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Abstract
Weshow that the protocol complex formalization of fault-tolerant protocols can be directly derived from a suitable semantics of
the underlying synchronization and communication primitives, based on a geometrization of the state space. By constructing
a one-to-one relationship between simplices of the protocol complex and (di)homotopy classes of (di)paths in the latter
semantics, we describe a connection between these two geometric approaches to distributed computing: protocol complexes
and directed algebraic topology. This is exemplified on atomic snapshot, iterated snapshot and layered immediate snapshot
protocols, where a well-known combinatorial structure, interval orders, plays a key role. We believe that this correspondence
between models will extend to proving impossibility results for much more intricate fault-tolerant distributed architectures.

Keywords Fault-tolerant distributed computing ·Atomic snapshot protocol · Protocol complex ·Directed algebraic topology ·
Dihomotopy · Interval order

1 Introduction

Fault-tolerant distributed computing is concerned with
designing algorithms and, when possible, solving so-called
decision tasks on a given distributed architecture, in the
presence of faults. The seminal result in this field was estab-
lished by Fisher, Lynch and Paterson in 1985, who proved
the existence of a simple task that cannot be solved in a
message-passing (or equivalently a shared memory) system
with at most one potential crash [14]. In particular, there is no
way in such a distributed system to solve the very fundamen-
tal consensus problem: each processor starts with an initial
value in local memory, typically an integer, and should end
up with a common value, which is one of the initial values.
Later on, Biran, Moran and Zaks developed a characteriza-
tion of the decision tasks that can be solved by a (simple)
message-passing system in the presence of one failure [6].
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The argument uses a “similarity chain”, which can be seen as
a connectedness result of a representation of the space of all
reachable states, called the view complex [29] or the proto-
col complex [28]. This argument turned out to be difficult to
extend tomodelswithmore failures, as higher-connectedness
properties of the protocol complexmatter in these cases. This
technical difficulty was first tackled, using homological con-
siderations, byHerlihy and Shavit [27], and independently by
Borowsky, Gafni and Saks [8,34]: there are simple decision
tasks, such as “k-set agreement” (a weak form of consensus)
that cannot be solved in the wait-free asynchronous model,
i.e. shared-memory distributed protocols on n processors,
with up to n − 1 crash failures. Then, the full characteri-
zation of wait-free asynchronous decision tasks with atomic
reads andwrites (or equivalently, with atomic snapshots) was
described by Herlihy and Shavit [28]: this relies on the cen-
tral notion of chromatic (or colored) simplicial complexes,
and their subdivisions. All these results stem from the con-
tractibility of the “standard” chromatic subdivision, which
was completely formalized in [29,30] (and even for iterated
models [23]) and corresponds to the protocol complex of dis-
tributed algorithms solving immediate snapshot protocols.
Actually, the protocol complex that has been considered in
[23,29,30] are all based on an atomic snapshotmodel of some
kind; this has been later refined for atomic reads and writes
in [4].
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Over the years, the geometric approach to problems in
fault-tolerant distributed computing has been very success-
ful, see [26] for a fairly complete up-to-date treatment. One
potential limitation however is that for some intricatemodels,
it might be difficult to produce their corresponding protocol
complex. In this paper, we are exploring the links between the
semantics of the synchronization and communication prim-
itives we are considering on a given distributed architecture,
and the protocol complex. One of the interests is that the
semantics is easier to describe than the full combinatorics of
the protocol complex, and our framework may help finding
or proving these protocol complexes correct.

The other aim of this article is to make the link between
two geometric theories of concurrent and distributed com-
putations: one based on protocol complexes, and the other,
based on directed algebraic topology. Actually, the seman-
tics of concurrent and distributed systems can be given
by topological models, as pushed forward in a series of
seminal papers in concurrency, in the early 1990s. These
papers have explored the use of precubical sets and Higher-
Dimensional Automata (which are labeled precubical sets
equipped with a distinguished beginning vertex) [33,35],
begun to suggest possible homology theories [18,22] and
pushed the development of a specific homotopy theory, part
of a general directed algebraic topology [24]. On the practi-
cal side, directed topological models have found applications
to deadlock and unreachable state detection [12], valida-
tion and static analysis [7,10,20], state-space reduction (as
in e.g. model-checking) [21], serializability and correctness
of databases [25] (see also [13,19] for a panorama of appli-
cations).

In order to instantiate this link, we will be considering
the simple model of shared-memory concurrent machines
with crash failures, where processors compute and com-
municate through shared locations, and where reads and
writes are supposed to be atomic. This model can also be
presented as atomic snapshot protocols [1,2,31], where pro-
cessors are executing the following instructions: scanning the
entire shared memory (and copying it into their local mem-
ory), computing in its local memory, and updating its “own
value”, i.e. writing the outcome of its computation in a spe-
cific location in global memory, assigned to him only. The
methodology we are describing here is by no means limited
to this simplemodel: we have provided in this paper a general
framework that builds protocol complexes from the seman-
tics of communication primitives. However, what is more
difficult is determining the set of directed homotopy classes
of directed paths in this semantics. This is one of the reasons
why we chose to exemplify the method on a well-known and
simple case in fault-tolerant distributed computing. In gen-
eral, this step is by no means trivial, reinforcing the need for
formally deriving protocol complexes from semantics. The
other reason is that the reader will be more familiar with the

model and the expected result, and will be able to focus on
the new technical (directed algebraic topological) aspects of
the paper.

Concretely, in this setting, we draw a precise relationship
between

– execution traces up to observational equivalence,
– dihomotopy classes of paths in geometric models,
– partially ordered sets of actions,

which is the first contribution of this paper. Another major
contribution is to formally show that the full-information pro-
tocol is the most general (i.e. initial) one, and in that the
information retained by each process in this protocol, is the
view, which we define in those different formalisms: infor-
mally, the view can be extracted from causal history as the
part on which depends the last scan of a process. This allows
us to provide new constructions of the protocols complex,
based on traces, dipaths, and interval orders.

Contents of the paper

Section 2 begins by defining the semantics of protocols,
which are distributed programs whose basic primitives con-
sist in updating and scanning a shared memory: an opera-
tional semantics provides a formal mathematical description
of the effect of those operations (Sect. 2.1.1) which can
be extended to interleaving traces, describing the order in
which actions occur in a particular execution (Sect. 2.1.2). In
Sect. 2.2, we observe that some of those traces are obser-
vationally equivalent, in the sense that no program can
distinguish between them: we axiomatize and study this
notion of equivalence (we provide normal forms for equiva-
lence classes and identify well-bracketed traces to which we
will be able to restrict without loss of generality).

The tasks (Sect. 3.1) specify the behaviors we are inter-
ested in implementing: in order to simplify the study of tasks
that can be implemented, we recall some classical simpli-
fications of the execution model which do not restrict the
generality (Sect. 3.2), and show that it is enough to study the
so-called view protocol because it is shown to be initial in
the category of protocols (Sect. 3.3).

In Sect. 4, we give an alternative geometric semantics,
which encodes independence of actions, as a form of homo-
topy in the semantics, and show that it coincides with the
previously defined interleaving semantics: traces up to equiv-
alence correspond to directed homotopy classes of paths in
the geometric models.

We give a third characterization of traces in Sect. 5: those
are precisely the linearizations of particular partial orders
of actions called interval orders, which will turn out to be
particularly convenient to manipulate.

In Sect. 6, we provide several characterizations of the
views: those are the local states of processes in the initial pro-
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tocol, thus formally encoding the communication history.We
detail how they can be encoded as a particular partial order
called view order (Sects. 6.1 and 6.2), and show how they
can be extracted from traces (Sect. 6.3) and interval orders
(Sect. 6.3).

This allows us in Sect. 7 to provide, several new construc-
tions of the protocol complex, which is a classical simplicial
complex whose vertices are views and simplices encode
coherence between those, based on traces, directed homo-
topy classes of paths or interval orders.

We conclude in Sect. 8.

2 Concurrent semantics of asynchronous
read/write protocols

In atomic snapshot shared memory protocols, n processes
with local memory communicate through shared memory
using two primitives: update and scan. Informally, the
shared memory is partitioned in n cells, each corresponding
to one of the n processes. A process Pi can write only on its
associated memory cell, by calling update: this primitive
writes, onto that part of memory, a value computed from
the value stored in the local memory of Pi . Note that as the
memory is partitioned, there are never any write conflicts
on memory. Conversely, all processes can read the entire
memory through the scan primitive. Note also that there are
never any read conflicts on memory. Still, it is well known
that atomic snapshot protocols are equivalent, with respect to
their expressiveness in terms of fault-tolerant decision tasks
they can solve, to the protocols based on atomic registerswith
atomic reads and writes [31]. Generic snapshot protocols are
such that all processes loop, any number of times, on the
three successive actions: locally compute a value, update
then scan, until terminating with a decision value. It is also
known that, as far as fault-tolerant properties are concerned,
an equivalent model of computation can be considered [27,
28]: the full-information protocol where, for each process,
decisions are only taken at the end of the protocol, i.e. after
rounds of update thenscan, only remembering the history
of communications.

2.1 Operational semantics

2.1.1 Protocols

Formally, we consider a fixed set V of values, together with
two distinguished subsetsI andO of input and output values,
the elements of V\(I ∪O) being called intermediate values,
and an element ⊥ ∈ I ∩ O standing for an unknown value.
We suppose that the sets of values and intermediate values
are infinite countable, so that pairs 〈x, y〉 of values x, y ∈ V

can be encoded as intermediate values, and similarly we have
an encoding 〈m〉 for every n-uple m ∈ Vn .

We suppose fixed a number n ∈ N of processes. We also
write [n] as a shortcut for the set {0, . . . , n − 1}, and Vn for
the set of n-uples of elements ofV , whose elements are called
memories. Given v ∈ Vn and i ∈ [n], we write vi for the i th
component of v. We write ⊥n for the memory m such that
mi = ⊥ for any i ∈ [n]: this is typically the initial state
of the global memory. There are two families of memories,
each one containing one memory cell for each process Pi :

– the local memories l = (li )i∈[n] ∈ Vn , and
– the global (shared) memory: m = (mi )i∈[n] ∈ Vn .

Given a memory l ∈ Vn , i ∈ [n] and x ∈ V , we write
l[i ← x] for the memory obtained from l by replacing the
i th value by x .

A state of a program is a pair (l,m) ∈ Vn × Vn of
such memories. Processes can communicate by performing
actions which consist in updating and scanning the global
memory, using their local memory: we denote by ui any
update by the i th process and si any of its scan. The
effect of the actions on the state is formalized by a protocol
as follows.

Definition 1 A protocol π consists of two families of func-
tions

πui : V → V and πsi : V × Vn → V

indexed by i ∈ [n] such that πsi (x,m) = x for x ∈ O.

Starting from a state (l,m), the effect of actions is as follows:

– ui means “replace the contents of mi by πui (li )” and
– si means “replace the contents of li by πsi (li ,m)”.

The last condition in the definition of protocols states that
once a protocol has decided upon an output value, it will not
change its mind.

In order to study when a protocol can simulate another,
it is convenient to use the following notion of morphism.
Informally, the existence of a morphism φ : π → π ′ means
that the protocol π ′ can simulate the protocol π : given an
input and a trace leading to an output from process i in π ,
the same input and trace should also lead to an output from
process i in π ′.

Definition 2 Given two protocols π and π ′, a simulation φ :
π → π ′ consists of two families of functions φi : V → V
and φ′i : V → V , indexed by i ∈ [n], respectively translating
local and global memories, such that φi (x) = x for every
x ∈ I, φi (O) ⊆ O and the following diagrams commute:
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V
φi

πui V
φ′i

V
π ′
ui

V

V × Vn

φi×∏
i φ′i

πsi V
φi

V × Vn
π ′
si

V
(1)

We say that π ′ simulates π when there exists such a mor-
phism. We write Prot for the category with protocols as
objects and simulations as morphisms.

Remark 3 This definition of morphism is not entirely satis-
factory because the image of any value under φi (and φ′i )
has to be defined, even though this value might never occur
as the local memory of process i during any execution of
the protocol. The right definition consists in having φi and
φ′i be partial functions which are defined only on memory
values which are reachable from a specified set of values
(see Sect. 3.1). We do not detail this here in order to make
this categorical part lighter, but we will implicitly suppose
that memory values are reachable in the following: this is in
particular required for Proposition 41 below to hold.

A simulation φ : π → π ′ is strict when φ−1
i (O) ⊆ O. In

this case, it will be clear that when π ′ implements a task, π
also implements it. This remark can be useful to add, without
loss of generality, further constraints to protocols, in order
to simplify their study. An example of this is given by the
following property.

Definition 4 A protocol is full-disclosure when πui (x) = x
for every x ∈ V .
A protocol is thus full-disclosure when each process fully
discloses its local state in the global memory. The following
lemma ensures that we can restrict to those protocols:

Lemma 5 Any protocol can be simulated by a full-disclosure
one.

Proof Suppose given a protocol π ′, and consider the full-
disclosure protocol π defined by

πui (x) = x πsi (x,m) = π ′
si (x, (π

′
s0 (m0), . . . , π

′
sn−1

(mn−1)))

We can then define a morphism φ : π → π ′ by φi = idV
and φ′i = π ′

ui , which is easily checked to satisfy the required
axioms. �
Remark 6 In a morphism between full-disclosure protocols,
the diagram on the left of (1) reduces to the fact that φ′i = φi .

2.1.2 Interleaving traces

We write Ai = {ui , si , di } and A = ⋃
i∈[n]Ai for the set of

actions. As explained earlier, the action ui (resp. si ) amounts
to the i th process updating its local memory (resp. writing
in the global memory). Since we want to take into account

possible failures of the protocols, we also have an action di
meaning that the i th protocol dies: in a trace containing di ,
the process Pi is said to be dead, and alive otherwise. We
sometimes write ai to denote an arbitrary action in Ai .

We denote by A∗ the free monoid over A: its elements
T are finite sequences of elements of A, i.e. words, which
will be called interleaving traces (or simply traces) in the
following.We also denote byAω the set of countably infinite
sequences of actions; we always specify an infinite trace for
an element of this set. We write ε for the empty one and
T · U , or simply TU , for the concatenation of two traces
T and U . We write proji : A∗ → A∗

i for the projections,
keeping only the actions of the i th process, and similarly
proj¬i : A∗ → (

⋃
j �=i Ai )

∗ for the projection keeping all
actions excepting those of the i th process. Given a trace T ∈
A∗, we write dead(T ) for the set of indices i ∈ [n] such that
di occurs in T , i.e. the set of dead processes, and alive(T ) =
[n]\ dead(T ), i.e. the set of alive processes. A trace is non-
dying if dead(T ) = ∅, or equivalently alive(T ) = [n].

Given a trace T ∈ A∗, we write �T �π (l,m) for the state
reached by the protocol π after executing the actions in T ,
starting from the state (l,m). Formally, it is defined as fol-
lows:

Definition 7 Given a protocol π and a trace T , we write
�T �π : Vn × Vn → Vn × Vn for its denotational seman-
tics, which is the function defined by induction on the length
of the trace T by

�ui · T �π = �T �π ◦ �ui �π

�si · T �π = �T �π ◦ �si �π

�di · T �π = �proj¬i (T )�π

�ui �π (l,m) = (l,m[i ← πui (li )])
�si �π (l,m) = (l[i ← πsi (li ,m)],m)

�ε�π (l,m) = (l,m)

This extends the functions πui and πsi on traces, and is such
that once a process has died it has no effect on the memory.
Its computation is illustrated in Example 40. Notice that we
do not have �di · T �π = �T �π ◦ �di �π , so that the above does
not define a right monoid action from the monoid of actions
onto memories in general.

2.2 Observational equivalence on traces

2.2.1 Observational equivalence

It can be noticed that different interleaving traces may induce
the same final local view for any process. Indeed, if i �= j ,
then ui and u j modify different parts of the global memory
and thus uiu j and u jui induce the same action on a given
state. Similarly, si and s j change different parts of the local
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memory, and thus si s j and s j si induce the same action on a
given state. On the contrary, ui s j and s j ui may induce differ-
ent traces asui maymodify the globalmemory that is scanned
by s j . Finally, there are similar relations expressing the fact
that once a process has died, what it does afterward does not
matter. This suggests introducing the following equivalence
relations on traces:

Definition 8 The strong equivalence � is the smallest con-
gruence on interleaving traces such that

u jui � uiu j s j si � si s j ui ui � ui

di ui � di di si � di di di � di

d j ui � uid j d j si � si d j d j di � did j

for every i, j ∈ [n] with i �= j . The equivalence ≈ is the
smallest congruence on interleaving traces containing strong
equivalence and the relation

si di ≈ di

Intuitively, the last relation expresses the fact that when a
process dies, it does not really matter whether it has recently
updated his knowledge or not.We separate it from other rela-
tions because, contrarily to other, it does not preserve the local
memory, only the one of the alive processes, as formalized
by following propositions.

Proposition 9 The strong equivalence� of traces induces an
operational equivalence: two equivalent interleaving traces
starting from the same initial state lead to the same final
state.

Proof Direct verification that for all the generating relations
of Definition 8 for �, we have for any π , �T �π = �T ′�π . For
instance, the case of the relation u jui = uiu j , with i �= j , is

�u jui �π (l,m)

= �ui �π ◦ �u j �π (l,m) = �ui �π (l,m[ j ← πu j (l j )])
= (l,m[ j ← πu j (l j )][i ← πui (li )])
= (l,m[i ← πui (li )][ j ← πu j (l j )])
= �u j �π (l,m[i ← πui (li )]) = �u j �π ◦ �ui �π (l,m)

= �uiu j �π (l,m)

Other cases are similar. �
Remark 10 Note that the relation si si � si is not valid, in the
sense that previous proposition would not be true if we added
it to the definition of strong equivalence: it is easy to come
up with a protocol for which the local memory is modified
each time a scan is performed.

Lemma 11 Given two traces T and T ′ such that T ≈ T ′, we
have dead(T ) = dead (T ′) and alive(T ) = alive(T ).

Proof Direct verification that the set of dead processes is
preserved under the relations of Definition 8 for ≈. �
Given a set I ⊆ [n] of indices with I = {i1, . . . , ik} and
a memory l ∈ Vn , we extend previous notation and write
l[I ←⊥] = l[i1 ←⊥] . . . [ik ←⊥].
Proposition 12 The equivalence≈on traces preserves global
memory, and local memory of alive traces: given two traces
T ′ and T ′′ such that T ′ ≈ T ′′, and memories such that
(l ′,m′) = �T ′�π (l,m) and (l ′′,m′′) = �T ′′�π (l,m), writ-
ing I = dead(T ′) = dead(T ′′), we have m′ = m′′ and
l ′[I ←⊥] = l ′′[I ←⊥].
Proof Direct verification as in the proof of Proposition 9. �
Remark 13 This approach using monoid presentations for
specifying the execution and failure model, seems to be
quite general. For instance, the monoid corresponding to
atomic read-write is given as follows. The alphabet is now

A =
{
r j
i , w

j
i , di

}
where r j

i (resp.w j
i ) corresponds to the i th

process reading from (resp. writing to) the memory cell j ,
with the expected relations.

2.2.2 Normal forms for traces up to equivalence

In order to handle traces up to equivalence, it is some-
times convenient to use rewriting systems, which provide
canonical representatives for equivalence classes and allow
one to decide efficiently whether two traces are equiva-
lent or not. These can be defined by orienting the relations
defining equivalence in order to obtain rewriting rules: in
the case where the obtained rewriting systems are conver-
gent (i.e. confluent and terminating), the normal forms are
canonical representatives. We study here some possible such
orientations of the rules as well as the associated normal
forms. This section is quite independent of the rest of the
paper and can be skipped by readers not familiar with rewrit-
ing theory (see [3,5] for an introduction to the subject).

Proposition 14 The following rewriting system on the alpha-
bet A is terminating and confluent:

u j ui ⇒ uiu j s j si ⇒ si s j ui ui ⇒ ui

di ui ⇒ di di si ⇒ di di di ⇒ di

di ′ui ⇒ uidi ′ di ′si ⇒ si di ′ d jdi ⇒ did j (2)

for every i, i ′, j ∈ [n] with i < j and i �= i ′. It is thus a
convergent presentation of the monoid of traces up to strong
equivalence.

Proof The termination can easily be shownby remarking that
the rewriting system decreases the number of actions, puts
di actions at the end and puts actions with low indices first.
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Confluence is established by checking confluence of critical
pairs, which are as follows, for i < j < k and i �= i ′ and
j �= j ′:

uku jui u j ui ui u j u j ui d j u j ui d j ′u jui

sks j si d j s j si d j ′s j si ui ui ui di ui ui

di ′uiui di di ui d j di ui di di si d j di si

di di di di ′di ′ui di ′di ′si d j d j di d j di di

d j di ui ′ d jdi si ′ dkd jdi

For instance, the confluence of the two first critical pairs is
given by

uku j ui

u j ukui ukui u j

u j ui uk ui uku j

ui u j uk

u j ui ui

ui u j ui u j ui

ui ui u j

ui u j

Other cases are similar. �
The above convergent rewriting system is not the only pos-
sible one. Apart from the arbitrary ordering of processes,
it tends to make processes die as late as possible. In order
to illustrate this, we briefly investigate another possible
orientation of the rules where processes die as early as pos-
sible. There is a corresponding convergent rewriting system,
although with an infinite number of rules:

Proposition 15 The following rewriting system onA∗ forms
a convergent presentation of themonoid of traces up to strong
equivalence:

u j ui ⇒ uiu j s j si ⇒ si s j ui ui ⇒ ui

di T ui ⇒ di T di T si ⇒ di T di T di ⇒ di T

ui ′di ⇒ diui ′ si ′di ⇒ di si ′ d jdi ⇒ did j

for every i, i ′, j ∈ [n] with i < j and i �= i ′, and trace
T ∈ A∗ which does not contain any action from the process i .

Proof The presentation can be obtained by a suitable Knuth-
Bendix completion process. It can also be shown directly that
the new relations are derivable and that the rewriting system
is terminating and has confluent critical pairs. �
From previous proposition we easily deduce that in each
equivalence class there is a representative such that, once the
process Pi has died, it does not perform any further action.
Moreover, the above axiomatization of equivalence gives rise
to the same equivalence relation when applied to those rep-
resentatives only. In the following, we will only consider
representatives satisfying this condition.

Lemma 16 Given an execution trace of the form T · di · T ′,
we have

T · di · T ′ � T · di · proj¬i (T ′)

A representative of a trace is called strongly properly dying
when it contains no action of process i after an action di
for every i ∈ [n]. Two properly dying representatives are
equivalent if and only if they are equivalent by applying the
relations of Definition 8 between properly dying traces only.

Proof The fact that any trace is equivalent to a properly dying
one can be shown by rewriting it using the rules of the second
line of Proposition 15. The last part of the proposition follows
from the fact that the axiomatization given in Proposition 15
is convergent and noticing that the rules preserve the property
of being properly dying. �
Similar, results can be obtained for traces up to (non-strong)
equivalence.

Proposition 17 The monoid of traces up to equivalence
admits a convergent presentations obtained either

1. by adding to the rewriting system of Proposition 14 the
rules

si T di ⇒ Tdi

for i ∈ [n] and T ∈ A∗ a trace not containing actions
from process i ,

2. by adding to the rewriting system of Proposition 15 the
rules

si di ⇒ di

for i ∈ [n].

Note that in both cases the rewriting systems are infinite. A
generalization of Lemma 16 can also be shown:

Lemma 18 A trace is called properly dying when

– it is strongly properly dying (it contains no action of pro-
cess i after a di ),

– the action of process i preceding an action di is not si .

Every class of traces up to equivalence contains a properly
dying one, and equivalence faithfully restricts to those traces.

The normal forms of these rewriting systems can be
characterized as regular language (as for any string rewrit-
ing system) of which an explicit description can be given.
Because those aremuch simpler in the case of well-bracketed
traces, see Sect. 2.2.3, we will only describe them in this
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case, which is the one that we will use in this paper. How-
ever, a characterization similar to the one of Proposition 24
can be provided. In the following, we will be mostly inter-
ested in traces up to equivalence (by opposition to strong
equivalence).

2.2.3 Well-bracketed and numbered traces

An action ui can be thought of as an “opening bracket”, and
si or di as a “closing bracket”. This suggests introducing the
following class of words, which we will be mostly interested
in the following.

Definition 19 A trace T ∈ A∗ is well-bracketed when for
every i ∈ [n] we have proji (T ) in the regular language
(ui si )∗(ε+uidi ). The notion of well-bracketed infinite trace
is defined similarly.

Note that a well-bracketed trace is necessarily properly
dying. Also note that, with our definition, a process cannot
be immediately dying (the trace di is not well-bracketed):
we could incorporate this at the cost of adding many partic-
ular cases, moreover a process which is dying immediately
can also be modeled as having ⊥ as initial memory, which
we will use when defining tasks. Usual characterizations of
well-bracketed words extend to our case. For instance, one
can define the set of processes which have updated, but not
scanned yet as follows.Wewrite℘([n]) for the set of subsets
of [n].
Definition 20 We write updated : A∗ → ℘([n]) for the
function defined by induction on traces by

– updated(ε) = ∅,
– updated(Tui ) = updated(T ) ∪ {i} whenever i /∈

updated(T ),
– updated(T si ) = updated(T )\ {i} whenever
i ∈ updated(T ),

– updated(Tdi ) = updated(T )\ {i} whenever
i ∈ updated(T ).

Because of the side conditions, the above function is not
defined on every trace, and one can show:

Lemma 21 A trace T ∈ A∗ is well-bracketed if and only if

1. updated(T ) is well-defined,
2. updated(T ) = ∅, and
3. T is strongly properly dying.

The notion of equivalence restricts to the class of well-
bracketed words as follows.

Proposition 22 The equivalence on well-bracketed traces
can be axiomatized by the following relations:

u j ui ≈ uiu j s j si ≈ si s j d j di ≈ did j

di ′ui ≈ uidi ′ di ′si ≈ si di ′ (3)

for i, i ′, j ∈ [n] with i �= j and i �= i ′. Moreover, the
rewriting system obtained by orienting the relations from left
to right when i < j is convergent.

Proof Suppose given two equivalent traces T and T ′. By
Proposition 14 they rewrite to a common normal form using
the rewriting system (2). The relations (3) are the only one
of (2) which can be applied to a well-bracketed trace and the
confluence of (2) implies the one of (3), oriented as described
above. �
Remark 23 As in Proposition 15, there is a variant of the
orientations of rules where processes die as early as possible,
which is given by

u jui ⇒ uiu j s j si ⇒ si s j d j di ⇒ did j

ui ′di ⇒ diui ′ si ′di ⇒ di si ′

for i, i ′, j ∈ [n] with i < j and i �= i ′.

The normal forms for the rewriting system of Proposition 22
can be characterized as follows (similar normal forms could
be given for other rewriting system, but this one is by far
the most manageable one). Given a set I ⊆ [n] of process
indices with I = [i1, . . . , ik], where i1 < . . . < ik , we write
uI = ui1 . . . uik , and similarly for other actions.

Proposition 24 The normal forms for the rewriting system of
Proposition 22 on well-bracketed traces are of the form

uI1sJ1uI2sJ2 . . . uIk sJk dK (4)

where the sets of indices Ii , Ji , K ⊆ [n] are such that, for
every i ∈ [n],
1. opening brackets were closed:

Ii ⊆ [n]\Ui−1

2. closing brackets were open:

Ji ⊆ Ui−1 ∪ Ii

3. dying brackets were open:

K ⊆ Uk

4. all the brackets are closed:

Uk\K = ∅
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where Ui is defined by induction on i by U0 = ∅ and

Ui+1 = (Ui ∪ Ii )\Ji

Proof It is easy to show by induction on i that Ui =
updated(uI1sI1 . . . uIi sIi ), from which it can be deduced that
words of the form (4) are well-bracketed. Moreover, none of
the rules (3) applied, and therefore those are in normal form.
Finally, every well-bracketed trace will be put in this form by
the rewriting system (3): informally, the rules of the second
line put all the di in the end, and the rules of the first line
order blocks of ui (resp. si , resp. di ) by increasing order of
indices. �
Remark 25 The two last condition can of course be replaced
by the only condition K = Uk , but our formulation makes it
clearer the contribution of both inclusions.

In an execution trace, in order to distinguish betweenmul-
tiple instances of a same action, we will sometimes write u p

i
for the pth occurrence of ui in a trace T , and similarly for
si : we call this a numbered action. A numbered trace is a
trace where all the actions are decorated with their occur-
rence number. We generally omit the occurrence number for
di since they occur at most once in well-bracketed traces.
Notice that in a trace of the form Tuiui T ′, considered up to
equivalence, replacing uiui by ui will force us to renumber
all the actions ui in T ′. For this reason, we will restrict to
well-bracketed traces for which the axiomatization of Defi-
nition 8 can be reformulated as follows on numbered traces.

Proposition 26 The equivalence of Proposition 22 corre-
sponds to the following one on numbered well-bracketed
traces:

uqj u
p
i ≈ u p

i u
q
j sqj s

p
i ≈ s pi s

q
j d j di ≈ did j

dqj u
p
i ≈ u p

i d
q
j d j s

p
i ≈ s pi d j

for every i, j ∈ [n] with i �= j and p, q ∈ N. A con-
vergent presentation can be obtained by considering the
rewriting system whose rules rewrite the left members of
the above equivalences to the corresponding right members,
when i < j .

Remark 27 Note that two equivalent numbered well-brac-
keted traces contain exactly the same numbered actions since
the relations preserve those.

The numbering does not bring new information on traces
since it can always be computed in an unambiguous way.
Therefore, we will allow ourselves to seamlessly switch
between numbered and non-numbered traces. A statement

similar to the above lemma of course holds if we further
restrict to non-dying traces: in this case, only the relations
of the first line are required. The expected properties hold
for numbered well-bracketed traces, and follow easily from
Lemma 21. They will be implicitly used in the following:

Lemma 28 Given a numbered well-bracketed trace T ,

– if the action u p
i occurs in T then either the action s pi or

the action di occurs afterward in T ,
– given actions u p

i and sqi occurring in T , with p ≤ q, sqi
occurs after u p

i ,
– given actions u p

i and uqi occurring in T , with p < q, the
actions sri with p ≤ r < q occur in between,

– given actions s pi and sqi occurring in T , with p < q, the
actions uri with p ≤ r < q occur in between.

Finally, we provide a convenient characterization of the
equivalence of numbered well-bracketed traces: two such
traces are equivalent when the relative positions of updates
with respect to scans scans are the same. Given a numbered
well-bracketed trace T and numbered actions a and b occur-
ring in T , we write a ≤T b whenever the action a occurs
before b in T : this relation is relation is a total order on the
actions of T .

Proposition 29 Suppose given two numbered well-bracketed
traces T and T ′ with the same set of numbered actions. Then
T and T ′ are equivalent if and only if

sqj ≤T u p
i iff sqj ≤T ′ u

p
i (5)

for every process numbers i, j ∈ [n] with i �= j , and round
numbers p and q.

Proof The left-to-right implication is obtained by induction
on the number of equivalence steps between T and T ′, and
then by examining each equivalence step. We now show the
right-to-left implication. By the convergent rewriting system
of Proposition 26, the numbered traces T and T ′ rewrite to
their respective normal forms T̂ and T̂ ′. From the previous
implication,we deduce that, for every process numbers i �= j
and round numbers p and q, sqj ≤T̂ u p

i iff sqj ≤T̂ ′ u
p
i ; and by

contraposition, we also have that u p
i ≤T̂ sqj iff u p

i ≤T̂ ′ s
q
j .

Finally, by Lemma 28 the ordering of actions of a given
process is also the same in T̂ and T̂ ′. Thus the traces T̂
and T̂ ′ only differ by commuting some consecutive actions
of the form u p

i (resp. s pi , resp. di ), but since their relative
order is fixed in a normal form (they are sorted by increasing
order of process number), we have T̂ = T̂ ′. One can also
observe more directly that the relations between scans an
update of (5) determine a unique normal form of the form
given by Proposition 24. Finally, since a trace is equivalent
to its normal form, we conclude that T ≈ T ′. �
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3 Solving tasks

3.1 Decision tasks and protocols

We are going to consider the possibility of solving a particu-
lar task with an asynchronous protocol. A task is formalized
as a relation expressing, for each possible input, the accept-
able outputs from a protocol. Since we are considering a
setting where processes may fail, the tasks have to take this
in account. A process which has never taken part of the com-
putation (or has died immediately) is represented here as one
having ⊥ in its initial local memory. Moreover, if a process
dies during the execution,we consider that task specifications
are such that a process that never chooses an output does not
constrain the outputs for processes that do.

Definition 30 A taskΘ is a non-empty relationΘ ⊆ In×On

such that for every (l, l ′) ∈ Θ and i ∈ [n],

– li = ⊥ if and only if l ′i = ⊥,
– there exists l ′′ ∈ On such that (l, l ′′) ∈ Θ and (l[i ←
⊥], l ′′[i ←⊥]) ∈ Θ .

The domain of a task Θ is

domΘ = {
l ∈ In

∣
∣ ∃l ′ ∈ On, (l, l ′) ∈ Θ

}

and its codomain is

codomΘ = {
l ′ ∈ On

∣
∣ ∃l ∈ In, (l, l ′) ∈ Θ

}

Remark 31 As one of the referees observed, in our defini-
tion, a “consensus” task where one process starts with 1 and
eventually dies before deciding, and all other processes start
with 0 and eventually decide 1, would be incorrect. In more
standard definitions of task solvability, processes that would
start their execution would not fail, hence our definition of
task is slightly more general.

Example 32 In the binary consensus problem each process
starts with a value in {0, 1} and should end in the same set,
thus I = O = {0, 1,⊥}, in such a way that in the end all the
values chosen by the different processes are the same, and
chosen among the initial values of the alive processes. For
instance, with n = 2, the corresponding task is

Θ = {
(⊥⊥,⊥⊥), (b⊥, b⊥), (⊥b,⊥b), (bb′, bb), (b′b, bb)

∣
∣ b, b′ ∈ {0, 1}}

In the case n = 2, we can also consider the variant called
binary quasi-consensus, which restricts the output so that it
cannot happen that p1 decides 0 and p0 decides 1 at the same
time: the corresponding task is

{
(⊥⊥,⊥⊥), (b⊥, b′⊥), (⊥b,⊥b′), (bb′, cc′)

∣
∣ b, b′, c, c′ ∈ {0, 1} , c �= 1 ∨ c′ �= 0

}

Definition 33 A protocol π solves a task Θ when for every
l ∈ domΘ , and well-bracketed infinite sequence of actions
T ∈ Aω which is fair (i.e. the projection on Ai is infinite or
contains di for each i ∈ [n]) there exists a finite prefix T ′ of T
such that (l[I ← ⊥], l ′[I ← ⊥]) ∈ Θ , where I = dead(T )

and l ′ is the local memory and m′ is the global memory after
executing T ′, i.e. (l ′,m′) = �T ′�π (l,⊥n).

Given a task Θ , a memory state (l,m) is reachable when
(l,m) = �T �π (l ′,⊥n) for some finite execution trace T and
l ′ ∈ domΘ .

It can be shown [28] that, w.r.t. task solvability, the most
important case is the following one:

Definition 34 A task Θ has standard input (or is inputless)
when domΘ contains only the memory l such that li = i ,
and its “faces”, i.e. memories of the form l[I ←⊥] for some
I ⊆ [n].
For simplicity we will do so in Sect. 7. All other cases can be
deduced from this one by suitably renaming the indices and
gluing multiple copies. Given an execution trace T , we sim-
ply write �T �π instead of �T �π (l,⊥n), were l is the standard
input.

3.2 Variants of the executionmodel

Many variants of the execution model are considered in the
literature, in order to tame the combinatorial complexity of
the execution traces. For instance, we have already seen in
Lemma 5 that we can restrict, without loss of generality to
full-disclosure protocols. Here, we briefly mention further
possible classical restrictions, and refer to [26,31] for details
(in particular for the proof that they do not restrict solvabil-
ity). First, it can be shown that one can consider traces which
are well-bracketed as the only possible executions:

Proposition 35 One can, without changing task solvability,
restrict to protocols which operate on well-bracketed traces
only: those are called well-bracketed protocols.

In the well-bracketed setting, a round of a process Pi is a
sequence of actions ui si , or uidi , and we write ri ∈ N for the
number of rounds executed by a process Pi . For instance, in
the trace u0s0u0u1s1s0 we have r0 = 2 and r1 = 1. One can
suppose that all the rounds of the process are synchronized,
thus forbidding traces such as the previous one, where the
process P0 starts its second round (the second u0) before P1
has performed its first round. A protocol is iterated if the
loops of the various processes are synchronized: no process
starts its (k + 1)th round before every process has ended its
kth round or is dead.

Proposition 36 Restricting to iterated well-bracketed proto-
cols does not restrict task solvability.
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In a well-bracketed execution, rounds are either in “parallel”
(such as in the trace u0u1s0s1) or in “sequence” (such as in
the trace u0s0u1s1). A protocol is immediate snapshot when
in a parallel execution, all the updates of parallel rounds are
performed concurrently, and then all the scans are. Formally,
this means that we restrict to the executions such that after a
scan has been performed, no update can be performed unless
no other scan can be performed:

Definition 37 A well-bracketed trace T ∈ A∗ is immedi-
ate snapshot when for every prefix of the form T ′si T ′′u j ,
where T ′′ contains only actions of the form dk , one has
updated(T ′si T ′′) = ∅.

For instance, with three processes, the execution u0u1s1
s0u2s2 is immediate snapshot, but u0u1s0u2s1s2 is not: after
the prefix u0u1s0 the scan s1 can be performed so that doing
u2 is not allowed.

Proposition 38 Restricting to immediate snapshot execu-
tions does not affect protocol solvability.

In the following, unless otherwise stated, we only restrict
to protocols which are full information and well-bracketed,
and explicitly state so if we consider other of the restrictions
mentioned above.

3.3 Views and the view protocol

Of particular interest is the following, very general, protocol:

Definition 39 The view protocol π� is the full-disclosure
(well-bracketed) protocol such that π�

si (x,m) = 〈x, 〈m〉〉
for x ∈ V and m ∈ Vn .

When reading the global memory, the protocol stores (an
encoding as a value of) the pair constituted of its current
local memory x and (an encoding as a value of) the global
memorym it has read. Because, it remembers all history and
shares it with others (it is full-disclosure), this protocol is

often called a full-information protocol. This protocol will
allow us to formulate a definition of view (Definition 42),
which is shown to coincide with the usual one in Sect. 7.
In order to simplify notations, we write 〈x,m〉 instead of
〈x, 〈m〉〉 in the following (this notation never brings in ambi-
guities).

Example 40 For instance, with two processes, consider the
trace

u0u1s1u1s0s1u0s0

Writing
l0 l1
m0 m1

for the (local and global) memory, themem-

ory will evolve as follows when the trace is executed:

0 1
⊥ ⊥

u0−→ 0 1
0 ⊥

u1−→ 0 1
0 1

s1−→ 0 〈1, 01〉
0 1

u1−→ 0 〈1, 01〉
0 〈1, 01〉

s0−→ 〈0, 0〈1, 01〉〉 〈1, 01〉
0 〈1, 01〉

s1−→ 〈0, 0〈1, 01〉〉 〈〈1, 01〉 , 0〈1, 01〉〉
0 〈1, 01〉

u0−→ 〈0, 0〈1, 01〉〉 〈〈1, 01〉 , 0〈1, 01〉〉
〈0, 0〈1, 01〉〉 〈1, 01〉

s0−→ 〈〈0, 0〈1, 01〉〉 , 〈0, 0〈1, 01〉〉 〈1, 01〉〉 〈〈1, 01〉 , 0〈1, 01〉〉
〈0, 0〈1, 01〉〉 〈1, 01〉

The fact that this protocol is the “most general” one, can
be formalized as follows.

Proposition 41 The view protocol π� is initial in the cate-
gory of full-disclosure well-bracketed protocols.

Proof Suppose given a protocol π . We have to construct a
morphism φ : π� → π and show that this is the only pos-
sible such morphism. Notice that since we are considering
morphisms between full-disclosure protocols, the diagram
on the left of (1) reduces to the fact that φi = φ′i for every
i ∈ [n]. By Remark 3, we only have to define φ on reach-
able states, i.e. those of the form �T �π� for some execution
trace T . A local memory of the i th process is thus either of
the form i , in which case we must have φi (i) = i because
morphisms are required to preserve initial values, or of the
form 〈x,m〉, in which case we should have φi (〈x,m〉) =
π ′
si

(
φi (x), (

∏
i φi )(m)

)
by the second diagram of (1), which

is well-defined by induction since the states x and m have
been produced by prefixes of T . Conversely, suppose given
a reachable memory x for the process i . Since the mem-
ory is reachable there exists a trace T such that li = x with
l = �T �π� , and we define φi (x) = l ′i where (l ′,m′) = �T �π .
By definition of �T �π , it satisfies the above requirements for
the uniqueness part of the proof. We only have to check that
it does not depend on the choice of the trace T . By Propo-
sition 9, it does not depend on the representative of T in its
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equivalence class. Showing that it only depends on li (which
we will call the i-view of T in the following) is a much more
delicate task, for which we will need the tools of Sect. 6. We
will see in Proposition 84 that T leads to 〈x,m〉 for process i
if and only if its i-restriction is a given trace T ′ (i.e. T con-
tains T ′ as a particular subtrace) and that the local memory
for process i resulting from the execution of the trace T only
depends on T ′ (Proposition 83). �

This property says that protocols π are in bijection with
morphisms φ : π� → π . This is akin to the use of
generic protocols in normal form [28], where protocols only
exchange their full history of communication for afixedgiven
number of rounds, and then apply a local decision func-
tion (corresponding to our morphism φ). Those protocols
are moreover restricted to traces which are well-bracketed,
see below. For this reason, we will be satisfied with describ-
ing the potential sets of histories of communication between
processes, without having to encode the decision values: this
is the basis of the geometric semantics of Sect. 4. As a direct
consequence, we recover the usual definition of the solvabil-
ity of a task as a simplicial map from some iterated protocol
complex to the output complex [26,28].

Definition 42 Given an execution trace T in which process
Pi is alive, the view of the i th process is li , where (l,m) =
�T �π� is the state reached by the view protocol after the
execution of T , also called an i -view.

4 Directed geometric semantics

In this section, we give an alternative semantics to atomic
snapshot protocols, using a geometric encoding of the state
space, together with a notion of “time direction”. One of the
most simple settings in which this can be performed is the
one of pospaces [17,32]: a pospace is a topological space X

endowed with a partial order ≤ such that the graph of the
partial order is closed in X × X with the product topology.
The intuition is that, given two points x, y ∈ X such that
x ≤ y, y cannot be reached before x . The encoding can
be done in a quite general manner [10,11]. Here, for the
sake of simplicity, we define directly the pospace that gives
the semantics we are looking for. It is rather intuitive and
we will check this is sound and complete with respect to
the interleaving semantics, in Sect. 4.4 : to dipaths, we will
associate interleaving traces and show that equivalence of
dipaths give rise to equivalence of interleaving traces. Then,
we will associate to an interleaving trace a dipath such that
its associate trace is equivalent to the starting one.

4.1 Dipaths and dihomotopies

A dipath (or directed path) in a pospace (X,≤) is a con-
tinuous map α : [0, 1] → X which is non decreasing
when [0, 1] is endowed with the order and topology induced
by the real line. A dipath is the continuous counterpart (as we
will make clear later) of a trace in the interleaving seman-
tics, or an execution. A dipath α : [0, 1] → X is called
inextendible, if there is no dipath β : [0, 1] → X such that
α([0, 1]) � β([0, 1]). This is the analogous, in our geomet-
ric setting, to maximal execution traces. The concatenation
of two dipaths α, α′ : [0, 1] → X with compatible ends,
i.e. α(1) = α′(0) is the dipath α · α′ such that α · α′(x) is
α(x) (resp. α′(2x − 1)) when x ≤ 0.5 (resp. x ≥ 0.5).

The continuous setting allows us to use the classical
concepts of (endpoint-preserving) (di)homotopy, which is
the natural notion of equivalence between paths with com-
patible endpoints, and to use some tools from algebraic
topology to derive properties of protocols (and more gen-
erally programs [19]). A dihomotopy is a continuous map
H : [0, 1] × [0, 1] → X such that for all t ∈ [0, 1], the map
H(−, t) is a dipath. Two dipaths α, β such that α(0) = β(0)
and α(1) = β(1) are dihomotopic, if there is a dihomo-
topy map H : [0, 1] × [0, 1] → X with H(−, 0) = α

and H(−, 1) = β. We denote by [α] the set of inextendible
dipaths dihomotopic to α and dPath(X) the set of dipaths up
to dihomotopy. For instance, the followingfigure pictures two
dipaths that are dihomotopic in the geometric space X

2
(4,2)

representing protocols with 2 processes, 4 rounds for pro-
cess 0 and 2 rounds for process 1.

r1

r0

u1

s1

u1

s1

u0 s0 u0 s0 u0 s0 u0 s0

u0

u1

s0

u0

s0

u0

s0

u0

s0

s1

u1

s1

(6)

4.2 The case of fault-free processes

As two traces are equivalent onlywhen they have the same set
of actions, we focus on well-bracketed traces with the same
number of rounds. Therefore, we will consider pospaces
associated to a number of rounds and inextendible dipaths
in this pospaces.

Consider the pospace X
n
r below, indexed by the num-

ber n of processes and the vector of number of rounds
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(r) = (r0, . . . , rn−1): each ri ∈ N, with i ∈ [n], is the
number of times process Pi performs update followed by
scan. Here, we use a vector to represent the number of
rounds, which is rather unusual: this is because we do not
want to treat only the iterated immediate snapshot protocols,
but more general atomic snapshot protocols. We claim now
that the geometric semantics of the generic protocol, for n
processes and (r) rounds, is represented by the pospace

X
n
(r) =

∏

i∈[n]
[0, ri ] \

⋃

i, j∈[n]
p∈[ri ], q∈[r j ]

U p
i ∩ Sqj (7)

endowed with the product topology and product order
induced by R

n , where

– n, ri ∈ N and u, s ∈ R with 0 < u < s < 1,
– the space

U p
i =

⎧
⎨

⎩
x ∈

∏

i∈[n]
[0, ri ]

∣
∣
∣
∣
∣
∣
xi = p + u

⎫
⎬

⎭

stands for the region where the i th process updates the
global memory into its local memory for the pth time,

– the space

Sqj =
⎧
⎨

⎩
x ∈

∏

i∈[n]
[0, ri ]

∣
∣
∣
∣
∣
∣
x j = q + s

⎫
⎬

⎭

stands for the region where the i th process scans the
global memory with its local memory for the qth time.

The meaning of (7) is that a state (x0, . . . , xn−1) ∈
∏

i∈[n][0, ri ] (i.e. a state in which each process Pi is at local
time xi ) is allowed except when it is inU

p
i ∩Sqj (for i, j ∈ [n]

and p ∈ [ri ], l ∈ [r j ]). These forbidden states are precisely
the states for which there is a scan and update conflict.
Namely, states in U p

i ∩ Sqj are states for which process Pi
updates (for the pth time) while process Pj scans (for the
qth time), which is forbidden in the semantics. Indeed, the
memory has to serialize the accesses since shared locations
are concurrently read and written, and either the scan oper-
ation will come before the update one, or the contrary, but
the two operations cannot occur at the same time. This is
reflected in the geometric semantics by a hole in the state
space, as pictured on the left of (8) for two processes with
one round each, and in (6) for two processes with several
rounds each. Notice that the holes should be points since
the operations are atomic. Here they are depicted as squares
instead of points to improve the visibility on the diagram.
In higher-dimensions, the holes exhibit a complicated com-
binatorics. For instance, for three processes, and one round

each, as in the right diagram of (8), shows forbidden regions
that intersect one another.

U0 S0

U1

S1
U 1
1 ∩ S10

U 1
0 ∩ S11

t0

t1

t0

t1

t2

(8)

What happens in dimension 3 is that for all 3 pairs of pro-
cesses (P ,Q), we have to produce a forbidden region which
has a projection, on the two axes corresponding to P and
Q, similar to the one on the left of (8). Hence for all three
pairs of processes, we have two cylinders with square section
punching entirely the set of global states of the system. Each
of these 6 cylinders correspond to a pair (P ,Q) of processes,
and a hole created either by a scan of P and an update of
Q, or a scan of Q and an update of P . Consider the cylinder
created by the conflict between the scan of P with the update
of Q: it intersects exactly two cylinders (parallel to the two
other axes) in a non trivial way, the one created by the scan
of the third processor R and the update of Q, and the one
created by the update of R and the scan of P , as shown on
the right of (8).

4.3 Processes with faults

Themodel of fault we are studying is the one of crash failures
(which are dying failures). At any point in time, any number
of processes Pi can crash, stopping its execution abruptly
right after local time ti . In terms of geometric semantics, this
amounts to forbidding all states (x0, . . . , xn−1) in R

n with
xi > ti .

There are two kinds of times at which a process can fail.
The first is when it fails even before doing its first update.
The second one is when a process fails after its last update.
Notice that the relative position of the fails to the scans is
not relevant as nobody else will see the effect of the scan and
the concerned faulty process will not help with solving the
task. So that we can consider that the concerned process halt
just before scanning. This implies to erase the hole due to the
conflict between this scan and the updates of other processes
and stop the faulty process at the corresponding round. Let
us denote

D0
j =

∏

i< j

[0, ri ] × {0} ×
∏

i> j

[0, ri ]

Dp+1
j =

∏

i< j

[0, ri ] × [0, p + 1+ s[ ×
∏

i> j

[0, ri ]
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D0
j corresponds to the failure of the j th process before it

first update and Dp+1
j corresponds to the failure of the j th

process after its p + 1th update. Now, let F be the set of
faulty processes. Then the corresponding pospace is

X
n
(r),F = X

n
(r) ∩

⎛

⎝
⋃

j∈F
D
r j
j

⎞

⎠ (9)

endowed with the product topology and product order
induced by R

n .
On the figure below, the blue path represents a trace with

no failurewhereas, the red path represent a tracewith a failure
of process 0 after its fourth update. The blue belongs toX

2
(4,2)

and the red one belongs toX
2
(4,2),{0} = X

2
(4,2)∩D4

0 where D
4
0

is the red region. Notice that red points are excluded from
X
2
(4,2),{0} as they were points of intersection between update

and scan hyperplanes and they belong to D4
0.

r1

r0

u1

s1

u1

s1

u0 s0 u0 s0 u0 s0 u0 s0

(10)

4.4 Equivalence of the standard and geometric
semantics

4.4.1 From dipaths modulo dihomotopy to equivalence
classes of interleaving traces

As already mentioned, dipaths geometrically represent exe-
cution traces, keeping in mind that dipaths which can be
deformed through a continuous family of executions are oper-
ationally equivalent.

To any inextendible dipath α : [0, 1] → X
n
(r),F , we asso-

ciate its projection αi on the i th coordinate and the real
numbers u p

i and s pi , respectively corresponding to the event
“α enters an update or scan hyperplane”:

u p
i = inf

{
t ∈ [0, 1] ∣

∣ α(t) ∈ U p
i

}

s pi = inf
{
t ∈ [0, 1] ∣

∣ α(t) ∈ S p
i

}
. (11)

Wlog, we assume that u p
i < s pi (indeed, any dipath can be

parameterized in such away that this condition holds without
changing the graph of the dipath). To a dipath α, we associate

the following interleaving trace Tα . The u p
i and s pi form a

finite total sub-order in (R,≤), hence is isomorphic, as an
order, to the order on {1, . . . , k} for some integer k. Under
this isomorphism, some j ∈ {1, . . . , k} is mapped onto a( j)
which is one of the u p

i or s pi . The trace Tα is constructed as
the concatenation a(1) . . . a(k) followed by the di for i ∈ F .

For any i ∈ [n], since αi is non-decreasing, the order in
which α enters update or scan hyperplanes induces a total
order on the actions of process i in Tα such that u p

i ≤T s pi .
We can therefore check that Tα is well-bracketed.

Remark 43 One should keep in mind that a dipath α satisfies:

– α(u p
i )i = p + u and α(s pi )i = p + s,

– if u p
i ≤ t < s pi , then p + u ≤ α(t)i < p + s,

– if s pi ≤ t < u p+1
i , then p + s ≤ α(t)i < (p + 1)+ u.

Lemma 44 Letα andβ be two inextendible dipaths inX
n
(r),F .

They intersect the update and scan hyperplanes in the same
order if and only if they are dihomotopic.

Proof Let us first prove the left-to-right implication. Since α

and β intersect the update and scan hyperplanes in the same
order, we can reparametrize β such that the times at which u p

i
and sqj intersect are the same for α and β. Then, the function
defined by H : x, t �→ t α(x)+(1− t)β(x) is a dihomotopy.
Let us prove that H takes its value in X

n
(r),F , that is, for all

x, t ∈ [0, 1], H(x, t) /∈ U p
i ∩ Sqj . Assume for instance that

u p
i > sqj . If H(x, t) ∈ U p

i , then H(x, t)i = p+u and, since
α, β ∈ X

n
(r),F ,

– either α(x)i > p + u and β(x) < p + u, then, as α and
β are non decreasing, x > u p

i and x < u p
i and we get a

contradiction,
– either α(x)i < p + u and β(x) > p + u, this case is
impossible for the same reason,

– or α(x)i = p + u and β(x) = p + u, then, as α and β

are non decreasing, α(x) j ≥ α(u p
i ) j > α(sqj ) j = q + s

and β(x) j > q + s, thus H(x, t) /∈ Sqj .

If u p
i < sqj , consider H(x, t) ∈ Sqj to show H(x, t) /∈ U p

i .
Let us now prove the right-to-left implication. Let H :

[0, 1] × [0, 1] → X
n
(r),F be a dihomotopy between α =

H(−, 1) and β = H(−, 0). Let u p
i (resp. v

p
i ) and s pi

(resp. t pi ) be the defined as in (11) for α (resp. β). Let us
fix i, j ∈ [n] and prove that, for any p ∈ [ri ] and l ∈ [r j ],
the dipaths α and β intersect U p

i and Sqj in the same order.
More precisely, we want to prove that:

u p
i < sqj iff v

p
i < tqj . (12)

Let Hi j , αi j and βi j be the projections of H , α and β respec-
tively on the plan [0, ri ] × [0, r j ] induced by the processes
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i and j . Notice that Hi j , αi j and βi j are continuous and that
for any t ∈ [0, 1], Hi j (−, t), αi j and βi j are non-decreasing.
Moreover, sinceU p

i and Sqj are parallel to the direction along
which we project, Hi j , αi j and βi j are taking their values in
the pospace:

Xi j = [0, ri ] × [0, r j ] \
⋃

p∈[ri ], l∈[r j ]
U p
i ∩ Sqj .

Thus, Hi j is a dihomotopy between αi j and βi j in the space
Xi j . Since αi j and βi j are homotopic, the concatenation of
αi j and of the reverse of βi j is contractible inXi j . Thus, there
is no hole between αi j and βi j . Since moreover they are non-
decreasing, we get: α(u p

i ) j < q + s iff β(v
p
i ) j < q + s.

Finally, the equivalence (12) follows. �
Theorem 45 Dihomotopic dipaths induce equivalent traces.

Proof This results from Proposition 29 which characterizes
equivalent traces through the order of their update and scan
actions and from preceding Lemma 44. �

4.4.2 From equivalence classes of interleaving traces to
dipaths modulo dihomotopy

In this section, we start by showing the equivalence of the
interleaving semantics modulo equivalence of interleaving
traces with the geometric semantics and dihomotopy of
directed paths, in the case when there are no crash failures.

To any interleaving trace T with n processes and (r)
rounds, we associate a dipath αT in X

n
(r),F . This dipath

accurately reflects the whole computation of T , e.g. if T ′
extends T , then αT ′ also extends αT . For example, the
black path of (6) is the dipath associated to the trace
u0u1s0u0s1s0u1u0s0u0s1s0: the points along it correspond to
actions and the path consists of a linear interpolation between
those.

The dipathαT is built by induction on the length of trace T :
when T is of length 0, αT is the constant dipath staying at
the origin; when T is the concatenation of a trace T1 with
an action A, we concatenate the dipath αT1 and a dipath β

which is defined according to the previous actions in T1 as
in the proof of the following lemma:

Lemma 46 Let T be a well-bracketed trace. There exists a
dipath αT in X

n
(r),F such that αT intersects update and scan

hyperplanes in the same order as in T .

Proof We build a (not necessarily inextendible) dipath αT ∈
X
n
(r),F by induction on T , such that for any i ∈ [n], αT (0)i =

0; if the last action in T is the (p+ 1)th update of process i ,
then αT (1) ∈ U p

i , that is αT (1)i = p + u; if the last action
in T is the (p+1)th scan of process i , then αT (1) ∈ S p

i , that
is αT (1)i = p + s. Moreover, if the last action of process is
its

– (p + 1)th update, then αT (1)i ∈
{
p + u, p + u+s

2

} ;
– (p + 1)th scan, then αT (1)i ∈ {p + s, p + 1} .

The lemma follows indeed, if T = T0u
p
i T1, then αT0u

p
i
∈ U p

i

and similarly, if T = T0s
p
i T1, then αT0s

p
i
∈ S p

i .
First, when T is of length 0, αT is the constant dipath

staying at the origin 0. Otherwise, let T = T1ai be the con-
catenation of a trace T1 with action ai (being either update ui ,
scan si or death di of process i). By induction, we have a
dipath αT1 starting at 0 and ending at αT1(1), associated to T1,
that satisfies Lemma 46. Now, construct a dipath β, which is
a line, as pictured on figure below,

0

j

i

Uj : l + u

l +
u + s

2

Sj : l + s

l + 1

(k − 1 + s)
Si

k

(k + u)
Ui

end point of αT1
αT1

0

j

i

Uj : l + u

l +
u + s

2

Sj : l + s

l + 1

k + u

Ui

(k +
u + s

2
)

(k + s)
Si

end point of β β

(13)

starting at β(0) = αT1(1) and ending at β(1). Assume i is
alive in T1.

– If ai is an update, say the (p+1)th update of process i , as
partly represented on the left part of (13), by Lemma 46,
since the previous actionwas a scan or nothing,αT1(1)i ∈
{0, p − 1+ s, p} andwe setβ(1)i = p+u. For any other
process j �= i , if j is alive and its the last action is its
say (q + 1)th scan, then αT1(1) j ∈ {q + s, q + 1} and
we set β(1) j = q + 1 (in red tones), otherwise we set
β(1) j = αT1(1) j (in blue tones).

– If ai is a scan, say the (p + 1)th scan of process i
then, as represented on the right part of (13). since the
action of i before was the (p + 1)th update, αT1(1)i ∈{
p + u, p + u+s

2

}
and we set β(1)i = p + s. For any

other process j , if j is alive and its last action is its (q +
1)th update, then we have αT1(1) j =

{
q + u, q + u+s

2

}

and we set β(1) j = l + u+s
2 (in red tones), otherwise we

set β(1) j = αT1(1) j (in blue tones).
– If ai is a death, the we set β(1)i = ri − 1+ u+s

2 . For any
other alive process j , if αT1(1) j = q + u then, we set
β(1) j = q + u+s

2 otherwise, we set β(1) j = αT1(1) j .

We then define the dipath αT1ai = αT1 · β. To a maximal
interleaving trace T , we associate an inextendible dipath α′T
by further extending αT : we define α′T to be αT · γ where γ

is the dipath given by (any parameterization of) the line from
γ (0) = αT (1) to γ (1)i = ri−1+s for i ∈ F and γ (1)i = ri
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otherwise, the point γ (1) being the end of all inextendible
dipaths in X

n
(r),F . We shall not distinguish in the sequel α′T

from αT since we will only consider maximal interleaving
traces and their inextendible counterparts. �
Theorem 47 For any T ≈ T ′ well-bracketed traces, the
induced dipaths αT and αT ′ are dihomotopic. Moreover, the
dipath αT , built from a well-bracketed trace T , induces a
trace TαT such that T ≈ TαT .

Proof Indeed, by construction αT (resp. αT ′ ) intersects
update and scan hyperplanes in the sameorder as T (resp. T ′).
Since T ≈ T ′, by Proposition 29, αT and αT ′ intersect the
update and scan hyperplanes in the same order. ByLemma44
they are dihomotopic. For the second point, by construction
(see Paragraph 4.4.1) the order of update and scans in TαT

are the same as the order of intersection of αT with update
and scan hyperplanes. So that TαT and T are equal by con-
struction. �

5 Interval orders

In this section we provide a convenient combinatorial rep-
resentation of execution traces up to equivalence as interval
orders, encoding the relative execution of rounds. We begin
by considering the case where the processes are not dying,
i.e. the traces do not contain actions of the form di . The use-
fulness of using partial order to specify concurrent objects
has already been observed [9,16]; here, we make precise
the relationship with traces. We will only need basic facts,
recalled here, about this notion which was introduced by
Fishburn [15].

5.1 From traces to interval orders

Definition 48 Let (Ix )x∈X be a family of intervals on the real
line (R,≤). This family induces a poset (X ,�), where ≺ is
defined as

x ≺ y if and only if ∀s ∈ Ix ,∀t ∈ Iy, s < t (14)

meaning that every element of the first interval is below the
second. Such a poset is called an interval order and a family
of intervals giving rise to it is called an interval representation
of the poset. A colored interval order is given by an interval
order (X ,�) and a labeling function � : X → [n] such that
two elements with the same label are comparable. Then for
any i ∈ [n], the restriction of the interval order to intervals
labeled by i is a total order.

We use the standard terminology for posets. In particular,
two elements x and y are independent, what we write x ‖ y,
whenever neither x ≺ y nor y ≺ x holds. A predecessor of

an element y is an element x with x ≺ y and such that there
is no element x ′ with x ≺ x ′ ≺ y. A poset is often depicted
by its Hasse diagram, which is the graph with the elements
of the poset as vertices and there is an edge x → y whenever
x is a predecessor of y, as on the left below. We do complete
the Hasse diagrams that we present below by adding some
arrows that come from transitivity of the order, when we feel
that is is necessary for the understanding.

x ′ y′

x y

0 1

0 1
(15)

In the case where we considered a labeled interval order, we
picture the labels instead of the elements. For instance, the
previous poset labeled by �(x) = �(x ′) = 0 and �(y) =
�(y′) = 1 will be pictured as on the right above. This can be
formally justified by the fact thatwe consider colored interval
orders up to color-preserving isomorphism: the name of the
elements do not really matter, only their labels do. In fact,
the elements of a colored interval order can always be named
canonically as follows, which will be useful in the following
(in fact, we will generally be implicitly supposing that the
colored interval orders that we manipulate are of this form).

Lemma 49 Suppose given a colored interval order (X ,�, �)

and i ∈ [n]. The elements x of X such that �(x) = i are
totally ordered, with cardinal denoted ri , and, given such
an element x, its index in the chain is called its occurrence
number. We can thus unambiguously denote by x p

i an ele-
ment of X where i is its label and p its occurrence number
and therefore, up to isomorphism, we can suppose that the
elements of X are of this form, i.e. that we have

X = {
x p
i

∣
∣ i ∈ [n], 0 ≤ p < ri

}

Example 50 The elements of the colored interval order (15)
can be named as

x10 x11

x00 x01

Remark 51 A purely combinatorial description of interval
orders (without referring to the real line) can also be
given [15]: a partial order (X ,�) is an interval order if and
only if it does not contain “2+ 2” as induced suborder, i.e. a
subset {x, y, z, t} of X with x < y and z < t and no more
comparisons. Equivalently, for any x, y, z, t ∈ X , (x ≤ y
and z ≤ t) implies (x ≤ t or z ≤ y). And a similar charac-
terization can of course be given for colored interval orders.

Interval orders are now going to be used to encode execu-
tion traces, up to equivalence, of non-dying processes. The
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idea is that, for each numbered execution trace a0 . . . ak with
an action a j being either of the form u

p j
i j

or s
p j
i j
, we associate

the interval of “global times” (on the corresponding trace)
[k, l] where ak = u p

i and al = s pi are corresponding update
and scans (in the “bracket” system they are defining), this
interval being labeled by i .

Proposition 52 Execution traces up to equivalence of well-
bracketed protocols, inwhich no process dies, are in bijection
with colored interval orders.

Proof To every non-dying well-bracketed numbered trace T ,
we associate the interval order whose set of elements is

X = {
x p
i

∣
∣ i ∈ [n], 0 ≤ p < ri

}
(16)

where ri is the number of rounds of process i in T . It thus
contains elements of the form x p

i , with indices such that u p
i

(and thus also s pi ) occurs in T . To an element x p
i , we associate

the interval [mp
i , n p

i ], where mp
i ∈ N (resp. n p

i ∈ N) is the
index of the occurrence of u p

i (resp. s pi ) in T , thus defining
an interval order as in Definition 48. We label the elements
by the function � : X → [n] such that �(x p

i ) = i . Note that
[mp

i , n p
i ] is a representation of the interval order X and is such

that n p
i < mq

j iff s
p
i ≤T uqi . So that thanks to Proposition 29,

two equivalent well-bracketed traces will generate the same
interval order.

Conversely, suppose given a colored interval order
(X ,�, �). By Lemma 49, we can suppose that the elements
of X are of the form given in (16). There is an interval repre-
sentation of the interval order associating to each element x p

i
an interval [mp

i , n p
i ] ⊆ R. Since X is finite, it is easy to see

that we can suppose thatmp
i �= mp′

i ′ ,m
p
i �= n p′

i ′ and n
p
i �= n p′

i ′
whenever i �= i ′ or p �= p′, that the mp

i and n p
i are inte-

gers, and that the set M = {
mp

i , n p
i

∣
∣ i ∈ [n], 0 ≤ p < ri

}

is an initial segment of N. Therefore, it induces a word
a0a1 . . . ak−1, with k = card(M), such that a j = u p

i if
mp

i = j and a j = s pi if n p
i = j . Note that x p

i < xqj iff

n p
i < mq

i iff s pi ≤T uqi . Thus, thanks to Proposition 29, we
have that two representations of the interval order will induce
equivalent traces. �
Example 53 The numbered trace u00u

0
1s

0
1u

1
1s

0
0s

1
1u

1
0s

1
0 induces

an interval order which is X = {
x00 , x

1
0 , x

0
1 , x

1
1

}
with the

interval representation of x p
i given by the positions of u p

i
and s pi in the word:

x00 = [0, 4] x10 = [6, 7] x01 = [1, 2] x11 = [3, 5]

and therefore the corresponding poset is (15). Conversely,
the poset (15) admits the above interval representation,which
induces the above trace.

We finally mention a useful technical property, showing that
the correspondence of Proposition 52 between traces up to

equivalence and colored interval orders is compatible with
restriction.

Lemma 54 Suppose given an interval order (X ,�, �) and a
subset Y ⊆ X which is downward and independent closed:
for every x ∈ Y and y ∈ X, y � x or y ‖ x implies y ∈ Y .
Any trace T corresponding to X by Proposition 52 is of the
form T = T ′T ′′ where T ′ is associated to the interval order
Y (with order and labeling inherited from X) by the same
proposition.

Proof Consider the last action of the form s pi in T such that
x p
i ∈ Y . The trace T is of the form T = T ′T ′′, where the
last action of T ′ is s pi and T ′′ does not contain actions of
the form aqj with xqj ∈ Y . The trace T ′ cannot contain an

action of the form aqj with xqj ∈ X\Y : if it contained such

an action, then it would contain uqj occurring before s pi , so

that x p
i � xqj and by downwards closure of Y we would have

x p
i ∈ Y which contradicts the hypothesis. Finally, the trace T ′
is easily shown to correspond to Y by Proposition 52. �

Under the equivalence of classes of interleaving traces
with dipaths modulo dihomotopy, (see Sect. 4.4), we know
that we have a correspondence as well between the dipaths
modulo dihomotopies and interval orders, that is easy to
picture. For instance, to any non-faulty inextendible dipath
α : [0, 1] → X

n
(r), we associate an interval order �α on the

set

Xn
(r) =

{
x p
i

∣
∣ i ∈ [n], p ∈ [ri ]

}

where x p
i is labeled by i and represents the interval x p

i =
[u p

i , s pi ]where we recall that uki (resp. ski ) corresponds to the
event “α enters an update (resp. scan) hyperplane”:

u p
i = inf

{
t ∈ [0, 1] ∣

∣ α(t)i ∈ U p
i

}

s pi = inf
{
t ∈ [0, 1] ∣

∣ α(t)i ∈ S p
i

}

For any i ∈ [n], the restriction of this order to the intervals
labeled by i is a total order. Indeed, dipathsα are non decreas-
ing, u < s and α(u p

i )i = p + u, α(s pi )i = p + s, hence for

all p ∈ [ri ], u p
i < s pi and if p �= 0, s p−1

i < u p
i .

Let us give simple examples of this in dimension 2 and 3.
In dimension 2, and for one round, consider the three follow-
ing inextendible dipaths in X

2
(1,1):

α0

u0 s0

u1

s1

t0

t1
α1

u0 s0

u1

s1

t0

t1
α2

u0 s0

u1

s1

t0

t1

[u1,s1]≺α0 [u0,s0] [u0,s0]‖α1 [u1,s1] [u1,s1]≺α2 [u0,s0]
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(we are not writing the round number as upper index since
we are considering here only one round). Those are repre-
sentatives of the three dihomotopy classes of dipaths in this
pospace. The dipath α0, on the above left figure, corresponds
to an execution in which process 1 does its update and scan
before process 0 even starts updating. Hence, the interval of
local times at which process 1 updates and scans is less than
the interval of local times at which process 0 updates and
scans: this is reflected by the corresponding interval order
[u1, s1] ≺α0 [u0, s0]. The dipath α2 is symmetric: the corre-
sponding interval order is [u0, s0] ≺α2 [u1, s1]. The dipath
on the middle corresponds to an execution in which the two
processes are running synchronously, updating at the same
time, and scanning at the same time: the corresponding inter-
val order is [u0, s0] ‖α1 [u1, s1].

In dimension 3, there are more dipaths that one can draw.
Consider, for instance, the synchronous execution of the three
processes (i.e. the pospace X

3
(1,1,1)), shown on the right. It

corresponds to the interval order where the intervals [u0, s0],
[u1, s1] and [u2, s2] are not comparable. The path figured
corresponds to a synchronous execution:

t0

t1

t2

5.2 The effect of processes dying

The notion of interval order can be generalized in order to
extend the correspondence described in Proposition 52. The
idea is that we now have two kinds of intervals: those of the
form x p

i = [u p
i , s pi ] and those of the form y pi = [u p

i , di ],
respectively called alive and dying intervals. We will dis-
tinguish the two by adding another kind of label to colored
interval orders.

Definition 55 A colored interval order with death
(X ,�, �, δ) consists of a colored interval order (X ,�, �), in
the sense of Definition 48, together with a function δ : X →
{♥, †} indicating for each element x if it is alive (δ(x) = ♥)
or dying (δ(x) = †), such that a dying element is maximal
among those with the same label.

In the following we simply call those colored interval orders
and specify when we consider “non-dying” ones.

Proposition 56 Execution traces up to equivalence for well-
bracketed protocols are in bijection with colored interval
orders.

Proof The proof is similar to the one of Proposition 52 except
that a pair u p

i , s pi (resp. u p
i , di ) in an execution trace cor-

responds to an alive (resp. dying) element of the interval
order. �

Remark 57 Note that we really need to consider traces up
to equivalence (as opposed to strong equivalence) for this
correspondence to hold: otherwise, we would have to distin-
guish between u0s0d0 and u0d0, which there is no easy way
to encode in interval orders.

6 Views of interval orders

We study here the views, as introduced in Definition 42, gen-
erated by an interval order. For simplicity, we only handle
the case of non-dying interval orders here.

Definition 58 Given an element x of a poset, we write � x
for the set of elements which are not strictly greater than x ,
i.e. those which are lower than x or independent from x .

6.1 Interval orders and their views

By the correspondence given by Proposition 52, the i-view
of an interval order can be defined as for traces:

Definition 59 Given a colored interval order X , its i -view
�X�i is defined as the i-view of T , in the sense of Def-
inition 42, where T is the trace corresponding to X by
Proposition 52.

It will be convenient, more generally, to consider the view
associated to any element x p

i of a colored interval order X : we
write �x p

i � for the local view of the i th process after execut-
ing all the actions which the scan s pi can see, i.e. such that the
update occurs before this scan. Formally, by Proposition 52,
the colored interval suborder � x

p
i (obtained by restricting X

to � x
p
i ) corresponds to a trace T (up to equivalence) and we

define �x p
i � = li where (l,m) = �T �π� . Notice that if we

write T ′ for a trace corresponding to X (by Proposition 52),
the trace T is a prefix of T ′ up to equivalence, by Lemma 54.
Moreover, we recover Definition 59 as a particular case: we
have �X�i = �x p

i �, where x p
i is the maximal element of X

labeled by i . We now show that we can reconstruct a colored
interval order from its views, starting by giving an inductive
characterization of the views.

Proposition 60 Suppose given i ∈ [n] and write x p
i for the

maximal element labeled by i of a colored interval order X
(by convention p = −1when there is no such element). Then
the i-view �X�i = �x p

i � can be computed by induction on
the (well-founded) poset X by

�x p
i � =

〈
�x p−1

i �, l0l1 . . . ln−1

〉

where, by convention, �x−1
i � = i , and l j = �xq−1

j � with xqj
the maximal element of � x

p
i with label j , where by conven-

tion, l j = ⊥ when no such element exists.
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Proof By induction on the size of X and p. If p = −1 then
the process i does not perform any action and its local mem-
ory �x−1

i � is the initial one, i.e. �x−1
i � = i by definition of

the standard input. Otherwise, since x p
i is maximal, the trace

corresponding to � x
p
i is, up to equivalence, of the form T si .

Writing (l,m) = �T �π� , we have

�T si �π� = (l[i ← 〈li ,m〉],m)

and therefore

�x p
i � = 〈li ,m〉

Above, li is the local memory which was last modified by
the action s p−1

i in T . Given an element xqj in X with xqj >

x p−1
i , the action uqi occurs after x p−1

i in T , and therefore
li is the local memory of the i th process after the execution
of the prefix of T corresponding to � x

p−1
i (this is a prefix

by Lemma 54). By induction hypothesis, we thus have li =
�x p−1

i �. We can proceed by a similar reasoning to determine
m j . Writing xqj for the maximal element of � x

p
i with label j ,

the contents of m j is the one which was written by u
q
j . Since

the view protocol is full-disclosure, this value corresponds to
the local memory of j th process after the execution of sq−1

j

(the preceding scan). Therefore, m j = �xq−1
j �. �

Example 61 Consider the interval order X pictured in (15)
again (with elements named as in Example 50). Its 0-view
can be computed as follows:

– �x01� =
〈
�x−1

1 �,�x−1
0 ��x−1

1 �
〉
= 〈1, 01〉

– �x00� =
〈
�x−1

0 �,�x−1
0 ��x01�

〉
= 〈0, 0 〈1, 01〉〉

– �x10� = 〈
�x00�,

〈
�x00��x01�

〉〉 =
〈〈0, 0 〈1, 01〉〉 , 〈0, 0 〈1, 01〉〉 〈1, 01〉〉

This result is precisely the one we have obtained in Exam-
ple 40 by simulating the trace u0u1s1u1s0s1u0s0 which
corresponds to the interval order � x

1
0 = X , see Examples 50

and 53.

Anumber of interesting remarks canbemadeon the inductive
definition of the view provided by the previous proposition.
The views from previous rounds can be extracted by itera-
tively considering the first component of the view. Formally,
the previous view can be recovered as follows.

Definition 62 Given aview l of the form l = 〈
l ′, l ′0l ′1 . . . l ′n−1

〉
,

the previous view is pr(l) = l ′.

Lemma 63 Given x p
i in a colored interval order X, we have

pr(�x p
i �) = �x p−1

i �

Moreover, the number of rounds executed by an action can
be recovered as the number of times the previous view is
defined. Formally,

Definition 64 Given a view l, we define is occurrence num-
ber on(l) by induction by

on(l) =

⎧
⎪⎨

⎪⎩

1+ on(l ′) if l = 〈
l ′, l ′0l ′1 . . . l ′n−1

〉

−1 if l ∈ [n]
−∞ if l = ⊥

Lemma 65 Given x p
i in a colored interval order X, we have

on(�x p
i �) = p

This suggests introducing a relation�which expresses when
a process can be “seen” by another one, i.e. xqj � x p

i (which
is read the qth round of process j is seen by the pth round
of process i) means that the (q + 1)th update of process j
occurs before the pth scan of process i , so that process i
see the observations of process j . Suppose given an colored
interval order (X ,�) and x p

i ∈ X (by convention, we always
consider that x−1

i is an element of X for i ∈ [n]). Given the
view �x p

i �, we write xqj � x p
i when �x p

i � is of the form

�x p
i � = 〈l, l0l1 . . . ln−1〉 (17)

with −∞ < q ≤ on(l j ). By the preceding remarks, it is
easy to show that

Lemma 66 We have xqj � x p
i if and only if xq+1

j � x p
i ,

i.e. either xq+1
j � x p

i or xq+1
j ‖ x p

i in X.

Proof Indeed, xqj � x p
i means by definition that uq+1

j hap-

pens before s pi which is equivalent to s pi does not happen

before uq+1
j which means by definition that xq+1

j � x p
i .

Remark 67 The careful reader will have noticed the shift of
1 in exponents q in previous lemma. This is necessary for
the construction of the view complex below to work and
can be explained as follows. When we have xq+1

j � x p
i ,

this means that in a corresponding execution the action uq+1
j

occurs before s pi and therefore, the process i will know the
contents of the value obtained during the preceding scan sqj
of process j . In the same vein, an element of the form x−1

i
stands for the initial value of the process i and is necessary
to determine whether another process sees it or not.

We have seen in Proposition 9 that the relations defining
equivalence of traces are correct: two equivalent traces lead
to the same local memory state. The above considerations
allow us to show a completeness result: two traces which are
indistinguishable, in the sense that they lead to the same local
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memory state in every protocol, are equivalent (in the sense
of Definition 8). We begin by showing the result considering
the view protocol only.

Proposition 68 Two non-dying well-bracketed traces T
and T ′ are equivalent if and only if we have l = l ′ where
(l,m) = �T �π� and (l ′,m′) = �T ′�π� .

Proof The left-to-right implication is given by Proposition 9,
we show the reciprocal. We write X and X ′ for the colored
interval orders respectively corresponding to T and T ′. By
Remark 27, we know that X and X ′ are isomorphic as sets
and moreover the labels coincide. We thus have to show
that the (interval) order relations coincide. From the view
li , we can reconstruct the views of all the x p

i ∈ X : li is
precisely the view �x p

i � with p maximal and others can be
recovered from li by Lemma 63. We can thus compute the
relations−� x p

i for every x p
i ∈ X (the resulting relation will

be detailed in Definition 70 and called the view order). By
Lemma 66 and the following discussion, this uniquely deter-
mines the order on X . Since, by hypothesis, we have l = l ′,
we deduce that the orders on X and X ′ are the same, i.e. the
traces T and T ′ are equivalent. �

By Proposition 41, two traces are indistinguishable if and
only if they lead to the same memory state in the view pro-
tocol, so that previous proposition immediately implies:

Theorem 69 Two non-dying well-bracketed traces T and T ′
are equivalent if and only if, for every protocol π , we have
l = l ′ where (l,m) = �T �π and (l ′,m′) = �T ′�π .

6.2 View orders

The preceding developments show that the information con-
tained in the views is precisely the order � they induce on
elements x p

i . We have seen in (17) that a view induces a
relation, and we now introduce a relation which is the union
of all such relations for all the possible views of actions in
an interval order: the views of the maximal elements can be
obtained as the final local memory in the execution of the
interval order with the view protocol, and the views of non-
maximal elements can be deduced by iteratively constructing
the previous views (Definition 62) as explained in Lemma63.

Definition 70 Suppose given a colored interval order X . We
write x pi

i for the maximal element of X labeled by i . We also
write l for the local memory obtained by executing a trace
corresponding to X (by Proposition 52). The associated view
order �X� is the set

X− = X ∪
{
x−1
i

∣
∣
∣ i ∈ [n]

}

equipped with the relation � such that xqj � x p
i whenever

pr pi−p(li ) =
〈
l ′, l ′0l ′1 . . . l ′n−1

〉

with q ≤ on(l ′j ) (above, pr pi−p denotes the function pr of
Definition 62 iterated pi − p times).

By Proposition 68, the operation �−� which to a colored
interval order associates its view order is injective.

Example 71 The view order associated to (15) is

x10 x11

x00 x01

x−1
0 x−1

1

(we do not figure edges which can obtained by transitivity,
i.e. picture the Hasse diagram of the relation).

In an execution trace T if u p+1
i occurs before sqj and uq+1

j

occurs before srk , we know that u p+1
i occurs before srk ,

because we always have that sqj occurs before uq+1
j , see

Lemma 28:

. . . u p+1
i . . . sqj . . . uq+1

j . . . srk . . .

Using this reasoning, and Proposition 68, one deduce the
following properties of the relation �:

Proposition 72 Given a colored interval order X, the rela-
tion � of �X� is always irreflexive, transitive and acyclic.

Proof Irreflexivity corresponds to the fact that in an execution
trace u p+1

i never occurs before s pi . Transitivity can be shown
using the above reasoning.Acyclicity follows by absurd from
transitivity and irreflexivity. �

The most interesting feature of view orders is that one can
formulate a definition of views directly on them. Suppose
given a colored interval order (X ,�). Writing X− = X ∪{
x−1
i

∣
∣
∣ i ∈ [n]

}
, consider the view order (X−,�) associated

to it as in Definition 70. This set is implicitly labeled by
�(x−1

i ) = i . Given a subset Y ⊆ X−, we write ↓ Y for the
downward closure of Y : it contains Y , the x−1

j for j ∈ [n],
and the elements x p

j such that x p
j � x p

i for some x p
i ∈ Y .

This set can be equipped with the restriction of the relation
�.

Definition 73 The i -view of the view order (X−,�) is the
view order (↓ {

x p
i

}
,�), which will be denoted �X−�i ,

where x p
i is the greatest element labeled by i .
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Example 74 The 0-view (on left) and 1-view (on right) asso-
ciated to the view order of Example 71 are respectively

x10

x00 x01

x−1
0 x−1

1

x11

x01

x−1
0 x−1

1

(again, we do not figure transitive edges).

This definition is consistent with the one of Definition 59,
thus justifying the use of the same notation, in the following
sense. Given the interval order X , consider its i-view �X�i .
We can add to it elements of the form x−1

i , for i ∈ [n], and
equip it with the relation � as defined in Definition 70. The
view order we obtain in this way is then precisely �X−�i .
Moreover, the “traditional” view �X�i can be reconstructed
from (�X−�i ,�) as the view 〈〈x p

i 〉〉, definition follows, by
induction. We define 〈〈x−1

i 〉〉 = i and

〈〈x p
i 〉〉 =

〈
〈〈x p−1

i 〉〉, 〈〈x p0
0 〉〉〈〈x p1

1 〉〉 . . . 〈〈x pn−1
n−1 〉〉

〉

where x
p j
j is the predecessor of x p

i labeled by j , by con-

vention 〈〈x p j
j 〉〉 = ⊥ when no such predecessor exists. It is

routine to check that the two transformations are mutually
inverse to each other. To sum it up, the view order is simply
a convenient way to represent views. However, there is an
advantage to this new notation: one can consider the “view
of several processes at once”.

Definition 75 Given a set I ⊆ [n] of process indices,
the I -view of a view order (X−,�) is the view order
(↓ {

x pi
i

∣
∣ i ∈ I

}
,�),whichwill be denoted�X−�I ,where x

pi
i

is the greatest element labeled by i ∈ I .

Given a view order X− and two elements x p
i and xqj , with

i �= j and p, q ≥ 0, which are maximal with their label,

the views �X−�i = ↓ {
x p
i

}
and �X−� j = ↓

{
xqj

}
are

distinct since otherwise we would have both xqj � x p
i and

x p
i � xqj , which would contradict the acyclicity of �. More-

over,↓
{
x p
i , xqj

}
= ↓ {

x p
i

}∪↓
{
xqj

}
since x ∈ ↓

{
x p
i , xqj

}
is

equivalent to x � x p
i or x � xqj . This observation generalizes

into:

Lemma 76 With the above notations, given a set I ⊆ [n], we
have that

�X−�I =
⋃

i∈I
�X−�i

and the relation on �X−�I is also the union of the relations
�X−�i .

This will turn out to be very useful in next section, in order
to provide an alternative definition to the protocol complex.

6.3 View orders and traces

We have seen in Sect. 5.1 that colored interval orders are in
bijection with traces, which are well-bracketed, up to equiv-
alence (Proposition 52). A natural question is then to which
traces correspond i-view orders? We show here that those
correspond to traces, up to equivalence, satisfying a variant
of the well-bracketing condition (Definition 19), where only
the “brackets” of the i th process is closed. We omit most
proofs since those are easy adaptations of those presented
in Sects. 2.2.3 and 5.1 to the variant of the well-bracketing
condition.

The previous definitions on traces take all the processes
in account. We first generalize those in order to account for
the fact that we are now interested in the views of a specific
set of processes I ⊆ [n].
Definition 77 In a trace T , an action is I -relevant if it is

– u j when it occurs before an action si with i ∈ I ,
– s j when there is an action u j afterward which is I -
relevant,

– si or di with i ∈ I .

The I -restriction of T is the trace obtained from T by keeping
only I -relevant actions, and is denoted !T "I .

Definition 78 A trace T is I -well-bracketed when

– proji (T ) ∈ (ui si )∗(ε + uidi ) for i ∈ I ,
– proji (T ) ∈ ε + ((ui si )∗ui ) for i ∈ [n]\I , and
– all the actions of T are I -relevant.

In particular a well-bracketed trace is the same as an [n]-
well-bracketed one. In the following, we simplywrite i-well-
bracketed instead of {i}-well-bracketed. The characterization
of Lemma 21 can easily be adapted:

Lemma 79 A trace T ∈ A∗ is I -well-bracketed if and only
if

1. updated(T ) is well-defined,
2. updated(T ) = [n]\I ,
3. T is strongly properly dying, and
4. all the actions of T are I -relevant.

Notice that the last scan of a process j , with j /∈ I , is never
I -relevant. More generally, one can show:

Lemma 80 The I -restriction of a trace is I -well-bracketed.
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Similarly, the notion of equivalence can be adapted in order
to distinguish when two traces lead to the same result when
we observe only the local memory cells of processes in I .

Definition 81 Two traces T and T ′ are I -equivalent, what
we write T ≈I T ′ when their I -restrictions are equivalent,
i.e. !T "I ≈ !T "′I .

Example 82 For instance, with I = {1}, the following traces
are I -equivalent but not equivalent:

u0u1s0s1 u0s0u1s1

Namely, they only differ by the relative orderings of u1 and
s0, which has no influence on the view of 1, which is 〈1, 01〉
in both cases.

We have seen in Theorem 69 that two traces are equivalent if
and only if they give rise to the same views in every protocol.
This can be generalized without difficulty in order to show a
variant “relative to the set I of processes”:

Proposition 83 Twonon-dyingwell-bracketed traces T and T ′
are I -equivalent if and only if for every protocol π and
every i ∈ I , we have li = l ′i , where (l,m) = �T �π and
(l ′,m′) = �T ′�π .

From now on, we only consider non-dying traces for simplic-
ity.With the previous definitions at hand, the correspondence
described in Proposition 52 can be adapted in order to show
the following. The formulation is a bit contrived because we
do not have (at least for now) a characterization of the i-
view orders, i.e. of those which come from traces or colored
interval orders.

Proposition 84 Suppose given a colored interval order X
corresponding to a trace T by Proposition 52. Then there is
a bijection between

(i) the I -restrictions of T up to equivalence,
(ii) view orders of the form ↓ {

x pi
i

∣
∣ i ∈ I

}
(the downward

closure is taken in the view order X− associated to X)
where x pi

i is the maximal element labeled by i ∈ I .

Moreover, this bijection does not depend on T (or X).

By the fact that the bijection “does not depend on T ”, we
mean that given two (possibly non-equivalent) traces T ′
and T ′′ having a common I -restriction T the view orders
by the above bijection will be the same (and similarly for the
other side of the bijection). The proof is very similar to the
one of Proposition 52. Instead of going over it once again,
we illustrate it on an example.

Example 85 Consider the 0-view X− depicted on the left in
Example 74. The 0-well-bracketed trace corresponding to it
is an interleaving of the traces u00s

0
0u

1
0s

1
0 and u01s

0
1u

1
1 (notice

that the last one is not well-bracketed in the traditional sense,
but the presence of u11 is encoded in the 0-view). We have
that

– the relations x p
i � x p+1

i imply that u p+1
i occurs before

s p+1
i (which we already knew anyway),

– the relation x01 � x00 implies that u11 occurs before s
0
0 ,

– the relation x−1
1 � x00 implies that u01 occurs before s

0
0 ,

– the relation x−1
0 � x01 implies that u00 occurs before s

0
1 ,

– the absence of the relation x00 � x01 implies that we do not
have u10 before s

0
1 (i.e. we have u10 after s

0
1 ),

The relative order of the actions is thus

s10

u10 u11

s00 s01

u00 u01

and we see that the only possible execution trace is u00u
0
1s

0
1u

1
1

s00u
1
0s

1
0 , up to permuting consecutive updates or consecutive

scans, i.e. up to equivalence.

Remark 86 Again, not every set with a transitive order rela-
tion is a view. For instance, if we applied the construction of
the previous example to the set on the left

x10 x11

x−1
0 x−1

1

s0 s1

u0 u1

we obtain the constraints on the right for a trace, which obvi-
ously cannot be satisfied since they are cyclic.

Example 87 To illustrate the other side of the bijection, con-
sider the 0-well-bracketed trace u00s

0
0u

1
0u

0
1s

0
1u

1
1s

1
0 . We have

that

– since u11 occurs before s
1
0 we have x01 � x10 ,

– since u10 occurs before s
0
1 we have x00 � x01

(other relations are redundant or obvious). Therefore the
associated 0-view order is
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x10

x00 x01

x−1
0 x−1

1

6.4 View orders and interval orders

We would like to also very briefly explain how the views
can be encoded directly in interval orders. A first idea is that
given an interval order (X ,�) and i ∈ [n], writing x p

i for
the maximal element labeled by i , the i-view should be the
restriction of X to elements which are not above (i.e. below
or independent from) x p

i . This is however not the case. For
instance, consider the two following colored interval orders

x00 x01 x00 x01

taking the “1-view” as described above, i.e. restricting to ele-
ments not above x01 leaves the interval orders unchanged,
and thus distinct. However, their views (in the sense of
Definition 59) are the same: they are both 〈1, 01〉. The dis-
crepancy comes from the fact that interval orders encode
well-bracketed traces (by opposition to 1-well-bracketed
traces). Namely, the two interval orders respectively corre-
spond to the traces

u0u1s0s1 u0s0u1s1

whereas, by Sect. 6.3, the view correspond to the 1-well-
bracketed trace u0u1s1 (this observation is essentially the
same as the one in Example 82). Another way to state this is
that the interval order encodes the relative positions of u1 and
s0, whereas this is irrelevant since s0 does not play a role in
the view. This suggests introducing the following definition.

Definition 88 Given I ⊆ [n], a colored I -interval order is
an interval order such that, for i ∈ [n]\I , a maximal element
labeled by i is maximal (among all elements, even those
with different labels). The I -restriction of a colored interval
order (X ,�) is the interval order, on the same elements,
obtained by removing dependencies from any element x p

i ,
with i ∈ [n]\I , which is maximal among elements labeled
by i .

Remark 89 The fact that the I -restriction of an interval order
is still an interval order is not immediate, but can be shown
using the characterization mentioned in Remark 51.

Finally, views can be defined as follows.

Definition 90 Suppose given a colored interval order (X ,�)

and I ⊆ [n]. For i ∈ I , we write x pi
i for the greatest element

of X which is labeled by i . The I -view �X�I of X is the
interval order obtained by

1. restricting X to elements which are below or independent
from an element x pi

i with i ∈ I ,
2. taking the I -restriction of the resulting interval order.

It can be shown that this construction coincide with the pre-
vious ones, in a way which is compatible with the various
isomorphisms established. We do not detail it further here,
because it does not play an important role and is less con-
venient to manipulate than the description in terms of view
order. For instance, reconstructing the I -view from the i-
views is less direct than for view orders, as described in
Lemma 76.

7 Protocol complexes, derived from the
concurrent semantics

In this section, we are going to define the protocol com-
plex [26] associated to a protocol, in equivalent ways. First,
in Sect. 7.1, we define it from the operational semantics of
Sect. 2.1.1. Equivalently, based on the results of Sect. 6, this
can be defined using interval orders, or the geometric seman-
tics: this is made formal using the notion of view order of
Sect. 6 in the form of a view complex, in Sect. 7.2, and also,
equivalently, in the form of a interval order complex, and a
trace complex. They are shownall equivalent to the (standard)
protocol complex in Proposition 99. Finally, in Sect. 7.3, we
will particularize this construction to the simpler case of the
immediate snapshot protocol and the protocol complex con-
structed through chromatic subdivisions [29].

7.1 The protocol complex

The protocol complex [28] is a simplicial complex which has
been designed to represent the possible reachable states, at
some given round, of the generic protocol in normal form,
i.e. it is going to encode all possible histories of commu-
nication between processes, and as we will prove later on,
all interleaving traces up to equivalence (or equivalently the
dipaths up to dihomotopy), by maximal simplices:

Definition 91 Given numbers (ri )i∈[n] of rounds, the proto-
col complex for atomic snapshot protocols is the abstract
simplicial complex constructed from the generic protocol in
normal form, and whose

– vertices are pairs (i, li )where i ∈ [n] represents the name
of a process and li its local memory in a reachable state,
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– maximal simplices are {(0, l0), . . . , (n, ln)} where 〈i, li 〉
is the local view by process i at the end of the execution
with r rounds represented by this simplex.

Example 92 The local views in each vertex are determined
by the operational semantics of Sect. 2, as in the following
example, using the same notations as in Example 40:

0 1
⊥ ⊥

u0−→ 0 1
0 ⊥

u1−→ 0 1
0 1

s1−→ 0 〈1, 01〉
0 1

s0−→ 〈0, 01〉 〈1, 01〉
0 1

leading to the local views

l0 = 〈0, 01〉 l1 = 〈1, 01〉

Similarly, the trace u0s0u1s1 leads to the local views

l0 = 〈0, 0⊥〉 l1 = 〈1, 01〉

and there is a third potential outcome of the computation,
symmetric to this last case, in which process 1 updates and
scans before process 0 does. Putting this together, according
to Definition 91, we get the protocol complex for one round
and two processes [28]:

0, 0⊥ 1, 01 0, 01 1,⊥1

For concision, we do not figure the external brackets,
i.e. write 0, 0⊥ instead of 〈0, 0⊥〉. The identifier of the pro-
cess whose local view is written is the number before the
comma, e.g. the state 0, 0⊥ above is the local view of pro-
cessor 0.

We can now link protocol complexes with interval orders,
i.e. traces up to equivalence or dipaths up to dihomotopy: a
colored interval order represents indeed an execution (Propo-
sition 52), and a maximal simplex in the protocol complex.
Furthermore, we can deduce the local view of the i th process
by using the i-view of this interval order (by Definition 59, or
equivalently using the i-view of the view order of Definition
73). These local viewswill identify the interval orders seen as
maximal simplices of the protocol complex as convex hulls
of the n+1 local views, hence will encode the full simplicial
complex structure.

We encode here local views restricting to the full informa-
tion generic protocol in normal form with initial local state
li = i for i ∈ [n], i.e. with standard input, see Definition 34
(this only changes the naming of local states, and not the
structure of the protocol complex). This can be generalized
to more general input complexes, as hinted in Section 7.4.

By Theorem 69, we know that two non-dying well-
bracketed traces are equivalent if and only if they are non
distinguished by the full information generic protocol in nor-
mal form, which is initial in the category of protocols by

Proposition 41. Hence local views of process i , on a trace T ,
corresponds to the i-view of the interval order corresponding
to T (Sect. 6).

These observations lead to the equivalent descriptions of
the protocol complex using interval orders, views and traces
in Section 7.2. Before formally defining them, let us give a
few examples first.

Example 93 Consider again the one round, two processes
case. We have represented below the protocol complex
already depicted in Example 92, and decorated its maximal
simplices, i.e. edges, with the corresponding dipaths mod-
ulo dihomotopy above, and the corresponding interval order,
below:

The local view (at the leftmost part of the figure above) of
process 0 which is 0, 0⊥ comes from the 0-view �X�0 of
the interval order X = 0≺1, subscript of the leftmost edge
in the graph above: an interleaving trace corresponding to

� x
0
0 = 0, under Proposition 52 (and the remark at the end of

Section 5) is u0s0 leading to local state 〈0, 0⊥〉 on process 0.
Similarly, 1, 01 corresponds to the local state for process 1,
which is both the 1-view of �X�1 which corresponds to the
local view of the interval order � x

0
1 = 0≺1 (corresponding to

a trace u0s0u1s1, as in the trace superscript of the edge on
the left of the graph above) and to the 0-view �Y�0, i.e. the
local view of � x

0
0 = 0 1, where Y = 0 1 (corresponding to a

trace u0u1s0s1 for instance, as in the trace superscript of
themiddle edge of the graph above).Note that�X�1 = �Y�0
but � x

0
1 in X is not the same interval order as � x

0
0 in Y , as

remarked already in Sect. 6.4.

Example 94 An example of interval order complex with the
traces corresponding to the execution for 2 processes, 2
rounds is depicted at Fig. 1. Note that this is not the clas-
sical iterated subdivision in three parts at each round, i.e. a 9
edges complex, that is depicted for atomic snapshot protocols
[26]. This is becausewe are consideringmore executions than
the classical iterated immediate snapshot protocols [26]: we
allow round 2 of process 0 to begin while process 1 is still in

round 1 for instance. Consider the interval order
labeling the upper left edge of the protocol complex in Fig. 1,
where an arrow x y means x ≺ y. As shown in the same

figure, it corresponds to the execution precisely where
process 0 is executing its 2 rounds before process 1 even
starts its first round. The local view of process 0 at its round

2 corresponds to the interval order An interleaving trace cor-
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responding to this is e.g. u0s0u0s0, which, by the semantics
of Sect. 2, leads to the local state 〈0, 〈0, 0⊥〉⊥〉 of process 0
(which is the 0-view of X , �X�i ) of Proposition 60), written
in condensed form as the upper left local state 0, ((0_)_) in
Fig. 1.

Example 95 In Fig. 2, we show the interval order complex
for 3 processes and 1 round. Note again that we do not have
exactly the same picture as in [26]: to the 13 triangles of
[26], we have to add the 6 extra blue triangles that make
the complex not faithfully representable as a planar shape
andwhich correspond to non immediate snapshot executions.
For instance, the upper left blue triangle is labeled with the
interval order where 0 is not comparable to both 1 and 2, and
2 is less than 1. An interleaving trace (up to equivalence)
corresponding to this interval order is given on the same
figure: u0u2s2u1s1s0.

7.2 Alternative descriptions of the protocol complex

Alternative descriptions of the protocol complex can be han-
dled, using the results of Sect. 6 in three equivalent ways :
throughviews (and the viewcomplex,Definition96), through
interval orders (and the interval order complex,Definition 97)
and through traces modulo equivalence, Definition 98.

Definition 96 The view complex for atomic snapshot pro-
tocols on n + 1 processes and (r) rounds is the abstract
simplicial complex constructed as follows:

– maximal simplices are
{
(0,�X−�0), . . . , (n,�X−�n)

}

where X is a colored interval order on the set Xn
(r) and

�X−�i (Definition 73) is the i-view on the view order
generated by X (Definition 70).

– the boundaries of these maximal simplices are their sub-
sets: the iterated boundary {(i1,�X−�i1), . . . ,

(ik,�X−�ik )} of {(0,�X−�0), . . . , (n,�X−�n)} can be
identified with the (I ,�X−�I ), where I = {i1, . . . , ik}
(Definition 75).

Definition 97 The interval order complex for atomic snap-
shot protocols onn+1processes and (r) rounds is the abstract
simplicial complex constructed as follows:

– maximal simplices are
{
(0,�X�0), . . . , (n,�X�n)

}

where X is a colored interval order on the set Xn
(r) and

�X�i is the i-view of X (Definition 90),
– the boundaries of these maximal simplices are their sub-
sets: the iteratedboundary

{
(i1,�X�i1), . . . , (ik,�X�ik )

}

of
{
(0,�X�0), . . . , (n,�X�n)

}
can be identified with

(I ,�X�I ), where I = {i1, . . . , ik} (see Definition 90).

Definition 98 The trace complex for atomic snapshot pro-
tocols on n + 1 processes and (r) rounds is the abstract
simplicial complex constructed as follows:

– maximal simplices are {(0, T0), . . . , (n, Tn)} where T is
a maximal trace of the view protocol for n+ 1 processes
and (r) rounds (Definition 39) and Ti is the {i}-restriction
of T up to equivalence (Proposition 84),

– the boundaries of these maximal simplices are their
subsets: the iterated boundary {(i1, Ti1), . . . , (ik, Tik )}
of {(0, T0), . . . , (n, Tn)} can be identified with the pair
composed of I and the I -restriction of T , where I =
{i1, . . . , ik} (Proposition 84).

Note that this trace complex could have been equivalently
defined from the dipaths modulo dihomotopy thanks to the
equivalence between the trace semantics and the geometric
semantics, see Sect. 4.4.

Proposition 99 The view complex, the interval order com-
plex and the trace complex are isomorphic to the protocol
complex of Definition 91.

Proof We know by Sect. 6 that �X−�i corresponds to the
view of �X�i by Proposition 60 and Sect. 6.2. Hence �X−�i
can be identified with the local memory state li of proces-
sor i for the execution corresponding to the interval order X .
The maximal simplices of the protocol complex of Defini-
tion 91 and of the view complex of Definition 96 are then the
same. Similarly for the boundary operations. Similarly for
the interval order complex, by Sect. 6.4, the i-views defined
directly on interval orders are isomorphic to the ones defined
on views. Now for the trace complex, this stems from the
equivalence (Proposition 84) between {i}-restrictions of a
trace T modulo equivalence with i-views of the correspond-
ing view order. �
Example 100 Consider the protocol complex for 2 processes
and 2 rounds of Fig. 1, and the 1-simplex corresponding to
the interval order X below (left). Its local views are shown
on the right hand side of the following table:

X =
0 1

0 1
�X�0 =

0 1

0 1
�X�1 =

1

0 1

Let us explain the calculation of �X�1: we first eliminate
the maximal 0 in X since it is greater than the maximal 1,
giving

1

0 1

Now, we take its 1-restriction which eliminates the arrow
from 0 to the upper 1, but also the arrow from 0 to the lower
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0, ((0 )((0 )1)) 0, ((0(01))(01))
0 1

0 1

1, ((0(01))(01))

0, ((0 ) )

0 1

0 1
1, ((0 )((0 )1))

0 1

0 1
0 1

0 1
0, ((0 )1)

0 1

0 1
1, ((0 )(01))

0 1

0 1
0, ((0 )(01))

0 1

0 1
1, (0(01))

0 1

0 1

0 1

0 1

0, ((01)(01))

0 1

0 1

1, ((01)(01))

0 1

0 1

1, ( ( 1)) 0, ((0( 1))( 1))
0 1

0 1
0 1

0 1

1, (0( 1))
0 1

0 1

0, ((01)( 1))
0 1

0 1

1, ((01)( 1))
0 1

0 1

0, ((01)1)
0 1

0 1
0 1

0 1

1, ((0( 1))( 1)) 1, ((01)((01)1))

0 1

0 1
0, ((01)((01)1))

Fig. 1 The protocol complex, decorated with corresponding traces and interval orders, of 2 processes, 2 rounds

1 (because, otherwise, by transitivity, 0 would still be lower
than the upper 1!).

Consider now the 1-simplex encoded by the interval order
Y below (left). Its local views are shown on the right hand
side of the following table:

Y =
0 1

0 1
�Y�0 =

0 1

0 1
�Y�1 =

0 1

0 1

As we see from the above, �X�0 = �Y�0, linking the 2 1-
simplices together in Fig. 1. Indeed, the view of processor
0 for both X and Y is encoded, by the view protocol, by
0, ((0_)(01)) as shown on the same figure.

Now consider Z as below, and its views:

Z =
0 1

0 1
�Z�0 =

0 1

0 1
�Z�1 =

1

0 1

and T and its views:

T =
0 1

0 1
�T�0 =

0 1

0 1
�T�1 =

1

0 1

We have indeed �T�1 = �Z�1 = �X�1 glueing together
these 3 1-simplices as show in the upper right of Fig. 1.

Example 101 Consider the protocol complex for 3 processes
and 1 round of Fig. 2, and consider the 2-simplex, corre-
sponding to the interval order X below (left). The local views
of each processor is indicated on the right:

X =
0 1

2
�X�0 =

0 1

2
�X�1 =

0 1

2
�X�2 = 2

As a matter of fact, restricting X to the elements below or
independent from i = 0, 1 still gives X , but then, taking
the 0-restriction (respectively 1-restriction) implies forget-
ting about the dependency between 2 and 0 (respectively
between 2 and 1). Finally, restricting X to the elements below
or independent of 2 gives just the singleton 2.

Now, the view �X�{0,1} is obtained from X by {0, 1}-
restriction, for which we obtain:

�X�{0,1} = 0 1 2

This is clearly the same as the {0, 1}-view of the central 2-
simplex encoded by the interval order

Y = 0 1 2

hence X and Y share a common face.
Finally, the {0, 2}-view of X is just the {0, 2}-restriction

of X , which is

0 1

2
(18)

Note that the {0, 2}-view of

2 1 0

is the {0, 2}-restriction of itself, which is (18) again, showing
that X and Z share a common face indeed.
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0 : 0

1 : ⊥1⊥⊥⊥

⊥⊥

2 : 2

1 : 012

0 : 012

2 : 012

2 : 0⊥2

0 : 0⊥2

1 : ⊥ :221 ⊥12

0 : 01⊥

1 : 01⊥

u0u1u2s0s1s2

0 1 2

u1u2s1s2u0s0
1 2

0

2 1 0u2s2
u1s1

u0s0
1 2 0

u1s1u2s2u0s0

0

1

2

u1s1u0u2s0s2

u0u2s0s2u1s1
0 2

1

2
0

1

u2
s2
u0

s0
u1

s1

0
2

1
u
0
s 0

u
2
s 2

u
1
s 1

0

2

1

u2s2u0u1s0s1

u0u1s0s1u2s2
0 1

2

0
1

2

u
1 s1 u

0 s0 u
2 s2

0
1

2

u
0 s

0 u
1 s

1 u
2 s

2

1
0

2

u0s0u1u2s1s2

20

1

u0u2s0u1s1s2

21

0

u 1
u 2

s 1
u 0

s 0
s 2

12

0

u
1 u

2 s
2 u

0 s
0 s

1
01

2
u0u1s0u2s1s2

02

1

u
0 u

2 s
2 u

1 s
1 s

0

01

2

u 0
u 1

s 1
u 2

s 0
s 2

Fig. 2 The protocol complex decorated with interval orders and corresponding traces, of 3 processes and 1 round

7.3 The particular case of 1-round immediate
snapshot protocols

We recall that an (iterated, for multi-round protocols) imme-
diate snapshot protocol [26] is a protocol where the snapshot
of a given process comes “right after” its update, meaning
that the allowed traces (within one round), up to equiva-
lence, should be, of the form ui1 . . . uik si1 . . . sik . Of course,
there is some difference with the protocol complex of Def-
inition 91, in that the latter accounts for non necessarily
layered by rounds, nor “immediate” protocols. It is the aim of
this section to make the connection between the subcomplex
generated by some interval orders only, describing iterated
immediate snapshot protocol executions, and the equivalent
two definitions of standard chromatic subdivision [23,29]
that describe combinatorially the protocol complex in that
case.

The standard chromatic subdivision χ(Δ[n]) of the stan-
dard colored simplicial complex Δ[n] is defined as follows
(see [23], where an equivalence with the Definition in [29]
is also shown):

Definition 102 The standard chromatic subdivision χ(Δ[n])
of Δ[n] is the colored simplicial complex whose vertices are
pairs (V , i)with V ⊆ [n] and i ∈ V and simplices are sets of

the form σ = {(V0, i0), . . . , (Vd , id)} with d ≥ −1 (σ = ∅
when d = −1) which are

1. well-colored: for every k, l ∈ [d], ik = il implies k = l,
2. ordered: for every k, l ∈ [d], Vk ⊆ Vl or Vl ⊆ Vk ,
3. transitive: for every k, l ∈ [d], il ∈ Vk implies Vl ⊆ Vk .

This complex is colored via the second projection:
�(V , i) = i .

Proposition 103 Layered immediate snapshot executions
(for any number of rounds) correspond to the colored inter-
val orders such that: J ≺ K and I is not comparable with J
implies I ≺ K. The subcomplex of the protocol complex of
Definition 91 on one round that contains only such immediate
snapshot executions is isomorphic to the standard chromatic
subdivision of Definition 102.

Proof For the first part, suppose that we have an interval
order �, representing a maximal simplex in the protocol
complex of Definition 91, such that J ≺ K and I is not
comparable with J and K . I , J and K correspond to some
intervals of update and scan local times on some process,

[ulii , slii ], [u
l j
j , s

l j
j ] and [ulkk , slkk ] respectively. Suppose that

I is not comparable with K , this means that the interleav-

ing path . . . ulii . . . u
l j
j . . . s

l j
j . . . ulkk . . . slkk . . . slii . . . is in the
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equivalence class represented by the interval order we are
considering. This is clearly not layered nor immediate snap-
shot, therefore being a layered immediate snapshot execution
implies the condition on � of Proposition 103.

Conversely, we suppose that for I not comparable to J
and J ≺ K , then I ≺ K . We prove now that all execution
paths are layered and immediate snapshot ones. Suppose we
have an interleaving path (up to equivalence) of the form:

Tu
l j
j Us

l j
j V ulkk Wslkk X where T ,U , V ,W and X are interleav-

ing paths. This is a layered immediate snapshot execution
except if there are update and scans ulii , s

li
i such that ulii

appears in U and slii appears in W . But ulii appearing in U

implies I = [ulii , slii ] is not comparable with J and hence, by

hypothesis, I must be less that K , implying that slii appears
in U or V .

Now, we prove the second statement. Consider a simplex:

σ = {(V0, i0), . . . , (Vd , id)}

with d ≥ 0 (the case d = −1 is trivial) in the standard chro-
matic subdivision of Definition 102. We associate to σ the
following interval order: we construct a partial order �σ on
{(V0, i0), . . . , (Vd , id)} such that Vk ≺σ Vl if Vk � Vl and
the color of (Vl , il) is il , we just need to prove that this partial
order is an interval order, and that the condition of Proposi-
tion 103 holds. Let us now consider, in our partial order �σ ,
four elements (Vx , ix ), (Vy, iy), (Vz, iz) and (Vt , it ), and sup-
pose furthermore that

(Vx , ix ) ≺σ (Vy, iy) (Vz, iz) ≺σ (Vt , it )

Then, as σ is “ordered” (see Definition 102), necessarily,
either Vx ⊆ Vz or Vz ⊆ Vx . Suppose we are in the first situa-
tion. We also have that Vz ⊆ Vt and Vz �= Vt by definition of
�. Hence Vx ≺σ Vt . We conclude that, as a partial order,�σ

is (2+2)-free, property which characterizes interval orders
[15]. Now consider again σ in the standard chromatic subdi-
vision, and its associated interval order�σ . Take (Vy, iy) ≺σ

(Vz, iz) and (Vx , ix ) which is not comparable with (Vy, iy).
Hence, by definition of the (strict) order ≺σ , Vx = Vy or
Vx � Vy . In the first case, (Vx , ix ) ≺σ (Vz, iz), trivially, and
in the second case, by property 2 (“ordered”) of Definition
102, Vy � Vx which implies (Vy, iy) ≺σ (Vx , ix ). This is
impossible since (Vx , ix ) and (Vy, iy) are supposed incom-
parable. Finally, note that well-coloredness of σ implies that
the labeling we define is indeed a labeling function of an
interval order.

Conversely, suppose we have a 1-round colored interval
order (X ,�) on d + 1 elements which satisfies the prop-
erty from Proposition 103. We consider the interval orders
V k
i , restriction of X to Vk

i = {( j, l) | (} i, k)‖( j, l) or ( j, l)
≺ (i, k). We construct a (colored) d-simplex in the stan-
dard chromatic subdivision of Definition 102 by defining

k-simplices (for all k ≤ n) σX = ((|V ki
i |, i))i∈[k] (where|V | is the set of elements of the interval order V ). Indeed

we check easily that this is well-colored. Suppose we have
(|Vk |, ik) and (|Vl |, il) such that il ∈ |Vk |. As Vk and Vl are
restrictions of the same interval order to the set of elements
less than or incomparable to ik , respectively il , and that by
definition of Vl , il ∈ Vl , we have |Vl | ⊆ |Vk |. A similar
argument shows that property 2 of Definition 102 holds as
well. �

7.4 Input, output, protocol complexes and the
solvability of tasks

Given a task Θ as in Sect. 3.1, i.e. a relation Θ ⊆ In ×On

between input and output values, we note first that domΘ

can be seen as a presimplicial set such that the dimension of
l ∈ domΘ is the number of entries different from⊥, and the
i th face is given by ∂ j (l) where j is the index of the i th entry
different from⊥. It can also be seen as a simplicial complex
with [n]×(I\ {⊥}) as vertices, and simplices are of the form
{(i, x) ∈ [n] × V | li = x �= ⊥}, for any l ∈ domΘ . This
simplicial complex is called the input complex; the output
complex is defined similarly from codomΘ .

We have seen how to construct the protocol complex from
a unique global state, i.e. one maximal dimensional simplex.
From the input complex, we can construct the corresponding
protocol complex, by gluing together the protocol complexes
obtained from each separate initial simplices, according to
the same gluing scheme as for the input complex. We do not
detail this here since this is completely standard (see [26]).
Now, a (pre-)simplicial map from it to the output complex
will necessary exist as a (necessary and sufficient) condition
for solvability of the task Θ in (r) rounds. Most of this is
out of the scope of this paper, which is concerned with the
semantics of scan-update protocols and the construction and
characterization of the protocol complex, and we refer the
interested reader to [26].

Still,we expect that the existence of such a (pre-)simplicial
map will stem from the initiality of the view protocol : we
believe that the decision map should be obtained using the
universal morphism derived from the initial character of the
view protocol. This paves the way towards proving com-
putability results directly from the semantics, and without
constructing explicitly the protocol complex. This is left for
future work.

8 Conclusion and future work

We have revealed strong connections between directed
algebraic topology, with its applications to semantics and
validation of concurrent systems, and the protocol com-
plex approach to fault-tolerant distributed systems. This has
been exemplified on the simple iterated immediate snapshot
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model, but also on the more complicated (non immediate)
iterated snapshot model. This, combined with the results of
[23,30], entirely classifies geometrically the computability
of wait-free iterated immediate snapshot protocols, directly
from the semantics of the update and scan primitives. We
classified combinatorially, en route, the potential sched-
ules of executions (equivalently, the potential local views of
processes) as an interesting and well-known combinatorial
structure: interval orders.

This is a first step towards a more ambitious program.
Fault-tolerant distributed models, whose protocol complex
are more complex to guess combinatorially, may be han-
dled by going through the very same steps we went through,
starting with the geometric semantics of the communication
primitives, and classifying dipaths modulo dihomotopy. We
shall apply this to atomic read/write protocols with extra syn-
chronization primitives such as test&set, compare&swap and
others. In the long run, we would like to derive impossibility
results directly by observing some obstructions in the seman-
tics, in the form of suitable directed algebraic topological
invariants.
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