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Abstract
In the graph exploration problem, a team of mobile computational entities, called agents, arbitrarily positioned at some nodes
of a graph, must cooperate so that each node is eventually visited by at least one agent. In the literature, the main focus
has been on graphs that are static; that is, the topology is either invariant in time or subject to localized changes. The few
studies on exploration of dynamic graphs have been almost all limited to the centralized case (i.e., assuming complete a priori
knowledge of the changes and the times of their occurrence). We investigate the decentralized exploration of dynamic graphs
(i.e., when the agents are unaware of the location and timing of the changes) focusing, in this paper, on dynamic systems
whose underlying graph is a ring. We first consider the fully-synchronous systems traditionally assumed in the literature; i.e.,
all agents are active at each time step. We then introduce the notion of semi-synchronous systems, where only a subset of
agents might be active at each time step (the choice of the subset is made by an adversary); this model is common in the
context of mobile agents in continuous spaces but has never been studied before for agents moving in graphs. Our main focus
is on the impact that the level of synchrony as well as other factors such as anonymity, knowledge of the size of the ring,
and chirality (i.e., common orientation) have on the solvability of the problem, focusing on the minimum number of agents
necessary. We draw an extensive map of feasibility, and of complexity in terms of minimum number of agent movements. All
our sufficiency proofs are constructive, and almost all our solution protocols are asymptotically optimal.
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1 Introduction

1.1 Framework

1.1.1 Graph exploration

The problem of graph exploration requires a team of mobile
computational entities, usually called agents or robots,
located at the nodes of a graph and capable of moving from
node to neighbouring node, to explore the graph, with the
requirement that each node is eventually visited by at least
one agent.

This classical problem has been extensively investigated,
starting from the pioneeringwork of Shannon [44]. In the vast
literature on the subject (e.g., see [1,17,18,23,28,32,43]), a
wide spectrum of different assumptions have been made and
examined e.g. with regard to: the computational power of the
agent(s); the structure of the graph and its properties; the level
of topological knowledge available to the agents; whether or
not the network is anonymous (i.e., the nodes lack distinct
identifiers); whether the nodes can be marked (e.g., by leav-
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ing a pebble); the level of synchronization. In case ofmultiple
agents, different types ofmeans of communication have been
considered, including: face-to-face, where agents communi-
cate when they are on the same node; wireless, where the
agents are able to communicate even when they are on differ-
ent nodes; with whiteboard, where the agents communicate
by writing on and reading from whiteboards present in each
node.

Regardless of their differences, all these investigations
share the common assumption that the graph is static: its
topological structure does not change during the exploration.
This is true also for those investigations that consider faulty
nodes and/or faulty links (e.g., see [6,16,24,25]).

1.1.2 Dynamic graphs

In distributed computing, researchers recently started to
investigate highly dynamic graphs, that is graphs where the
topological changes are not localized and sporadic; on the
contrary, the topology changes continuously and at unpre-
dictable locations. These investigations have been motivated
by the development of highly dynamic networks, where
changes are not anomalies (e.g., faults) but rather integral
part of the nature of the system. These highly dynamic net-
works are modelled in a natural way in terms of time-varying
graphs, a model formally defined in [13], where main classes
of systems studied in the literature and their computational
relationship were identified. If time is discrete (e.g., changes
occur in rounds), the evolution of these systems can be
equivalently described as a sequence of static graphs, called
evolving graph, a model suggested in [34] and formalized in
[27].

The study of distributed computations in highly dynamic
graphs has focused mainly on problems of information
diffusion and reachability, such as broadcast, routing, etc.
(e.g., see [5,7,9–12,15,33]), and on problems of coordina-
tion and agreement, such as election, consensus, etc. (e.g.,
see [2,3,8,20,38,39]). Clearly, all these studies make strong
assumptions in order to restrict the universe of the possible
topological changes and their temporal occurrence. One such
restriction is that topological changes are periodic (Class 8
of [13]), such as in carrier graphs (e.g., see [9,29,30,36,40]).
A popular restriction is by assuming that the network is
always connected (Class 9 of [13]): at each time instant,
there is a connected spanning subgraph; further assuming that
such connected spanning subgraph persists for T ≥ 1 time
units defines the extensively studied sub-class of T-interval-
connected systems (e.g., see [19,38,39,42]).

1.1.3 Exploration of dynamic graphs

Returning to the exploration problem, very little is known
in the case of dynamic graphs. On the probabilistic side,

there is an early seminal work on random walks [4]. On
the deterministic side there are: the study of the complex-
ity of computing a foremost exploration schedule under
the 1-interval-connectivity assumption [41], generalized and
extended in [26]; the computation of an exploration schedule
for rings under the T-interval-connectivity assumption [37];
and the computation of an exploration schedule for cactuses
under the 1-interval-connected assumption [35]. All these
studies are however mainly centralized (or off-line, post-
mortem); that is, they assume that the exploring agents have
complete a priori knowledge of the topological changes and
the times of their occurrence.

Very little is known on the distributed (or on-line, live)
case, i.e. when the location and timing of the changes are
unknown to the agents. Exploration of carrier networks,
a periodic class of time varying graphs, by a synchronous
agent, has been studied in [30], where the feasibility of the
problem is investigated depending on the knowledge avail-
able to the agent (size of the network or upper bound, length
of the period) and where optimal solutions are proposed.
Under a slightly different model, similar results can be found
also in [36]. Exploration has also been examined assuming
that the dynamic graph is δ-recurrent (i.e., each edge appears
at least once every δ rounds) [37]. Apart from these results,
to the best of our knowledge, nothing is known.

1.2 Contributions

In this paper, we investigate the distributed exploration of
dynamic rings under the 1-interval connectivity assumption
by mobile agents without explicit means of communication.

We consider three different termination requirements once
the ring has been explored: explicit termination, where,
within finite time, all agents must explicitly terminate and
stop moving; explicit partial termination, where, within
finite time, at least one agent explicitly terminates and stops
moving; unconscious exploration, where the agents are not
required to stop.

We first consider the fully-synchronous systems (Sect. 3)
traditionally assumed in the literature; i.e., all agents are
active at every time step. We then introduce the notion of
semi-synchronous systems (Sect. 4), where at each time step
only a subset of the agents might be active (the choice of
the subset is made by an adversary). The semi-synchronous
model is common in the context of mobile agents in contin-
uous spaces (e.g., [31]) but has never been studied before for
agents moving in graphs. Our main focus is on the impact
that the level of synchrony as well as other factors such as
knowledge of the size of the ring, chirality (i.e., common
sense of orientation), and anonymity, have on the solvability
of the problem.
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Table 1 Impossibility results
for FSYNC model

N. agents Assumptions Even if Result

2 No knowledge on n, no
landmark

Non-anonymous agents,
chirality

Partial termination
impossible (Theorem 1)

Any No knowledge on n, no
landmark, anonymous
agents

Chirality Partial termination
impossible (Theorem 2)

Table 2 Possibility results for
FSYNC model

N. agents Assumptions Exploration with termination

2 Known bound N Explicit termination in time 3N − 6 (Theorem 3)

2 Chirality, landmark Explicit termination in time O(n) (Theorem 6)

2 Landmark Explicit termination in time O(n log(n)) (Theorem 8)

We start by examining the exploration problem in fully
synchronous systems (FSYNC), with two agents, after
showing that it is unsolvable with only one.

For anonymous rings, we first show that, without any addi-
tional knowledge on the ring size (e.g., an upperbound), two
non-anonymous agents cannot explore and partially termi-
nate. If the agents are anonymous, the same impossibility
holds for any number of agents. On the other hand, uncon-
scious exploration is possible using two anonymous agents
and no additional knowledge.

If there is knowledge of an upper bound N on the ring
size, we show that two anonymous agents can explore and
they can both terminate in 3N − 6 rounds. This can be done
even if agents do not have a common chirality.

For non-anonymous rings, we show that the presence of
a single observably different node (landmark) allows two
anonymous agents to solve the exploration problem with
explicit termination. This can be done without the need of
any additional information. We provide an algorithm that
terminates in O(n) rounds when there is chirality, and an
O(n log(n)) algorithm for the case without chirality. For the
case of no chirality we do not know if O(n log(n)) rounds
are necessary.

A summary of these results is shown in Tables 1 and 2. All
the sufficiency proofs ofFSYNC are constructive and, apart
for the algorithm for the case of non-anonymous ring and
no chirality, all the proposed algorithms are asymptotically
optimal.

We then examine the problem in semi-synchronous sys-
tems (SSYNC). In these systems it is possible that an agent a
waiting to traverse amissing link e is inactive in the round the
edge reappears. Depending onwhat happens to that agent, we
consider and analyze three different transportation models
(described in details later in the paper) and establish feasi-
bility and complexity results:

– No simultaneity (NS) model: a is not allowed to move
while inactive. This is the weakest of the models that we

consider. In this case, exploration is impossible with any
number of agents, even with exact knowledge of the ring
size, nodes with distinct IDs, and common chirality.

– Passive transport model (PT): a is transported on e. In
this case, we show that, without chirality, two anony-
mous robots are not sufficient to explore the ring; the
result holds even if there is a distinguished landmark node
and the exact network size is known. On the other hand,
with chirality, two agents can perform the exploration if
there is a known upper bound on the ring size or there
is a landmark node. As for termination, we show that it
is impossible to guarantee explicit termination of both
agents (even if exact knowledge of the size, chirality and
landmark are available). On the other hand, we prove
that it is always possible for at least one of the agents to
terminate. Interestingly, presence of chirality allows to
solve the problem with only 2 agents; without chirality
3 agents are necessary. The PT model is the strongest of
the SSYNC models.

– Eventual transport (ET) model: a is not allowed to move
while inactive but, should the edge be present for an infi-
nite number of rounds, a is guaranteed to be eventually
active at a round when the edge is present. In this case,
we show that exploration with partial termination of all
agents is impossible, regardless of the number of agents,
even if an upper bound on the ring size is known, nodes
have distinct IDs, and agree on chirality. On the other
hand, with exact knowledge of the ring size, we prove
that exploration is possible with three anonymous agents
even without chirality, and at least one agent explicitly
terminates.

The results are summarized in Tables 3 and 4. Also for
SSYNC, all the sufficiency proofs are constructive, and
almost all the proposed algorithms are asymptotically opti-
mal.
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Table 3 Impossibility results in SSYNC models

Model N. agents Assumptions Even if Result

(NS) Any None Chirality, known n, landmark,
non-anonymous agents

Exploration impossible
(Theorem 9)

(PT) 2 No chirality,
anonymous agents

Known n, landmark Exploration impossible
(Theorem 10)

2 None Chirality, known n, landmark Explicit termination
impossible (Theorem 11)

(ET) Any Unknown n Known bound N , chirality, landmark,
non-anonymous agents

Partial termination
impossible (Theorem 19)

Table 4 Possibility results for SSYNC models

Model N. agents Assumptions Exploration and termination

(PT) 2 Chirality, known bound N Partial termination in O(N 2) moves (Theorem 12)

Chirality, landmark Partial termination in O(n2) moves (Theorem 14)

3 Known bound N Partial termination in O(N 2) moves (Theorem 16)

Landmark Partial termination in O(n2) moves (Theorem 17)

(ET) 2 Chirality Unconscious exploration possible (Theorem 18)

3 Known n Partial termination possible (Theorem 20)

2 Model and basic limitations

2.1 Model and terminology

Let R = (v0, . . . vn−1) be a synchronous ring where, at any
time step t ∈ N , one of its edges might not be present;
the choice on which link is missing (if any) is made by an
adversary. Such a dynamic network is known in the literature
as a 1-interval connected ring.

Each node vi is connected to its two neighbours vi−1 and
vi+1 via distinctly labeled ports qi− and qi+, respectively (all
operations on the indices are modulo n); the labeling of the
ports may not be globally consistent, thus might not provide
an orientation, and the label may not be comparable [14].
The ring is said to be anonymous if the nodes have no dis-
tinguishable identifiers, and with landmark if there is a node
(the landmark) which is different from all others.

Operating in R is a set A = {a0, . . . , am−1} of agents,
each provided with memory and computational capabilities.
The agents are anonymous and all execute the same protocol.
Any number of agents can reside at a node at the same time.
Initially located at arbitrary nodes, not necessarily distinct,
they do not have any explicit communicationmechanism, nor
can leave marks on the nodes. The agents are mobile, that is
they can move from node to neighboring node. To move, an
agent has to position itself on the port from which it wants
to leave. Access to ports is done in mutual exclusion: an
agent will not succeed to gain an already occupied port; when
several agents try to position themselves on the same port,
only one of them succeeds. Two agents moving in opposite

directions on the same edge in the same round might not be
able to detect each other.

Each agent a j has a consistent private orientation of the
ring; that is, it has a function λ j which designates each port
either left or right and λ j (qi−) = λ j (qk−), for all 0 ≤ i, k <

n. The orientations of the agents might not be the same. If all
agents agree on the same orientation and are aware of it, we
say that there is chirality.

The system operates in synchronous time steps, called
rounds. Initially, all agents are inactive. Each time step t ∈ N
starts with a non-empty subset A(t) ⊆ A of the agents
becoming active. Upon activation, agent a j ∈ A(t) at node
vi performs a sequence of operations: Look, Compute, and
(possibly) Move.

1. Look The agent determines its own position within the
node (i.e., whether or not it is on a port, and if so onwhich
one), and the position of the other agents (if any) at that
node. We call this information a snapshot.

2. Compute Based on the snapshot and the content of
its local memory, the agent executes its protocol (the
same for all agents) to determine whether or not to
move and, if so, in what direction; the result will be
direction ∈ {left, right, nil}, where left and right are with
respect to its own local orientation. If direction = nil, the
agent becomes inactive. If direction �= nil, a j attempts
to access the appropriate port (if not already there); if it
gains access, it positions itself on the port, otherwise it
sets private variable moved = false and becomes inac-
tive.

123



Distributed exploration of dynamic rings 45

3. Move Let the agent be positioned on port qi− (resp., qi+)
after computing. If the link between vi and vi−1 (resp.,
vi+1) is present in this round, then agent a j will move to
vi−1 (resp., vi+1), reach it, set private variable moved =
true, and become inactive. If the link between vi and vi−1

(resp., vi+1) is not present, then agent a j will remain in
the port, set moved = false, and become inactive. In
either case, access to port qi− (resp., qi+) continues to be
denied to any other requesting agent during this round.

By definition, the delays are such that all active agents
have become inactive by the end of round t ; the system then
starts the new round t + 1.

Notice that, since access to a port is inmutual exclusion, in
the same round at most one agent will move in each direction
on the same edge. Recall that two agents moving in opposite
directions on the same edge in the same round might not be
able to detect each other.

Amajor computational factor is the nature of the activation
schedule of the agents. If A(t) = A for all t ∈ N , that is all
agents are activated at every time step, the system is said
to be fully synchronous (FSYNC). Otherwise the system is
said to be semi-synchronous (SSYNC); the agents that are
not activated in a round are said to be sleeping or passive
in that round; the choice of which agent is active in a round
is made under an adversarial scheduler, where every agent
is activated infinitely often. When an agent is activated, it
does not know whether or not it was active in the previous
round. Observe that in SSYNC it is possible for an agent to
be sleeping on a port. This is indeed the case when an agent
a gains access to a port q when the link is not there (thus,
it remains on q), and a is not activated in the next round.
What may happen to an agent sleeping on a port gives raise
to different models, described in the following:

– No simultaneity (NS) A sleeping agent cannot move.
There is no guarantee of simultaneity for an agent sleep-
ing on a port.

– Passive transport (PT) If an agent is sleeping on a port
at round t and the corresponding edge is present in that
round, the agent is moved to the other endpoint of the
edge in round t .

– Eventual transport (ET) A sleeping agent cannot move. If
an agent is sleeping on a port at round t and the corre-
sponding edge is present infinitely many times, then the
agent will eventually become active at a round t ′ > t
when the corresponding edge is present (simultaneity
condition).

The algorithm executed by the agents solves the explo-
ration problem if, within finite time, every node of the ring
is visited by at least one agent. The exploration is said to be
with explicit termination if every agent executing the algo-

rithm within finite time enters a terminal state and no longer
moves. The terminal state has to be entered only after the
exploration of the ring. The exploration is said to be with
explicit partial termination (or just partial termination) if at
least one agent executing the algorithm enters a terminal state
within finite time and no longer moves. Finally, it is said to
be unconscious if the agents are not required to stop nor to
be aware that the ring has been visited.

2.2 Basic limitations

We begin our study by showing simple impossibility results.

Observation 1 The adversary can prevent an agent from
leaving the initial node v0, by always removing the edge over
which the agent wants to leave v0.

From this observation, we immediately get:

Corollary 1 A single agent is not able to explore the ring.

Hence, at least two agents are needed. However, the adver-
sary can prevent their cooperation:

Observation 2 The adversary can prevent two agents start-
ing at different locations frommeeting each other even if they
have unlimitedmemory, commonchirality anddistinct known
IDs. This result holds even if the scheduler is FSYNC and
never blocks both agents at the same round.

Proof The adversary will never remove an edge, except in
the case when that would lead to agents meeting in the next
step. There are two possible cases how the agents can meet
in the next step.
Case 1One agent is waiting at a node and the other agent, at a
neighbouring node, decides to traverse the edge e connecting
the two nodes. In this case, the adversary removes edge e.
Case 2 Both agents decide to traverse different edges e and
e′ leading to the same vertex. Again, it is sufficient for the
adversary to remove one of the two edges to prevent ren-
dezvous. �	
Theorem 1 There does not exist any partially terminating
deterministic exploration algorithm of anonymous rings of
unknown size by two agents, even with distinct IDs, common
chirality, and when the scheduler is FSYNC.

Proof By contradiction, assume that there exists a terminat-
ing exploration algorithm A. Let us consider an execution
E of A on a dynamic ring of size n, where agents a and b
start in two distinct locations andwhere the adversary always
prevents the meeting of the agents, never blocking the agents
at the same round. By Observation 2 this run exists.

Let us assume, without loss of generality, that in such an
execution agent a is the first one terminating at round r(E).

123



46 G. Di Luna et al.

Let us now consider an execution E ′ ofA on a dynamic ring
of size n′ = 8r(E), where the agents start at two distinct
locations at distance 4r(E). The execution E ′ is constructed
in such a way that, until round r(E) neither agent can distin-
guish this execution from E . This is possible since in E the
adversary never blocks the two agents at the same time and
they do not meet.

Since the size of the ring is 8r(E) and the agents started
4r(E) apart, at round r(E) (when agent a terminates) the
distance between the two agents is at least 2r(E) and there
are at least 6r(E) unexplored nodes. The execution E ′ is
completed by the adversary blocking agent b at round r(E)

and afterwards, preventing it from exploring the unexplored
nodes. Therefore, in this execution, the partial termination of
algorithm A is incorrect. �	

Observe now that for anonymous agents the impossibility
of explicit termination holds regardless of their number. This
is because, in the setting when there is orientation and no
edge is removed, all the agents will act in the same way at
each time step. If one were to decide to terminate after t time
steps, they all would do so at the same time; however, since
they do not know the ring size, they would do the same also
in a ring of size n multiple of t , terminating without having
completed the exploration. Indeed, with the same reasoning,
it is immediate that even the weaker partial termination is
impossible.

Theorem 2 There does not exist any partially terminating
deterministic exploration algorithm of anonymous rings of
unknown size by anonymous agents, regardless of their num-
ber. The result holds even if agents have common chirality,
and the scheduler is FSYNC.

Summarizing, without some knowledge of the size of the
ring or without the asymmetry introduced by a landmark
node, exploration with partial termination is impossible even
in the fully synchronous model by two agents with IDs, or
by any number of anonymous agents. Notice that Theorems
1 and 2 would hold even if the agents were equipped with
wireless communication.

As for the amount of time required for exploration, there
exists the following lower bound due to [26]:

Observation 3 [26] Exploration of an anonymous ring by
two anonymous agents requires at least 2n − 3 time in the
worst case, even if there is chirality and the scheduler is
FSYNC.

3 Ring exploration inFSYNC
In this section, we consider exploration when the system is
fully synchronous, presenting and analyzing protocols that

solve the problem under different assumptions on knowledge
of the ring size, anonymity of the nodes, and presence of
chirality. All these solutions do not require the agents to be
able to communicate explicitly.

Our algorithmsuse as a buildingblockprocedureExplore
(dir | p1: s1; p2: s2; …; pk : sk), where dir is either left or
right, pi is a predicate, and si is a state. In Procedure
Explore, the agent performs Look, then evaluates the pred-
icates p1, . . . , pk in order; as soon as a predicate is satisfied,
say pi , the procedure exits and the agent does a transition
to the specified state, say si . If no predicate is satisfied, the
agent tries to Move in the specified direction dir and the
procedure is executed again in the next round.

Furthermore, the following variables are maintained by
the algorithms:

– T time, T steps the total number of rounds and edge
traversals, respectively, since the beginning of the exe-
cution of the algorithm.

– Etime, Esteps the total number of rounds and edge
traversals, respectively, since the last call of procedure
Explore.

– Btime the number of consecutive rounds the agent has
been currently waiting in a port.

In particular, the following predicates are used:

– meeting both agents are in the node.
– catches the agent observes the other agent on the port
corresponding to its moving direction.

– caught the agent is on the port after a failed move, the
other agent is observed in the node.

Observe that, in a fully synchronous system, when pred-
icate catches holds for an agent, then caught holds for the
other agent. In the following, we say that the agents catch
each other if both predicates hold.

3.1 Known upper bound on ring size

In this section we study the simple case of exploring the ring
when the agents know an upper-bound N ≥ n on the ring
size, andwe showhow to solve the problem in asymptotically
optimal time, even without chirality.

The directions left and right now refer to the local ori-
entation of the individual agent. The algorithm is shown in
Fig. 1. We use the predicate failed, that is verified when an
agent tries to enter a port and it fails to do so.

The algorithm works as follows. At the beginning, each
agent goes left; recall that the left direction could be different
for the two agents. An agent keeps going left unless: (1) it
catches the other agent in the first 2N − 4 rounds; or (2)
2N − 4 rounds have passed and the agent has been blocked
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States: {Init, Bounce, Forward, Terminate}.
In state Init:

Explore(left | (Ttime ≥ 2N − 4 ∧ Btime = N −
1) ∨ failed: Bounce; catches: Bounce; caught: Forward;
Ttime ≥ 2N − 4: Forward)
In state Bounce:

Explore(right | Ttime ≥ 3N − 6: Terminate)
In state Forward:

Explore(left | Ttime ≥ 3N − 6: Terminate)

Fig. 1 Algorithm KnownNNoChirality

for N − 1 rounds; or (3) it is in a node and it fails to enter
a port. In all these cases, the agent changes state to Bounce
and it goes right until termination, at round 3N − 6.

If instead an agent is caught in the first 2N − 4 rounds,
then it enters in state Forward and it keeps the left direction
until termination, at round 3N − 6.

Theorem 3 Algorithm KnownNNoChirality allows two
anonymous agents without chirality to explore a 1-interval
connected ring and to explicitly terminate in time 3N − 6,
where N is a known upper-bound on the ring size.

Proof The termination by round 3N − 6 is trivial for the
condition T time ≥ 3N − 6. It is sufficient to show that the
ring has been explored when T time = 3N − 6. Let a, b be
the two agents.

– We first examine the case where a, b start on the same
node v.
If they have different agreements on the left direction
then no agent can change direction in the first 2N − 4
rounds. It is trivial to see that after at most N − 1 rounds
the agents have explored the ring, and hence the Theorem
holds.
Let us consider then the case in which the agents agree
on the same left direction, and hence try to traverse the
same edge e. Since the access to a port is done in mutual
exclusion, only one of them will enter the port, while
the other will fail. If e is not missing at round 1, then
at the beginning of round 2 the two agents will be in
different nodes; otherwise they will be on the same node.
In either case, for one of the two agents the predicate
failed is true; notice that the failed predicate will not be
verified in any other case. This implies that the two agents
will have different directions, and they will not change
such directions in the first 2N − 4 rounds; thus in the
next N − 1 rounds the ring will be explored. Hence the
Theorem holds.

– We now consider when a and b start on different nodes.
Let us examine the case when they disagree on the left
direction. After N − 3 rounds, they either (1) are at dis-
tance 2, or (2) are at distance 1, or (3) crossed each other,

where the distance is the number of edges in the portion
of the ring pointed by the left directions of the agents. (1)
If the distance between the agents is 2, then theywere ini-
tially on two neighbouring nodes; therefore, in the next
round, at time N − 2, the ring will be explored. (2) If
they are at distance 1 and the edge between them is not
missing for the successive N − 1 rounds, then they will
cross each other and the ring will be explored by at most
round 3N − 6. If the edge between them is missing for
the successive N − 1 rounds, then at round 2N − 4 they
will switch direction and the ring will be explored in the
next N −2 rounds. (3) If they cross each other on edge e,
they will not change direction for the successive N − 1
rounds, thus theywill explore the ring. That is, in all three
cases the Theorem holds.
Finally, let us consider the case when they agree on the
left direction.
If they catch each other before round 2N − 4, then the
ringwill be explored in the next N−1 rounds terminating
the exploration by round 3N − 6.
If they do not catch each other, then at each round at
least one of them will traverse an edge, since they cannot
be blocked at the same time. Let us suppose that a tra-
verses N − k edges with k > 2; then b traversed at least
N − 4+ k ≥ N − 1 edges, exploring the ring. So the last
remaining case is when agent a traverses exactly N − 2
edges; but this implies that also b has traversed at least
N − 2 edges and, since they start from different nodes,
the ring has been explored also in this case. �	

Notice that there exists a schedule in which the exploration
takes 3n − 6 rounds, so the cost is tight for N = n. The
schedule is reported in the Fig. 2: the agents start on distinct
nodes, a on vi and b on vi+1, and there is chirality. Agent a
is blocked for the first n − 3 rounds; in the meanwhile agent
b reaches node vi−2. At this point, b is blocked on node vi−2

until round r2 = 2n − 5; during this time a moves until it
catches b; this happens exactly at round r2. In the next n − 1
rounds, b is still blockedwhilea reaches node vi−1, exploring
the ring.

The algorithm is asymptotically optimal, as shown by the
following theorem, evenwith the lesser requirement of partial
termination.

Theorem 4 Explorationwith partial terminationof ananony-
mous ring by two anonymous agents with knowledge of an
upper bound N on the ring size requires at leas N − 2 time
in the worst case, even with chirality.

Proof By contradiction, let A be a correct exploration algo-
rithm that allows partial termination with knowledge of an
upper bound N in at most N − 2 time units. Let Ri be an
anonymous ring of size i , and for N > 5 let R(N ) = {Ri : 3 ≤
i ≤ N }. Consider now the simultaneous execution of A in
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Fig. 2 Schedule where
algorithm
KnownNNoChirality takes
3n − 6 rounds to explore

the ringvi+1

r1 = n − 3

r2 = 2n − 5

r3 = 3n − 6

v0 vn−1vi−2

a b
round

s

vi

R(N ) started by initially placing in each R ∈ R(N ) two
agents with chirality at two neighbouring nodes, and then
making no edge ever disappear.

Clearly, at each time step, all the agents in all rings of
R(N ) have the same view, perform exactly the same move-
ment in the same direction; furthermore, in each ring they are
unaware of each other, and keep their distance to 1. By sym-
metry, if one of the agents terminates in a ring at time t , then
they all do in all the rings at the same time. By assumption,
the execution ofA terminates at a time t ≤ N−2; this means
that in RN , when both agents terminate, at least one node is
still unexplored at that time, contradicting the correctness of
A. �	

3.2 No known bounds on ring size

We now consider exploring the ring when no upper-bound
on its size is available to the agents. Under this condition,
by Theorem 1, it is impossible for two agents to explore an
anonymous ring with termination, even if the agents have
unique IDs. Hence, for exploration to occur, either termina-
tion must not be required or the ring must not be anonymous.
In the following we consider precisely those two cases. We
first show how unconscious exploration can be performed
without any other condition even if the agents are anony-
mous. We then consider a ring in which there is a special
node, called landmark, different from the others and visible
to the agents; we prove that exploration can be performed
with termination, even if the agents are anonymous, in time
O(n) if there is chirality, O(n log n) otherwise.

3.2.1 Unconscious exploration

We present a protocol, Unconscious Exploration, that
allows two anonymous agents to perform explorationwithout
knowing any bound on the ring size. The basic idea of the
algorithm is for each agent to guess the size of the ring with
an initial estimate G and move in one direction for a time

States: {Init, Bounce, Reverse, Forward, Keep}.
In state Init:

G ← 2, dir ← left
Explore(dir; Etime ≥ 2G ∧ Btime > G: Reverse,

Etime ≥ 2G: Keep, catches: Bounce, caught:Forward)
In state Reverse:

G ← 2 · G, dir ← opposite(dir)
Explore(dir; Etime ≥ 2G ∧ Btime > G: Reverse,

Etime ≥ 2G: Keep, catches: Bounce, caught:Forward)
In state Keep:

G ← 2 · G
Explore(dir; Etime ≥ 2G ∧ Btime > G: Reverse,

Etime ≥ 2G: Keep, catches: Bounce, caught:Forward)
In state Bounce:

Explore(opposite(dir))
In state Forward:

Explore(dir)

Fig. 3 Algorithm Unconscious Exploration

equal to twice the estimate; the agent will then double the
size estimate. It changes direction if it has been blocked for
a time that is equal to the previous estimate and it will keep
direction otherwise. This process is repeated with the new
guess. The algorithm is shown in Fig. 3.

Theorem 5 AlgorithmUnconscious Exploration allows
two anonymous agents without chirality to explore, without
terminating, an 1-interval connected ring; the exploration is
completed in O(n) time.

Proof If the agents catch each other, then they start moving
in opposite directions and, in the subsequent n − 1 moves
(unknown to them), they will explore the whole ring, proving
the Theorem.

Consider now the case when the agents never catch each
other. Let a phase be the period of time when the guess
remains the same. Since G is always doubled after 2G time
steps, at time tn ≤ 4n, G ≥ n. Let r be the first round of the
phase P in which G ≥ n.
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If, at r , the agents are moving in the same direction, since
they do not catch each other and in each time step at least
one of them makes progress, in the next 2G time steps the
ring will be explored.

Consider now the casewhen agents aremoving in opposite
directions: If at time r + 2G − 1 neither of them is blocked
on an edge, then by the next phase P + 1 starting at round
r + 2G, they must have crossed each other and they keep
different directions; thus, the ring will be explored by the
end of phase P + 1. Otherwise, at time r + 2G − 1 at least
one of them has to be blocked on an edge e. At the beginning
of the next phase, round r + 2G, three cases are possible:

– Only one agent changes direction; in this case, they will
have the same direction in phase P + 1, thus exploring
in O(n) rounds.

– Both agents reverse direction; this happens only if both
have been blocked for the last G rounds of phase P , thus
they will change directions from two different endpoints
of the same edge e, and the ring is explored by time
r + 2G + 4G.

– No one changes direction; this implies that by the next n
rounds, i.e. by round r + 2G + 2G, they either crossed
each other, and thus they will explore the ring by the end
of phase P+1, or they are blocked on the endpoints of the
same edge e′. In the latter case, if the edge e′ is removed
for the last 2G rounds of phase P + 1, then at round
r + 2G + 4G they both change directions moving from
the two endpoints of e′, and thus exploring the ring by the
end of phase P + 2. Otherwise, if the edge is present for
one round in the last 2G rounds of phase P+1, then they
will cross each other and continue in the same direction
for the phase P + 2, exploring the ring. �	

3.2.2 Termination: landmark and chirality

We now focus on solutions with termination. By Theorem 1,
in absence of bounds on the ring size, the ring cannot be
anonymous. Hence, we assume that there is a special node,
called landmark, different from the others and visible to the
visiting agents. in this subsection we consider chirality, but
no other additional knowledge, and we show that two anony-
mous agents can explore the ring and terminate in optimal
time O(n).

Let v∗ be the landmark, identifiable by the agents:
when performing a Look operation at some node v, a flag
IsLandmark is set to true if and only if v = v∗. The basic
idea is to explore the ring using the landmark to compute
the size and allow termination. In order to coordinate ter-
mination, the agents implicitly “communicate” when they
catch each other (by waiting at the node if not sure whether
to terminate, and by leaving it if they already know that
the ring is explored). When the agents catch each other for

the first time, they break symmetry and assume different
roles.

We assign to them logical names: F for the agent being
caught, and B for the one that caught F . These names do not
change afterwards, even though it is possible for F to catch
B later on.

Procedure LExplore is very similar to Explorewith the
following additions:

– Each agent keeps track of whether it is crossing the land-
mark and in which direction; furthermore, it tracks its
distance from the landmark (since encountering it for the
first time). In this way, it can detect whether it made a full
loop around the ring. When it does so for the first time,
variable size is set to the ring size n (size is initialized to
infinity, all the tests using it while it has this initial value
will fail).

– An additional variable Ntime is maintained, tracking the
total number of rounds since the agent learned n.

The complete pseudocode is shown in Fig. 4. Both agents
start going left. If theynevermeet, they terminate (seeLemma
1). If they catch each other, the naming is done. After naming,
agent F keeps going left. Agent B moves right until either
it completes a loop of the ring or it is blocked for a number
of rounds larger than the number of edges it has traversed so
far, i.e. predicate “Etime > 2Esteps”. When one of these
conditions is satisfied, agent B goes left, and it tries to catch
up with F .

If they catch up and F has done less than Esteps steps to
the left from its old position, then B and F have waited on
the same edge, and hence the ring has been explored; B can
detect this, and it “communicates” the end of exploration to
F .

If they catch up but F has done at least Esteps steps
to the left from its old position (B can detect this), they
both keep executing the algorithm. Note that F has made
progress towards completing a ring loop, a condition that
can be detected because of the landmark. Should such an
event occur, then both F and B will eventually terminate.

If they do not catch up for a certain number of rounds,
then they will both know that the ring is explored and they
can terminate independently (see Lemma 2).

Lemma 1 In Algorithm LandmarkWithChirality, if the
agents do not catch each other and stay in the Init state, then
they will explore the ring and explicitly terminate by round
7n − 1.

Proof Let the agents do not catch each other and stay in the
Init state.

We first show that two agents starting on different nodes
will explore the ring and explicitly terminate by round 7n −
2. Since the agents are moving in the same direction but
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States: {Init, Bounce, Return, Forward, Terminate, BComm, FComm}.
In state Init:

LExplore(left | Ntime > 2 size: Terminate; catches: Bounce; caught: Forward)
In state Bounce:

LExplore(right | meeting: Terminate; Etime > 2Esteps ∨ Ntime > 0: Return, catches: BComm)
In state Return:

bounceSteps ← Esteps
LExplore(left | Ntime > 3 size ∨ caught: Terminate; catches: BComm)

In state Forward:
LExplore(left | Ntime ≥ 7 size ∨ meeting ∨ catches: Terminate; caught: FComm)

In state BComm:
returnSteps ← Esteps
if returnSteps ≤ 2 · bounceSteps then both must have waited on the same edge

Move (right) signal the need to terminate
Terminate in the next round

else if you know that the ring is explored (n is known) then
Move (right) signal the need to terminate
Terminate in the next round

else
Stay for one round in the node
if agent F is in the node then agent F waited to learn whether to terminate

change state to Bounce and process it (in the same round)
else agent F left, or tried to leave and is on the port – signalling to terminate

Terminate
In state FComm:

if you know that the ring is explored (n is known) then
Move (left) signal to B that F knows n
Terminate in the next round

else
Move from the port to the node i.e. staying at the same node
if agent B is in the node then this happens next round

Change state to Forward and process it (in the same round)
else B has left or is on the port

Terminate

Fig. 4 Algorithm LandmarkWithChirality

they start from different nodes, in each round at least one of
them makes progress. Since they do not catch each other, the
difference between the number of successful moves by the
agents is at most n − 1. Therefore, if by round 5n − 2 no
agent has terminated, then both agents have crossed at least
2n − 1 edges and hence they both know n. By construction,
in additional 2n steps, the agents will terminate. If an agent
has terminated at round r < 5n − 2, this means that at time
r − 2n this agent knew n, i.e. it has entered the landmark for
the second time. As the agents did not catch each other, the
other agent must have already entered the landmark. Since
in the subsequent 2n steps the agents do not catch each other
and together made progress at least 2n times, by round r the
other agent will enter the landmark for the second time, and
by round r + 2n it will terminate as well.

We examine now the case of the agents starting at the
same node; since the agents are going in the same direction,
at the first round they will both try to enter the same port.
Since access to a port is granted in mutual exclusion, only
one agent will succeed. If the edge e corresponding to that
port is missing then, at the beginning of next round, one agent

sees the other inside the port after the failed move, and the
agent in the port sees the other in the node. That is, the agents
catch each other, contradicting the hypothesis.

Therefore, edge e has to be present; this means that at the
beginning of the next round the two agents will be in two
different nodes.

But this is the same to consider as the agent are starting
on a different nodes, hence we just have to add an additional
round to the bound shown for the case of agents starting from
distinct nodes. �	
Lemma 2 In Algorithm LandmarkWithChirality, if an
agent terminates, then the ring has been explored and the
other agent will terminate as well.

Proof We prove the lemma by case analysis on how the
agents terminate. In the proof we assume that the left direc-
tion corresponds to a counter-clockwise direction. Consider
first the case when the agents terminate at the same time.
According to the algorithm, this happens only in the four
cases considered below; in each case, we show that the ring
has been explored:
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F

wv z

B

the ringv∗

Fig. 5 Agent F , in state Forward, catches agent B in state Return at
node w

1. Agent F , in state Forward, catches agent B in state
Return at nodew (see Fig. 5): Consider the node v where
B caught F and changed state to Bounce the last time.
The counter-clockwise segment from v to w has been
explored by F , that never changed its direction. Con-
sider now the node z where B changed state to Return
the last time; it is not difficult to see that z must be in
the counter-clockwise segment from v to w; this in turn
implies that B has explored the clockwise segment from
v to w. Thus the entire ring has been explored.

2. The agents, F in state Forward and B in state Bounce,
moving in opposite direction meet at a node: The entire
ring has clearly been explored.

3. Agent F , in state FComm, knows n and signals B to
terminate: By construction.

4. Agent B, in state BComm, signals F to terminate:
According to the algorithm when this occurs either B
knows n, or returnSteps ≤ 2 · bounceSteps. If B knows
n the lemma trivially holds. Consider the second con-
dition. When agent B changes its direction, it has been
blocked (not necessarily on the same edge) more than
bounceSteps times. Satisfying the test returnSteps ≤
2 · bounceSteps means F has either made progress of
at most bounceSteps, or it has made one or more whole
loops and then atmost bounceSteps. In the first case F has
been blocked during one of the rounds when B has been
blocked; this can only happen if they had been blocked on
the same edge, i.e. the ring has been explored (see Fig. 6
for an example). In the latter case, the ring has obviously
been explored.

Consider now terminates first (the case of agents never
meeting is handled by Lemma 1); we have two situations, in
both we prove that the ring has been explored:

1. Agent B terminates due to timeout Ntime > 3n. As the
agents are moving in the same direction, the number of
successful moves differs by at most n − 1. Since in each
time step at least one of them advances, in less than 3n

F B

v∗the ring v v

Fig. 6 Agent B signals F to terminate, after checking that
returnSteps ≤ 2 · bounceSteps. This implies that both agents were
waiting on two endpoints of the same edge, in this case edge (v, v′)

F B
the ringv0 vn−1v∗

r

r

Fig. 7 Agent F terminates due to timeout Ntime ≥ 7n: in this figure
we can see agent F learning n at round r , and agents B switching state
to Return after 4n − 2 steps

time steps from the moment when B learned n, F will
also learn n and eventually terminate.

2. Agent F terminates due to timeout Ntime ≥ 7.
Let r be the round when F learned n.
If B entered state Bounce at round r ′ ≤ r , since the
agents did not cross each other (satisfying the meeting
predicate), agent B switches to stateReturn atmost 4n−2
rounds from round r , as we now show. In fact, at round
r+4n−2, we have Etime ≥ 4n−2. If Esteps < 2n−1,
B satisfies predicate “Etime > 2Esteps” and thus
enters state Return. On the other hand, if Esteps ≥
2n − 1, then B has done at least a loop around the land-
mark v∗; therefore “Ntime > 0” and thus B enters state
Return, (see Fig. 7 for an example). Now the analogous
argument as for case 1 applies, both agents have the same
direction and if B catches F it terminates. Therefore, if
B does not catch F , then it will learn n with at most 3n
additional steps, and eventually terminate.
Notice that, if agent B enters state Bounce after round r ,
B will catch F that would signal B to terminate, prov-
ing the lemma. Otherwise, if B does not catch F , that
means that B keeps staying in state Return after round r ,
then it will learn n with at most 3n additional steps, and
eventually terminate. �	
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Theorem 6 Algorithm LandmarkWithChirality allows
two anonymous agents with chirality to explore a 1-interval
connected ring with a landmark and to explicitly terminate
in O(n) time.

Proof If the agents do not catch each other, the proof follows
from Lemma 1. Consider now the case that the agents catch
each other at least once. Also by Lemma 1, we know that the
meetingwill happen no later than in round 7n−2. The crucial
observation is that, either the time between two consecutive
meetings is linear in the progress made by agent F , or the
agents terminate following the catch.

Let pTimei denote the time between i th and i + 1th catch
and let forwdStepsi be the progressmade in that time by agent
F . We have:

returnStepsi = bounceStepsi + forwdStepsi

Furthermore,

pTimei ≤2 · bounceStepsi + 1 + returnStepsi + forwdStepsi

where, 2 · bounceStepsi + 1 is an upper bound on the time
needed by agent B to switch state from Bounce to Return
given by the predicate “Etime > 2Esteps”. The quantity
returnStepsi + forwdStepsi is an upper bound on the time
needed for B to catch again agent F . Substituting returnSteps
into the latter yields

pTimei ≤ 3 · bounceStepsi + 2 · forwdStepsi + 1

If the agents do not terminate after this catch, it must
be forwdStepsi > bounceStepsi , hence pTimei ≤ 6 ·
forwdStepsi . This means that by time 12n at the latest since
the first catch, agent F will know n and will terminate in 7n
further rounds (if it does not terminate earlier due to some
other terminating condition). The correctness now follows
from Lemma 2, and optimality is obvious. �	

3.2.3 Termination: landmark without chirality

In this subsection we consider the case of a landmark when
there is no chirality, and we prove that exploration with ter-
mination can still be performed in time O(n log n).

We first consider and solve the problem when both agents
start from the landmark; we then adapt the algorithm to work
when agents start in arbitrary positions.

Starting from the landmark The pseudocode of Algorithm
StartFromLandmarkNoChirality is in Fig. 8. Themain
difficulty lies in the case when the agents start in opposite
directions and never break the symmetry. Our approach to
solve this case is to add an initial phase in which the agents

use the event ofwaiting on amissing edge to break symmetry,
obtain different IDs [of size O(log n)] and then use these
IDs to ensure that, if the agents do not catch each other (or
outright explore the ring), then they eventually move in the
same direction for a sufficiently long time so that Algorithm
LandmarkWithChirality succeeds.

Let us remark that, if the agents somehowcatch each other,
they establish chirality, and then they can use Algorithm
LandmarkWithChirality which leads to exploration and
termination. Therefore, if at any point the agents catch each
other, they enter states Forward and Bounce and proceed
with Algorithm LandmarkWithChirality.

Computing the ID Each agent tries to compute its ID
according to the procedure described below. If an agent does
not succeed in computing its ID, then it has explored the ring
and it is aware of that.

If an agent does not know the ring size, the first two times
it waits in a port it immediately changes direction. We indi-
cate these rounds with r1 and r2, respectively. Let r3 be the
round when the agent entered the landmark for the first time
between times r1 and r2 (r3 is set to 0 if the agent does
not traverse the landmark between rounds r1 and r2). Let
k2 = (r2 − max(r1, r3)) and k3 = max(0, (r3 − r1)); note
that these values are provided by variable Etime in the algo-
rithm (see Fig. 8). The computed ID of this agent consists of
the interleaved bits of the numbers k1 = r1, k2 and k3, where
each bitstring is padded with a prefix of 0’s until its length
is equal to that of the longest of the three. Note that two IDs
are equal if and only if their ki ’s are equal. In Fig. 9 there
is a detailed example on how the IDs are computed; notice
that since both IDs start with 0, this bit is ignored when the
numerical value in base 10 is obtained. In Fig. 10 there is an
example of a run where r3 �= 0 for agent a.

Moreover, notice that if a round r1 or r2 does not exist,
because the agent encountered a missing edge less than two
times, then that agent has looped around the landmark; in
this case it enters in the Happy State (cf. pseudocode). So it
knows the ring size and it can compute an upper bound on
the termination time of the other agent.

Using the IDs to decide the direction The following pro-
cedure is used when an agent has computed its ID. Agents
agree on a predetermined subdivision of rounds in phases.
Round r belongs to phase j , r ∈ phase( j), iff 2 j ≤
r < 2 j+1. Given the ID, an agent computes a string of bits
S(ID) = 10◦ (b(ID))◦0, where ◦ is the string concatenation
and b(ID) is the minimal binary representation of ID. Given
a string S we use (S)i to denote the i th character of S. Let us
define as j the minimum value for which 2 j ≥ len(S(ID))

and S(I D) = (0)2
j−len(S(ID)) ◦ S(ID), where len(S) is the

length of the string S. For each phase j ≥ j we associate
the binary string d(ID, j) = Dup(S(ID), 2( j− j)), where
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States: {InitL, Happy, FirstBlockL, AtLandmarkL, Ready, Reverse, Bounce, Return, Forward, Terminate, BComm, FComm}.
In state InitL:

dir ← left, k1 ← 0, k2 ← 0, k3 ← 0
LExplore(dir | n is known: Happy; Btime > 0: FirstBlockL; catches: Bounce; caught: Forward)

In state Happy:
LExplore(dir | Ttime ≥ 32((3 log(n) + 3)5 · n) + 1: Terminate; catches: Bounce; caught: Forward)

In state FirstBlockL:
dir ← right, k1 ← Ttime − 1
LExplore(dir | n is known: Happy, isLandmark: AtLandmarkL;Btime > 0: Ready; catches: Bounce; caught: Forward)

In state AtLandmarkL:
k3 ← Etime
if both agents are at the landmark then

Wait one round
if both agents are at the landmark then

Terminate
LExplore(dir | n is known: Happy, Btime > 0: Ready; catches: Bounce; caught: Forward)

In state Ready:
k2 ← Etime
Compute your ID by interleaving bits of the bit-strings representation of k1, k2 and k3. Each ki string of bits is

padded by a prefix 0 until its length is equal to the biggest of the three.
set(ID)
Change to state Reverse and process it

In state Reverse:
dir ←direction(Ttime)
if n is known then

LExplore(dir | Ttime ≥ 32((3 log(n) + 3)5 · n): Terminate; catches: Bounce; caught: Forward)
else

LExplore(dir | switch(Ttime): Reverse; catches: Bounce; caught: Forward)
In state Bounce, Return, Forward, BComm, FComm:

The same as in Algorithm LandmarkWithChirality.

Fig. 8 Algorithm StartFromLandmarkNoChirality

Bitstrings and ID of b

ba

v∗landmarkthe ringv0 vn−1

(r1)a = 2
(r2)a = 4 (r1)b = 3

(r2)b = 7

Bitstrings and ID of a
(k1)a = 10

(k3)a = 00

(k1)b = 011 (k2)b = 100

(k3)b = 000

(ID)b = 010100100 = (164)10

(r3)b = 0(r3)a = 0

(k2)a = 10

(ID)a = 110000 = (48)10

Fig. 9 Example of a run where different IDs are assigned to agents. In
this case the round r3 is 0 for both agents; no one visits the landmark
between r1 and r2

Dup(S, k) is the string obtained from S by repeating each
character k times, e.g. Dup(1010, 2) = 11001100.

For each round r ∈ phase( j), with j > j , the direction of
the agent is equal to left if (d(ID, j))r−2 j = 0, otherwise it
is right. For a round r ∈ phase( j) with j ≤ j the direction
of an agent is fixed to left.

In Fig. 11 there is an example of the bit sequences gener-
ated by an agent with ID = 1.

In our algorithm this procedure is implemented using three
functions:

Bitstrings and ID of b

ba

v∗landmarkthe ringv0 vn−1

(r1)a = 2

Bitstrings and ID of a

(k3)b = 000

(r2)a = 5(r1)b = 6

(r2)b = 8

(k3)a = 10

(k1)a = 10 (k2)a = 01 (k1)b = 110 (k2)b = 010

(ID)b = 100110000 = (304)10(ID)a = 101010 = (42)10

(r3)b = 0

(r3)a = 4

Fig. 10 Example of a run where different IDs are assigned to agents.
In this case r3 �= 0 for agent a

1    1     0   0   1     1   0     0  
Phases: 1 2 3 4

1    0    1    00   0

0

0

Rounds:
Direction:

1 2 3 4 5 6 7 ......

......

Fig. 11 Directions for an agent with ID = 1, a round with value 0/1
corresponds to left/right direction

– set(ID) This function takes as parameter the ID of the
agent, and it initializes the aforementioned procedure.

– direction(T time) This function takes as parameter the
current round and it returns the direction according to
the aforementioned procedure.
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– switch(T time) This function takes as parameter the cur-
rent round and it returns true if direction(T time) �=
direction(T time − 1).

Lemma 3 Let us consider two agents with different IDs:
{ID, ID′}, with len(ID) ≥ len(ID′). For any constant c > 0,
by round r < 32((len(ID) + 3)c · n) + 1 there has been a
sequence of c · n rounds in which the agents had the same
direction. Moreover, by round r, each agent has moved in
both directions for a sequence of rounds of length at least
c · n.
Proof By definition j = �log(len(ID) + 3). Phase j starts
at round r < 2log(len(ID)+3)+2 < 4(len(ID) + 3).

Consider d(ID, j) and d(ID′, j). We now show that there
exist two indices x, y such that (d(ID, j))x �= (d(ID′, j))x
and (d(ID, j))y = (d(ID′, j))y . It is easy to verify that y =
len(d(ID, j)), by construction since d(.) always terminate
with 0. For the index x we consider two cases:

– d(ID′, j) = S(ID′): If len(S(ID)) > len(S(ID′)) then
x is the index of the first bit of ds(ID, j) different from
zero. If len(S(ID)) = len(S(ID′)), since by assumption
ID �= ID′ index x exists.

– d(ID′, j) �= S(ID′): By construction, ds(ID′, j) is com-
posed by sequences of equal bits of length at least two.
Also by construction, the first three bits of S(ID) are 101.
This means that the substring 101 cannot be contained in
d(ID′, j), and it is contained in d(ID, j); this implies that
index x exists.

If the agents agree on the direction, they will have the same
direction in the round corresponding to index y, otherwise
they will have the same direction in the round corresponding
to index x .

In phase j > j , by construction, we have a sequence of
roundswhere agents have the same direction of length at least
2 j− j . We have 2 j− j > c · n when j > log(len(ID) + 3) +
log(c · n) + 3. We reach the end round of this phase by r =
∑log(len(ID)+3)+log(c·n)+4

i=0 2i ≤ 32((len(ID) + 3)c · n). The
last statement of the lemma derives directly by the presence
of 1 and 0 in each possible S(ID). �	
Theorem 7 Algorithm StartFromLandmarkNoChiral-
ity allows two anonymous agents without chirality starting
from the landmark to explore a 1-interval connected ringwith
a landmark and to explicitly terminate in O(n log(n)) time.

Proof First note that if the agents catch each other, as shown
in the proof of Theorem 6, they will explore the ring and
terminate in O(n) time after the moment they catch; hence,
in the remainder of the proof, we deal with the case when the
agents never catch each other. Next note that, if the agents
meet at the landmark and terminate in state AtLandmark,

they must have bounced from the same edge and the ring
has been explored; this is because they started from the land-
mark and returned at the same time while both were blocked
exactly once; see Fig. 12. However, when two agents meet
in the landmark and one terminates, to ensure that the other
is in state AtLandmark the following synchronization step is
needed:when an agent enters stateAtLandmark and sees also
the other agent, it waits one round more in the node without
moving. If the other agent does the same they both terminate.
This obviously happens in the aforementioned case, i.e. when
the agents bounced on the same edge and reach the landmark
at the same time, entering both in the same round in state
AtLandmark, thus correctly identifying the exploration of
the ring. The same cannot happen if one of the agents is not
in the AtLandmark state; in this case only one of the agent
will wait and the other will either leave the node, or it will
enter a port, thus preventing a possible incorrect termination.

Third, observe that, by time 3n−1, either an agent knows
n (and terminates in O(n log(n)) time from Happy state, or
it knows its own ID. Note that IDs are bounded from above
by n3, since each ki is at most n, which implies len(ID) ≤
3�log(n).

Consider now the case that at time 3n − 1 an agent (say
a) does not know its ID (and hence since time 3n − 1 knows
n), while the other (b) knows its ID but does not know n.
Agent b therefore repeatedly switches its direction in state
Reverse, while agent a moves in the same direction. Note
that by Lemma 3, by time 32((3�log(n)+3)5 ·n)+1, agent
b has moved to the left and right direction for a sequence
of rounds of length at least 5n, in one of the two both a and
b move in the same direction. As at least one agent makes
progress in each of those time steps, while (by assumption)
they don’t catch each other, b must have moved for at least
2n time units. This means that b learns n and eventually
terminates as well.

The final case to consider is when both agents know their
IDs, but do not know n. Note that if the agents have the same
values of k1 and k2, they must have covered the whole ring
and at least one of themwill have k3 �= 0. This means that the
agents necessarily have different IDs, since if they had the
same values of k1 and k3 �= 0, they would have terminated
in AtLandmark state, see Fig. 12.

Since the IDs are different, by Lemma 3, by round
32((3�log(n) + 3)5 · n) + 1 there has been a time segment
of length 5n in which both agents were moving in the same
direction. Thus, either they catch each other, or both learnt n
and terminated thereafter. �	

Arbitrary initial positions Algorithm StartAtLandmar-
kNoChirality almost works also in the case of agents
starting in arbitrary position. The only failure would be due
to the fact that, when the agents meet in the landmark while
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Fig. 12 Termination from state AtLandmark

establishing k1 and k2, it does not necessarily mean that they
have already explored the ring. Themodification to introduce
is not to terminate in this case, but to reset and start a new
instance in state InitL, executing algorithm StartAtLand-
markNoChirality, as now the agents are indeed starting at
the landmark. If the agents do not meet at the landmark, then
their values of k3 are different and the algorithm works using
the same arguments. The complete pseudocode is in Fig. 13.
Since this adds at most O(n) to the overall time, we obtain
the following theorem.

Theorem 8 AlgorithmLandmarkNoChirality allows two
anonymous agents without chirality to explore a 1-interval
connected ring with a landmark and to explicitly terminate
in O(n log(n)) time.

4 Ring exploration inSSYNC
In this section we investigate the exploration problem when
the system is semi-synchronous. The complexity measure we
consider in this case is the total number of edges traversed by
the agents. As in Sect. 3, Esteps denotes the total number
of successful moves performed by the agent since procedure
Explore has been called, Tnodes denote the total number
of nodes that the agent perceived to have explored since the
beginning of the protocol, Btime denotes the number of con-

secutive rounds the agent has been currentlywaiting in a port,
and catches is the predicate denoting that the agent is in the
node and the other agent is observed on a port (in the moving
direction of the first agent). These definitions hold for all the
algorithms of the SSYNC section.

4.1 Impossibility of exploration inNS

Let us begin by showing an intuitive result for the NSmodel:

Theorem 9 In theNSmodel, exploring the ring is impossible
with any number of agents, even if the ring and the agents
are not anonymous and there is chirality.

Proof Consider a non-anonymous ring where k > 1 non-
anonymous agents are located at arbitrary nodes, with at least
a node without agents; and let A be an arbitrary exploration
algorithm. Starting with t = 0, let A(t) denote the set of
agents that, according to A, if active at time t would want
to move to a neighbouring node; let P(t) denote the set of
agents that instead would not move; and let f irst(t) ∈ A(t)
be the agent in A(t) that has not been active the longest,
where ties are arbitrarily broken.

Consider now the following agents and link activation
scheduler: at time t it activates only P(t) and first(t), and
it removes the edge on which first(t)would move. Hence, no
agent will move at time t . By repeating this process and by
observing that this scheduler is indeed fair (it activates every
agent infinitely often), the nodes initially without an agent
will never be visited. �	

Notice that Theorem 9 would hold even if the agents were
equipped with wireless communication.

Motivated by this impossibility result, we now examine
the other SSYNC models.

States: {Init, AtLandmark, InitL, FirstBlock, FirstBlockL, AtLandmarkL, Ready, Reverse, Bounce, Return, Forward, Termi-
nate, BComm, FComm}.
In state Init:

dir ← left, k1 ← 0, k2 ← 0, k3 ← 0
LExplore(dir | n is known: Happy; Btime > 0: FirstBlock; catches: Bounce; caught: Forward;)

In state FirstBlock:
dir ← right, k1 ← Ttime
LExplore(dir | n is known: Happy; isLandmark: AtLandmark; Btime > 0: Ready; catches: Bounce; caught: Forward)

In state AtLandmark:
k3 ← Etime
if both agents are at the landmark then

Wait one round
if both agents are at the landmark then

reset all variables and go to state InitL
LExplore(dir | n is known: Happy; Btime > 0: Ready; catches: Bounce; caught: Forward)

In state S ∈ {Init, FirstBlock, AtLandmark}:
The same as in Algorithm StartAtLandmarkNoChirality.

Fig. 13 Algorithm LandmarkNoChirality
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4.2 Exploration in PT

4.2.1 PT: impossibility of exploration by two agents
without chirality

We begin our investigation of the PTModel by showing that,
without chirality, two agents cannot explore the ring, even
with precise knowledge of the network size and with the
presence of a landmark.

Theorem 10 In the PT model without chirality two anony-
mous agents are not sufficient to explore a ring of size n ≥ 5.
The result holds even if there is a distinguished landmark
node and the exact network size is known to the agents.

Proof By contradiction, let A be a solution algorithm. Let a
and b be the two agents. Assume that: agent a starts at node
u and, according to A, it would move towards u′; b starts at
node v and would move towards v′; and u, u′, v, v′ and the
landmark are all different.

The algorithm is executed by the agents against an adver-
sary that chooses which agent is active in which round,
decides the local orientation of the agents, as well as the
topological structure of the ring. In particular, it does not fix
the link relationship between the nodes where a acts (u, u′)
and those where b operates (v, v′), until necessary during the
execution of the algorithm A.

The adversary applies the following alternation strategy:
It activates only a and keeps it active until a tries to move
to a node other than u and u′. At this point, the adversary
blocks that edge and keeps it blocked until a either switches
direction, or decides to permanently wait on this port at node
u∗ ∈ {u, u′}. Notice that one of these two events has to take
place. When this happens, the adversary makes a passive,
activates b, and acts with b exactly in the same way as it did
with agent a. In other words, it keeps b active until b tries
to move to a node other than v and v′ and then it blocks that
edge and keeps it blocked until b either switches direction, or
decides to permanently wait on this port at node v∗ ∈ {v, v′}.

Note that, after the execution of the alternation strategy,
since the agents are anonymous and there is no chirality,
whatever decision a made (switch or permanently wait), the
same is taken by agent b.

Let us consider first the case when both agents decide to
switch direction. In this case, the adversary will continue, as
long as the two agents decide to switch direction, to execute
the alternating strategy, never letting the agents move outside
the four nodes u, u′, v, v′. This means that, if they never
decide to wait permanently, the rest of the ring will not be
explored, contradicting the correctness of A.

Therefore, within finite time, after some executions of the
alternating strategy, they both must decide to wait perma-
nently, a at node u∗ to go to node u′′, and b at node v∗ to
go to node v′′. When this happens, the adversary fixes the

topology of the ring by setting u′′ = v∗ and v′′ = u∗; it
then blocks forever edge (u∗, v∗), and permanently activates
both a and b. Thus the rest of the ring will not be explored,
contradicting the correctness of A. �	

As a consequence of Theorem 10, any exploration algo-
rithm must either use chirality, or employ more than two
agents. We will consider the two cases in the following sub-
sections.

4.2.2 PT: two agents with chirality

We know (Theorem 10) that two agents need chirality to
explore the ring; however chirality does not suffice for explo-
ration with termination (Theorem 1) unless the agents know
an upper bound on the ring size or the nodes are not anony-
mous (i.e., there is a landmark).

Interestingly, in the PT model, even with both knowledge
of the ring size and a landmark, explicit termination of both
agents is impossible as shown by the following theorem.

Theorem 11 In the PTmodel, any exploration algorithm on a
ring of size n ≥ 3with two agents can only guarantee partial
termination. The result holds even if the size of the ring is
known, a landmark node is present and there is chirality.

Proof By contradiction, let A be a two-agent exploration
algorithm for PT, where both agents always terminate in
every execution. Let a, b be the two agents, and let them
start at the same location, the landmark node vs , both ini-
tially asleep. First notice that, if only one agent wakes up and
the other remains asleep, eventually the awake agent has to
start exploring the ring (otherwise, by alternating the sleeping
of a and b, they will never move).

Let E(a) [resp. E(b)] be the unfair execution of A in
which a (resp. b) forever sleeps, b (resp. a) is active and
explores the ring, and no edge is removed. Observe that,
since the agents are anonymous, then a does in E(b) the
same moves as b does in E(a).

Let us now examine the four possible situations in which
b can find itself in E(a):

1. Agent b terminates in some location vx �= vs . Con-
sider now the execution E ′ coincident with E(a) until the
round when b terminates in vx ; then the adversary wakes
up a and blocks it on vs ; hence a will never leave vs .
Observe that E ′ is a fair execution; since, by assumption,
both agents explicitly terminate in every fair execution,
then a will terminate in E ′ on node vs , say t rounds after
becoming awake.
Consider nowan execution E ′′ coincidentwith E(a) until
bmoves to a node vy �= vs ; when this happens a is woken
up and blocked on node vs , while b is kept asleep. From
the local view of a, the executions E ′ and E ′′ are not
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distinguishable; hence a terminates in E ′′ on vs t rounds
after waking up.When this happens, the adversary wakes
up b and blocks it on node vy . Observe that also E ′′ is
a fair execution. As n ≥ 3 and only vs and vy are vis-
ited in this execution, the ring will never be explored,
contradicting the correctness of A.

2. Agent b terminates on node vs . Consider now the exe-
cution E ′ coincident with E(a) until the round when b
terminates in vs ; when this happens the adversary wakes
up a. Since a does not know that b has terminated and
b’s behaviour is indistinguishable from being asleep, a
has to leave vs . When it reaches a neighbouring node vy ,
the adversary blocks it there. Notice that E ′ is a fair exe-
cution. Consider next the execution E ′′ coincident with
E(b) (i.e., a is made active while b is asleep) until a
leaves vs ; when it reaches a neighbouring node vy , also
in this case the adversary blocks it there.
Observe that a cannot distinguish between executions E ′
and E ′′; hence a will take the same decisions in both. If
it terminates within finite time, then, when that happens,
in execution E ′′ the adversary awakes b and perpetually
blocks it on vs ; hence the ring will never be explored.
Since E ′′ is a fair execution, this contradicts the correct-
ness of A. If, on the other hand, a does not terminate,
execution E ′ contradicts the assumption that A always
guarantees explicit termination.

3. Agent b does not terminate, and it visits vs only finitely
many times. Hence, there is a round r after which b does
not visit vs (b can be waiting at some node vx �= vs ; it
can also be perpetually moving among a set of nodes not
containing vs).
Consider now the execution E ′ coincident with E(a) for
the first r rounds; the adversary then wakes a at round
r + 1 and blocks it on vs forever; notice that E ′ is fair.
By assumption, both agents terminate inA. In particular,
this means that a terminates on E ′ without leaving vs .
Consider now an execution E ′′ coincident with E ′ until
the first time b visits a node vy �= vs . From that moment
on, b becomes asleep in vy , while a is activated and
blocked on vs . From the point of view of a this execution
is undistinguishable from E ′, therefore a terminates in
vs . After the termination of a, the adversary wakes up b
in E ′′ but perpetually blocks it; notice that E ′′ is fair. As
only vs and vy have been explored in this execution, A
fails to explore the ring.

4. Agent b does not terminate, and it visits vs infinitely
often, either by reaching it and no longer moving or by
moving inside an interval I of nodes containing vs . Con-
sider now the execution E ′ coincident with E(a) until b
returns to vs ; the adversary then puts b to sleep andwakes
up a until it returns to vs .
Now, the adversary will repeat the whole process, alter-
nating forever the sleep of a and b: wake up b (resp. a)

States: {Init, Bounce, Reverse}.
leftSteps ← ⊥
rightSteps ← ⊥
In state Init:

Explore(left | Tnodes ≥ N : Terminate, catches:
Bounce)
In state Bounce:

leftSteps ←Esteps
if (rightSteps 	= ⊥) ∧ (rightSteps ≥ leftSteps)

then
Terminate

Explore(right | Tnodes ≥ N : Terminate, Btime
> 0: Reverse)
In state Reverse:

rightSteps ←Esteps
Explore(left | Tnodes ≥ N : Terminate, catches:

Bounce)

Fig. 14 Algorithm PTBoundWithChirality

and put a (resp. b) to sleep, until the next round in which
b (resp. a) is at vs (recall that it might never leave it).
Notice that b is unable to distinguish this fair execution
E from E(a), and similarly a is unable to distinguish it
from E(b); hence they will never terminate in this exe-
cution. �	

As a consequence, the best that can be achieved is partial
termination.

In the rest of this section,we show that the knowledge of an
upper bound or the presence of a landmark is sufficient for the
two agents to explore the ring;with respect to termination,we
achieve a strong partial termination, with one agent always
explicitly terminating, and the other either terminating or no
longer moving.
A. Chirality and known upper bound
First consider the case when an upper bound N on the
ring size is known to the agents. We present an algorithm,
PTBoundWithChirality, shown in Fig. 14, for exploration
of dynamic ring by two agents with chirality and knowl-
edge of an upper bound. Both agents start moving le f t . If an
agent finds a blocked edge with the other agent waiting in the
left port, it enters state Bounce, reverses direction and starts
moving right . If the agent in state Bounce finds a missing
edge before traversing N edges, it reverses direction again
(becoming Reverse); that agent might be alternating Bounce
and Reverse state several times. An agent terminates upon
discovering it has traversed N consecutive edges in a given
direction. Additionally, the agent enters in state Bounce by
catching the other agent at a distance smaller than that in the
previous catch, it means the two agents have explored the
ring and they can safely terminate.

Theorem 12 Two agents executing Algorithm
PTBoundWithChirality in thePTmodel with chirality and
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the ring
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leftStep1

a
δ
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v

Fig. 15 Run where rightSteps < leftSteps, the δ grows at each bounce-
reverse of b

a known upper bound N on the size of the ringwill explore the
ring using at most O(N 2) edge traversals. Furthermore, one
agent explicitly terminates, while the other either terminates
or it waits perpetually on a port.

Proof We first prove exploration. Note that, by definition of
Tnodes, if it exceeds N , the ring has been explored. The
only non-trivial case to consider is termination due to the
condition: rightSteps ≥ leftSteps.

Let us first consider the case when agent b terminates
after it bounces on agent a blocked on edge e at round r ,
then changes direction on a missing edge and finally catches
a again terminating.

If a stayed in the same port during all this process, then
b would have visited the other side of e (otherwise the PT
condition would have ensured passive transport of a). In such
a case the ring has been explored.

If a moved after round r , three different scenarios are
possible:

– (i) a crosses b while b is in Bounce state, this implies
that a and b explored the ring.

– (i i) a bounced on b while b was in Reverse state, a
traverses e in state Bounce, and a goes back in state
Reverse. It is clear that also in this case the ring has
been explored: the portion between e and the node where
a bounced on b has been explored by b, and the other
portion by a.

– (i i i) a crosses on b while b was in Reverse state and b is
sleeping on a node, this is analogous of scenario (i) and
implies that a and b explored the ring.

We now have to show that at least one agent terminates.
If the adversary keeps an edge perpetually removed, eventu-
ally the algorithm terminates due to condition rightSteps =
leftSteps. Moreover, if an agent is not blocked in its traversal,
it will eventually do N steps leading to termination.

The only possibility left to be analyzed is if a is blocked
on some edge e, b bounces first on edge e, then reverses
direction on edge e′ and, when b catches on a, rightSteps <

leftSteps. Notice that, when this happens, b has done at least
one step further to the left of edge e, otherwise we would
have rightSteps ≥ leftSteps leading to the termination of b.

We have that (1) the adversary cannot keep an agent sleep-
ing, or blocked, forever, (2) the adversary cannot let an agent
do N steps in one direction and (3) an agent switches from
state Reverse to Bounce only catching someone; therefore
if the agents do not terminate, then a and b have to catch
each other multiple times. As discussed previously, for each
catch the catching agent will do an additional step to the left.
Therefore, we will eventually have Tnodes > N for one of
the two. An example is reported in Fig. 15; in the figure we
can see that after the first bounce on node v, the area to the
left of v explored by b (named δ in the figure) has to grow at
least by one for each sequence of Reverse–Bounce: we must
have rightStepsi < le f t Stepi .

If an agent terminates, the other cannot bounce to the right.
Hence, it will either terminate due to exceeding N left moves,
or will be perpetually blocked on a port, and the last part of
the theorem holds.

Let us now analyze the complexity of the algorithm.
Observe that during one Bounce–Reverse phase an agent
can do O(N ) steps. There could be at most N of these
Bounce–Reverse phases: in each of them the agent has to
do an additional step left otherwise the termination condi-
tion is satisfied. Since the termination check bounds the total
number of left steps by N , this yields O(N 2) complexity of
the algorithm. �	

The complexity of the proposed algorithm, O(N 2),
depends on the accuracy of the upper bound N . We will now
show that such a dependency is to a certain degree inevitable.
In fact we prove that Ω(N · n) are indeed required by any
solution protocol. This also means that the proposed algo-
rithm is optimal, whenever N = O(n).

Theorem 13 In the PT model with chirality in which the two
agents know an upper bound N on the ring size n ≥ 5, any
exploration algorithm with partial termination requires at
least Ω(N · n) edge traversals by the agents in the worst
case.

Proof Let A be a solution algorithm for the PT model with
chirality and let N be the known upper bound on the ring
size. The actual size n ≤ N of the ring will be decided by
the adversary. The adversary will operate in logical phases;
in phase i , it selects a continuous segment Xi of the ring that
includes both agents; initially X1 has size x ≥ 5. In each
phase, the adversary uses the strategy described below. Let
Ni denote the number of distinct nodes that the agents would
have explored, under this strategy, at the beginning of phase i
if n = N , i.e. the upper bound was tight. We assume, without
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loss of generality, that N1 = |X1| = x ; this only makes the
lower bound proof stronger. The adversary repeats the same
process as long as Ni < N .

In phase i the adversary considers one agent at a time. If
that agent, say a, tries to leave Xi , the adversary will block
that edge and keeps it blocked until either a changes direction
(i.e., stays within Xi ) or also the other agent tries to leave Xi

(from opposite directions).
Eventually both agents must want to leave Xi from oppo-

site directions, otherwise the adversary can continue to
prevent the agents from leaving Xi and since Ni < N , choos-
ing n > Ni would make the algorithm A fail.

When the adversary determines that also the second agent,
say b, would want to leave Xi should it become active (recall
the first agent is currently waiting on a blocked edge), the
adversary considers what each agent would do, according to
A, if the edge the agent wants to cross is blocked indefinitely.

Clearly, they cannot both wait indefinitely, otherwise the
adversary, by choosing n = Ni and activating both agents at
all times, would make the two agents wait forever at the two
endpoints of the same blocked edge, without either of them
terminating (although they have explored the ring).

This means that at least one of the agents, after a finite
number of activations, would change direction and move
towards a neighbouring node in Xi . Let c ∈ {a, b} be such an
agent, and d be the other. Upon this determination, if d = b,
the adversary activates d (letting it move), and then makes d
passive; otherwise, i.e. d = a, it makes d passive immedi-
ately, and let it move passively on the next node. In any case,
it also blocks the edge fromwhich c is trying to leave Xi until
c changes direction and moves from its current position u to
the next node u′ in Xi . At this point, the adversary blocks
the edge (u, u′) and keeps it blocked until c performs at least
|Xi |−1 additional moves, possibly reaching d. Note that this
will always happen as shown by the claim below. �	
Claim 1 If c never reaches d in this phase and it does not
wait forever in the port of node u′ trying to reach node u, it
will perform an unbounded number of moves.

Proof By contradiction, let c satisfy the conditions of the
claim, but perform only a bounded number ofmoves, without
reaching d. Thus, within finite time it will stop in a node
indefinitely. When this happens, the adversary activates d
blocking any edge through which it wants to move. Hence
no new node will be explored; since Ni < N , by choosing
n = N the adversary would make the algorithm A fail. �	

Further note that, during this time, agent d moves (if d =
b) or is passively moved (if d = a) to a neighbour v outside
Xi .

In Claim 1 we assumed that c does not wait forever in
the port of node u′ trying to reach node u. Notice that if this
happens, then we can define the set Xi+1 = (Xi\{u}) ∪ {v}.

R
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nd
s Ring
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u u

cd

r0

r1
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Fig. 16 Run where agents end up waiting on the same edge

If d is blocked traversing an edge to go outside Xi+1,
it cannot wait forever, otherwise the adversary can create a
schedule and a configuration in which both agents are for-
ever blocked on the endpoints of edge (u, u′), without the
possibility of termination.

An example is shown in Fig. 16: in this run we have that
agent c is blocked until round r0, when it decides to change
direction. When c reaches u′ at round r1, it is forced to sleep
and agent d is allowed to move reaching u. When this hap-
pens, agents c is activated again and it tries to traverse edge
(u, u′) at round r2. At round r3, also agent d tries to traverse
edge (u, u′), and both agents keep doing that forever with-
out terminating. Notice, that the agents only know an upper
bound N on the ring size.

Therefore, agent d eventually leaves node v to go to the
neighbouring node in Xi+1, thus the adversary can let c visit
node u, then it forces c to sleep and it keeps d blocked until d
leaves v. At this point we are again in the situationwhere both
agents are confined in the set of nodes Xi = (Xi+1\{v})∪{u}.
If the agents keep behaving in this way, the adversary makes
them oscillating forever between the sets Xi and Xi+1.

Therefore, c has to perform |Xi | − 1 steps and eventually
has to reach d.

As soon as c performs |Xi | − 1 additional moves, the
adversary starts the next phase i +1, selecting Xi+1 to be the
area currently delimited by the blocked edge on one side and
the passive agent on the other (a “shift” of the former Xi area
in the direction of d’s move); that is, Xi+1 = (Xi\{u})∪{v};
thus, |Xi | = |Xi+1| = x . Observe that the added node v

could have been already visited in a previous round; that is
Ni ≤ Ni+1 ≤ Ni + 1.

The adversary repeats the same process until phase j
where N j = N . Note that termination cannot occur before
the end of this process. In fact, should one agent terminate at
any time during the i th phase, i < j , then every attempt of
the other agent to move would be blocked by the adversary,
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States: {Init, Bounce, Reverse}.
leftSteps
rightSteps
In state Init:

Explore(left | n is known: Terminate, catches:
Bounce)
In state Bounce:

leftSteps ←Esteps
if (rightSteps = ⊥

← ⊥
← ⊥

) ∧ (rightSteps ≥ leftSteps)
then

Terminate
Explore(right | n is known: Terminate, Btime >

0: Reverse)
In state Reverse:

rightSteps ←Esteps
Explore(left | n is known: Terminate, catches:

Bounce)

Fig. 17 Algorithm PTLandmarkWithChirality

preventing further exploration, and the algorithm would fail
on rings of size n = N > Ni .

Since the explored part grows of at most one node in each
phase i < j , the total number of phases is at least N − x .
Since in each phase at least x moves are performed by the
agents, the total number of moves performed by the agents
is at least x(N − x). By choosing x = �n/2 the adversary
ensures the claimed bound. �	
B. Chirality and landmark
Consider now the case when, instead of knowledge of an
upper bound on the ring size, there is a landmark in the ring.

The general strategy for two agents with chirality (but
without bound on the ring size) is essentially the same as
the one for PTBoundWithChirality, where however an
agent cannot use N for termination, but terminates when it
performs a complete loop around the landmark (and thus
knows n), or when it detects that the agents have crossed
(like in the previous algorithm). The resulting algorithm
PTLandmarkWithChirality is however more efficient in
terms of number of link traversals by the agents (Fig. 17).

Theorem 14 Two agents executing Algorithm
PTLandmarkWithChirality in the PT model with chiral-
ity will explore a ring with a landmark using at most O(n2)
edge traversals. Furthermore, one agent explicitly termi-
nates, while the other either terminates or it waits perpetually
on a port.

Proof The correctness proof is analogous to the one of The-
orem 12. Regarding complexity, the key observation is that,
in a Bounce–Reverse phase an agent cannot do more than
O(n) steps, otherwise it will loop around the landmark and
terminate. Each time rightSteps < leftSteps is verified by
an agent, the agent performs an additional step to the left; if
this condition is verified 2n − 1 times, that agent has done a

loop around the landmark. Hence the O(n2) bound trivially
follows. �	

Adapting the proof of Theorem 13, it is possible to show
that the algorithm is asymptotically optimal:

Theorem 15 In the PT model, any exploration algorithm for
a ring of size n, with n ≥ 5, with a landmark by two agents
with chirality requires Ω(n2) edge traversals in the worst
case.

Proof Let A be a solution algorithm for exploration of a
ring with a landmark by two agents with chirality. Initially
the adversary locates both agents at the landmark node and
lets them execute the algorithm until N1 = 5 nodes have
been explored. The adversary operates in logical phases; let
Xi denote the area of the ring explored by the agents at the
beginning of phase i , and let Ni = |Xi |. In phase i with
Ni < n, the adversary considers one agent at a time. If that
agent, say a, tries to leave Xi , the adversary will block that
edge and keeps it blocked until either a changes direction
(i.e., stays within Xi ) or also the other agent tries to leave Xi

(from opposite directions). Eventually both agentsmust want
to leave Xi from opposite directions: otherwise the adversary
can continue to prevent the agents from leaving Xi and since
Ni < n, the algorithm A would fail.

When the adversary determines that also the second agent,
say b, would want to leave Xi should it become active (recall
the first agent is currently waiting on a blocked edge), the
adversary considers what each agent would do, according to
A, if the edge the agent wants to cross is blocked indefinitely.

Clearly, they cannot both wait indefinitely, otherwise in
the ring where n = Ni , the adversary, activating both agents
at all times, would make the algorithm fail by having the two
agents wait forever at the two endpoints of the same blocked
edge, without either of them terminating (although they have
explored the ring). This means that at least one of the agents,
after a finite number of activations, must change direction
and move towards a neighbouring node in Xi . Let c ∈ {a, b}
be such an agent, and d be the other.

Upon this determination, if d = b, the adversary activates
d (letting it move), and then makes d passive; otherwise,
if d = a, it makes a passive immediately and let it move
passively on the next node.

In any case, it also blocks the edge fromwhich cwas trying
to leave Xi and keeps it blocked until c performs at least |Xi |
moves, possibly reaching d. Note that, as in the case of Algo-
rithm PTBoundWithChirality, this will always happen as
shown by the claim below.

Claim 2 If c never reaches d in this phase and it does not
wait forever in the port of node u′ trying to reach node u, it
will perform an unbounded number of moves.
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Proof By contradiction, let c satisfy the conditions of the
claim, but perform only a bounded number ofmoves, without
reaching d. Thus, within finite time it will stop in a node
indefinitely. When this happens, the adversary activates d
blocking any edge through which c wants to move. Hence
no new node will be explored; since Ni < n the adversary
would make the algorithm A fail. �	

Further note that, during this time, agent d moves (if d =
b) or is passively moved (if d = a) to a neighbour v outside
Xi .

In Claim 2 we assumed that c does not wait forever in
the port of node u′ trying to reach node u. Notice that if
this happen, then we can define the set Xi+1 = (Xi\{u}) ∪
{v}, if d is blocked traversing an edge to go outside Xi+1 it
cannot wait forever or the adversary can create a schedule
and a configuration in which both agents are forever blocked
on the endpoints of edge (u, u′), without the possibility of
termination. Therefore, agent d eventually leaves node v to
go to the neighbour node in Xi+1, thus the adversary can
let c visit node u, it then forces c to sleep and it keeps d
blocked until d leaves v. At this point we are again in the
situation where both agents are confined in the set of nodes
Xi = (Xi+1\{v}) ∪ {u}. If the agents keep behaving in this
way, the adversary makes them oscillating forever between
the sets Xi and Xi+1.

Therefore, c has to perform |Xi | − 1 steps and eventually
has to reach d.

As soon as c performs |Xi |moves, the adversary starts the
next phase i+1. Since v is a newly explored node, Xi+1 is the
former Xi area augmented by node v; thus, Ni+1 = Ni + 1.

The adversary repeats the same process until phase j when
Ni = n − 1. Note that termination cannot occur before the
end of this process. In fact, should one agent terminate at
any time during the i th phase, i < j , then every attempt of
the other agent to move would be blocked by the adversary,
preventing further exploration, and the algorithm would fail
because the ring has not been fully explored yet.

Since the explored part grows of one node in each phase,
the total number of edge traversals is

∑n
i=3 i > n2

2 and the
theorem follows. �	

4.2.3 PT: without chirality

Without chirality, we have shown that two agents do not suf-
fice (Theorem 10). We thus consider the presence of three
agents in absence of chirality. Also in this case, we need to
assume some other knowledge because the presence of three
agents without additional information is not sufficient (The-
orem 2) even for partial termination.

As in the previous Section, we first assume the agents have
knowledge of an upper bound N on the ring size; the case
when there exists a landmark node is considered later.

A. Upper bound
The algorithm, PTBoundNoChirality, for this case is

described in Fig. 18. Upon activation, at least two of the
three agents will necessarily agree on the orientation. An
agent bounces onlywhen catching another agent, performing
a “zig-zag tour”. There are several ways in which an agent
terminates.

More precisely, an agent changes direction if and only if
it reaches another agent that is waiting on a missing edge in
the same direction.

Each agent memorizes the distance d that it has trav-
eled between the first time it changed state from Bounce
to Reverse. Each time the agent changes state from Bounce
to Reverse (or viceversa) it checks that the number of steps
done is strictly greater than d, otherwise it terminates. If the
distance is greater the agent memorizes this new distance. If
the agent meets an agent on a node (conditionMeetingB and
MeetingR of the algorithm) and distance d has been set, it
also checks that the distance from the last direction change is
greater than d and updates d, otherwise it terminates. Finally,
there is a trivial terminating condition of doing N steps in
the same direction.

Lemma 4 In Algorithm PTBoundNoChirality, if an agent
terminates then the ring has been explored.

Proof The only non trivial part is the termination for Condi-
tion [if Esteps ≤ d]. Let b be the first agent that terminates
by satisfying condition Esteps ≤ d (if there are several such
agents, take any of them), at some round r2. We will show
that assuming that there are unexplored nodes in the ring at
time r2 leads to contradiction.

First note that, if there are unexplored nodes at time r2,
no agent could have terminated before time r2 by satisfying
condition Tnodes ≥ N ; i.e., b is indeed the first agent to
terminate.

Let us define rounds r0 and r1 as the last two rounds
in which b changed direction, with r0 < r1 (see Fig. 19).
Observe that r0 and r1 are well defined: At time r2, b has a
positive value of d (otherwise Esteps ≤ d won’t be satis-
fied). By construction of the algorithm, the first change of
direction does not set d, only the subsequent ones do; i.e.,
b must have had at least two changes of direction before
satisfying the termination condition.

Let us define the leftmost and the rightmost agents as fol-
lows:

– If at time r0 agent b changes direction from left to right,
then agent b becomes the rightmost agent, while agent a
(that b catched and reversed direction on) becomes the
leftmost agent. Otherwise, b becomes the leftmost agent
and a becomes the rightmost agent.

– The leftmost agent remains so unless it is overtaken by
another agent a′ moving left or it bounces on an agent
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States: {Init, Bounce, Reverse,MeetingR, MeetingB}.
d ← 0
In state Init:

Explore(left | Tnodes ≥ N : Terminate, catches: Bounce)
In state Bounce:

CheckD(Esteps)
Explore(right | Tnodes ≥ N : Terminate, meeting: MeetingB, catches: Reverse)

In state Reverse:
CheckD(Esteps)
Explore(left | Tnodes ≥ N : Terminate, meeting: MeetingR, catches: Bounce)

In state MeetingR:
CheckD(Esteps)
ExploreNoResetEsteps(left | Tnodes ≥ N : Terminate, catches: Bounce) This procedure is the same of

Explore but it does not reset Esteps
In state MeetingB:

CheckD(Esteps)
ExploreNoResetEsteps(right | Tnodes ≥ N : Terminate, catches: Reverse) This procedure is the same of

Explore but it does not reset Esteps

function CheckD(x)
if d > 0 then

if x ≤ d then
Terminate

else
d ← x

else if current state is Reverse then
d ← First time I change state from Bounce to Reverse

Fig. 18 Algorithm PTBoundNoChirality

a1

a0

a2

R
ou

nd
s

r0

r1

r2

Esteps

d

the ring

b

v0 vn−1

Fig. 19 PTNoChirality Termination

a′′, in which case the other agent becomes the leftmost
agent.

– Similarly, the rightmost agent remains so unless it is over-
taken by another agent b′ moving right or it bounces on
an agent b′′, in which case the other agent becomes the
rightmost agent.

Let us define as visited (for any round r , r0 ≤ r ≤ r2)
the set of nodes which have been visited by the leftmost or
the rightmost agent by round r (included). A node that is not
visited at round r is called unvisited at round r . Hence, if there
are no unvisited nodes, the whole ring has been explored. It
is easy to show by induction on the round number, that the

set of visited nodes forms a compact set of nodes between
the leftmost and the rightmost agent (it starts as a single node
at time r0, and grows only by leftward move of the leftmost
agent and by a rightward move of the rightmost agent; note
that the fact that the actual leftmost/rightmost agents might
change over time does not affect this). Hence, the leftmost
and the rightmost visited node are well defined.

From the definition of the leftmost/rightmost agents (in
particular, that the leftmost/rightmost agent never disappears,
it can only be replaced by another one) it follows that as long
as there are unvisited nodes (i.e. by assumption up to and
including round r2), the leftmost visited node is occupied by
the leftmost agent and the rightmost visited node is occupied
by the rightmost agent. As there are three agents altogether,
this means that the internal visited nodes (different from the
leftmost and the rightmost one) contain together at most one
agent. As change of direction and/or test Esteps ≤ d are
performed only when an agent catches another agent, as long
as there are unvisited nodes, no agent can change direction
or terminate due to Esteps ≤ d in an internal visited node.

Hence, when b changed direction in round r1, it was in the
rightmost or leftmost visited node (depending on its direction
in round r0). As b did not terminate in round r1, b set its d
in the last line of function CheckD to be the distance it
traveled between r0 and r1. As b changed direction in r1,
after traveling less than d step it is still in an internal visited
node and cannot terminate. Hence, b must have terminated
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in round r2 by satisfying Esteps = d. However, this means
that the leftmost agent did not advance in any round between
r0 and r2. In particular, it did not advance in round r1, which
is only possible (due to passive transport) if both leftmost
and rightmost agents were blocked on a single edge. That
is, all the nodes have already been visited in round r1, a
contradiction. �	
Theorem 16 Three agents performing Algorithm
PTBoundNoChirality in the PTmodel with a known upper
bound N on the ring size and no chirality, explore the ring
with O(N 2) edge traversals. One agent explicitly terminates,
the others either terminate or wait perpetually on a port.

Proof The correctness of termination derives from Lemma
4. It remains to prove that eventually at least one agent ter-
minates. Having three agents, at least two will agree on the
same direction. We will consider this direction as global left.
It is easy to see that if an edge is perpetually removed, then
eventually the agents terminate: two agentswill be positioned
at the end point of the missing edge and the third agent ter-
minates detecting Esteps = d. If an agent is not forced to
change direction and the edges are not perpetually removed,
then it will terminate since Esteps > N . Therefore, the
adversary has to force the agents to bounce on each other.
But let us notice that, as soon as an agent changes state from
Bounce to Reverse, it sets a distance d; if this distance does
not increase at each state change, the agent terminates. This
implies that eventually we will have d > N and termination
for Esteps > N .

Let us now analyze the complexity of the algorithm. If an
agent does not set d, then it performs at most O(N ) steps.
If an agent sets d, its value is at most O(N ); there are at
most O(N ) increases of d, therefore an agent will do at most
O(N 2) movements. Since the number of agents is constant,
the total sum of movements over all agents is at most O(N 2).
�	

B. Landmark
The general strategy for three agents without chirality

and without an upper bound on the ring size, Algorithm
PTLandmarkNoChirality, is essentially the same as the
one for Algorithm PTBoundNoChirality, where however
an agent cannot use N for termination, but terminates when
it performs a complete loop around the landmark (and thus
knows n), or when it detects that the agents have crossed (like
in the previous algorithm). Essentially, Algorithm
PTLandmarkNoChirality is obtained bymodifyingAlgo-
rithm PTBoundNoChirality (shown in Fig. 18) as follows:
the predicate “Tnodes ≥ N” is substituted with “n is
known”, that is the agent has done a loop around the land-
mark.

Theorem 17 Three agents performing Algorithm
PTLandmarkNoChirality in the PTmodel with no chiral-

ity in presence of a landmark, explore the ring with O(n2)
edge traversals. One agent explicitly terminates, the others
either terminate or wait perpetually on a port.

The proof follows the same lines of the one of Theorem
16, where termination does not happens when Esteps ≥ N
but the first time an agent does a loop around the landmark.
It is easy to see that this has to happen since d increases.

4.3 Exploration in the ETmodel

4.3.1 Basic results

Let us first introduce a simple result on a unconscious explo-
ration:

Theorem 18 In the ET model with chirality, two robots can
perform an unconscious exploration of the ring.

Proof Atrivial algorithm inwhich an agent changes direction
only when it catches someone solves the exploration in ET.

�	
Given the previous results, a natural question is whether

there is an algorithm with partial termination, as we have
shown for thePTmodel.Unfortunately the following theorem
shows that, without exact knowledge of the network size, it
is impossible to design such an algorithm.

Theorem 19 Let us consider the ET model where only an
upper bound on the ring size is known. Given any number of
agents, there does not exist any exploration algorithm with
partial termination. This holds true even if the ring has a
landmark node, the agents have distinct IDs, there is common
chirality.

Proof The proof is by contradiction. Let us assume that there
is an exploration algorithm A that always achieves partial
terminationunder the assumptions of the theorem.Let us con-
sider two different rings R1 = (V1, E1) and R2 = (V2, E2),
with V1: {v0, . . . , vn−1} and V2: {v0, . . . , vn′−1} and where
n < n′. Let ei denote the edge (vi , vi+1), where indices are
taken modulo the size of the ring. Finally, let N be the upper
bound on the both ring sizes such that n′ < N .

On ring R1, starting from round 0, the adversary perpet-
ually removes edge e0, and it schedules the activation of
the agents as follows. In rounds where the agents would
not traverse e0 or they would traverse e0 from one endpoint
only, the adversary lets all the agents be active. In the busy
rounds where there are agents trying to traverse e0 from both
endpoints, say nodes v0 and vn−1, the adversary activates
agents on v0 and on vn−1 in alternating fashion, i.e. they are
never active in the same round. Notice that e0 is perpetually
removed, so no one will traverse it. SinceA is assumed to be
correct, it will eventually explore R1. Therefore, there exists
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a round r whereA decides that R1 has been explored, and at
least one agent terminates.

We now consider the following schedule of activations
and edges removal for ring R2. On ring R2 the adversary
places all agents in the same positions of ring R1, i.e. they
are only in nodes belonging to {v0, v1 . . . , vn−1}. In rounds
when some agent wants to traverse one of edges e0 and en
and no agent wants to traverse the other, the adversary will
block that edge. In the busy rounds when there are agents
trying to traverse both e0 and en , it will alternate between
making agents waiting on e0 passive and blocking edge en ,
and making agents waiting on en passive and blocking e0.
Notice that, in the ETmodel, such a schedule can be kept for
a finite but unbounded amount of rounds, hence this can be
kept until round r .

Observe that, until round r , this execution of A on R2 is
not distinguishable, from the point of view of agents, from
the execution of A on R1 previously explained. Therefore,
the agent that terminates at round r in the execution ofA on
R1 also terminates in round r in the execution of A on R2.
However, when this happens ring R2 has not been explored.

Note that the above arguments apply also if the agents
have distinct IDs. If there is a landmark, it can be placed
anywhere in R1, and in the corresponding node in R2; R1

and R2 will still look the same to the agents. �	
Notice that Theorem 19 would hold even if the agents

were equipped with wireless communication.

4.3.2 Exploration algorithm for ET

Algorithm ETBoundNoChirality is a direct adaptation of
Algorithm PTBoundNoChirality, the only differences are
that N is set to n − 1 (since from Theorem 19 we know the
size needs to be known precisely), and the inequality check in
CheckD becomes strict: (if Esteps < d). As in the PTmodel,
three agents are employed, with no chirality assumption.

Theorem 20 Three anonymous agents performingAlgorithm
ETBoundNoChirality in the ETmodelwith known ring size
and no chirality explore the ring, with one agent explicitly
terminating and the other agents either terminating or wait-
ing perpetually on a port.

Proof Let us first observe that if an agent terminates, then
it terminates correctly. The proof follows the same steps as
the one for Lemma 4. The only difference is that in ET the
CheckD requires (if Esteps < d), thus the part of the proof
that uses the PT assumption to handle the case Esteps = d
is not needed anymore. �	

What remains to be shown is that eventually at least one
agent terminates.We show this by contradiction.Let us notice
that if an edge is perpetually removed, an agent eventu-
ally terminates: two agents will be positioned at the two

ports of the missing edge and the other one will do exactly
Esteps = n − 1 steps going from one endpoint node to
the others. If an edge is not perpetually removed then, by
construction (the agents bounce only on other agents, not on
timeout on blocked edges) and by the ET condition, an agent
that is waiting on the port of that edgewill eventually traverse
it. Since the agents terminate if they traverse n−1 steps in the
same direction, the only possibility left to consider is for the
adversary to force the agents to perpetually catch each other,
changing directions without increasing the d value. In such
a case there is a round r∗ after which each agent x reaches
a certain stable value dx and it always changes position at
the same points lx and rx ; furthermore, there exists a round
r ≥ r∗ in which two agents go left and one agent goes right.
In the remainder we assume the execution is in round at least
r .

Let a, b, c be the agents and let Lxy indicate the event:
agent x catches agent y at lx (and changes direction from
left to right); the event Rxy is analogous. Let Dxy : D′x ′y′
denote the statement that the event D′x ′y′ is the catching
event immediately following Dxy.

Note that the Dxy event can only be followedby an Dxz or
Dzx events (here and in the remainder, we implicitly assume
x �= y �= z), where D ∈ {L, R} and D is the direction
opposite to D. This is so because, after Dxy, agents x and
z were moving in the same direction D, y remained moving
in direction D, and only agents that move in the same direc-
tion can catch each other. Hence, the possible sequences of
direction changes of a perpetual schedule can be represented
by a binary tree rooted at the initial Dxy event (w.l.o.g. Lab
or Lac), with leaves corresponding to agent termination. We
call this treeCatch Tree, see Fig. 22. The assumption that the
algorithm does not terminate implies that there is an infinite
path in this tree. In the remainder of this proof we will show
that there is no such path in the Catch Tree.

First, observe that the agents never meet on a node—
that would imply at least one of them performing the
termination check somewhere inside its range, immediately
terminating. This means that unlike the case of Algorithm
PTBoundNoChirality we do not have to worry about the
agents overtaking each other. (They can still cross each other
without noticing when traveling in opposite direction and
crossing the same edge at the same time.)

Consider now a sequence of events Dxy: Dxz: Dxy. This
corresponds to x bouncing off y and z while those remained
stationary. From the ET condition and the fact that y and
z are waiting on different edges (otherwise x would detect
d = n − 1 and terminate) we know that eventually either
y or z makes progress, hence this sequence cannot repeat
indefinitely and eventually a different event must occur. This
can be represented in theCatch Tree by removing the bottom
Dxy (and its whole subtree) and adding an arrow from its
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Fig. 20 Left: The agent ranges
and events for the case
Lac: Rba. Right: the case
Lac: Rab

la ra

lb rb

c a

Lac

Rba

b

0 n − 1the ring

la ra

lb rb

c a
Lac

Rab

b

0 n − 1the ring

rc lc

c

Lca

parent to the top Dxy (implying that the same configuration
repeats). For a representation of this see Fig. 22.

Let A, B, C be the ranges (sets of nodes an x agent visits
between lx and rx ) of agents a, b, c, respectively, and A, B,C
be their complements.

Claim 3 If the algorithmdoes not terminate,wehave∀X ,Y ∈
{A, B,C}, X �= Y : X ∩ Y = ∅.
Proof The proof is by contradiction. Assume w.l.o.g, A, B
such that A ∩ B �= ∅. From this and symmetry, we may
assume la /∈ B. This means Lac is the only way for the
agent a to change direction while going left. Consider the
possible next event (consult Fig. 20, left). It cannot be Rba:
for that rb must be in A, which combined with la /∈ B implies
A ⊂ B. Since from the moment of Lac agent a was moving
right, starting outside B and to the left of it, in order to bounce
off b it would need to overtake it, which is impossible.

Hence, Lacmust be followed by Rab, which in turnmight
be followed by Lac or Lca. Lac is the cyclic case which, as
has been discussed above, cannot repeat indefinitely and can
therefore be ignored. The only possible case is Lca, which
can only happen if C ⊂ A.

Observe the movement of the agents (see Fig. 20, right):
from Rab on, b is moving right from ra , while from Lca on,
c is moving right from lc. This means that Rbc is impossible,
because c would have had to overtake b. However, Rcb is
also impossible as b cannot get into position at rc without
changing direction or crossing B. �	

From Claim 3 it remains to consider the case of pairwise
disjoint range complements, as shown in Fig. 21.

Claim 4 If the algorithm never terminates, and if the agents
are named in such a way that the complement of the ranges
are in order A, B,C from left to right (see Fig. 21), then Lac
cannot be immediately followed by Rba.

Proof After event Lac, we have that c is moving left from
la . After event Rba, agent b is moving left from rb. The next

lara

lbrb

c a

Lac

Rba

b

0 n − 1the ring

rclc

b ac

Fig. 21 The case of Lac: Rba for disjoint range complements

event is either Lbc or Lcb. However, Lbc is impossible, as
for c to reach lb without changing direction it would have to
crossC . Event Lcb is also impossible, because bwould have
to overtake c to get into a position where c could bounce on
b. �	

The following corollary is immediately obtained from
Claim 4 by rotation and symmetry:

Claim 5 If the algorithm never terminates, then the follow-
ing sequences are forbidden Lac: Rba, Lba: Rcb, Lcb: Rac,
Rbc: Lab, Rca: Lbc, Rab: Lca.

At some point in the perpetual schedule we should have
either Lab or Lac. As can be seen in Fig. 22, any branch of
a Catch Tree starting from these configuration leads either
to a cycle or to a forbidden sequence of events, leading to a
contradiction with the assumption that the algorithm never
terminates. �	
Note that the number of moves performed by the agents
before termination is finite but possibly unbounded. Con-
sider the situation when two agents are blocked going on
opposite directions on two different edges, while the third
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Fig. 22 Catch Trees rooted at
Lab and Lac. The red edges
denote forbidden sequences,
while the dashed ones depict the
loops

Lab

acRcaR

Lba Lcb Lbc

Rbc Rcb Rac

Lab

Lac

Rab Rba

Lca

agent goes back and forth between them; since we are in the
ETmodel, this configuration cannot be kept forever, but there
is no bound on the number of rounds in which it holds.

5 Conclusion

In this paper we started the investigation of the distributed
explorationproblem for 1-interval-connecteddynamicgraphs
by focusing on rings in fully synchronous and semi-
synchronous environments.We studied the impact that struc-
tural information and knowledge can have on the solvability
of the problem. In particular, we considered such factors as:
knowledge of the exact size of the ring or of an upper bound,
agreement on orientation, anonymity.

These results open the investigation of live exploration
of dynamic networks and the algorithmic study of dynamic
networks in the semi-synchronous environment.

Among the several open problems, a challenging one is
the study of live exploration in a network of arbitrary topol-
ogy where, right now, almost nothing is known. In particular,
there are no non-trivial bounds on the number of agents,
exploration time and type of knowledge necessary for solv-
ability. Little is also known in case of dynamic networks with
special but relevant underlying topologies, such as meshes,
tori, hypercubes, etc.

A parallel line of research could be to provide formal
proofs of that can be automatically verified by theorem
provers. This seems particularly important for the case of
distributed algorithms working on dynamic networks since,
besides the inherent difficulties of designing a distributed
algorithm, there is the additional non trivial components of
considering all possible dynamic graphs.

Finally, it would be interesting to study distributed solu-
tions to other classical problems for mobile agents (such as
gathering, in this regard see the recent [22], and pattern for-
mation) in dynamic networks.
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