hierarchy of adaptive adversaries and study
their impact on the complexity of performing jobs on a shared
channel. The most important parameter of this hierarchy is
the partial order. It describes adversarial crashes, hence we
call such adversaries ordered. The other parameters are: the
number of crashes f (we call them size-bounded adversaries)
and a delay c in the effect of the adversary’s decisions. We
call them c-Round-Delayed or c-RD.

Since the adversaries that we introduce originate frompar-
tial order relations, then appropriate notions and definitions
translate straightforwardly. The relation of our particular
interest while considering partially ordered adversaries is the
precedence relation. Precisely, if some station v precedes sta-
tion w in the partial order of the adversary, then we say that
v and w are comparable. This also means that station v must
be crashed by the adversary before station w. Consequently
a subset of stations where every pair of stations is compara-
ble is called a chain. On the other hand a subset of stations
where no two different stations are comparable is called an
anti-chain.

It is convenient to think about the partial order of the
adversary from a Hasse diagram perspective. The notion of
chains and anti-chains seems to be intuitive when graph-
ically presented, e.g., a chain is a pattern of consecutive
crashes that may occur while an anti-chain gives the adver-
sary freedom to crash in any order due to non-comparability
of elements/stations.

We show that adversaries constrained by an order of short
width i.e., with short maximal anti-chain or 1-RD adver-
saries have very little power, results in performance similar
to the one enforced by oblivious adversaries or linearly-
ordered adversaries, cf., [11]. More specifically, we develop
algorithmsROBAL and GILET, which achieve work perfor-
mance close to the absolute lower boundΩ(t+ p

√
t) against

“narrow-ordered” and 1-RD adversaries, respectively.
In case of ordered adversaries restricted by orders of arbi-

trary width k ≤ f , we present algorithm GruTEch that

guarantees work O
(
t + p

√
t + pmin

{
p

p− f , t, k
}
log p

)

against ordered adversaries restricted by orders of width k,
and show that it is efficient by proving a lower bound for a
broad class of partial orders. This also extends the result for
a weakly-adaptive linearly-bounded adversary from [11] to
any number of crashes f < p, as weakly-adaptive adversary
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Table 1 Summary of main results; first three were introduced in CKL [11], the other are presented in this paper

Algorithm Channel Adv. Work Refs. Lower bound Refs.

Two-Lists no-CD SA O(t + p
√
t + pmin{ f , t}) [11] Thm 1 Ω(t+ p

√
t+ pmin{ f , t}) [11] Thm 2

Groups-Together CD SA O(t + p
√
t) [11] Thm 3 Ω(t + p

√
t) [11] Lem 2

Mix-Rand no-CD WALB O(t + p
√
t) [11] Thm 5 Ω(t + p

√
t) [11] Lem 2

ROBAL no-CD LOA O(t + p
√
t log p) Sect. 4 Ω(t + p

√
t) [11] Lem 2

GruTEch no-CD WA O
(
t + p

√
t

+pmin
{

p
p− f , t

}
log p

) Sect. 5 Ω
(
t + p

√
t

+pmin
{

p
p− f , t

}) [11] Thm 6

GruTEch no-CD COA O
(
t + p

√
t

+pmin
{

p
p− f , t, k

}
log p

) Sect. 6 Ω
(
t + p

√
t

+pmin
{

p
p− f , k, t

}) Sect. 6

GILET no-CD 1-RD O (
t + p

√
t log2 p

)
Sect. 7 Ω

(
t + p

√
t
)

[11] Lem 2

CD stands for collision detection model feature. SA stands for Strongly-Adaptive adversary, WA (WALB) stands for Weakly-Adaptive (Linearly-
Bounded) adversary, COA stands for Chain-Ordered adversary, LOA stands for Linearly-Ordered adversary, and 1-RD stands for 1-Round-Delay
adversary

Fig. 1 The hierarchy of adversaries

is a special case of ordered adversary restricted by a single
anti-chain. Our results together with [11] prove a separation
between classes of adversaries. The easiest to play against,
apart of the oblivious ones, are the following adaptive adver-
saries: 1-RD adversaries, ordered adversaries restricted by
short-width orders, and linearly bounded adversaries. More
demanding are ordered adversaries restricted by order of
width k, for larger values of k, and f -bounded adversaries
for f close to p. The most demanding are strongly-adaptive

adversaries, as their decisions and the way they act are least
restricted. See Table 1 for detailed results and comparisons.

The hierarchy of the considered adversaries is illustrated
on Fig. 1. It depends on three main factors. Addition-
ally, we introduce several solutions for the specified set-
tings. Consequently our contribution is a complement to
adversarial scenarios presented in literature together with
a taxonomy describing the dependencies between different
adversaries.
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First of all we have the vertical axis which describes
adversary features, that is how restricted his decisions are.
We have the Strongly-Adaptive adversary in the origin, who
may decide on-line which stations will be crashed. Above
the Strongly-Adaptive adversary is the Weakly-Adaptive
adversary, who is slightly weaker and before the algorithm
execution has to declare the subset of stations that will be
prone to crashes. Next we have the k-Chain-Ordered adver-
sary and its more general version k-Thick-Ordered adversary
(Chain-O-Adaptive in Fig. 1 for consistency). Apart from
declaring the faulty subset, the former adversary is restricted
by partial orders being collections of disjoint k chains, while
the latter—byall partial orders of thickness k (and so k-chains
as well). Finally, there is the Linearly-Ordered adversary
(Linearly-O-Adaptive in Fig. 1) that we introduce in this
paper—its order is described by a linear pattern of processor
crashes.

The horizontal axis describes another feature of the adver-
sary, that we introduce in our paper, i.e., the Round-Delay
of adversary decisions. Similarly, the configuration for the
problem is hardest in the origin and a 0-RD adversary is
the strongest against which we may execute an algorithm.
An interesting particularity is that if the Strongly-Adaptive
adversary’s decisions are delayed by at least one round, then
we may design a solution whose work complexity is inde-
pendent of the number crashes.

The axis orthogonal to those already considered, describes
the channel feedback. In the origin we have a multiple-
access channel without collision detection, then there is the
beeping channel, followed by MAC with collision detec-
tion.

We may see that the most difficult setting is in the ori-
gin, while the further from the origin, the easier the problem.
The boxes in Fig. 1 represent the algorithms and their work
complexities in certain configurations of the model i.e. fea-
tures described above. The bold boxes denote algorithms
from this paper and the remaining ones are from CKL [11].
Factors marked red denote the “distance” from the lower
bounds, understood as how far the algorithms are from opti-
mum.

A subset of the results from this paper forms a hierarchy of
partially ordered adversaries. Thefirst solutionwe introduced
was designed to work against a linearly-ordered adversary,
whose pattern of crashes is described by a linear order. The
upper bound of this algorithm does not depend on the number
of crashes and is just logarithmically far from the minimal
work complexity in the assumed model. The second algo-
rithm serves for the case when the adversary’s partial order
of stations forms amaximum length anti-chain. Nevertheless
we also analyze this solution against an in-between situation
when the partial order is consists of k chains of an arbitrary
length, yet the sum of their lengths is f .

In order to conclude the content of this paper, we would
like to emphasize that building on solutions from CKL [11]
we introduce different algorithms and specific adversarial
scenarios, for more complex setups that, to some extent,
filled the gaps for randomized algorithms solving Do-All
in the most challenging adversarial scenarios and communi-
cation channels providing least feedback. Due to the basic
nature of the considered communication model—a shared
channel with acknowledgments only—our solutions are also
implementable and efficient in various different types of com-
munication models with contention and failures.

1.4 Document structure

We describe the model of the problem, communication chan-
nel details, different adversary scenarios and the complexity
measure in Sect. 2. Section3 is dedicated to the Two-

Lists and Groups-Together procedures from [11] that
ares used (sometimes after small modifications) as a tool-
box in our solutions. In Sect. 4 we present a randomized
algorithm ROBAL solvingDo-All in presence of a Linearly-
Ordered adversary. In the following section (Sect. 5) there is
a work-efficient algorithmGruTEch that simulates a kind of
fault-tolerant collision detection on a channel without such
feature. This is followed by Sect. 6, wherewe adjust this solu-
tion for a k-Chain-Ordered adversary. Finally,we haveSect. 7
that contains a solution for the 1-RD adversary (algorithm
GILET) and Sect. 8 is dedicated to the transition of Groups-
Together to the beeping model. We conclude with a
short summary in Sect. 9, which also contains some general
remarks about time and energy complexity of our algorithms.

2 Shared channel model and the Do-All
problem

TheDo-All problem has been introduced byDwork et al [16]
and was considered further in numerous papers [8,10,12,14,
17] under different assumptions regarding the model. In this
section we formulate the model we consider, which is based
on the one considered in [11].

In general, the Do-All problem is modeled as follows: a
distributed system of computationally constrained devices is
expected to perform a number of tasks [20]. We will call
those devices processors or simply stations. The main effi-
ciency measure that we use is work, i.e., the total number of
processor steps available for computations [26].

2.1 Stations

In our model we assume having p stations, with unique
identifiers from the set {1, . . . , p}. The distributed system
of those devices is synchronized with a global clock, and
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time is divided into synchronous time slots, called rounds.
All the stations start simultaneously at a certain moment.
Furthermore every station may halt voluntarily. In this paper,
by n < p we will denote the number of operational, i.e. not
crashed, stations.

2.2 Communication

The communication channel for processors is a multiple-
access channel [6,18], where a transmitted message reaches
every operational device. All our solutions work on a chan-
nel without collision detection, hence when more than one
message is transmitted at a certain round, then the devices
hear a signal indistinguishable from the background noise.
In our model we assume, that the number of bits possible to
broadcast in a single transmission is bounded by O(log p),
however all our algorithms broadcastmerelyO(1) bits, hence
we omit the analysis of the message complexity.

In few places of this work we refer to the alternative chan-
nel setting with collision detection, in which there are three
types of feedback from the channel:

– Silence: no station transmits, and only a background
noise is heard;

– Single: exactly one station transmits a legible informa-
tion;

– Collision: an illegible signal is heard (yet different from
Silence), when more than one station transmits simulta-
neously.

Section 3.2 provides more details. We note here that the set-
ting with collision detection is referred to only in the context
of transforming algorithmic tools and lower bounds to the
more challenging setting without collision detection primar-
ily studied in this work.

It isworth emphasizing that the communication channel in
ourmodel can bemade resistant to non-synchronized proces-
sor clocks without increasing asymptotic performance, using
methods developed previously [23]: when processor clocks
are not synchronized, then we could replace each round by
two rounds of appropriate lengths to compensate possible
lags.

2.3 Adversaries

Processors may be crashed by the adversary. One of the
factors that describes the adversary is its power f . It rep-
resents the total number of failures that may be enforced.
We assume that 0 ≤ f ≤ p − 1, so always at least one
station remains operational until an algorithm terminates.
Stations that were crashed neither restart nor contribute to
work. Another feature of the adversary is whether it is adap-
tive or not. Following the definition from [20], an adaptive

adversary is the one that has complete knowledge of the
computation that it is affecting, and it makes instant dynamic
decisions on how to affect the computation. A non-adaptive
adversary, sometimes called oblivious, has to determine a
sequence of events it will cause before the start of the com-
putation. In this paper we focus on adaptive adversaries.

In the previous work, the following adversarial models
were considered, c.f., [11,21]:

• Strongly-Adaptive f -Bounded: the only restriction of
this adversary is that the total number of failures may
not exceed f . In particular all possible failures may hap-
pen simultaneously.

• Weakly-Adaptive f -Bounded: the adversary has to
declare a subset of f stations prone to crashes before
the algorithm execution. Yet, it may arbitrarily perform
crashes on the declared subset.

• Unbounded: that is Strongly-Adaptive (p−1)-Bounded.
• Linearly-Bounded: an adversary of power f , where f =
cp, for some 0 < c < 1.

We now introduce new adversarial models that comple-
ment the existing ones from the literature.

2.3.1 The Ordered f -Bounded adversary

Formally, the Ordered f -Bounded adversary has to declare,
prior the execution, a subset of at most f out of p stations
that will be prone to crashes. Then, before starting the exe-
cution, the adversary has to impose a partial order on the
selected stations, taken from a given family of partial orders.
This family restricts the power of the adversary—the wider
it is the more power the adversary possesses. Moreover, as
we will show in this work, the structure of available partial
orders influences asymptotic performance of algorithms and
the complexity of the Do-All problem under the presence of
the adversary restricted by these partial orders.

The adversary may enforce a failure independently from
time slots (even f at the same round), but with respect to the
order. This means that a pre-selected crash-prone station can
be crashed in a time slot if and only if all stations preceding
it in the order has been already crashed by the end of the time
slot.

In this work we focus on the following three types of
partial orders.

The Linearly-Ordered f -Bounded adversary. Formally, the
Linearly-Ordered f -Bounded has to choose a sequence π =
π(1) . . . π( f ) designating the order on the selected set of f
stations in which the failures will occur, where π(i) repre-
sents the id of the i th fault-prone station in the order. This
means that station π(i)may be crashed if and only if stations
π( j) are already crashed, for all j < i . In what follows, the
notion of sequence π is consistent with a linear partial order.
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The k-Chain-Ordered and k-Thick-Ordered f -Bounded
adversary. The k-Chain-Ordered f -Bounded adversary has
to arrange the pre-selected f stations into a partial order con-
sisting of k disjoint chains of arbitrary length that represent
in what order these stations may be crashed. In what follows
there are k chains; we denote l j as the length of chain j , and
we assume that the sum of lengths of all chains equals f .

While considering k-Chain-Ordered adversaries we will
also define additional notions, useful in the analysis of certain
results. We say that a partial order is a k-chain-based partial
order if it consists of k disjoint chains such that:

– no two of them have a common successor, and
– the total length of the chains is a constant fraction of all
elements in the order.

Furthermore, by the thickness of a partial order P we
understand the maximal size of an anti-chain in P . An adver-
sary restricted by a wider class of partial orders of thickness
k is called k-Thick-Ordered.
The Anti-Chain-Ordered f -Bounded adversary. This adver-
sary is restricted by a partial order which is the anti-chain of
f elements, i.e., all f crash-prone stations are incompara-
ble, thus could be crashed in any order. This adversary is the
same as the Weakly-Adaptive f -Bounded adversary and the
f -Thick-Ordered ones.

2.3.2 The c-RD f -Bounded adversary

The c-RD adversary decisions take effect with a c round
delay. This means that if we consider time divided into slots
(rounds), then if the adversary decides to interfere with the
system (crash a processor) then this will inevitably happen
after c rounds. In particular, this means that the subsequent
execution and random bits do not influence the decision and
its effect—the decision is final and once made by the adver-
sary cannot be changed during the delay. We still consider
f -boundedness of the adversary, but apart from that it may
decide arbitrarily, without declaring which stations will be
prone to crashes before the algorithm’s execution.

A special case of the c-RD adversary is a 0-RD and a
1-RD adversary model. The definition of the former case is
consistent with the Strongly-Adaptive adversary. The latter
case may give an answer to the question regarding the matter
of how delay influences the difficulty of the problem for a
strong adversary.

2.4 Complexity measure

The complexity measure that is mainly used in our analysis
is work, as mentioned before. It is the number of available
processor steps for computations. This means that each oper-
ational station that did not halt contributes a unit of work even

if it is idling. Since we use work complexity measure exten-
sively, we adopt the following definition from [21].

Definition 1 ([21],Definition 2.2) Let A be an algorithm that
solves a problem of size t with p processors, under adversary
A. Let E(A,A) denote the set of all executions of algorithm
A, under adversary A. For execution ξ ∈ E(A,A), let time
τ(ξ) be the time (according to the external clock), by which
A solves the problem. By pi (ξ) let us denote the number
of processors completing a local computation step (e.g., a
machine instruction) at time i of the execution, according to
some external global clock (not available to the processors).
Then work complexity S of algorithm A is:

S = SA(t, p) = max
ξ∈E(A,A)

⎧⎨
⎩

τ(ξ)∑
i=1

pi (ξ)

⎫⎬
⎭ .

For randomized algorithms that we are dealing with in
this paper, we assess the expected work SEA(t, p), which is
defined as the maximum over all executions ξ ∈ E(A,A) of
the expectation of the sum

∑τ(ξ)
i=1 pi (ξ) from Definition 1.

In order to illustrate work complexity measure of a single
execution of an algorithm let us assume that an execution
starts when all the stations begin simultaneously in some
fixed round r0. Let rv be the round when station v halts or
is crashed. Then its work contribution is equal rv − r0. In
what follows, the algorithm complexity is the sum of such
expressions over all stations, i.e.:

∑
1≤v≤p(rv − r0).

2.5 Tasks and reliability

We expect that processors will perform all t tasks as a result
of executing an algorithm. Tasks are initially known to pro-
cessors. We assume that tasks are similar (that is each task
requires the same number of rounds to be done), indepen-
dent (they can be performed in any order) and idempotent
(every taskmay be performedmany times, even concurrently
by different processors without affecting the outcome of its
computation). We assume that one round is sufficient to per-
form a single task.

2.6 Do-All formal definition

Having explained the assumptions for tasks, we may now
state the formal definition of the Do-All problem after [20]:

Do-All: Given a set of t tasks, perform all tasks using p
processors, under adversary A.
In our considerations adversary A from the definition above
is one of the adversaries described in Sect. 2.3.

We assume that all our algorithms need to be reliable. A
reliable algorithm satisfies the following conditions in any
execution: all the tasks are eventually performed, if at least
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one station remains non-faulty and each station eventually
halts, unless it has crashed.

The Do-All problem may be considered completed or
solved. It is considered completed when all tasks are per-
formed, but their outcomes are not necessarily known by all
operational stations. The problem is considered solved if in
addition all operational processors are aware of the tasks’ out-
comes. In this paper we do not assume that stations need to
know tasks’ outcomes, yet algorithm ROBAL is designed in
such away that it may solve the problem,while all other algo-
rithms complete it (performing tasks is confirmed by a colli-
sion signal that does not contain any meaningful message).

3 Useful algorithmic tools

3.1 AlgorithmTwo-Lists

In this subsection we describe a deterministic Two-Lists
algorithm from [11] which is used in our solutions as a
sub-procedure. It was proved that this algorithm is asymp-
totically optimal for the Weakly-Adaptive adversary on a
channel without collision detection, and its work complexity
is O(t + p

√
t + p min{ f , t}). The characteristic feature of

Two-Lists is that its complexity is linear for some setups of
p and t parameters, describing the number of processors and
tasks, respectively (for details, see Fact 7).

3.1.1 Basic facts and notation

Two-Lists was designed for a channel without collision
detection. That is why simultaneous transmissions were
excluded therein. It has been realized by a cyclic schedule of
broadcasts (round-robin). This means that stations maintain
a transmission schedule and broadcast one by one, accord-
ingly. Because of such design every message transmitted via
the channel is legible for all operational stations.

Another important fact about Two-Lists is that stations
maintain the list of tasks, what enables them to distinguish
which tasks are they responsible for. Both the tasks list and
the transmission schedule are maintained as common knowl-
edge. The result of such an approach is that stations may
transmit messages of a minimal length, just to confirm that
they are still operational and performed their assigned tasks.

Additionally the transmission schedule and tasks list is
stored locally on each station, but the way how stations com-
municate allows to think of those lists as common for all
operational stations.

Two-Lists is structured as a loop (see Algorithm 1). Each
iteration of the loop is called an epoch. Every epoch begins
with a transmission schedule and tasks being assigned to pro-
cessors. During the execution some tasks are performed and
if a station transmits such fact, it is confirmed by remov-

Algorithm 1: Epoch-Two-Lists, code for station v;
from [11]
1 set pointer Task_To_Dov on list TASKS to the initial position
of the range v;

2 set pointer Transmit to the first item on list STATIONS;
3 repeat

// Round 1:
4 perform the first task on list TASKS, starting from the one

pointed to by Task_To_Dov , that is in list OUTSTANDINGv

move the performed task from list OUTSTANDINGv to list
DONEv ;

5 advance pointer Task_To_Dov by one position on list
TASKS;
// Round 2:

6 if Transmit points to v then
7 broadcast one bit;
8 end
9 attempt to receive a message;

// Round 3:
10 if a broadcast was heard in the preceding round then
11 for each item x on list DONETransmit do
12 if x is on list OUTSTANDINGv then
13 move x from OUTSTANDINGv to DONEv ;
14 end
15 if x is on list TASKS then
16 remove x from TASKS;
17 end
18 end
19 if list TASKS is empty then
20 halt;
21 end
22 advance pointer Transmit by one position on list

STATIONS;
23 end
24 else
25 remove the station pointed to by Transmit from

STATIONS;
26 end
27 until (pointer Transmit points to the first entry on list

STATIONS) or (all tasks in list TASKS have been covered in the
epoch);

Algorithm 2: Two-Lists, code for station v; from [11]
1 - initialize STATIONS to a sorted list of all p names of stations;
2 - initialize both TASKS and OUTSTANDINGv to sorted list of all
t names of tasks;

3 - initialize DONEv to an empty list of tasks;
4 - repeat
5 Epoch-Two-Lists;
6 until halted;

ing those certain tasks from list TASKS. However due to
adversary activity some stations may be crashed, what is
recognized as silence heard on the channel in a round that
a station was scheduled to transmit. Stations recognized as
crashed are also removed from the transmission schedule.
Eventually a new epoch begins with updated lists.
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Fig. 2 Tasks assignment in Two-Lists

Epochs are also structured as loops (see Algorithm 2).
Each iteration is now called a phase, that consists of three
consecutive rounds in which station v:

1. Performs the first unaccomplished task that was assigned
to v;

2. v broadcasts one bit, confirming the performance of tasks
that were assigned to v, if it was v’s turn to broadcast.
Otherwise v listens to the channel and attempts to receive
a message

3. Depending on whether a message was heard v updates
its information about stations and tasks.

An epoch consists of a number of phases, that is described
by the actual number of operational stations or outstanding
tasks. In each epoch there is a repeating pattern of phases that
consists of the following three rounds: (1) each operational
station performs one task.Next (2) a transmission round takes
place, where at most one station broadcasts a message, and
the rest of the stations attempt to receive it. The process is
ended (3) by an updating round, where stations reconstruct
their knowledge about operational stations and outstanding
tasks.

3.1.2 The significance of lists

In the previous section we mentioned the concept of knowl-
edge about stations and tasks, that processors maintain. It
was described somehow abstractly, so now we will explain
it in detail. Furthermore we will provide information on how
the stations are scheduled to transmit and how do they know
which tasks should they perform.

It is not accidental that the algorithm was named Two-

Lists as the most important pieces of information about the
system are actually maintained on two lists. The first is list
STATIONS. It represents operational (at the beginning of
an epoch) processors and sets the order in which stations

should transmit in consecutive phases. That list is operated by
pointer Transmit, that is incremented after every phase. It
points exactly one station in a single iteration, what prevents
collisions on the channel. Hence when some station did not
broadcast wemay recognize that it was crashed and eliminate
from STATIONS, setting the pointer to the following device.

The second list is TASKS. It contains outstanding tasks,
and the associated pointer is Task_To_Dov , separate for
each station. Task assignment is organized in the following
way (see Fig. 2 for a visualized example). Let us present pro-
cessors from list STATIONS as a sequence 〈vi 〉1≤i≤n , where
n = |STATIONS| is the number of operational stations at
the beginning of the epoch. Each station is responsible for
some segment of list TASKS and all segments sum to the
whole list. The length of a segment for station vi equals i in
a single epoch. A single task may belong to more than one
segment at a time, unless the number of tasks is accordingly
greater than the number of stations.

It is noticeable that lists STATIONS and TASKS are
treated as common to all the devices, because of maintain-
ing common knowledge. However, in fact every station has
a private copy of those lists and operates with appropriate
pointers.

Finally, there are additional two lists maintained by each
station. The first one is list OUTSTANDINGv and it contains
the segment of tasks that station v has assigned to perform
in an epoch. The second is list DONEv and it contains tasks
already performed by station v. These two additional lists are
auxiliary and their main purpose is to structure algorithms in
a clear and readable way.

3.1.3 Sparse versus dense epochs

The last important element of Two-Lists description, that
explains some subtleties are definitions of dense and sparse
epochs.
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Definition 2 Let n = |STATIONS| denote the number
of operational stations at the beginning of the epoch. If
n(n+ 1)/2 ≥ |TASKS| then we say that an epoch is dense.
Otherwise we say that an epoch is sparse.

The expression n(n+1)/2 = 1+2+· · ·+n from the def-
inition above determines how many tasks may be performed
in a single epoch. If all the broadcasts in Two-Lists are suc-
cessful, then this is the number of performed (and confirmed)
tasks.

In general that is why if we consider a dense epoch, then
it is possible that some task i was assigned more than once
to different stations. A dense epoch may end when the list
of tasks will become empty. However for sparse epochs the
ending condition is consistent with the fact that every station
had a possibility to transmit, and pointer Transmit passed
all the devices on list STATIONS.

We end this section with results from [11] stating that
Two-Lists is asymptotically work optimal, for the chan-
nel without collision detection and against the Strongly-
Adaptive adversary.

Fact 1 ([11], Theorem 1) Algorithm Two-Lists solves Do-All
with workO(t + p

√
t + pmin{ f , t}) against the f-Bounded

adversary, for any 0 ≤ f < p.

Fact 2 ([11], Theorem 2) The f-Bounded adversary, for 0 ≤
f < p, can force any reliable, possibly randomized, algo-
rithm for the channel without collision detection to perform
work Ω(t + p

√
t + pmin{ f , t}).

Fact 3 ([11], Corollary 1) Algorithm Two-Lists is optimal in
asymptotic work efficiency, among randomized reliable algo-
rithms for the channel without collision detection, against the
adaptive adversary who may crash all but one station.

3.2 Algorithm Groups-Together

Beside Two-Lists, which serves as a sub-procedure for our
considerations, some of our algorithms are built on another
algorithm fromCKL [11]—Groups-Together. The design
of both algorithms is similar, yet Groups-Together was
introduced for a channel with collision detection. In what
follows, we will describe the technicalities and main differ-
ences in this subsection.
Let us recall that a shared channel with collision detection
provides three types of signals:

– Silence: no station transmits, and only a background
noise is heard;

– Single: exactly one station transmits a legible informa-
tion;

– Collision: an illegible signal is heard (yet different from
Silence), when more than one station transmits simulta-
neously.

Simultaneous transmissions are excluded in Two-Lists,
as they do not provide any valuable information when colli-
sion detection is not available. In such case a simultaneous
transmission of multiple stations results in a silence signal,
and does not provide any meaningful information.

Because Groups-Together is specifically designed to
work on a channel with collision detection, then the feed-
back from collision signals is extensively used. The main
difference is that instead of list STATIONS, it maintains
list GROUPS—and indeed, in Groups-Together the sta-
tions are arranged into disjoint groups. Assigning stations to
groups is as follows. Let n be the smallest number such that
n(n + 1)/2 > |TASKS| holds. Stations have their unique
identifiers from set {1, . . . , p}. Let gi denote some group i ,
where gi contains the stations that identifiers are congruent
modulo i . For this reason, any two groups from GROUPS
differ in size by at most 1. Consequently, the initial partition
results in having min{√t, p} groups.

Tasks assignment is the same as in Two-Lists, with the
difference that now the algorithm operates on groups instead
of single stations. In what follows, all the stations within a
single group have the same tasks assigned and hence work
together on exactly the same tasks. The round-robin sched-
ule of consecutive broadcasts from Two-Lists also applies
to Groups-Together, yet now points out particular groups
instead of single stations. Consequently, if a group broadcasts
simultaneously and there is a collision signal (or a single
transmission) heard on the channel, this means that the tasks
that the group was responsible for have been actually per-
formed and may be removed from list TASKS. However, if
silence is heard, then we are sure that all the stations from
the group have been crashed.

Apart from the differences described above Groups-

Together is the same Two-Lists. It is structured as a loop,
which one iteration is called an epoch. An epoch is also struc-
tured as a repeat loop which one iteration is called a phase.
Phases contain three rounds, one of which is for transmis-
sion. If no transmission occurs in a phase, we call it silent.
Otherwise it is called noisy. The notions of dense and sparse
epochs remain the same as in the Two-Lists analysis.

We finish this section with useful results from CKL [11]
about Groups-Together.

Fact 4 ([11], Lemma 4) Algorithm Groups-Together is
reliable.

Fact 5 ([11], Theorem 3) Algorithm Groups-Together

solves Do-All with the minimal work O(t + p
√
t) against

the f -Bounded adversary, for any f such that 0 ≤ f < p.
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4 ROBAL: RandomOrder Balanced
Allocation Lists

In this section we describe and analyze the algorithm for the
Do-All problem in the presence of a Linearly-Ordered adver-
sary on a channel without collision-detection. Its expected
work complexity isO(t+ p

√
t log(p)) and it uses the Two-

Lists procedure from [11] (c.f., Sect. 3).

Algorithm 3: ROBAL, code for station v

1 if p2 ≤ t then
2 execute Two-Lists;
3 end
4 else
5 initialize STATIONS to a sorted list of all p names of

stations;

6 if log2(p) > e
√
t

32 then
7 execute a t-phase epoch where every station has all tasks

assigned (without transmissions);
8 execute Confirm-Work;
9 end

10 else
11 i = 0;
12 repeat
13 if ( p

2i
≤ √

t) then
14 Execute Two-Lists;
15 end
16 if Mix-And-Test(i, t, p) then
17 repeat
18 Execute

√
t phases of Two-Lists;

19 until less than 1
4

√
t broadcasts are heard;

20 end
21 increment i by 1;
22 until i = 	log2(p)
;
23 end
24 end

ROBAL (Algorithm 3) works in such a way that, initially,
it checks whether p2 > t , because for such parameters it
can execute the Two-Lists algorithm which complexity if
linear in t (see Fact 6). If this is not the case, the main body
of the algorithm is executed, yet another specific condition

is checked: log2(p) > e
√
t

32 . If so, it assigns all tasks to each
station. If every station has all the tasks assigned, then after
t phases we may be sure that all the tasks are done, because
always at least one station remains operational. Because of
the specific range of the parameters, the redundant work in
this case is acceptable (i.e., within the claimed bound) from
the point of view of our analysis. However we execute pro-
cedure Confirm-Work (Algorithm 4) in order to confirm
this fact on the channel.

Confirm-Work is a type of leader election procedure. It
assigns certain probability of a station to broadcast, in a way
expecting that exactly one stationwill transmit in a number of

Algorithm 4: Confirm-Work, code for station v

1 i := 0 ;
2 repeat
3 coin := p

2i
;

4 toss a coin with the probability coin−1 of heads to come up;
5 if heads came up in the previous step then
6 broadcast v via the channel and attempt to receive a

message;
7 end
8 if some station w was heard then
9 clear list TASKS;

10 break;
11 end
12 else
13 increment i by 1 ;
14 if i = 	log2(p)
 + 1 then
15 i := 0;
16 end
17 end
18 until a broadcast was heard;

Algorithm 5: Mix-And-Test, code for station v

Input: i, t, p
1 coin := p

2i
;

2 for
√
t log(p) times do

3 if v has not been moved to front of list STATIONS yet then
4 toss a coin with the probability coin−1 of heads to come

up
5 end
6 if heads came up in the previous step then
7 broadcast v via the channel and attempt to receive a

message
8 end
9 if some station w was heard then

10 move station w to the front of list STATIONS;
11 decrement coin by 1;
12 end
13 end
14 if at least

√
t broadcasts were heard then

15 return true;
16 end
17 else
18 return false;
19 end

trials. Because we cannot be sure what is the actual number
of operational stations, the probability is changed multiple
times until all the tasks are confirmed.

If the specific conditions are discussed above are not
satisfied (Algorithm 3 lines 1–10), then Mix-And-Text is
executed (Algorithm 5). It changes the order of stations on
list STATIONS. Precisely, stations that performed success-
ful broadcasts are moved to front of that list. This procedure
has two purposes. On one hand changing the order makes
the adversary less flexible in crashing stations, as its order
is already determined. On the other hand, we may predict

with high probability to which interval n ∈
(

p
2i

,
p

2i−1

]
for
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i = 1, . . . , 	log2(p)
 does the current number of operational
stations belong, what is important from the work analysis
perspective.

Stationsmoved to front of list STATIONS are called lead-
ers. Leaders are chosen in a random process, so we expect
that they will be uniformly distributed in the adversary order
between stations that were not chosen as leaders. This allows
us to assume that a crash of a leader is likely to be preceded
by several crashes of other stations (see Fig. 3).

Let us consider procedure Mix-And-Test in detail. If n
is the previously predicted number of operational stations,
then each of the stations tosses a coin with the probability
of success equal 1/n. In case where none or more than one
of the stations broadcasts then silence is heard on the chan-
nel, as there is no collision detection. Otherwise, when only
one station did successfully broadcast it is moved to front of
list STATIONS and the procedure starts again with a decre-
mented parameter. However stations that have already been
moved to front do not take part in the following iterations of
the procedure.

Upon having chosen the leaders, regular work is per-
formed. However, an important feature of our algorithm is
that we do not perform full epochs, but only

√
t phases of

each Two-Lists epoch. This allows us to be sure that the
total work accrued in each epoch does not exceed p

√
t . If, at

somepoint, the number of successful broadcasts substantially
drops, another Mix-And-Test (Algorithm 5) procedure is
executed and a new set of leaders is chosen.

Before the algorithm execution the Linearly-Ordered
adversary has to choose f stations prone to crashes and
declare an order that will describe inwhat order those crashes
may happen. In what follows, when there are unsuccessful
broadcasts of leaders (crashes) we may be approaching the
case when n ≤ √

t and we can execute Two-Lists that com-
plexity is linear in t for such parameters. Alternatively the

adversary spends the majority of its possible crashes and the
stations may finish all the tasks without any distractions.

4.1 Analysis of ROBAL

We begin our analysis with a general statement about the
reliability of ROBAL.

Lemma 1 Algorithm ROBAL is reliable.

Proof We need to show that all the tasks will be performed
as a result of executing the algorithm. First of all, if we fall
in to the case when p

2i
≤ √

t (or initially p ≤ √
t) then

Two-Lists is executed, which is reliable as we know from
[11].

Secondly, when log2(p) > e
√
t

32 we assign all the tasks to
every station and let the stations work for t phases. We know
that f < p so at least one station will perform all the tasks.

Finally, if those conditions do not hold, the algorithm runs
an external loop in which variable i increments after each
iteration. If the loop is performed 	log2(p)
 times then we
runTwo-Lists. Variable i maynot be incremented only if the
algorithm will enter and stay in the internal loop. However
this is possible only after performing all the tasks, because
the internal loop runs for a constant number of times until all
tasks are completed. ��
Wenow proceed to a statement bounding theworst casework
of Two-Lists, which is used as a sub-procedure in ROBAL.

Fact 6 Two-Lists always solves the Do-All problem with
O(pt) work.

O(pt) work is consistent with a scenario when every sta-
tion performs every task. Comparing it with how Two-Lists

works, justifies the fact.

1

2

3

4

1

f

2 3 ... p − 1 p...

1

4 5 6

2 3 ... ...

π(1)π(3) π(2) π(f)... ...

π(3) π(2) π(1) π(f)... ...

Fig. 3 (1) Initially we have p stations. (2) The adversary chooses f stations prone to crashes. (3) Then it declares the order according to which
the stations will crash. (4)Mix-And-Test chooses a number of leaders which are expected to be distributed uniformly among the adversary linear
order
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Wealreadymentioned thatROBALwasmodeled in such a
way that, whenever p

2i
≤ √

t holds, theTwo-Lists algorithm
is executed, because the work complexity of Two-Lists for
such parameters is O(t). We will prove it in the following
fact.

Fact 7 Let n be the number of operational processors, and t
be the number of outstanding tasks. Then for n ≤ √

t Two-

Lists work complexity is O(t).

Proof If n ≤ √
t , then the outstanding number of crashes is

f < n, hence f <
√
t . Algorithm Two-Lists has O(t +

p
√
t + p min{ f , t}) work complexity. In what follows the

complexity is O(t + √
t
√
t + √

t min{√t, t}) = O(t). ��
Figure3 presents the way how we expect leaders to inter-
lace other stations in the adversary’s order. The following
lemma estimates the probability that if a number of leaders
was crashed, then, overall, a significant number of stations
must have been crashed as well.

Lemma 2 Let us assume that we have n operational stations
at the beginning of an epoch, where

√
t were chosen leaders.

If the adversary crashes n/2 stations, then the probability
that there were 3/4 of the overall number of leaders crashed
in this group does not exceed e− 1

8

√
t .

Proof We have n stations, among which
√
t are leaders. The

adversary crashes n/2 stations and our question is howmany
leaders where in this group?

The hypergeometric distribution functionwith parameters
N -number of elements, K -number of highlighted elements,
l-number of trials, k-number of successes, is given by:

P[X = k] =
(K
k

)(N−K
l−k

)
(N
l

) .

The following tail bound from [24] tells us, that for any t > 0
and p = K

N :

P[X ≥ (p + t)l] ≤ e−2t2l .

Identifying this with our process we have that K = n/2,
N = n, l = √

t and consequently p = 1/2. Placing t = 1/4
we have that

P

[
X ≥ 3

4

√
t

]
≤ e− 1

8

√
t .

��
The following two lemmas give us the probability that
Mix-And-Test diagnoses the number of operational sta-
tions properly, and hence, that the whole randomized part
of ROBAL works correctly with high probability.

Lemma 3 Let us assume that the number of operational

stations is in
(

p
2i

,
p

2i−1

]
interval. Then procedure Mix-

And-Test(i, t, p) will return true with probability 1 −
e−c

√
t log2(p), for some 0 < c < 1.

Proof We start from proving the following claim.

Claim Let the current number of operational stations be in( x
2 , x

]
. Then the probability of an event that in a single iter-

ation of Mix-And-Test exactly one station will broadcast
is at least 1

2
√
e
(where the coin−1 parameter is 1

x ).

Proof (of the Claim) Let us consider a scenario where the
number of operational stations is in

( x
2 , x

]
for some x . If

every station broadcasts with probability of success equal
1/x then the probability of an event that exactly one station

will transmit is
(
1 − 1

x

)x−1 ≥ 1/e. Estimating the worst
case, when there are x

2 living stations (and the probability of
success remains 1/x) we have that

1

2

(
1 − 1

x

)x · x−2
2 ≥ 1

2
√
e

.

This concludes the proof of the Claim. ��
According to the Claim the probability of an event that in

a single round of Mix-And-Test exactly one stations will
be heard is 1

2
√
e
.

We assume that n∈
(

p
2i

,
p

2i−1

]
. We will show that the

algorithm confirms appropriate i with probability 1 −
e−c

√
t log2 p. For this purpose we need

√
t transmissions to

be heard.
Let X be a random variable such that X = X1 + · · · +

X√
t log2(p)

, where X1, . . . , X√
t log2(p)

are Poisson trials and

Xk =
{
1 if station broadcasted,
0 otherwise.

We know that

μ = EX = EX1 + · · · + EX√
t log2(p)

≥
√
t log2(p)

2
√
e

.

To estimate the probability that
√
t transmissions were heard

we will use the Chernoff’s inequality.

We want to have that (1 − ε)μ = √
t . Thus ε = μ−√

t
μ

=
log2(p)−2

√
e

log2(p)
and 0 < ε < 1 for sufficiently large p. Hence

P[X <
√
t] ≤ e

−
(
log2(p)−2

√
e

log2(p)

)2

2

√
t log2(p)
2
√
e

= e−c
√
t log2(p) ,
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for some bounded 0 < c < 1. We conclude that with proba-
bility 1 − e−c

√
t log2(p) we will confirm the correct i which

describes and estimates the current number of operational
stations. ��

Lemma 4 Mix-And-Test(i, t, p) will not be executed if
there are more than p

2i−1 operational stations, with probabil-

ity not less than 1 − (log2(p))
2 max{e− 1

8

√
t , e−c

√
t log2(p)}.

Proof Let Ai denote an event that at the beginning of and
execution of theMix-And-Test(i , t , p) procedure there are
no more than p

2i−1 operational stations.
The basic case then i = 0 is trivial, because initially we

have p operational stations, thus P(A0) = 1. Let us consider
an arbitrary i . We know that

P(Ai ) = P(Ai |Ai−1)P(Ai−1)

+P(Ai |Ac
i−1)P(Ac

i−1) ≥ P(Ai |Ai−1)P(Ai−1).

Let us estimate P(Ai |Ai−1). Conditioned on that event Ai−1

holds, we know that after executing Mix-And-Test(i −
1, t, p) we had p

2i−2 operational stations. In what follows
if we are now considering Mix-And-Test(i, t, p), then we
have two options:

1. Mix-And-Test(i − 1, t, p) returned false,
2. Mix-And-Test(i − 1, t, p) returned true.

Let us examine what do these cases mean:

1. If the procedure returned false then we know from
Lemma 3 that with probability 1 − e−c

√
t log2(p) there

had to be no more than p
2i−1 operational stations. If that

number would be in
(

p
2i−1 ,

p
2i−2

]
then the probability of

returning false would be less than e−c
√
t log2(p).

2. If the procedure returned true, this means that when exe-
cuting it with parameters (i − 1, f , p) we had no more
than p

2i−1 operational stations. Then the internal loop of
ROBAL was broken, so according to Lemma 2 we con-
clude that the overall number of operational stations had

to reduce by half with probability at least 1 − e− 1
8

√
t .

Consequently, we deduce that P(Ai |Ai−1) ≥ (1 −
max{e− 1

8

√
t , e−c

√
t log2(p)}). Hence P(Ai ) ≥ (1 −

max{e− 1
8

√
t , e−c

√
t log2(p)})i . Together with the fact, that

i ≤ log2(p) and the Bernoulli inequality we have that

P(Ai ) ≥ 1 − log2(p) max{e− 1
8

√
t , e−c

√
t log2(p)}.

We conclude that the probability that the conjunction of
events A1, . . . , Alog2(p) will hold is at least

P

⎛
⎝

log2(p)⋂
i=1

Ai

⎞
⎠

≥ 1 − (log2(p))
2 max{e− 1

8

√
t , e−c

√
t log2(p)},

what ends the proof. ��

We can now proceed to the main result of this section.

Theorem 1 ROBAL performs O(t + p
√
t log(p)) expected

work against the Linearly-Ordered adversary in the channel
without collision detection.

Proof In the algorithmwe are constantly controlling whether
condition p

2i
>

√
t holds. If not, then we execute Two-Lists

which complexity is O(t) for such parameters.
If this condition does not hold initially then we check

another one i.e. whether log2(p) > e
√
t

32 holds. For such con-
figuration we assign all the tasks to every station. The work
accrued during such a procedure is O(pt). However when

log2(p) > e
√
t

32 then together with the fact that ex < x we
have that log2(p) > t and consequently the total complexity
is O(p log(p)).

Finally, the successful stations, that performed all the task
have to confirm this fact.Wedemand that only one stationwill
transmit and if this happens, the algorithm terminates. The
expected value of a geometric randomvariable lets us assume
that this confirmation will happen in expected number of
O(log(p)) rounds, generating O(p log(p)) work.

When none of the conditions mentioned above hold, we
proceed to the main part of the algorithm. The testing pro-
cedure by Mix-And-Test for each of disjoint cases, where

n ∈
(

p
2i

,
p

2i−1

]
requires a certain amount of work that can be

estimated by O(p
√
t log(p)), as there are

√
t log2(p) test-

ing phases in each case and at most p
2i

stations take part in a
single testing phase for a certain case.

In the algorithm we run through disjoint cases where

n ∈
(

p
2i

,
p

2i−1

]
. From Lemma 2 we know that when some

of the leaders were crashed, then a proportional number of
all the stations had to be crashed. When leaders are crashed
but the number of operational stations still remains in the
same interval, then the lowest number of tasks will be con-
firmed if only the initial segment of stations will transmit.
As a result, when half of the leaders were crashed, then the
system still confirms t

8 = Ω(t) tasks. This means that even if
so many crashes occurred,O(1) epochs still suffice to do all
the tasks. Summing work over all the cases may be estimated
as O(p

√
t).
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By Lemma 4 we conclude that the expected work com-
plexity is bounded by:

(
(log(p))2 max{e− 1

8

√
t , e−c

√
t log(p)}

)

O(pt + p
√
t log2(p))

+
(
1 − (log(p))2 max{e− 1

8

√
t , e−c

√
t log(p)}

)

O(p
√
t log(p)) = O(p

√
t log(p)),

where the first expression comes from the fact, that if we
entered the main loop of the algorithm then we know that we

are in a configuration where log2(p) ≤ e
√
t

32 . Thus we have
that

pt + p
√
t log2(p)

e
√
t
8

≤ pt + log2(p)

e
√
t

16 e
√
t

16

≤ p + p log2(p)

e
√
t

16

≤ p + p log(p) = O(p log(p)),

which ends the proof. ��

5 GRUTECH: Groups Together with Echo

In this section we present a randomized algorithm designed
to reliably perform Do-All in the presence of a Weakly-
Adaptive adversary on a shared channel without collision
detection. Its expected work complexity is O(t + p

√
t +

p min{p/(p − f ), t} log(p)).

5.1 Description ofGRUTECH

Our solution is built on algorithm Groups-Together

(details in Sect. 3.2) and a newly designed Crash-Echo pro-
cedure that works as a kind of fault-tolerant replacement of
collision detection mechanism (which is not present in the
model). In fact, the algorithm presented here is asymptoti-
cally only logarithmically far frommatching the lower bound
shown in [11], which, to some extent, answers the open ques-
tion stated therein.

The Crash-Echo procedure. Let us recall the details of
Groups-Together from 3.2. All the stations within a cer-
tain group have the same tasks assigned and when it comes
to transmitting they do it simultaneously. This strongly relies
on the collision detection mechanism, as the stations do not
necessarily need to know which station transmitted, but they
need to know that there is progress in tasks performance.
That is why if a collision is heard and all the stations within
the same group were doing the same tasks, we can deduce
that those tasks were actually done.

Algorithm 6: GruTEch; code for station v

1 - initialize STATIONS to a sorted list of all p stations;
2 - arrange all p names of stations into list GROUPS of groups;
3 - initialize both TASKS and OUTSTANDINGv to sorted list of all
t names of tasks;

4 - initialize DONEv to an empty list of tasks;
5 - initialize i := 0 ;
6 - initialize leader := Elect-Leader(i) and add the leader to
each group;

7 - repeat
8 Epoch-Groups-CE(i);
9 until halted;

In our model we do not have collision detection, however
we designed a mechanism that provides the same feedback
without contributing too much work to the algorithm’s com-
plexity. Strictly speaking we begin with choosing a leader.
His work will be of a dual significance. On one hand he will
belong to some group and perform tasks regularly. But on the
other hand he will also perform additional transmissions in
order to indicate whether there was progress when stations
transmitted.

When a group of stations is indicated to broadcast the
Crash-Echoprocedure is executed. It consists of two rounds
where the whole group transmits together with the leader in
the first one and in the second only the leader transmits. We
may hear two types of signals:

– loud: a legible, single transmission was heard. Exactly
one station transmitted.

– silent: a signal indistinguishable from the background
noise is heard. None ormore than one station transmitted.

Let us examine what are the possible pairs (group & leader,
leader) of signals heard in such approach:

– (silent, loud): in the latter round the leader is operational,
so he must have been operational in the former round.
Because silencewas heard in the former round thismeans
that there was a successful transmission of at least two
stations one of which was the leader. This is a fully suc-
cessful case.

– (loud, loud): the former and the latter roundwere loud, so
we conclude that it was the leaderwho transmitted in both
rounds. If the leader belonged to the group scheduled to
transmit, then we have progress; otherwise not.

– (silent, silent): if both rounds were silent we cannot be
surewas there any progress.Additionallyweneed to elect
a new leader.

– (loud, silent): when the former round was loud we cannot
be sure whether the tasks were performed; a new leader
needs to be chosen.
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Algorithm 7: Procedure Epoch-Groups-CE; code for
station v

1 set pointer Task_To_Dov on list TASKS to the initial position
of the range v;

2 set pointer Transmit to the first item on list GROUPS;
3 repeat

// Round 1:
4 perform the first task on list TASKS, starting from the one

pointed to by Task_To_Dov , that is in list
OUTSTANDINGv ;

5 move the performed task from list OUTSTANDINGv to list
DONEv ;

6 advance pointer Task_To_Dov by one position on list
TASKS;
// Rounds 2 & 3:

7 if Transmit points to v then
8 execute Crash-Echo;
9 end

10 attempt to receive a pair of messages;
// Round 4:

11 if (silent, loud) was heard in the preceding round then
12 let w be the first station in the group pointed to by

Transmit:;
13 for each item x on list DONEw do
14 if x is on list OUTSTANDINGv then
15 move x from OUTSTANDINGv to DONEv ;
16 end
17 if x is on list TASKS then
18 remove x from TASKS;
19 end
20 end
21 if list TASKS is empty then
22 halt;
23 end
24 advance pointer Transmit by one position on list

GROUPS;
25 end
26 else
27 if (loud, loud) was heard in the preceding round then
28 remove the group pointed to by Transmit from

GROUPS;
29 end
30 else
31 remove leader from all the groups on list GROUPS;
32 leader := Elect-Leader(i) and add the leader to

each group;
33 end
34 end
35 until pointer Transmit points to the first entry on list GROUPS;
36 rearrange all stations in the groups of list GROUPS into a new

version of list GROUPS;

Algorithm 8: Procedure Crash-Echo; code for station
v

// Round 1:
1 broadcast one bit;
// Round 2:

2 if v = leader then
3 broadcast one bit;
4 end

Algorithm 9: Procedure Elect-Leader; code for sta-
tion v
Input: i

1 repeat
2 coin := p;
3 toss a coin with the probability coin−1 of heads to come up;
4 if heads came up in the previous step then
5 broadcast v via the channel and attempt to receive a

message;
6 end
7 if some station w was heard then
8 leader := w;
9 return leader ;

10 end
11 else
12 increment i by 1;
13 end
14 until i < p;
15 set pointer TransmitST AT I ONS to the first item on list

STATIONS;
16 repeat
17 if TransmitST AT I ONS points to v then
18 broadcast one bit;
19 attempt to receive a message;
20 if some station w was heard then
21 leader := w;
22 return leader ;
23 end
24 end
25 advance pointer TransmitST AT I ONS by one position on

list STATIONS;
26 until a transmission was heard;

Nevertheless, the Weakly-Adaptive adversary has to
declare some f stations that are prone to crashes. The elected
leader might belong to that subset and be crashed at some
time. When this is examined, the algorithm has to switch to
the Elect-Leader mode, in order to select another leader.
Consequently the most significant question from the point
of view of the algorithm’s analysis is what is the expected
number of trials to choose a non-faulty leader.

Two modes. We need to select a leader and be sure that
he is operational in order to have our progress indicator
working instead of the collision detection mechanism.When
the leader is operational we simply run Groups-Together

algorithm with the difference that instead of a simultaneous
transmission by all the stations within a group, we run the
Crash-Echoprocedure that allows us to distinguishwhether
there was progress.

Choosing the leader is performed by procedure Elect-

Leader, where each station tosses a coinwith the probability
of success equal 1/p. If a station is successful then it trans-
mits in the following round. If exactly one station transmits
then the leader is chosen. Otherwise the experiment is con-
tinued (for p rounds in total). Nevertheless if this still does
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not work, then the first station that transmits in a round-robin
fashion procedure, becomes the leader.

Note that we have a special variable i used as a counter
that is incremented in the Elect-Leader procedure until
it reaches value p. We assume that this value is passed to
Elect-Leader by reference, so that its incrementation is
also recognized in the main body of the Epoch-Groups-CE
algorithm, thus i is a global counter.

5.2 Analysis ofGruGruGruTTTEchEchEch

Let us begin the analysis of GruTEch by recalling an impor-
tant result from [11].

Theorem 2 ([11], Theorem 6) The Weakly-Adaptive f -
Bounded adversary can force any reliable randomized
algorithm solving Do-All in the channel without collision
detection to perform the expected work

Ω(t + p
√
t + p min{p/(p − f ), t}).

In fact the theorem above in [11] stated that the lower bound
wasΩ(t + p

√
t + p min{ f /(p− f ), t}), however the proof

relied on the expected round in which the first successful
transmission took place and the authors did not take into
consideration that the first successful transmissionmay occur
earliest in round 1. Hence as it must be at least round number
1 we correct it as follows: f

p− f + 1 = f
p− f + p− f

p− f = p
p− f .

Lemma 5 GruTEch is reliable.

Proof The reliability of GruTEch is a consequence of the
reliability of Groups-Together. We do not make any
changes in the core of the algorithm. Crash-Echo does not
affect the algorithm, as it always finishes. Elect-Leader
procedure always finishes as well. The first loop is executed
for atmost p times and then it ends. The second loop awaits to
hear a broadcast in a round-robin manner. But we know that
0 ≤ f ≤ p−1, so always one processor remains operational
and it will respond. ��

Let us define a sustainable leader as a station that is oper-
ational until the end of the execution or a non-faulty station,
and was elected as a leader during some execution of proce-
dure Elect-Leader.

Lemma 6 The total number of rounds during which proce-
dure Elect-Leader is run (possibly splitted into several
executions) until electing a sustainable leader is log(p) 4p

p− f

with probability at least 1 − 1
p .

Proof Recall that procedure Elect-Leader could be called
several times, until selecting a sustainable leader at the latest.
The expected number of rounds needed to elect a sustainable

leader during these calls is upper bounded by the time needed
to hit the first non-faulty station by the executions of proce-
dure Elect-Leader. Hence, in the remainder of the proof
we estimate the total number of such rounds with probability
at least 1 − 1/p.

We have p stations from which f are prone to crashes.
Hence we have p − f non-faulty stations. That is why the
probability that a non-faulty one will respond in the election
procedure is at least (p − f )/p. We may observe that this
probability will increase if we failed in previous executions.
In fact, after f executions we may be sure to choose a non-
faulty leader. However wewill estimate the probability of our
process by an event of awaiting the first success in a number
of trials, as our process is stochastically dominated by such
a geometric distribution process.

We have a channel without collision detection, so exactly
one station has to transmit in order to elect a leader. Let x
be the actual number of operational stations. The probability
s of the event that a non-faulty station will be elected in the
procedure may be estimated as follows:

p − f

p

(
1 − 1

p

)x−1

≥ p − f

p

(
1 − 1

p

)p−1

≥ p − f

p
· 1
4

· p

p − 1

= p − f

4(p − 1)
≥ p − f

4p
.

Let us estimate the probability of awaiting the first success
in a number of trials. Let X ∼ Geom((p− f )/4p).We know
that for a geometric random variable with the probability of
success equal s:

P(X ≥ i) = (1 − s)i−1.

Applying this to our case with i = 4p
p− f log(p) + 1 we have

that

P

(
X ≥ 4p

p − f
log(p) + 1

)

=
(
1 − 1

4p
p− f

) 4p
p− f log(p)

≤ e− log(p) = 1

p
.

Thus the probability of a complementary event is

P

(
X <

4p

p − f
log(p) + 1

)
> 1 − 1

p
.

��
Theorem 3 GruTEch solves Do-All in the channel without
collision detection with the expected work O(t + p

√
t +
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p min{p/(p − f ), t} log(p)) against the Weakly-Adaptive
f -Bounded adversary.

Proof Wemay divide the work of GruTEch to three compo-
nents: productive, failing and the one reasoning from electing
the leader.

Firstly, the core of our algorithm is the same as Groups-
Togetherwith the difference thatwe have theCrash-Echo
procedure that takes twice as many transmission rounds.
According to Fact 5, it is sufficient to estimate this kind of
work as O(t + p

√
t).

Secondly, there is some work that results from electing
the leader. According to Lemma 6, a sustainable leader will
be chosen within 4p

p− f log(p) rounds of executing Elect-

Leaderwith high probability. That is why the expectedwork
to elect a non-faulty leader is overall

O
(
p p

p− f log(p)
)
.

Finally, there is some amount of failing work that results
from rounds where the Crash-Echo procedure indicated
that the leader was crashed. However work accrued during
such rounds will not exceed the amount of work resulting
from electing the leader, hence we state that failing work

contributes O
(
p p

p− f log(p)
)
as well.

Consequently, we may estimate the expected work of
GruTEch as

(
1 − 1

p

)
O(t + p

√
t + p min{p/(p − f ), t} log(p))

+ 1

p
O(p2)

= O(t + p
√
t + p min{p/(p − f ), t} log(p))

what ends the proof. ��

6 HowGruGruGruTTTEchEchEchworks for other partial
orders

The line of investigation originated by ROBAL and
GruTEch leads to a natural question whether considering
some intermediate partial orders of the adversary may pro-
vide different work complexities. In this section we answer
this question in the positive by examining theGruTEch algo-
rithm against the k-Chain-Ordered adversary on a channel
without collision detection.

6.1 The lower bound

Theorem 4 For any reliable randomized algorithm solving
Do-All on the shared channel and any integer 0 < k ≤ f ,
there is a k-chain-based partial order of f elements such
that the ordered adversary restricted by this order can force

the algorithm to perform the expected work Ω(t + p
√
t +

pmin{k, f /(p − f ), t}).

Proof The part Ω(t + p
√
t) follows from the absolute lower

bound on reliable algorithms on shared channel. We prove
the remaining part of the formula. If k > c · f /(p − f ), for
some constant 0 < c < 1, then that part is asymptotically
dominated by pmin{ f /(p − f ), t} and it is enough to take
the order being an anti-chain of f elements; clearly it is a
k-chain-based partial order of f elements, and the adversary
restricted by this order is equivalent to the weakly-adaptive
adversary, for which the lower bound Ω(pmin{ f /(p −
f ), t}) follows directly from Theorem 2. Therefore, in the
reminder of the proof, assume k ≤ c · f /(p − f ).

Consider the following strategy of the adversary in the first
τ rounds, for some value τ to be specified later. Each station
which wants to broadcast alone in a round is crashed in the
beginning of this round, just before its intended transmission.
Let F be the family of all subsets of stations containing k/2
elements. LetM denote the family of all partial orders con-
sisting of k independent chains of roughly (modulo rounding)
f /k elements each. Consider the first τ = k/2 rounds. The
probability Pr(F), for F ∈ F , is defined to be equal to the
probability of an occurrence of an execution during the exper-
iment, in which exactly the stations with from set F are failed
by round τ . Consider an order M selected uniformly at ran-
dom fromM. The probability that all elements of set F ∈ F
are in M is a non-zero constant. It follows from the follow-
ing three observations. First, under our assumption, k < f
(as k ≤ c · f /(p − f ) for some 0 < c < 1). Second, from
the proof of the lower bound in [11] with respect to sets of
size O( f ), the probability is a non-zero constant provided
in each round we have at most c′ · f crashed processes, for
some constant 0 < c′ < 1. Third, since each successful sta-
tion can enforce the adversary to fail at most one chain, after
each of the first τ = k/2 rounds there are still at least k/2
chains without any crash, hence at most f /2 crashes have
been enforced and the argument from the lower bound in
[11] could be applied. To conclude the proof, non-zero prob-
ability of not hitting any element not in M means that there
is such M ∈ M that the algorithm does not finish before
round τ with constant probability, thus imposing expected
work Ω(pk). ��

6.2 GruGruGruTTTEchEchEch against the k-chain-ordered
adversary

The analysis of GruTEch against the Weakly-Adaptive
adversary relied on electing a leader. Precisely, as we knew
that there are p− f non-faulty stations in an execution, then
we expected to elect a non-faulty leader in a certain number
of trials.
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Nevertheless we could have chosen a faulty station as a
leader and the adversary could have chosen to crash that sta-
tion. However the amount of such failing occurrences would
not exceed the number of trials needed to elect the non-faulty
one.While considering the k-Chain-Ordered adversary, these
estimates are different.

When a leader is elected then he may belong to the non-
faulty set (and this is expected to happen within a certain
number of trials) or hemay be elected from the faulty set, thus
will be placed somewhere in the adversary’s partial order. If
the leader was elected in a random process then it will appear
in a random part of this order. In what follows wemay expect
that if the adversary decides to crash the leader, then it will
be forced to crash several stations preceding the leader in
one of the chains in his partial order. Consequently this is the
key reason why the expected work complexity would change
against the k-Chain-Ordered adversary.

Theorem 5 GruTEch solves Do-All in the channel without
collision detection with the expected work

O(t + p
√
t + p min{p/(p − f ), k, t} log(p))

against the k-Chain-Ordered adversary.

Proof Because of the same arguments as in Theorem 3,
it is expected that a non-faulty leader will be chosen in

the expected number of O
(

p
p− f log(p)

)
trials, generating

O
(
p p

p− f log(p)
)
work.

On the opposite, let us consider what will be the work
accrued in phases when the leader is chosen from the faulty
set and hence may be crashed by the adversary. According to
the adversary’s partial order we have initially k chains, where
chain j has length l j . If the leader was chosen from that order
then it belongs to one of the chains. We will show that it is
expected that the chosen leader will be placed somewhere in
the middle of that chain.

Let X be a random variable such that X j = i where i
represents the position of the leader in chain j . We have that

EX j = ∑l j
i=1

i
l j

= 1
l j

(1+l j )
2 l j = (1+l j )

2 .

We can see that if the leader was crashed, this implies that
half of the stations forming the chain were also crashed. If
at some other points of time, the faulty leaders will also be
chosen from the same chain, then by simple induction we
may conclude that this chain is expected to be all crashed
afterO(log(p)) iterations, as a single chain has lengthO(p)
at most. In what follows if there are k chains, then after
O(k log(p)) steps this process will end and we may be sure
to choose a leader from the non-faulty subset, because the
adversary will spend all his failure possibilities.

Finally, if we have a well serving non-faulty leader then
the work accrued is asymptotically the same as in Groups-

Together algorithm with the difference that each step is

now simulated by the Crash-Echo procedure. This work is
equal O(t + p

√
t).

Altogether, taking Lemma 6 into consideration, the
expected work performance of GruTEch against the k-
Chain-Ordered adversary is

(
1 − 1

p

)
O(t + p

√
t + p min{p/(p − f ), k, t} log(p))

+ 1

p
O(p2)

= O(t + p
√
t + p min{p/(p − f ), k, t} log(p))

what ends the proof. ��

6.3 GruGruGruTTTEchEchEch against the adversary limited by
arbitrary order

Finally, let us consider the adversary that is limited by arbi-
trary partial order P = (P,�). We say that two partially
ordered elements are incomparable if none of relations x � y
and y � x hold. Translating into the considered model, this
means that the adversarymaycrash incomparable elements in
any sequence during the execution of the algorithm (clearly,
only if x and y are among f stations chosen to be crash-
prone).

Theorem 6 GruTEch solves Do-All in the channel without
collision detection with the expected work

O(t + p
√
t + p min{p/(p − f ), k, t} log(p))

against the k-Thick-Ordered adversary.

Proof We assume that the crashes forced by the adversary
are constrained by some partial order P . Let us first recall
the following lemma.

Lemma 7 (Dilworth’s theorem [15]) In a finite partial order,
the size of a maximum anti-chain is equal to the minimum
number of chains needed to cover all elements of the partial
order.

Recall that the k-Thick-Ordered adversary is constrained
by any order of thickness k. Clearly, the adversary choosing
some f stations to be crashed cannot increase the size of the
maximal anti-chain. Thus using Lemma 7 we consider the
coverage of the crash-prone stations by at most k disjoint
chains, and any dependencies between chains’ elements cre-
ate additional constraints to the adversary comparing to the
k-Chain-Ordered one. Hence we fall into the case concluded
in Theorem 5 that completes the proof. ��
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7 GILET: Groups with Internal Leader
Election Together

In this section we introduce an algorithm for the channel
without collision detection that is designed towork efficiently
against the 1-RD adversary. Its expected work complexity is
O(t + p

√
t log2(p)). The algorithmmakes use of previously

designed solutions from [11], i.e.,Groups-Together algo-
rithm (cf. Sect. 3.2), however we implement a major change
in how the stations confirm their work (due to the lack of
collision detection in the model).

Algorithm 10: GILET; code for station v;
1 - arrange all p names of stations into list GROUPS of groups;
2 - initialize variable k := p/min{	√t
, p};
3 - initialize both TASKS and OUTSTANDINGv to sorted list of all
t names of tasks;

4 - initialize DONEv to an empty list of tasks;
5 - initialize REMOVED to an empty list of stations;
6 - repeat
7 Epoch-Groups-CW(k);
8 until halted;

In our model, there is a channel without collision detec-
tion. That is why whenever some group g is scheduled
to broadcast, a leader election procedure Mod-Confirm-

Work is executed in order to hear a successful transmission
of exactly one station. Because all the stations within g had
the same tasks assigned, then if the leader is chosen, we know
that the group performed appropriate tasks.

The inherent cost of such an approach of confirming work
is that wemay not be sure whether removed groups did really
crash. The effect is that if all the tasks were not performed
and all the stations were found crashed, then we have to
execute an additional procedure that will finish performing
them reliably.

This is realized by a new list REMOVED containing
removed stations, and procedure Check-Outstanding

which assigns every outstanding task to all the stations. Then
if with small probability we have mistakenly removed some
operational stations, the algorithm still remains reliable and
efficient.

7.1 Analysis of GILET

Lemma 8 GILET is reliable.

Proof As well as in case of GruTEch, the solution does
depend on reliability of algorithm Groups-Together,
because procedure Mod-Confirm-Work always termi-
nates. If we fall into a mistake that some operational station
has been removed from list GROUPS, then we execute
procedure Check-Outstanding that will finish all the out-
standing tasks. ��

Algorithm 11: Procedure Epoch-Groups-CW; code
for station v;
Input: k

1 set pointer Task_To_Dov on list TASKS to the initial position
of the range v;

2 set pointer Transmit to the first item on list GROUPS;
3 repeat
4 perform the first task on list TASKS, starting from the one

pointed to by Task_To_Dov , that is in list
OUTSTANDINGv ;

5 move the performed task from list OUTSTANDINGv to list
DONEv ;

6 advance pointer Task_To_Dov by one position on list
TASKS;

7 if Transmit points to v then
8 initialize i := 0 ;
9 repeat

10 executeMod-Confirm-Work(k) ;
11 if a broadcast was heard then
12 break;
13 end
14 else
15 increment i by 1;
16 end
17 until i < 4 log(p);
18 end
19 if a broadcast was heard in the preceding round then
20 let w be the first station in the group pointed to by

Transmit;
21 for each item x on list DONEw do
22 if x is on list OUTSTANDINGv then
23 move x from OUTSTANDINGv to DONEv ;
24 end
25 if x is on list TASKS then
26 remove x from TASKS;
27 end
28 end
29 if list TASKS is empty then
30 halt;
31 end
32 advance pointer Transmit by one position on list

GROUPS;
33 end
34 else
35 add all the stations from group pointed to by Transmit

to list REMOVED;
36 remove the group pointed to by Transmit from list

GROUPS;
37 execute Check-Outstanding;
38 halt;
39 end
40 until pointer Transmit points to the first entry on list GROUPS;
41 rearrange all stations in the groups of list GROUPS into a new

version of list GROUPS;

Lemma 9 Assume that the number of operational stations

within a group is in
(

k
2i+1 ,

k
2i

]
interval and the coin param-

eter is set to k
2i
. Then during Mod-Confirm-Work a

confirming-work broadcast will be performed with proba-
bility at least 1 − 1

p .
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Algorithm 12: ProcedureMod-Confirm-Work; code
for station v
Input: k

1 j := 0;
2 repeat
3 coin := k

2 j ;

4 toss a coin with the probability coin−1 of heads to come up;
5 if heads came up in the previous step then
6 broadcast v via the channel and attempt to receive a

message;
7 end
8 if some station w was heard then
9 break;

10 end
11 increment j by 1;
12 until j < log(k);

Algorithm 13: Procedure Check-Outstanding; code
for station v

1 - basing on list REMOVED and list TASKS assign every task to all
the processors;

2 - i := 0;
3 repeat
4 perform i-th task from list TASKS;
5 i := i + 1;
6 until i < |TASKS|;
7 - clear list TASKS;

Proof We assume that the number of operational stations is

in
(

k
2i+1 ,

k
2i

]
. The probability that exactly one station will

broadcast, estimated from the worst case point of viewwhere
only k

2i+1 stations are operational is
1

2
√
e
, because of the same

reason as in Claim 4.1 of Lemma 3.
That is why we would like to investigate the first success

occurrence in a number of trials with the probability of suc-
cess equal 1

2
√
e
.

Let X ∼ Geom
(

1
2
√
e

)
. We know that for a geometric

random variable with the probability of success equal s:

P(X ≥ i) = (1 − s)i−1.

Hence we will apply it for i = 2
√
e log(p)+1. We have that

P(X ≥ 2
√
e log(p) + 1)

=
(
1 − 1

2
√
e

)2
√
e log(p)

≤ e− log(p) = 1

p
.

Thus

P(X > 2
√
e log(p) + 1) > 1 − 1

p
.

��

Theorem 7 GILET performs O(t + p
√
t log2(p)) expected

work on channel without collision detection against the 1-RD
adversary.

Proof The proof of Groups-Together work performance
from [11] stated that noisy sparse epochs contribute O(t)
to work and silent sparse epochs contribute O(p

√
t). Dense

epochs do also contributeO(p
√
t)work. Let us compare this

with our solution.
Noisy sparse epochs contribute O(t) because these are

phases with successful broadcasts. And there are clearly t
tasks to perform, so at most t transmissions will be necessary
for this purpose.

Silent sparse epochs, as well as dense epochs consist of
mixed work: effective and failing. In our case, each attempt
of transmitting is now simulated byO(log2(p)) rounds. That
is why the amount of work is asymptotically multiplied by
this factor. Hence we have work accrued during silent sparse
and dense epochs contributing O(p

√
t log2(p)).

However according to Lemma 9 with some small prob-
ability we could have mistakenly removed a group of
stations from list GROUPS because Mod-Confirm-Work

was silent. Eventually the list of groups may be empty, and
there are still some outstanding tasks. For such case we exe-
cute Check-Outstanding, where all the stations have the
same outstanding tasks assigned, and do them for |TASKS|
phases (which actually means until they are all done). It is
clear that always at least one station remains operational and
all the taskswill be performed.Work contributed in such case
is at most O(pt).

Let us now estimate the expected work:

(
1 − 1

p

)
O(t + p

√
t log2(p)) + 1

p
O(pt)

= O(t + p
√
t log2(p)),

what completes the proof. ��

8 Transition to the beepingmodel

To this pointwe considered a communicationmodel based on
a shared channel, with distinction that collision detection is
not available. In this section we consider the beeping model.

In the beeping model we distinguish two types of signals.
One is silence,where no station transmits. The other is a beep,
which, when heard, indicates that at least one station trans-
mitted. It differs from the channel with collision detection by
providing slightly different feedback, but as we show it has
the same complexity with respect to reliable Do-All. More
precisely, we show that the feedback provided by the beeping
channel allows to execute algorithmGroups-Together (cf.
Sect. 3.2) and that it is work optimal as well.
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8.1 Lower bound

We state the lower bound for Do-All in the beeping model in
the following lemma.

Lemma 10 A reliable algorithm, possibly randomized, with
the beeping communication model performs work Ω(t +
p
√
t) in an execution in which no failures occur.

Proof The proof is an adaptation of the proof of Lemma 1
from [11] to the beepingmodel. LetA be a reliable algorithm.
The part Ω(t) of the bound follows from the fact that every
task has to be performed at least once in any execution ofA.

Taskα is confirmed at round i of an execution of algorithm
A, if either a station performs a beep successfully and it has
performed α by round i , or at least two stations performed a
beep simultaneously and all of them have performed task α

by round i of the execution. All of the stations broadcasting
at round i and confirming α have performed it by then, so
at most i tasks can be confirmed at round i . Let E1 be an
execution of the algorithmwhen no failures occur. Let station
v come to a halt at some round j in E1.
Claim: The tasks not confirmed by round j were performed
by v itself in E1.
Proof (of the Claim) Suppose, to the contrary, that this is not
the case, and let β be such a task. Consider an execution, say
E2, obtained by running the algorithm and crashing any sta-
tion that performed task β in E1 just before it was to perform
β in E1, and all the remaining stations, except for v, crashed
at step j . The broadcasts on the channel are the same during
the first j rounds in E1 and E2. Hence all the stations perform
the same tasks in E1 and E2 till round j . The definition of
E2 is consistent with the power of the Unbounded adversary.
The algorithm is not reliable because task β is not performed
in E2 and station v is operational. This justifies the claim. ��

We estimate the contribution of the station v to work. The
total number of tasks confirmed in E1 is at most

1 + 2 + · · · + j = O( j2) .

Suppose some t ′ tasks have been confirmed by round j . The
remaining t − t ′ tasks have been performed by v. The work
of v is at least

Ω(
√
t ′ + (t − t ′)) = Ω(

√
t) ,

which completes the proof. ��

8.2 How algorithmGROUPS-TOGETHER works in
the beepingmodel

Collision detection was a significant part of algorithm
Groups-Together as it provided the possibility of tak-

ing advantage of simultaneous transmissions. Because of
maintaining common knowledge about the tasks assigned
to groups of stations we were not interested in the content of
the transmission but the fact that at least one station from the
group remained operational, what guaranteed progress.

In the beeping model we cannot distinguish between Sin-
gle and Collision, however in the sense of detecting progress
the feedback is consistent. It means that if a group g is
scheduled to broadcast at somephase i , thenwehave twopos-
sibilities. If Silence was heard this means that all the stations
in group g were crashed, and their tasks remain outstanding.
Otherwise if a beep is heard this means that at least one sta-
tion in the group remained operational. As the transmission
was scheduled in phase i this means that certain i tasks were
performed by group g.

Lemma 10 together with the work performance of
Groups-Together allows us to conclude that the solution
is also optimal in the beeping model.

Corollary 1 Groups-Together is work optimal in the beep-
ing channel against the f -Bounded adversary.

9 Conclusions

This paper addressed the challenge of performing work on a
shared channel with crash-prone stations against ordered and
delayed adversaries, introduced in this work. The considered
model is very basic, therefore our solutions could be imple-
mented and efficient in other related communication models
with contention and failures.

We found that some orders of crash events are more costly
than the others for a given algorithm and the whole problem,
in particular, more shallow orders or even slight delays in the
effects of adversary’s decisions, constraining the adversary,
allow solutions to stay closer to the absolute lower bound for
this problem.

All our algorithms work on a shared channel with
acknowledgments only, without collision detection, what
makes the setup challenging. While it was already shown
that there is not much we can do against a Strongly-Adaptive
f -Bounded adversary, our goal was to investigate whether
there are some other adversaries that an algorithm can play
against efficiently.

Taking a closer look at our algorithms, each of them
works differently against different adversaries.ROBAL does
not simulate a collision detection mechanism, opposed to
the other two solutions, but tries to exploit good proper-
ties of an existing (but a priori unknown to the algorithm)
linear order of crashes. On the other hand, its execu-
tion against aWeakly-Adaptive Linearly-Bounded adversary
could be inefficient—the adversary could enforce a signifi-
cant increase in the overall work performance by crashing
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a small number of stations multiple times. Then Mix-

And-Test would be executed many times with the same
parameters, generating excessive work. GruTEch, on the
other hand, cannot work efficiently against the 1-RD adver-
sary, as there is a global leader chosen to coordinate the
Crash-Echo procedure that simulates confirmations in a
way similar to a collision detectionmechanism (recall thatwe
do not assume collision detection given as channel feedback).
Hence such an adversary could decide to always crash the
leader, making the algorithm inefficient, as electing a leader
is quite costly—the leader is chosen in a number of trials,
what generates excessive work. Yet, from a different angle,
GILET confirms every piece of progress by electing a leader
in a specific way, which is efficient against the 1-RD adver-
sary, but executing it against the Weakly-Adaptive adversary
would result in an increase in the overall work complexity.

Remarks on time complexity. First of all, we emphasize
that time complexity, defined as the number of rounds until
all non-crashed stations terminate, is not the best choice
to describe how efficient the algorithms are, because this
strongly depends on how the adversary interferes with the
system. In what follows we present some general bounds
that might, however, overestimate the time complexity for a
vast range of executions.

In all our considerations, at some point of an execution
(even at the very beginning) it may happen that only the non-
faulty stations remain operational, because the adversarywill
realize all of its possible crashes. Then atmost t tasksmust be
performed by the remaining p− f stations. Hence, even if the
tasks are equally distributed among the non-faulty stations,
doing them all lasts at least t/(p − f ) rounds. On the other
hand, initially t tasks are distributed among p stations. Thus,
on average, a station will be working on t/p tasks. If now
the adversary decides to crash a station just before it was
to confirm its tasks, then this prolongs the overall execution
by t/p rounds. Because there are f crashes, then at most
t f /p rounds are additionally needed to finish. However, it
is also true that stations are capable of performing t tasks in√
t rounds. This corresponds to the triangular Two-Lists-

fashion of assigning tasks to stations. In this view each crash
enforces an additional step of the execution, what gives us
the upper bound of around f + √

t rounds.
All our algorithms undergo the same time bounds for

actually performing tasks or suffering crashes as mentioned
above. Additionally, O(

√
t log(p)) rounds are needed for

ROBAL to select sets of leaders throughout all the execu-
tions of the Mix-And-Test procedure. Consequently, the

expected running time of ROBAL is O
(

t
p− f +

min
{
t f
p , f + √

t
}

+ √
t log(p)

)
. Following the same rea-

soning, GruTEch algorithm, apart from doing produc-

tive work in the presence of the adversary, will require
additional time for the leader election mode, which is
O

(
p

p− f log(p)
)
in expectation. The total expected running

time of GruTEch is therefore O
(

t
p− f +min

{
t f
p , f +√

t
}

+ p
p− f log(p)

)
. In GILET each transmission is confirmed

by electing a leader, hence its expected running time is

O
((

t
p− f + min

{
t f
p , f + √

t
})

log2(p)
)
.

Remarks on energy complexity. Since our algorithms are
randomized, it is also quite difficult to state tight bounds for
the transmission energyused in executions.Here by transmis-
sion energy we understand the total number of transmissions
undertaken by stations during the execution. Nevertheless,
assuming that n denotes the number of operational stations
and there is a certain amount of work S accrued by some
time of an execution of any of our algorithms, then S/

√
n is

roughly (the upper bound on) the number of transmissions
done by that time. This is because substantial parts of our
algorithms are based on procedure Groups-Together, in
which roughly

√
n′ stations in a group transmit in a round,

out of at least n′ ≥ n operational ones that contribute to
the total work S. However, our algorithms also strongly rely
on different leader election type of procedures, therefore the
total transmission energy cost in an execution may vary sig-
nificantly.

Open problems. Further study of distributed problems and
systems against ordered adversaries seems to be a natural
future direction. Another interesting area is to study vari-
ous extensions of the Do-All problem in the shared-channel
setting, such as considering a dynamic model, where addi-
tional tasks may appear while algorithm execution, partially
ordered sets of tasks, or tasks with different lengths and
deadlines. In other words, to develop scheduling theory on a
shared channel prone to failures. In all the above mentioned
directions, including the one considered in this work, one
of the most fundamental questions arises: Is there a univer-
sally efficient solution against the whole range of adversarial
scenarios? Different natures of adversaries and properties of
algorithms discussed above suggest that it may be difficult
to design such a universally efficient algorithm.
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