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Abstract
We initiate a thorough study of distributed property testing—producing algorithms for the approximation problems of property
testing in the CONGEST model. In particular, for the so-called dense graph testing model we emulate sequential tests for
nearly all graph properties having 1-sided tests, while in the general model we obtain faster tests for triangle-freeness and
cycle-freeness, and in the sparse model we obtain a faster test for bipartiteness. In addition, we show a logarithmic lower
bound for testing bipartiteness and cycle-freeness, which holds even in the stronger LOCAL model. In most cases, aided by
parallelism, the distributed algorithms have a much shorter running time than their counterparts from the sequential querying
model of traditional property testing. More importantly, the distributed algorithms we develop for testing graph properties
are in many cases much faster than what is known for exactly deciding whether the property holds. The simplest property
testing algorithms allow a relatively smooth transition to the distributed model. For the more complex tasks we develop new
machinery that may be of independent interest.

1 Introduction

The performance of many distributed algorithms naturally
depends on properties of the underlying network graph.
Therefore, a natural goal is to check whether the graph, or
some given subgraph, has certain properties. However, in
some cases this is known to be hard, such as in the CON-
GEST model [37]. In this model, computation proceeds in
synchronous rounds. In each round, every vertex can send an
O(log n)-bit message to each of its neighbors. Lower bounds
for the number of rounds of type �̃(

√
n + D) are known for

verifyingmany global graph properties, where n is the num-
ber of vertices in the network and D is its diameter (see,
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e.g. Das-Sarma et al. [42]).1 For some local graph prop-
erties faster solutions are known, such as a �(

√
n) round

complexity for detecting 4-cycles [14] (see also the excel-
lent survey on local decision problems in [16]). However,
for some local graph properties, such as detecting triangles,
the round complexity of the problem remains a riddle, with
a very recent result showing an O((n log n)2/3)-round algo-
rithm for detecting triangles [29], but currently no known
non-trivial lower bound.

To overcome such difficulties, we adopt the relaxation
used in graph property testing, as first defined in [21,23],
to the distributed setting. That is, rather than aiming for an
exact answer to the question of whether the graph G satisfies
a certain property P , we settle for distinguishing the case
of satisfying P from the case of being ε-far from it, for an
appropriate measure of being far.

Apart from its theoretical interest, this relaxation is
motivated by the common scenario of having distributed
algorithms for some tasks that perform better given a cer-
tain property of the network topology, or given that the
graph almost satisfies that property. For example, Hirvonen
et al. [27] showan algorithm for finding a large cut in triangle-
free graphs (with additional constraints), and for finding an
(1 − ε)-approximation if at most an ε fraction of all edges
are part of a triangle. Similarly, Pettie and Su [38] provide
fast algorithms for coloring triangle-free graphs.

1 Here �̃ hides factors that are polylogarithmic in n.
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We provide a rigorous study of property testing methods
in the realm of distributed computing under the CONGEST
model, by constructing fast distributed algorithms for test-
ing various graph properties. An important byproduct of this
study is a toolbox that we believe will be useful in other
settings as well.

In more detail, we construct 1-sided error distributed ε-
tests, in which if the graph satisfies the property then all
vertices output accept, and if it is ε-far from satisfying
the property then at least one vertex outputs reject with
probability at least 2/3.2 This is aligned with the stan-
dard requirements of distributed decision problems, where
an exact answer is needed, for which all vertices output
accept if the graph satisfies the property, and at least one
vertex outputs reject, otherwise (see, e.g., the excellent
survey in [16]).

The definition of a graph being ε-far from satisfying a
property is roughly one of the following (see Sect. 2 for
precise definitions): (1) Changing any εn2 entries in the adja-
cency matrix does not give a graph that satisfies the property
(dense graph model [21]), or (2) changing any ε ·max{n,m}
entries in the adjacency matrix does not give a graph that sat-
isfies the property, where m is the number of edges (general
model [35]). A particular case of (2) is when the degrees are
bounded by some constant d, and any resulting graph must
comply with this restriction as well (sparse model [23]).

In a sequential ε-test, access to the input is provided by
queries, whose type depends on themodel. In the dense graph
model these arepair queries, askingwhether twoverticesv, u
are neighbors, and in the general and sparse models these can
be either degree queries, asking what the degree of a vertex v

is, or neighbor queries, asking what the i-th neighbor of v is
(the orderingof neighbors is arbitrary).3While a sequential ε-
test can touch only a small handful of verticeswith its queries,
in a distributed test the lack of ability to communicate over
large distances is offset by having all n vertices operating in
parallel.

1.1 Our contributions

Our first contribution is a general scheme for a near-complete
emulation in the distributed context of ε-tests originating
from the dense graph model (Sect. 3). This makes use of
the fact that in the dense graph model all (sequential) testing
algorithms can be made non-adaptive, which roughly means
that queries do not depend on responses to previous queries

2 The probability of rejection can be improved by standard amplifica-
tion techniques. In particular, the test can be repeated multiple times,
and a vertex will reject if it rejects in any of the invocations.
3 In the literature there are also investigations of a slightly strengthened
general model, where pair queries are also allowed; its discussion is out
of the scope for this paper.

(see Sect. 2 for definition). In fact, such tests can be made
to have a very simple structure, allowing the vertices in the
distributed model to “band together” for an emulation of the
test. There is only one additional technical condition (non-
disjointness, which we define below), since in the distributed
model we cannot handle properties whose counter-examples
can be “split” to disjoint graphs. For example, the distributed
model cannot hope to handle the property of the graph having
no disjoint union of two triangles, a property for which there
exists a test in the dense graph model. The reason for this is
that if there do exist such triangles, but only such that they
are far away from each other, the vertices cannot detect this
without communicating over this distance and incurring it as
a cost for the number of rounds. The same issue arises with
other properties whose violation may span distant vertices or
disconnected ones.

Theorem 3.4 Any ε-test in the dense graph model for a non-
disjointed property that makes q queries can be converted to
a distributed ε-test that takes O(q2) communication rounds.

We next move away from the dense graph model to the
sparse and general models, which are sometimes considered
to be more realistic. In the general model, it is impossible
to test that a graph is triangle-free using a constant number
of queries independent of the size of the graph [2]. In the
distributed setting, we can exploit concurrency to break the
sequential lower bound of [2].

Theorem 4.1 Algorithm 2 (defined in Section 4) is a dis-
tributed ε-test in the general graph model for the property of
triangle-freeness, that requires O(1/ε2) rounds.

The sparse and generalmodels inherently require adaptive
property testing algorithms, since there is no non-adaptive
way to follow a path that starts from a certain vertex, or
to scan a vertex’s neighborhood. Testing triangle freeness
sequentially uses adaptivity only to a small degree. However,
other problems in the sparse and general models, such as
testing if a graph is bipartite, have a high degree of adaptivity
built into their sequential algorithms, and we need to take
special care for emulating them in the distributed setting.

In the sparse model (degrees bounded by a constant d), we
adapt ideas from the bipartiteness testing algorithm of [22],
in which we search for odd-length cycles. Here again the
performance of a distributed algorithm surpasses that of a
centralized tester (a number of rounds polylogarithmic in n
vs. a number of queries which is�(

√
n)—a lower bound that

is given in [23]). The following is proved in Sect. 5.

Theorem 5.2 Algorithm 4 (defined in Section 5) is a dis-
tributed ε-test in the bounded degree graph model for
the property of being bipartite, that requires O(poly(1/ε ·
log(n/ε))) rounds.
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Table 1 Summary of known complexities for exact distributed decision, distributed testing, and sequential testing

Property Exact (rounds) Testing [this paper] (rounds) Sequential testing (queries)

Non-disjointed property – O(q2) if there is a q-query
test

q

Triangle-freeness O((n log n)2/3) [29] O(ε−2) Dense: f (ε) [Various]
General: power of n [2]

Bipartiteness O(poly(ε−1 log(nε−1)))

�(log n)

Dense: Õ(ε−2) [3] General:
�̃(

√
n)/poly(ε), see [31]

Cycle-freeness �(D) (graph’s diameter) O(log n/ε) �(log n) Dense: property is trivial

Our upper bounds are for the CONGEST model, while our lower bounds hold also for the LOCAL model

In the course of provingTheorem5.2we develop amethod
thatwe consider to be of independent interest.4 The algorithm
works by performing 2n random walks concurrently (two
starting from each vertex). The parallel execution of random
walks despite the congestion restriction is achieved by mak-
ing sure that the walks have a uniform stationary distribution,
and then showing that congestion is “close to average”,which
for the uniform stationary distribution is constant.

In Sect. 6 we show a fast test for cycle-freeness. This
makes use of a combinatorial lemma that we prove, about
cycles that remain in the graph after removing edges inde-
pendently with probability ε/2. The following summarizes
our result for testing cycle-freeness.

Theorem 6.3 Algorithm 6 (defined in Section 6) is a dis-
tributed ε-test in the general graph model for the property of
being cycle-free, that requires O(log n/ε) rounds.

We also prove lower bounds for testing bipartiteness and
cycle-freeness (matching the upper bound for the latter).
Roughly speaking, these are obtained by using the probabilis-
tic method with alterations to construct graphs which are far
from being bipartite or cycle-free, but all of their cycles are of
length that is at least logarithmic. This technique bears some
similarity to the classic result by Erdös [15], which showed
the existence of graphs with large girth and large chromatic
number. The following are given in Sect. 7.

Theorem 7.1 Any distributed 1/100-test for the property of
being bipartite requires �(log n) rounds of communication.

Theorem 7.3 Any distributed 1/100-test for the property of
being cycle-free requires�(log n) rounds of communication.

Table 1 summarizes the known complexities.

Notes about the sequential testing column of Table 1: The
best known results for triangle testing in the general model
are a superpolynomial lower bound, and an upper bound that

4 This technique was recently independently and concurrently devised
in [20] for a different use.

is a tower function of log(1/ε). For general model testing the
bounds are usually expressed as functions of n and m (the
number of edges), and best power of n for triangle freeness
is not known. To our knowledge, cycle freeness outside the
dense model was only investigated for directed graphs [7] (in
the dense model, undirected graph cycle freeness is almost
the same as having o(n2) edges).

Roadmap: The paper is organized as follows. The remain-
der of this section consists of related work and historical
background on property testing. Section 2 contains formal
definitions and some mathematical tools. The emulation of
sequential tests for the dense graph model is given in Sect. 3.
In Sect. 4 we give our distributed test for triangle-freeness. In
Sect. 5 we provide a distributed test for bipartiteness, along
with our newmethodof executingmany randomwalks, and in
Sect. 6we give our test for cycle-freeness. Section 7 gives our
logarithmic lower bounds for testing bipartiteness and cycle-
freeness. We conclude with a short discussion in Sect. 8.

1.2 Related work

The only previous work that directly relates to our distributed
setting is due to Brakerski and Patt-Shamir [9]. They show
a tolerant property testing algorithm for finding large (linear
in size) near-cliques in the graph. An ε-near clique is a set of
vertices for which all but an ε-fraction of the pairs of vertices
have an edge between them. The algorithm is tolerant, in
the sense that it finds a linear near-clique if there exists a
linear ε3-near clique. That is, the testing algorithm considers
two thresholds of being close to having the property (in this
case—containing a linear size clique).We are unaware of any
other work on property testing in this distributed setting. We
also emphasize that [9] has already successfully implemented
the approachof samplingvertices of the graph andusing ideas
from a centralized tester in order to obtain their distributed
algorithm. A similar general line is used by our emulation in
Sect. 3 for obtaining our extended statement.

Testing in a different distributed setting was considered
in Arfaoui et al. [5]. They study testing for cycle-freeness,
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in a setting where each vertex may collect information of its
entire neighborhood up to some distance, and send a short
string of bits to a central authority who then has to decide
whether the graph is cycle-free or not.

Testing allows us fast solutions for problems for which
exactly detectingwhether the graph satisfies a property or not
is an expensive task. The latter are called distributed deci-
sion problems, and were rigorously studied in the distributed
computing literature (see, e.g., [16] for a recent thorough
survey).

Distributed algorithms for (exactly) deciding if a graph
satisfies a given property are also studied in the context of
proof labeling schemes, introduced by Korman et al. [32]
(for extensions see, e.g., Baruch et al. [6]). In this setting,
each vertex is given some external label, and by exchanging
labels the vertices need to decide whether a given property of
the graph holds. This is different from our setting, in which
no information other than vertex IDs is available. Another
setting that is related to proof-labelling schemes, but differs
from our model, is the prover-verifier model of Foerster et
al. [18].

Sequential property testing has the goal of computing
without processing the entire input. Thewider family of local
computation algorithms (LCA) is known to have connec-
tions with distributed computing, as shown by Parnas and
Ron [36]. A recent study by Göös et al. [26] proves that
under some conditions, the fact that a centralized algorithm
can query distant vertices does not help with speeding up
computation. However, they consider the LOCAL model,
and their results apply to certain properties that are not influ-
enced by distances.

Finding induced subgraphs is a crucial task and has
been studied in several different distributed models (see,
e.g., [10,12,13,30]). Notice that for finding subgraphs, hav-
ingmany instances of the desired subgraph can help speedup
the computation, as in [12]. This is in contrast to algorithms
that perform faster if there are no or only few instances, as
explained above, which is why we test for, e.g., the property
of being triangle-free, rather for the property of containing
triangles. (Notice that these are not the same, and in fact
every graph with 3/ε or more vertices is ε-close to having a
triangle.)

Parallelizing many random walks was addressed in [1],
where the question of graph covering via random walks is
discussed. It is shown there that for certain families of graphs
there is a substantial speedup in the time it takes for k walks
starting from the same vertex to cover the graph, as com-
pared to a single walk. No edge congestion constraints are
taken into account. In [43], it is shown how to perform, under
congestion, a single random walk of length L in Õ(

√
LD)

rounds, and k randomwalks in Õ(
√
kLD+k) rounds, where

D is the diameter of the graph. Our method has no depen-

dence on the diameter, allowing us to perform a multitude of
short walks much faster.

1.3 Historical overview

The first papers to consider the question of property test-
ing were [8] and [41]. The original motivations for defining
property testing were its connection to some Computerized
Learning models, and the ability to leverage some properties
to construct Probabilistically Checkable Proofs (PCPs—this
is related to property testing through the areas of Locally
Testable Codes and Locally Decodable Codes, LTCs and
LDCs). Other motivations since then have entered the fray,
and foremost among them are sublinear-time algorithms, and
other big-data considerations. Since virtually no property can
be decidable without reading the entire input, property test-
ing introduces a notion of the allowable approximation to the
original problem. In general, the algorithm has to distinguish
inputs satisfying the property, from inputs that are ε-far from
it. For more information on the general scheme of “classical”
property testing, consult the surveys [17,24,39].

The dense graph model was defined in the seminal work
of Goldreich, Goldwasser and Ron [21]. The dense graph
model has historically started combinatorial property testing
in earnest, but it has some drawbacks. Themain one being the
distance function, which is suitable for graphs having many
edges (hence the name “dense graph model”)—any graph
with o(n2) edges is indistinguishable in this model from an
empty graph.

The stricter and, at times more plausible, distance func-
tion is one which is relative to the actual number of edges,
rather than themaximum

(n
2

)
. The general model was defined

in [35], while the sparse model was defined already in [23].
Themain difference between the sparse and the general graph
models is that in the former there is also a guaranteed upper
bound d on the degrees of the vertices, which is given to
the algorithm in advance (the query complexity may then
depend on d, either explicitly, or more commonly implicitly
by considering d to be a constant).

2 Preliminaries

2.1 Additional background on property testing

While the introduction provided rough descriptions of the
different property testing models, here we provide more for-
mal definitions. The dense graph model for property testing
is defined as follows.

Definition 2.1 (dense graph model [21]) The dense graph
model considers as objects graphs that are given by their
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adjacency matrix. Hence it is defined by the following fea-
tures.

• Distance: Twographswith n vertices each are considered
to be ε-close if one can be obtained from the other by
deleting and inserting at most εn2 edges (this is, up to
a constant factor, the same as the normalized Hamming
distance).

• Querying scheme: A single query of the algorithm con-
sists of asking whether two vertices u, v ∈ V form a
graph edge in E or not.

• Allowable properties: All properties have to be invari-
ant under permutations of the input that pertain to graph
isomorphisms (a prerequisite for them being graph prop-
erties).

The number of vertices n is given to the algorithm in advance.

As discussed earlier, the sparse and general graph models
for property testing relate the distance function to the actual
number of edges in the graph. They are formally defined as
follows.

Definition 2.2 (sparse [23] and general [2] graph models)
These two models consider as objects graphs given by their
adjacency lists. They are defined by the following features.

• Distance: Two graphs with n vertices and m1 and
m2 edges are considered to be ε-close if one can be
obtained from the other by deleting and inserting at most
ε max{n,m1,m2} edges.5

• Querying scheme: A single query consists of either ask-
ing what is the degree of a vertex v, or asking what is the
i’th neighbor of v (the ordering of neighbors is arbitrary).

• Allowable properties: All properties have to be invari-
ant under graph isomorphisms (which here translate to
a relabeling that affects both the vertex order and the
neighbor ids obtained in neighbor queries), and reorder-
ing of the individual neighbor lists (as these orderings are
considered arbitrary).

In this paper, we mainly refer to the distance functions of
these models, and less so to the querying scheme, since the
latter will be replaced by the processing scheme provided
by the distributed computation model. Note that most prop-
erty testing models get one bit in response to a query, e.g.,
“yes/no” in response to “is uv an edge” in the dense graph
model. However, the sparse and general models may receive
log n bits of information for one query, e.g., an id of a neigh-
bor of a vertex. Also, the degree of a vertex, which can be
given as an answer to a query in the generalmodel, takes log n

5 Sometimes in the sparse graph model the allowed number of changes
is εdn, as relates to the maximum possible number of edges; when d is
held constant the difference is not essential.

bits. Since the distributed CONGEST model allows passing
a vertex id or a vertex degree along an edge in O(1) rounds,
we can relate all three graph models.

Another important point is the difference between 1-sided
and 2-sided testing algorithms, and the difference between
non-adaptive and adaptive algorithms.

Definition 2.3 (Types of algorithms) A property testing algo-
rithm is said to have 1-sided error if there is no possibility
of error on accepting satisfying inputs. That is, an input that
satisfies the property will be accepted with probability 1,
while an input ε-far from the property will be rejected with
a probability that is high enough (traditionally this means a
probability of at least 2/3). A 2-sided error algorithm is also
allowed to reject satisfying inputs, as long as the probabil-
ity for a correct answer is high enough (traditionally at least
2/3).

A property testing algorithm is said to be non-adaptive
if it decides all its queries in advance (i.e. based only on
its internal coin tosses and before receiving the results of
any query), while only its accept/reject output may depend
on the actual input. An adaptive algorithm may make each
query in turn based on the results of its previous queries (and,
as before, possible internal coin tosses).

In the following we address both adaptive and non-
adaptive algorithms. However, we restrict ourselves to 1-
sided error algorithms, since the notion of 2-sided error is
not a good match for our distributed computation model. 2-
sided error is difficult to deal with in the distributed decision,
since if even a single node rejects, then the entire graph is
rejected.

2.2 Mathematical background

The Multiplicative Chernoff Bound (see, e.g., [34]) plays an
important role in our analysis. We state it here for complete-
ness.

Fact 2.4 Suppose that X1, . . . , Xn are independent random
variables taking values in {0, 1}. Let X denote their sum and
letμ = E[X ] denote its expected value. Then, for any δ > 0,

Pr [X < (1 − δ)μ] <

(
e−δ

(1 − δ)(1−δ)

)μ

,

Pr [X > (1 + δ)μ] <

(
eδ

(1 + δ)(1+δ)

)μ

.

Some convenient variations of the bounds above are:

Pr [X ≥ (1 + δ)μ] < e−δμ/3, δ ≥ 1

Pr [X ≥ (1 + δ)μ] < e−δ2μ/3, δ ∈ (0, 1)

Pr [X ≤ (1 − δ)μ] < e−δ2μ/2, δ ∈ (0, 1).
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We also use the following very simple observation.

Fact 2.5 If X1, . . . , Xn are independent random indicator
0/1 variables, and X = ∑n

i=1 Xi satisfies E[X ] ≥ 4, then
Pr [X < 1] < 1

4 .

Proof This follows from a straightforward calculation:

Pr [X < 1] = Pr [X1 = · · · = Xn = 0]

=
r∏

i=1

(1 − Pr [Xi = 0])

< e−∑r
i=1 Pr [Xi=0] = e−E[X ] <

1

4

��

3 Distributed emulation of sequential tests
in the dense graphmodel

Webegin by showing that under a certain assumption of being
non-disjointed, which we define below, a property P that has
a sequential test in the dense graph model that requires q
queries can be tested in the distributed setting within O(q2)
rounds.Weprove this by constructing an emulation that trans-
lates sequential tests to distributed ones. For this we first
introduce a definition of a witness graph and then adapt [25,
Theorem 2.2], restricted to 1-sided error tests, to our termi-
nology.

Definition 3.1 Let P be a property of graphs with n vertices.
Let G ′ be a graph with k < n vertices. We say that G ′ is
a witness against P , if it is not an induced subgraph of any
graph that satisfies P .

Notice that if G ′ has an induced subgraph H that is a witness
against P , then by the above definition G ′ is also a witness
against P .

The work of [25] transforms tests of graphs in the dense
graph model to a canonical form where the query scheme is
based on vertex selection. This is useful in particular for the
distributed model, where the computational work is essen-
tially based in the vertices. We require the following special
case for 1-sided error tests.

Lemma 3.2 ([25, Theorem 2.2]) Let P be a property of
graphswith n vertices. If there exists a 1-sided error ε-test for
P with query complexity q(n, ε), then there exists a 1-sided
error ε-test for P that uniformly selects a set of q ′ = 2q(n, ε)

vertices, and accepts if and only if the induced subgraph is
not a witness against P.

Our emulation leverages Lemma 3.2 under an assumption
on the property P , which we define as follows.

Definition 3.3 We say that P is a non-disjointed property if
for every graph G that does not satisfy P and an induced
subgraph G ′ of G such that G ′ is a witness against P , G ′ has
some connected component which is also a witness against
P . We call such components witness components.

We are now ready to formally state our main theorem for
this section.

Theorem 3.4 Any ε-test in the dense graph model for a non-
disjointed property that makes q queries can be converted to
a distributed ε-test that takes O(q2) communication rounds.

The following lemma essentially says that non-disjointed
properties can be tested by examining connected subgraphs,
which is exactly what we need to forbid in a distributed set-
ting.

Lemma 3.5 A property P is non-disjointed if and only if all
minimal witnesses against P are connected.

Here minimal refers to the standard terminology, which
means that no proper induced subgraph is a witness against
P .

Proof First, if P is non-disjointed and G does not satisfy P ,
then for every subgraph G ′ of G that is a witness against
P , G ′ has a witness component. If G ′ is minimal then it
must be connected, since otherwise it contains a connected
component which is a witness against P , which contradicts
the minimality of G.

For the other direction, if all theminimalwitnesses that are
induced subgraphs of G are connected, then every induced
subgraph G ′ that is a witness against P is either minimal,
in which case it is connected, or is not minimal, in which
case there is a subgraph H of G ′ which is connected and a
minimal witness against P . The connected component C of
G ′ which contains H is a witness against P (otherwise H
is not a witness against P), and hence it follows that P is
non-disjointed. ��

Next, we give the distributed test (Algorithm 1). The test
has an outer loop inwhich each vertex selects itselfwith prob-
ability 5q/n, collects its neighborhood of a certain size of
edges between selected vertices in an inner loop, and rejects
if it identifies a witness against P . The outer loop repeats two
times because not only does the sequential test have an error
probability, but also with some small probability we may
randomly select too many or not enough vertices needed to
emulate it. Repeating the main loop twice reduces the error
probability back to below 1/3. In the inner loop, each ver-
tex collects its neighborhood of selected vertices and checks
if its connected component is a witness against P . To limit
communications this is done only for components of selected
vertices that are sufficiently small: if a vertex detects that it
is part of a component with too many edges then it accepts
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Fast distributed algorithms for testing graph properties 47

Algorithm1:Emulation algorithmwith inputq for prop-
erty P

Variables: Uv edges known to v, U ′
v edges to update and send

(temporary variables)
1 perform 2 times
2 reset the state for all vertices
3 for each vertex v simultaneously
4 Vertex v selects itself with probability 5q/n
5 if v is selected then
6 Notify all neighbors that v is selected
7 Set U ′

v = {(v, u) ∈ E | u is selected} and Uv = ∅
8 perform 10q times

# At each iteration Uv is a
subgraph of v’s connected
component

9 U ′
v = U ′

v\Uv # only need recently
discovered edges

10 Uv = Uv ∪U ′
v # add them to Uv

11 if |Uv | ≤ 100q2 then # don’t operate if
there are too many edges

12 Send U ′
v to all selected neighbours of v

# propagate known edges

13 Wait until the time bound for all other vertices to
finish this iteration

14 Set U ′
v to the union of edge sets received from

neighbors

15 if Uv ∪U ′
v is a witness against P then

16 Vertex v outputs reject (ending all operations)

17 else
18 Wait until the time bound for all other vertices to

finish this iteration of the outermost loop

19 Every vertex v that did not reject outputs accept

and does not participate until the next iteration of the outer
loop.

To analyze the algorithm, we begin by proving that there
is a constant probability for the number of selected vertices
to be sufficient and not too large.

Lemma 3.6 The probability that the number of vertices
selected by the algorithm is between q and 10q is more than
2/3.

Proof For every v ∈ V , we denote by Xv the indicator vari-
able for the event that vertex v is selected. Note that these
are all independent random variables. Using the notation
X = ∑

v∈V Xv gives that E[X ] = 5q, because each vertex
is selected with probability 5q/n. Using the Chernoff Bound
from Fact 2.4 with δ = 4/5 and μ = 5q, we can bound the
probability of having too few selected vertices:

Pr [X < q] = Pr [X < (1 − δ)μ]

<

(
e−4/5

(1 − (4/5))(1−(4/5))

)5q

=
(
5

e4

)q

<
1

10
.

For bounding the probability that there are too many selected
vertices, we use the other direction of the Chernoff Bound
with δ = 1 and μ = 5q, giving:

Pr [X > 10q] = Pr [X > (1 + δ)μ] <
( e

22

)5q

=
(

e5

210

)q

<
2

10
.

Thus,with probability at least 2/3 it holds that q ≤ X ≤ 10q.
��

Now, we can use the guarantees of the sequential test to
obtain the guarantees of our algorithm.

Lemma 3.7 Let P be a non-disjointed graph property. If G
satisfies P then all vertices output accept in Algorithm 1.
If G is ε-far from satisfying P, then with probability at least
2/3 there exists a vertex that outputs reject.

Proof First, assume that G satisfies P . Vertex v outputs
reject only if it is part of a witness against P , which is,
by definition, a component that cannot be extended to some
H that satisfies P . However, every component is an induced
subgraph of G itself, which does satisfy P , and thus every
component can be extended to G. This implies that no vertex
v outputs reject.

Now, assume that G is ε-far from satisfying P . Since the
sequential test rejects with probability at least 2/3, the prob-
ability that a sample of at least q vertices induces a graph
that cannot be extended to a graph that satisfies P is at least
2/3. Since P is non-disjointed, the induced subgraph must
have a connected witness against P . We note that a sample of
more thanq vertices does not reduce the rejection probability.
Hence, if we denote by A the event that the subgraph induced
by the selected vertices has a connected witness against P ,
then Pr [A] ≥ 2/3, conditioned on that at least q vertices
were selected.

However, a sample that is too large may cause a vertex to
output accept because it cannot collect its neighborhood.
We denote by B the event that the number of vertices sampled
is between q and 10q, and by Lemma 3.6 its probability is
at least 2/3. We bound Pr [A ∩ B] using Bayes’ Theorem,
obtaining Pr [A ∩ B] = Pr [A|B]Pr [B] ≥ (2/3)2. Since
the outer loop consists of 2 independent iterations, this gives
a probability of at least 1 − (1 − 4/9)2 ≥ 2/3 for having a
vertex that outputs reject. ��

We now address the round complexity. Each vertex only
sends and receives information from its q-neighborhood
about edges between the chosen vertices. If toomany vertices
are chosenwe detect this and accept.Otherwisewe only com-
municate the chosen vertices and their edges, which requires

123



48 K. Censor-Hillel et al.

O(q2) communication rounds using standard pipelining.6

Together with Lemma 3.7, this proves Theorem 3.4.

3.1 Applications: k-colorability and perfect graphs

Next, we provide some examples of usage of Theorem 3.4. A
result by Alon and Shapira [4] states that all graph properties
closed under induced subgraphs are testable in a number of
queries that depends only on 1/ε. We note that, except for
certain specific properties for which there are ad-hoc proofs,
the dependence is usually a tower function in 1/ε or worse
(asymptotically larger).

From this, together with Lemma 3.2 and Theorem 3.4, we
deduce that if P is a non-disjointed property closed under
induced subgraphs, then it is testable, for every fixed ε, in a
constant number of communication rounds.
Example—k-colorability: The property of being k-colorable
is testable in a distributedmanner by our algorithm. All mini-
mal graphs that are witnesses against P (not k-colorable) are
connected, and therefore according to Lemma 3.5 it is a non-
disjointed property. It is closed under induced subgraphs, and
by [3] there exists a 1-sided error ε-test for k-colorability that
uniformly selects O(k log(k)/ε2) vertices, and its number of
queries is the square of this expression (note that the polyno-
mial dependencywas already known by [21]). Our emulation
implies a distributed 1-sided error ε-test for k-colorability
that requires O(poly(k/ε)) rounds.
Example—perfect graphs: A graph G is said to be perfect if
for every induced subgraphG ′ ofG, the chromatic number of
G ′ equals the size of the largest clique in G ′. Another char-
acterization of a perfect graph is via forbidden subgraphs:
a graph is perfect if and only if it does not have odd holes
(induced cycles of odd length at least 5) or odd anti-holes
(the complement graph of an odd hole) [11]. Both odd holes
and odd anti-holes are connected graphs. Since these are
all the minimal witnesses against the property, according to
Lemma 3.5 it is a non-disjointed property. Using the result
of Alon-Shapira [4] we know that the property of a graph
being perfect is testable. Our emulation implies a distributed
1-sided error ε-test for being a perfect graph that requires a
number of rounds that depends only on ε.

4 Distributed test for triangle-freeness

In this section we show a distributed ε-test for triangle-
freeness. Notice that since triangle-freeness is a non-
disjointed property, Theorem 3.4 gives a distributed ε-test for

6 Pipelining means that each vertex has a buffer for each edge, which
holds the information (edges between chosen vertices, in our case) it
needs to send over that edge. The vertex sends the pieces of information
one after the other.

Algorithm 2: Triangle freeness test

1 for each vertex v simultaneously
2 perform 32/ε2 times
3 Select w1, w2 ∈ N (v), w1 �= w2 uniformly at random
4 Send w2 to w1 # Ask w1 if it is a neighbor

of w2
5 foreach wu sent by u ∈ N (v) do # Asked by u if

v is a neighbor of w

6 if wu ∈ N (v) then
7 Send “yes” to u

8 else
9 Send “no” to u

10 if received “yes” from w1 then
11 reject (ending all operations)

12 accept (for vertices that did not reject)

triangle-freeness under the dense graph model with a num-
ber of rounds that is O(q2), where q is the number of queries
required for a sequential ε-test for triangle-freeness. How-
ever, for triangle-freeness, the known number of queries is a
tower function in log(1/ε) [19].

Here we leverage the inherent parallelism that we can
obtain when checking the neighbors of a vertex, and show a
test for triangle-freeness that requires only O(1/ε2) rounds
(Algorithm 2). Importantly our algorithm works for the gen-
eral graph model (where distances are relative to the actual
number of edges), which subsumes the dense graph model
analyzed in the previous section. In the sequential setting, a
test for triangle-freeness in the general model requires n�(1)

queries by [2]. Our proof actually follows the groundwork
laid in [2] for the general graph model—their algorithm
selects a vertex and checks two of its neighbors for being
connected, while we perform the check for all vertices in
parallel.

Theorem 4.1 Algorithm 2 is a distributed ε-test in the gen-
eral graph model for the property of triangle-freeness, that
requires O(1/ε2) rounds.

Our proof follows the argument described in [2], by distin-
guishing edges that connect two high-degree vertices from
those that do not. Formally, let b = 2

√
m/ε, where m is

the number of edges in the graph, and denote B = {v ∈ V |
deg(v) ≥ b}. We say that an edge e = (u, v) is light if v /∈ B
or u /∈ B, and otherwise, we say that it is heavy. That is, the
set of heavy edges is H = {(u, v) ∈ E | u ∈ B, v ∈ B}.

In a nutshell, our analysis considers light edges, and argues
that ifG is ε-far frombeing triangle-free then there are at least
εm/2 light edges in triangles, denoted by T . For an endpoint
of such an edgewhich is not in B, the probability of detecting
a triangle is at least 1/b2, giving that the expected number of
detected triangles in this case is at least ε2/8. Summing over
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all O(1/ε2) iterations and applying a Chernoff bound then
gives the claimed result.

Formally, we begin with the following simple claim about
the number of heavy edges.

Claim 4.2 The number of heavy edges, |H |, is at most εm/2.

Proof The number of heavy edges is |H | ≤ |B|(|B|−1)/2 <

|B|2/2. Since |B|b ≤ 2m, we get that |B| ≤ 2m
b = 2m

2
√

m/ε
=√

εm. This gives that |H | ≤ 1
2 |B|2 ≤ εm/2. ��

Next, we fix an iteration i of the algorithm. Every ver-
tex v chooses two neighbors w1, w2. Let A = {(v,w1) ∈
E | v ∈ V \ B}, where w1 is the first of the two vertices
chosen by the low-degree vertex v. Let T = {e ∈ E |
e is a light edge in a triangle}, and let AT = T ∩ A. We say
that an edge (v,w1) ∈ AT is matched if (v,w2) is in the
same triangle as (v,w1). If (v,w1) ∈ AT is matched then
{v,w1, w2} is a triangle that is detected by v.

We begin with the following lemma that states that if G is
ε-far from being triangle-free, then in any iteration i we can
bound the expected number of matched edges from below by
ε2/8. Let Y be the number of matched edges.

Lemma 4.3 If G is ε-far from being triangle-free, then the
expected number of matched edges in a single iteration of
the algorithm satisfies E[Y ] ≥ ε2/8.

Proof For every e ∈ AT , let Ye be a random variable indicat-
ing whether e is matched. Then Y = ∑

e∈AT
Ye, giving the

following bound:

E[Y |AT ] = E

⎡

⎣
∑

e∈AT

Ye|AT

⎤

⎦

=
∑

e∈AT

Pr [e is matched] ≥ |AT |/b, (1)

where the last inequality follows because a light edge in AT

is chosen by a vertex with degree at most b, hence the third
triangle vertex gets selected with probability at least 1/b.

Next, we argue that E[|AT |] ≥ |T |/b. To see why, for
every edge e, let Xe be a random variable indicating whether
e ∈ A. Let X = ∑

e∈T Xe = |AT |. Then,

E[|AT |] = E[X ] = E

[
∑

e∈T
Xe

]

=
∑

e∈T
E[Xe]

=
∑

e∈T
Pr [e ∈ A] ≥ |T |/b, (2)

where the last inequality follows because a light edge has at
least one endpoint with degree at most b. Hence, this edge
gets selected by it with probability at least 1/b.

It remains to bound |T | from below. We claim that |T | ≥
εm/2. To prove this, first notice that, since G is ε-far from
being triangle free, it has at least εm triangle edges, since
otherwise we can just remove all of them and make the graph
triangle free with less than εm edge changes. By Claim 4.2,
the number of heavy edges satisfies |H | ≤ εm/2. Subtracting
this from the number of triangle edges gives that at least εm/2
edges are light triangle edges, i.e.,

|T | ≥ εm/2. (3)

Finally, by Inequalities (1), (2) and (3), using iterated
expectation we get:

E[Y ] = EAT [E[Y |AT ]] ≥ E

[ |AT |
b

]
≥ |T |

b2
≥ εm

2

1

4m/ε

= ε2/8.

��
We can now prove the correctness of our algorithm, as

follows.

Lemma 4.4 If G is triangle-free then all vertices output
accept in Algorithm 2. If G is ε-far from being triangle-
free, then with probability at least 2/3 there exists a vertex
that outputs reject.

Proof If G is triangle free then in each iteration v receives
“no” from w1 and after all iterations it returns accept.

Assume that G is ε-far from being triangle-free. Let Zi,v

be an indicator variable for the event that vertex v detects
a triangle at iteration i . First, we note that the indicators
are independent, since a vertex detecting a triangle does
not affect the chance of another vertex detecting a trian-
gle (note that the graph is fixed), and the iterations are

done independently. Now, let Z = ∑32/ε2

i=1

∑
v∈V Zi,v , and

notice that Z is the total number of detections over all iter-
ations. Lemma 4.3 implies that for a fixed i , it holds that
E[∑v∈V Zi,v] = E[Y ] ≥ ε2/8, so Z sums to:

E[Z ] = E

⎡

⎣
32/ε2∑

i=1

∑

v∈V
Zi,v

⎤

⎦ =
32/ε2∑

i=1

E

[
∑

v

Zi,v

]

≥
32/ε2∑

i=1

ε2/8 = 4.

By Fact 2.5 thismeans that with probabilitymore than 2/3, at
least one triangle is detected and the associated vertex outputs
reject, which completes the proof. ��

In every iteration, an edge needs to carry only two mes-
sages of size O(log n) bits, one sent from each vertex v to
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w1 and one sent back by w1. Since there are O(1/ε2) itera-
tions, this implies that the number of rounds is O(1/ε2) as
well. This, together with Lemma 4.4, completes the proof of
Theorem 4.1.

5 Distributed bipartiteness test for bounded
degree graphs

In this section we show a distributed ε-test for being bipar-
tite for graphs with degrees bounded by d. Our test builds
upon the sequential test of [22] and, as in the case of tri-
angle freeness, takes advantage of the ability to parallelize
queries. While the number of queries of the sequential test is
�(

√
n) [23], the number of rounds in the distributed test is

only polylogarithmic in n and polynomial in 1/ε. As in [22],
we assume that d is a constant, and omit it from our expres-
sions. In particular, it is implicit in the O notation for L ,
which is the length of the random walks that we execute, as
we elaborate below.

Let us first outline the algorithm of [22], since our dis-
tributed test borrows from its framework and our analysis
is in part derived from it. The sequential test basically tries
to detect odd cycles. It consists of T iterations, in each of
which a vertex s is selected uniformly at random and K
random walks of length L are performed starting from the
source s. If, in any iteration with a chosen source s, there is
a vertex v which is reached by an even prefix of a random
walk and an odd prefix of a random walk (possibly the same
walk), then the algorithm rejects, as this indicates the exis-
tence of an odd cycle. Otherwise, the algorithm accepts. To
obtain an ε-test the parameters are chosen to be T = O(1/ε),
K = O(ε−4√n log1/2 (n/ε)), and L = O(ε−8 log6 n).

Themain approach of our distributed test is similar, except
that we perform fewer walks from every vertex, namely
O(poly(1/ε · log n/ε)). This is because we can run random
walks in parallel originating from all vertices at once. How-
ever, a crucial challenge thatwe need to address is that several
random walks may collide on an edge, violating its conges-
tionbound.The reason for this congestion is that each random
walk must store the ID of its origin and the number of steps
made so far, in order to detect a violation. Thus, a single step
of a single random walk requires sending �(log n + log �)

bits across an edge. Therefore, simulating a single step of
many random walks may require multiple communication
rounds, as only O(log n) bits may be communicated over an
edge in each round.

To address this issue, our central observation is that lazy
random walks (see, e.g., [34]), chosen to have a uniform
stationary distribution, provide for a very low probability of
having too many of these collisions at once. The main part
of the analysis is in showing that with high probability there
will never be toomanywalks concurrently in the same vertex,

Algorithm 3: Move random walks once with input ξ
Variables: Wv walks residing in v (multiset), Hv history of walks

through v

Input: ξ , the maximum congestion per vertex allowed
# each walk is characterized by (i, u) where i

is the number of actual moves and u is
the origin vertex

1 for each vertex v simultaneously
2 if |Wv | ≤ ξ then # give up if exceeded the

maximum allowed
3 for every (i, u) in Wv do
4 draw next destination w (according to the lazy walk

scheme)
5 if w �= v then # walk exits v

6 send (i + 1, u) to w

7 remove (i, u) from Wv

8 wait until the maximum time for all other vertices to process
up to ξ walks

9 add the walks received by v to Wv and Hv # walks
entering v

so we can comply with the congestion bound. We begin by
formally defining the lazy randomwalks thatwe use (to recall
the concept of randomwalks and stationary distributions, we
refer the reader to standard textbooks, e.g., [34]).

Definition 5.1 A lazy random walk over a graph G with
degree bound d is a random walk, that is, a (memory-less)
sequence of random variables Y1,Y2, . . . taking values from
the vertex set V , where the transition probability Pr [Yk =
v|Yk−1 = u] is 1/2d if uv is an edge of G, 1− deg(u)/2d if
u = v, and 0 in all other cases.

The stationary distribution for the lazy random walk of Def-
inition 5.1 is uniform [40, Section 8]. Next, we describe a
procedure to handle one step of moving the random walks
(Algorithm 3), followed by our distributed test for bipartite-
ness using lazy randomwalks from every vertex concurrently
(Algorithm 4).

The maximum congestion that is allowed per vertex is
denoted by ξ . It is quite immediate that Algorithm 3 takes
O(ξ) communication rounds.

Our main result here is that Algorithm 4 is indeed a dis-
tributed ε-test for bipartiteness.

Theorem 5.2 Algorithm 4 is a distributed ε-test in the
bounded degree graph model for the property of being bipar-
tite, that requires O(poly(1/ε · log(n/ε))) rounds.

The number of communication rounds is immediate from
the algorithm – it is dominated by the L calls to Algo-
rithm 3, making a total of O(ξL) rounds, which is indeed
O(poly(1/ε · log(n/ε))). To prove the rest of Theorem 5.2
we need some notation, and a lemma from [22] that bounds
from below the probability of detecting odd cycles if G is
ε-far from being bipartite.
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Algorithm 4: Distributed bipartiteness test
Variables: Wv walks residing in v (multiset), Hv history of walks

through v

1 perform η = O(ε−9 log(n/ε)) times
2 for each vertex v simultaneously
3 initialize Hv and Wv with two copies of the walk (0, v)

4 perform L = O(ε−8 log6 n) times
5 move walks using Algorithm 3 with input

ξ = γ + 2 = 3(2 ln n + ln L) + 2

6 for each vertex v simultaneously
7 if Hv contains (i, u) and ( j, u) for some u, even i and

odd j then
8 reject (ending all operations) # odd cycle

found

9 accept (for vertices that did not reject)

Given a source s, if there is a vertex v which is reached
by an even prefix of a random walk wi from s and an odd
prefix of a random walk w j from s, we say that walks wi

and w j detect a violation. Let ps(k, �) be the probability
that, out of k random walks of length � starting from s, there
are two that detect a violation. Using this notation, ps(K , L)

is the probability that the sequential algorithm outlined in
the beginning rejects in an iteration in which s is chosen.
Since we are only interested in walks of length L , we denote
ps(k) = ps(k, L). A good vertex is a vertex for which this
probability is bounded as follows.

Definition 5.3 A vertex s is called good if ps(K ) ≥ 1/10.

In [22] it was proved that being far from bipartite implies
having many good vertices.

Lemma 5.4 ([22]) If G is ε-far from being bipartite then at
least an ε/16-fraction of the vertices are good.

In contrast to [22], we do not perform K random walks
from every vertex in each iteration, but rather only 2. Hence,
what we need for our analysis is a bound on ps(2). To this
end, we use K as a parameter, and express ps(2) in terms of
K and ps(K ).

Lemma 5.5 For every vertex s, ps(2) ≥ 2ps(K )/K (K − 1).

Proof Fix a source vertex s. For every i, j ∈ [K ], let qi, j be
the probability of walks wi , w j from s detecting a violation.
Because different walks are independent, we conclude that
for every i �= j it holds that qi, j = ps(2). Let Ai, j be the
event of walks wi , w j detecting a violation. We have

ps(K ) = Pr

⎡

⎣
⋃

i, j

Ai, j

⎤

⎦ ≤
∑

i, j

Pr [Ai, j ]

= ps(2)K (K − 1)/2,

which implies that ps(2) ≥ 2ps(K )/K (K − 1). ��

Using this relationship between ps(2) and K and ps(K ),
we prove that our algorithm is an ε-test. First we prove this
for the random walks themselves, ignoring the possibility
that Algorithm 3 will skip moving random walks due to its
condition in Line 2.

Lemma 5.6 If G is ε-far frombeing bipartite, andweperform
η = O(ε−9 log(n/ε)) iterations of starting 2 random walks
of length L from every vertex, then the probability that no
violation is detected is bounded by 1/4.

Proof Assume that G is ε-far from being bipartite. By
Lemma 5.4, at least nε/16 vertices are good, which means
that for each of these vertices s, ps(K ) ≥ 1/10. This implies
that

∑
s∈V ps(K ) ≥ nε/160. Now, let Xi,s be a random

variable indicating whether there are two random walks
starting at s that detect a violation in the i th iteration of
the algorithm. Let X = ∑η

i=0

∑
s∈V Xi,s . We prove that

Pr [X < 1] < 1/4. First, we bound E[∑s∈V Xi,s] for some
fixed i :

E[X ] = E

[
η∑

i=0

∑

s∈V
Xi,s

]

=
η∑

i=0

∑

s∈V
E[Xi,s]

=
η∑

i=0

∑

s∈V
ps(2) ≥

η∑

i=0

∑

s∈V

2ps(K )

K (K − 1)

= 2

K (K − 1)

η∑

i=0

∑

s∈V
ps(K ) ≥ 2

K (K − 1)

η∑

i=0

nε

160

= ηnε

80K (K − 1)
≥ ηnε

80K 2 .

Forη = 320K 2/nε = O(ε−9 log(n/ε)) it holds that E[X ] ≥
4. Fact 2.5 then implies Pr [X < 1] < 1

4 , which completes
the proof. ��

In the following discussion, we use the term iteration for
a round of the inner loop of Step 4 inside Algorithm 4. We
analyze the status of the random walks after each time they
are moved by an iteration of this inner loop.

As explained earlier, the main hurdle on the road to prove
Theorem 5.2 is in proving that the allowed congestion will
not be exceeded.We prove the following general claim about
the probability for k lazy randomwalks of length � from each
vertex to exceed a maximum congestion factor of ξ walks
allowed in each vertex at the beginning of each iteration.

Lemma 5.7 Let k and � be parameters, and suppose γ =
3(2 ln n+ ln �) satisfies γ > k. Then with probability at least
1−1/n, running k lazy random walks of length � originating
from every vertex will not exceed the maximum congestion
factor of ξ = γ + k = 3(2 ln n + ln �) + k walks allowed in
each vertex at the beginning of each iteration, if γ > k.
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We show below that substituting k = 2, � = L and γ =
3(2 ln n + ln L) in Lemma 5.7, together with Lemma 5.6,
gives the correctness of Algorithm 4.

To prove Lemma 5.7, we argue that it is unlikely for any
vertex to have more than k + γ walks in any iteration. Given
that this is indeed the case in every iteration, the lemma
follows by a union bound. We denote by Xv,i the random
variable whose value is the number of random walks at ver-
tex v at the beginning of the i-th iteration. That is, it is equal
to the size of the set Wv in the description of the algorithm.

Lemma 5.8 For every vertex v ∈ V and every iteration i it
holds that E[Xv,i ] = k.

Proof Let us first define random variables for our walks.
Enumerating our kn walks (k from each of the n vertices)
arbitrarily, let Yr

1 ,Yr
2 , . . . denote the sequence correspond-

ing to the r ’th walk, that is, Yr
i is the vertex where the r ’th

walk is stationed at the beginning of the i’th iteration. In
particular, Xv,i = |{r : Yr

i = v}|.
Now let us define new random variables Zt

i in the fol-
lowing manner: First, we choose uniformly at random a
permutation σ : [kn] → [kn]. Then we set Zt

i = Y σ(t)
i

for all 1 ≤ i ≤ � and 1 ≤ t ≤ kn. The main thing to note is
that for any fixed t , Zt

1, Z
t
2, . . . is a randomwalk (as it is equal

to one of the randomwalks Yr
1 ,Yr

2 , . . .). But also, for every t ,
Zt
1 is uniformly distributed over the vertex set of G, because

we started with exactly k random walks from every vertex.
Additionally, since the uniform distribution is stationary for
our lazy walks, this means that the unconditional distribution
of each Zt

i is also uniform.
Now, since σ is a permutation, it holds that Xv,i = |{r :

Yr
i = v}| = |{t : Y σ(t)

i = v}| = |{t : Zt
i = v}|. The

expectation (by linearity of expectation) is thus E[Xv,i ] =∑kn
t=1 Pr [Zt

i = v] = k. ��
We can now prove Lemma 5.7.

Proof of Lemma 5.7 We first claim that for every iteration i ∈
[�] and every vertex v ∈ V , with probability at least 1−1/�n
it holds that Xv,i ≤ k+γ . To show this, first fix some v ∈ V .
Let Z j,i be the indicator variable for the event of the j’thwalk
residing at vertex v at the beginning of iteration i , where
j ∈ [kn]. Then Xv,i = ∑kn

j=1 Z j,i , and the variables Z j,i ,
where j ∈ [kn], are all independent. We use the Chernoff
Bound of Fact 2.4 with δ = γ /k ≥ 1 and μ = k as proven
in Lemma 5.8, obtaining:

Pr [Xv,i > k + γ ] = Pr [Xv,i > (γ/k + 1)k] < e−δμ/3

= e−γ /3 = e−(2 ln n+ln �) = 1/�n2.

Applying the union bound over all vertices v ∈ V and all
iterations i ∈ [�], we obtain that with probability at least
1 − 1/n it holds that Xv,i ≤ k + γ for all v and i .

Lemma 5.9 If G is bipartite then all vertices outputaccept
in Algorithm 4. If G is ε-far from being bipartite, then with
probability at least 2/3 there exists a vertex that outputs
reject.

Proof If G is bipartite then all vertices output accept in
Algorithm 4, because there are no odd cycles and thus no
violation detecting walks.

If G is ε-far from bipartite, we use Lemma 5.6, in con-
junction with Lemma 5.7 with parameters k = 2, � = L
and γ = 3(2 ln n + ln L) as used by Algorithm 4. By a
union bound the probability to accept G will be bounded
by 1/4 + 1/n < 1/3 (assuming n > 12), providing for the
required bound on the rejection probability. ��

Lemma 5.9, with the communication complexity analysis
of Algorithm 4, gives Theorem 5.2.

6 Distributed test for cycle-freeness

In this section, we give a distributed algorithm to test if a
graph G with m edges is cycle-free or if at least εm edges
have to be removed to make it so. Intuitively, in order to
search for cycles, one can run a breadth-first search (BFS) and
have a vertex output reject if two different paths7 reach
it. The downside of this exact solution is that its running time
depends on the diameter of the graph. To overcome this, a
basic approachwould be to run a BFS from each vertex of the
graph, but for shorter distances. However, running multiple
BFSs simultaneously is expensive, due to the congestion on
the edges. Instead, we use a prioritization rule that drops BFS
constructions with lower priority, which makes sure that one
BFS remains alive, but for this to work we need to carefully
choose our prioritization.8

Our technique consists of three parts. First, we make the
graphG sparser, by removing each of its edges independently
with probability ε/2.We denote the sampled graph byG ′ and
prove that if G is far from being cycle-free then so is G ′, and
in particular, G ′ contains a cycle.

Then, we run a partial BFS over G ′ from each vertex,
while prioritizing by ids: each vertex keeps only the BFS
that originates in the vertex with the largest id and drops the
rest of the BFSs. The length of this procedure is according to

7 Note that the paths we address in this section are not necessarily
simple.
8 A more involved analysis of multiple prioritized BFS executions was
used in [28], allowing all BFS executions to fully finish in a short
time without too much delay due to congestion. Since we require a
much weaker guarantee, we can avoid the strong full-fledged prioriti-
zation algorithm of [28] and settle for a simple rule that keeps one BFS
tree alive. Also, the multiple BFS construction of [33] does not fit our
demands as it may not reach all desired vertices within the required
distance, in case there are many vertices that are closer.
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a threshold T = 20 log(n)/ε. The intuition for choosing this
threshold is that ifG were acyclic, then with high probability
G ′ would not have any component with a larger diameter.We
prove here a sort of converse, that finding a longer path in G ′
provides a guide for finding a cycle in G.

The above BFS gives detection of a cycle that is contained
in a component of G ′ with a low diameter of up to T , if such
a cycle exists, since a surviving BFS covers the component.
Such a cycle is also a cycle in G. If no such cycle exists in
G ′, then G ′ has a some component with diameter larger than
T . For large components, we take each surviving BFS that
reached some vertex v at a certain distance �, and from v we
run a newpartial BFS in theoriginal graphG. TheseBFSs are
again prioritized, this time according to the distance �. Our
main tool here is a claim that says that with high probability,
if there is a shortest path in G ′ of length T /2 between two
vertices, then there is a cycle in G between them of length at
most T . This allows our BFSs on G to find such a cycle.

We start with the following combinatorial lemma that
shows the above claim.

Lemma 6.1 Given a graph G, let G ′ be obtained by deleting
each edge in G with probability ε/2, independently of other
edges. Then, with probability at least 1− 1/n3, every vertex
v ∈ G ′ that has a vertex w ∈ G ′ at a distance at least
10 log(n)/ε, has a closed path passing through it in G, that
contains a simple cycle, of length at most 20 log(n)/ε.

Proof Note first that if v has a vertex w in G ′ of distance
at least 10 log(n)/ε, then it has a vertex w′ (on the shortest
path from v tow) whose distance is exactly � = 10 log(n)/ε.
From now on we assume that the distance between v and w

is exactly �, by moving from w to w′.
We now show that for every pair u, v of vertices in G that

are at a distance of �, one of the shortest paths between u
and v is removed in the graph G ′ with high probability. For
a pair of vertices u and v at a distance � in G, the probability
that a shortest path is not removed is (1 − ε/2)�, which is
at most 1/n5. Therefore, by a union bound over all pairs of
vertices, with probability at least 1− 1/n3, at least one edge
is removed from at least one shortest path between every pair
of vertices that are at a distance of 10 log(n)/ε. Conditioned
on this, we prove the lemma.

Now, suppose that v and w are two vertices in G ′ at a
distance of 10 log(n)/ε. Let P ′ be this shortest path in G ′.
Suppose that P is the shortest path between v and w in G. If
|P| < 10 log(n)/ε, then this path is no longer present in G ′
(and thus is distinct from P ′) and P ∪ P ′ is a closed path in
G, passing through v that has a simple cycle of length at most
20 log(n)/ε. If |P| = 10 log(n)/ε, then there are at least two
shortest paths between v and w in G of length 10 log(n)/ε,
the one in G ′ and one that was removed, which we choose
for P . Therefore, P ∪ P ′ is a closed path passing through v

of length at most 20 log(n)/ε, and hence contains a simple
cycle of length at most 20 log(n)/ε in it. ��

Next, we prove that indeed there is a high probability that
G ′ contains a cycle if G is far from being cycle-free.

Claim 6.2 If G is ε-far from being cycle-free, then with
probability at least 1 − e−ε2m/32, G ′ is ε/4-far from being
cycle-free.

Proof The graph G ′ is obtained from G by deleting each
edge with probability ε/2 independently of other edges.
The expected number of edges that are deleted is εm/2.
Therefore, by the Chernoff Bound from Fact 2.4, the prob-
ability that at least 3εm/4 edges are deleted is at most
exp(−ε2m/32), and the claim follows. ��

We now describe a multiple-BFS algorithm that takes as
input a length t and a priority condition P over vertices, and
starts performing aBFS from each vertex of the graph. This is
done for t steps, in each of which a vertex keeps only the BFS
with the highest priority while dropping the rest. Each vertex
also maintains a list Lv of BFSs that have passed through it.
The list Lv is a list of 3-tuples (idu, �, idp), where idu is the id
of the root of the BFS, � is the depth of v in this BFS tree and
idp is the id of the parent of v in the BFS tree. Initially, each
vertex v sets Lv to include a BFS starting from itself, and
then continues this BFS by sending the tuple (idv, 1, idv) to
all its neighbors, where idv is the identifier of the vertex v. In
an intermediate step, each vertex v may receive a BFS tuple
from each of its neighbors. The vertex v then adds these BFS
tuples to the list Lv and chooses one among Lv according to
the priority conditionP , proceeding with the respective BFS
and discontinuing the rest. Even when a BFS is discontinued,
the information that the BFS reached v is stored in the list
Lv .

Algorithm 5 gives a formal description of the breadth-first
search that we use in the testing algorithm for cycle-freeness.

Algorithm 5: BFS with a priority condition
Input: Length L , Priority condition P
Variables: Lv list of BFS tuples passing through v

1 for each vertex v simultaneously
2 Initialize Lv to {(idv, 0, idv)}.
3 Send (idv, 1, idv) to all neighbors of v.

4 perform L times times
5 for each vertex v simultaneously
6 if v receives (idu1 , �1, idp1 ), . . . , (idur , �r , idpr ) from its

neighbors then
7 Add (idu1 , �1, idp1 ), . . . , (idur , �r , idpr ) to Lv .
8 Select (idu j , � j , idp j ) from Lv according to P over

idui
9 Send (idu j , � j + 1, idv) to all neighbors of v except

p j .
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We now give more informal details of the test for cycle-
freeness. By Lemma 6.1, with high probability G ′ is such,
that if there is a vertex v in G ′ from which there is a shortest
path to some w of length at least T /2 = 10 log(n)/ε, then
there is a closed path inG starting from v that contains a cycle
of length 20 log(n)/ε. In the first phase of the algorithm, each
vertex gets its name as its vertex id, and performs a BFS
on the graph G ′ in the hope of finding a cycle. The BFS is
performed using Algorithm 5, where the priority condition
in the intermediate steps is selecting the BFS with the lowest
origin id. If the cycle is present in a component of diameter
at most 20 log(n)/ε in G ′, then it is discovered during this
BFS. To check if there is a cycle, each vertex v checks for
the presence of tuples (idu, �, idp) and (idu, �′, idp′) in Lv .

If no cycle is discovered in this step, then we change the
ids of the vertices to reflect the new priorities that will be
used in Algorithm 5 for the second BFS phase. The new ids
are set in the following way: The id of each vertex v is now a
tuple (�, v), where � is the largest depth at which v occurs in
a BFS tree among all the breadth-first searches that reached
v at the end of the first BFS phase.

We perform a BFS in G using Algorithm 5, where the
priority condition is to select the BFS whose root has the
lexicographically highest id. If there is some vertex with � ≥
10 log(n)/ε, then the highest priority vertex is such a vertex,
and by Lemma 6.1, the BFS starting from that vertex will
detect a cycle in G.

Algorithm 6 gives a formal description of the tester for
cycle-freeness.

We now prove the correctness of the algorithm.

Theorem 6.3 Algorithm 6 is a distributed ε-test in the gen-
eral graph model for the property of being cycle-free, that
requires O(log(n)/ε) rounds.

Proof Notice that a vertex in Algorithm 6 outputs reject
only when it detects a cycle. Therefore, if G is cycle-free,
then every vertex outputs accept with probability 1.

Suppose thatG is ε-far from being cycle-free. Notice that,
with probability at least 1−1/n3, the assertion of Lemma 6.1
holds. Furthermore, from Claim 6.2, we know that G ′ is ε/4-
far from being cycle-free, with probability 1− e−ε2m/32, and
hence contains at least one cycle. This cycle could be in a
component of diameter less than 20 log(n)/ε, or it could be
in a component of diameter at least 20 log(n)/ε in G ′. We
analyse the two cases separately.

Suppose there is a cycle in a componentC ofG ′ of diame-
ter at most 20 log(n)/ε. Let u be the vertex with the smallest
id inC . In Algorithm 6, the BFS starting at u is always propa-
gated at any intermediate vertex due to the priority condition.
Furthermore, since the diameter of C is at most 20 log(n)/ε,
this BFS reaches all vertices of C . Hence, this BFS detects
the cycle and at least one vertex in C outputs reject.

Algorithm 6: Cycle-freeness test
Variables: Lv list of BFS tuples passing through v, vertex

identifier idv

# Construct G ′ by deleting edges with
probability ε/2.

1 for each vertex v simultaneously
2 For each neighbor u < v, mark the edge e = (u, v) ∈ G with

probability ε/2 for deletion.
3 Send each marked edge e = (u, v) to its corresponding u.
4 Set idv = v.

5 for each vertex v simultaneously
6 Delete all edges incident on v that have been marked for

deletion.
# Search for cycles in small diameter

components.
7 use Algorithm 5 to
8 perform BFS on G ′ for 20 log(n)/ε steps, with the priority

condition being choosing the BFS with the lowest root id.

9 for each vertex v simultaneously
10 If Lv contains two tuples (idu , �, idp) and (idu , �′, idp′ ),

output reject.
11 Set idv = (� j , v) where � j is the highest among all tuples

(idui , �i , idpi ) in Lv .

12 use Algorithm 5 to
13 perform BFS on G for 10 log(n)/ε steps, with the priority

condition being choosing the BFS with the lexicographically
highest root id.

14 for each vertex v ∈ G simultaneously
15 If Lv contains two tuples (idu , � j , idp) and (idu , �′, idp′ ),

output reject.
16 output accept, if v did not output reject earlier.

On the other hand, if the cycle of G is present in a compo-
nent inG ′ of diameter at least 20 log(n)/ε, then after Step 11
of the algorithm, each vertex v gets the length of the longest
path from the origin, among all the BFSs that reached v, as
the first component of its id. The vertex v that gets the lex-
icographically highest id in the component has a vertex w

that is at least 10 log(n)/ε away in G ′, since the radius of
the component is at least half the diameter. Therefore, by
Lemma 6.1, it is part of a cycle of length at most 20 log(n)/ε

in G. Hence, the vertex with the highest priority in the BFS
on G is a vertex u that has a vertex at a distance of at least
10 log(n)/ε in G ′, and there is a closed path through u that
contain a simple cycle of length at most 20 log(n)/ε. At least
one vertex on this simple cycle will output reject when
Algorithm 6 is run on G.

The number of rounds is O(log(n)/ε), since Algorithm 6
performs two breadth-first searches in the graph with this
number of rounds. ��

7 Lower bounds for testing bipartiteness
and cycle-freeness

In this section, we prove that any distributed algorithm for
ε-testing bipartiteness or cycle-freeness in bounded-degree
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graphs requires �(log n) rounds of communication9. We
construct bounded-degree graphs that are ε-far from being
bipartite, such that all cycles are of length�(log n).We argue
that any distributed algorithm that runs in O(log n) rounds
does not detect a witness for non-bipartiteness.We also show
that the same construction proves that every distributed algo-
rithm for ε-testing cycle-freeness requires �(log n) rounds
of communication. Formally, we prove the following theo-
rem.

Theorem 7.1 Any distributed 1/100-test for the property of
being bipartite requires �(log n) rounds of communication.

To prove Theorem 7.1, we show the existence of a graph
G ′ that is far from being bipartite, but all of its cycles are
of at least logarithmic length. Since in T rounds of a dis-
tributed algorithm, the output of every vertex cannot depend
on vertices that are at distance greater than T from it, no
vertex can detect a cycle in G ′ in less than O(log n) rounds,
which proves Theorem 7.1. To prove the existence of G ′ we
use the probabilistic method with alterations, and prove the
following.

Lemma 7.2 Let G be a random graph on n vertices where
each edge is present with probability 1000/n. Let G ′ be
obtained by removing all edges incident with vertices of
degree greater than 2000, and one edge from each cycle of
length at most log n/ log 1000. Then, with probability at least
1/2 − e−100 − e−n, G ′ is 1/100-far from being bipartite.

Since a graph that is ε-far from being bipartite is also ε-
far from being cycle-free, we immediately obtain the same
lower bound for testing cycle-freeness, as follows.

Theorem 7.3 Any distributed 1/100-test for the property of
being cycle-free requires�(log n) rounds of communication.

The rest of this section is devoted to proving Lemma 7.2.
We need to show three properties of G ′: (a) that it is far from
being bipartite, (b) that it does not have small cycles, and
(c) that its maximum degree is bounded. We begin with the
following definition, which is similar in spirit to being far
from satisfying a property and which will assist us in our
proof.

Definition 7.4 A graph G is k-removed from being bipartite
if at least k edges have to be removed from G to make it
bipartite.

Note that a graph G with maximum degree d is ε-far from
being bipartite if it is εdn-removed from being bipartite.

Let G be a random graph on n vertices where for each
pair of vertices, an edge is present with probability 1000/n,

9 Our lower bound applies even to the less restricted LOCAL model of
communication, which does not limit the size of the messages.

independently of other pairs. The expected number of edges
in the graph is 500(n−1). Since the edges are sampled inde-
pendently with probability 1000/n, by the Chernoff Bound
from Fact 2.4, with probability at least 1 − e−10n the graph
has at least 400n edges. We now show that G is far from
being bipartite, with high probability.

Lemma 7.5 (Far from being bipartite) With probability at
least 1 − e−199n, G is 20n-far from being bipartite.

Proof Fix a bipartition (L, R) of the vertex set ofG such that
|L| ≥ n/2. For each pair of vertices u, v ∈ L , let Xu,v be
a random variable which is 1 if the edge (u, v) is present in
G and 0 otherwise. Its expected value is E[Xu,v] = 1000/n.
The random variable X = ∑

u,v∈L Xu,v counts the num-
ber of edges within L . By the linearity of expectation,
E[X ] ≥ (n/2

2

)
1000/n ≥ 30n. Since the random variables

Xu,v are independent, by the Chernoff Bound from Fact 2.4,
we have that Pr[X < 20n] ≤ exp(−200n). Therefore, with
probability at least 1 − exp(−200n), there are at least 20n
edges within L . The total number of such bipartitions of G is
at most 2n−1. Taking a union bound over all such bipartitions,
the probability that at least one of the bipartitions contains
less than 20n edges within its L side is at most exp(−199n),
and the lemma follows. ��

The expected degree of a vertex v in G is 1000(1− 1/n).
Therefore, by the Chernoff Bound from Fact 2.4, the prob-
ability that the degree of v is greater than 2000 is at most
exp(−300(1 − 1/n)). We now show that, with sufficiently
high probability, the number of edges that are incident with
high degree vertices is small. We can remove all such edges
to obtain a bounded-degree graph that is still far from being
bipartite.

Lemma 7.6 (Mostly bounded degrees) With probability at
least 1 − e−100, there are at most n edges that are incident
with vertices of degree greater than 2000 in G.

Proof For a pair u, v of vertices, the probability that there
is an edge between them and that one of u or v is of degree
greater than 2000 is Pr[(u, v) ∈ E] ·Pr[u or v has degree ≥
2000|(u, v) ∈ E]. This is atmost (1000/n)·2·exp(−300(1−
1/n)). Therefore, the expected number of edges that are
incident with a vertex of degree greater than 2000 is at
most 1000n · exp(−300(1 − 1/n)). By Markov’s inequal-
ity, the probability that there are at least n edges that are
incident with vertices of degree greater than 2000 is at most
1000 · exp(−300(1− 1/n)). This completes the proof of the
lemma. ��

We now bound the number of cycles of length at most
O(log n) in the graph G.

Lemma 7.7 (Few small cycles)With probability at least 1/2,
there are at most 2n cycles of length at most log n/ log 1000
in G.
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Proof For any k fixed vertices, the probability that there is
a cycle among the k vertices is at most k!(1000/n)k . There-
fore the expected number of cycles in G of length at most
k is at most 1000k . For k = log n/ log 1000, this means
that the expected number of cycles in G of length at most
log n/ log 1000 is n. Therefore, with probability at least 1/2
there are at most 2n cycles of length at most log n/ log 1000
in G. ��

We are now ready to prove Lemma 7.2, completing our
lower bounds. Intuitively, since G does not contain many
high degree vertices and many small cycles, removing them
to obtain G ′ only changes the distance from being bipartite
by a small term.

Proof With probability 1−e−n , there are at least 400n edges
in G and by Lemma 7.5 G is 20n-removed from being bipar-
tite. By Lemma 7.6, with probability at least 1− e−100, there
are at most n edges incident with vertices of degree greater
than 2000 and by Lemma 7.7 with probability at least 1/2
there are at most 2n cycles of length at most log n/ log 1000.
Hence, with probability at least 1/2 − e−100 − e−n , G ′ is a
graph with degree at most 2000, that is 17n-removed from
being bipartite. Therefore, G ′ is 1/100-far from being bipar-
tite. ��

8 Discussion

This paper initiates a thorough study of distributed prop-
erty testing. It provides an emulation technique for the dense
graph model and constructs fast distributed algorithms for
testing triangle-freeness, cycle-freeness and bipartiteness.
We also present lower bounds for both bipartiteness and tri-
angle freeness.

This work raises many important open questions, the
immediate of which is to devise fast distributed testing
algorithms for additional problems. One example is testing
freeness of other small subgraphs. More ambitious goals are
to handle dynamic graphs, and to find more general con-
nections between testability in the sequential model and the
distributed model. Finally, there is fertile ground for obtain-
ing additional lower bounds in this setting, in order to fully
understand the complexity of distributed property testing.
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