
Distrib. Comput. (2018) 31:167–185
https://doi.org/10.1007/s00446-017-0305-3

Inherent limitations of hybrid transactional memory

Dan Alistarh1 · Justin Kopinsky2 · Petr Kuznetsov3 · Srivatsan Ravi4 · Nir Shavit5

Received: 29 December 2015 / Accepted: 7 June 2017 / Published online: 23 June 2017
© Springer-Verlag GmbH Germany 2017

Abstract Several hybrid transactional memory (HyTM)
schemes have recently been proposed to complement the
fast, but best-effort nature of hardware transactional memory
with a slow, reliable software backup. However, the costs of
providing concurrency between hardware and software trans-
actions in HyTM are still not well understood. In this paper,
we propose a general model for HyTM implementations,
which captures the ability of hardware transactions to buffer
memory accesses. The model allows us to formally quan-
tify and analyze the amount of overhead (instrumentation)

An earlier version of this work appeared in the Proceedings of the 2015
International Symposium on Distributed Computing (DISC 2015) [5].

B Srivatsan Ravi
srivatsr@usc.edu

Dan Alistarh
dan.alistarh@microsoft.com

Justin Kopinsky
jkopin@mit.edu

Petr Kuznetsov
petr.kuznetsov@telecom-paristech.fr

Nir Shavit
shanir@csail.mit.edu

1 Microsoft Research Cambridge, 21 Station Road, Cambridge
CB1 1BB, UK

2 MIT Computer Science and Artificial Intelligence
Laboratory, 77 Massachusetts Avenue, 32-G604, Cambridge,
MA 02139, USA

3 LTCI, Télécom ParisTech, Université Paris-Saclay, C213-2,
46 Rue Barrault, 75013 Paris, France

4 Information Sciences Institute, University of Southern
California, Room 1102, 4676 Admiralty Way, Marina del
Rey, CA 90292, USA

5 MIT Computer Science and Artificial Intelligence Laboratory,
32 Vassar Street, 32-G622, Cambridge, MA 02139, USA

caused by the potential presence of software transactions.
We prove that (1) it is impossible to build a strictly serial-
izable HyTM implementation that has both uninstrumented
reads andwrites, even for veryweak progress guarantees, and
(2) the instrumentation cost incurred by a hardware transac-
tion in any progressive opaque HyTM is linear in the size
of the transaction’s data set. We further describe two imple-
mentations which exhibit optimal instrumentation costs for
two different progress conditions. In sum, this paper pro-
poses the first formal HyTM model and captures for the first
time the trade-off between the degree of hardware-software
TM concurrency and the amount of instrumentation over-
head.

Keywords hardware transactional memory ·
Instrumentation · Lower bounds

1 Introduction

1.1 Hybrid transactional memory

Since its introduction by Herlihy and Moss [29], Trans-
actional Memory (TM) has been a tool with tremendous
promise. It is therefore not surprising that the recently
introduced Hardware Transactional Memory (HTM) imple-
mentations [1,37,39] have been eagerly anticipated and
scrutinized by the community.

Early experience with programming HTM, e.g. [4,16,
18,31,45], paints an interesting picture: if used carefully,
HTM can significantly speed up and simplify concur-
rent implementations. At the same time, it is not without
its limitations: since HTMs are usually implemented on
top of the cache coherence mechanism, hardware trans-
actions have inherent capacity constraints on the number

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s00446-017-0305-3&domain=pdf

168 D. Alistarh et al.

of distinct memory locations that can be accessed inside
a single transaction. Moreover, all current proposals are
best-effort, as they may abort under imprecisely specified
conditions. In brief, the programmer should not solely rely
on HTMs.

Several Hybrid Transactional Memory (HyTM) schemes
[13,15,32,35] have been proposed to complement the fast,
but best-effort nature of HTM with a slow, reliable software
transactional memory (STM) backup. These proposals have
explored a wide range of trade-offs between the overhead on
hardware transactions, concurrent execution of hardware and
software, and the provided progress guarantees.

Early HyTM proposals [15,32] share interesting fea-
tures. First, transactions that do not conflict on the data
items they access are expected to run concurrently, regard-
less of their type (software or hardware). This property is
referred to as progressiveness [24] and is believed to allow
for higher parallelism. Second, hardware transactions usu-
ally employ code instrumentation techniques. Intuitively,
instrumentation is used by hardware transactions to detect
concurrency scenarios and abort in the case of data con-
flicts.

Reducing instrumentation in the frequently executed hard-
ware fast-path is key to efficiency. In particular, recent
work by Riegel et al. [41] surveys a series of techniques
to reduce instrumentation. Despite considerable algorithmic
work on HyTM, there is currently no formal basis for speci-
fying and understanding the cost of building HyTMs with
non-trivial concurrency. In particular, what are the inher-
ent instrumentation costs of building a HyTM? What are
the trade-offs between these costs and the ability of the
HyTM system to run software and hardware transactions in
parallel?

1.2 Modelling HyTM

To address these questions, we propose the first model for
hybrid TM systems which formally captures the notion
of cached accesses provided by hardware transactions,
and defines instrumentation costs in a precise, quantifiable
way.

Specifically, we model a hardware transaction as a series
of memory accesses that operate on locally cached copies of
the memory locations, followed by a cache-commit opera-
tion. In case a concurrent (hardware or software) transaction
performs a (read-write or write-write) conflicting access to
a cached base object, the cached copy is invalidated and the
hardware transaction aborts. Thus, detecting contention on
memory locations is provided “automatically” to code run-
ning inside hardware transactions.

Further, we notice that a HyTM implementation imposes
a logical partitioning of shared memory into data and meta-
data locations. Intuitively, metadata is used by transactions

to exchange information about contention and conflicts,
while data locations only store the values of data items read
and updated within transactions. Recent experimental evi-
dence [36] suggests that the overhead imposed by accessing
metadata, and in particular code to detect concurrent soft-
ware transactions, is a significant performance bottleneck.
Therefore, we quantify instrumentation cost by measuring
the number of accesses tometadatamemory locations which
transactions perform. Our framework captures all known
HyTM proposals which combine HTMs with an STM fall-
back [13,15,32,35,40].

1.3 The cost of concurrency

We then explore the implications of our model. The first,
immediate application is an impossibility result showing
that instrumentation is necessary in a HyTM implementa-
tion, even if we only provide sequential progress, i.e., if
a transaction is only guaranteed to commit if it runs in
isolation.

The second application concerns the instrumentation
overhead of progressive HyTM schemes, which constitutes
our main technical contribution. We prove that any progres-
siveHyTM, satisfying reasonable livenesss guarantees,must,
in certain executions, force read-only transactions to access
a linear (in the size of their data sets) number of metadata
memory locations, even in the absence of contention.

Our proof technique is interesting in its own right. Induc-
tively, we start with a sequential execution in which a “large”
set Sm of read-only hardware transactions, each accessing
m distinct data items and m distinct metadata memory loca-
tions, run after an execution Em .We then construct execution
Em+1, an extension of Em , which forces at least half of the
transactions in Sm to access a new metadata base object
when reading a new (m + 1)th data item, running after
Em+1. The technical challenge, and the key departure from
prior work on STM lower bounds, e.g. [9,21,25], is that
hardware transactions practically possess “automatic” con-
flict detection, aborting on contention. This is in contrast to
STMs,whichmust take steps to detect contention onmemory
locations.

This linear lower bound is tight. Wematch it with an algo-
rithm which, additionally, allows for uninstrumented writes,
invisible reads and is provably opaque [25]. To the best of
our knowledge, this is the first formal proof of correctness of
a HyTM algorithm.

1.4 Low-instrumentation HyTM

Our main lower bound result shows that there are high inher-
ent instrumentation costs to progressive HyTM designs [15,
32]. Interestingly, some recent HyTM schemes [13,35,36,
41] sacrifice progressiveness for constant instrumentation

123

Inherent limitations of hybrid transactional memory 169

cost (i.e., not depending on the size of the data set). Instead,
only sequential progress is ensured. (Despite this fact, these
schemes perform well due to the limited instrumentation in
hardware transactions.)

We extend these schemes to provide an upper bound for
non-progressive low-instrumentation HyTMs. We present
a HyTM with invisible reads and uninstrumented hard-
ware writes which guarantees that a hardware transaction
accesses at most one metadata object in the course of
its execution. Software transactions are mutually progres-
sive, while hardware transactions are guaranteed to commit
only if they do not run concurrently with an updating
software transaction. This algorithm shows that, by aban-
doning progressiveness, the instrumentation costs of HyTM
can be reduced to the bare minimum required by our first
impossibility result. In other words, the cost of avoiding
the linear instrumentation lower bound is that hardware
transactions may be aborted by non-conflicting software
ones.

1.5 Roadmap

The rest of the paper is organized as follows. Section 2 intro-
duces the basic TMmodel and definitions. Section 3 presents
our first contribution: a formal model for HyTM imple-
mentations. Section 4 formally defines instrumentation and
proves the impossibility of implementing uninstrumented
HyTMs. Section 5 establishes a linear lower bound on
metadata accesses for progressive HyTMs while Sect. 6
describes our instrumentation-optimal opaque HyTM imple-
mentations. Section 7 presents the related work and Sect. 8
concludes the paper.

2 Preliminaries

2.1 Transactional memory (TM)

A transaction is a sequence of transactional operations (or
t-operations), reads and writes, performed on a set of trans-
actional objects (t-objects). A TM implementation provides
a set of concurrent processes with deterministic algorithms
that implement reads and writes on t-objects using a set
of base objects. More precisely, for each transaction Tk , a
TM implementationmust support the following t-operations:
readk(X), where X is a t-object, that returns a value in a
domain V or a special value Ak /∈ V (abort), writek(X, v),
for a value v ∈ V , that returns ok or Ak , and tryCk that returns
Ck /∈ V (commit) or Ak . Note that a TM interface may addi-
tionally provide a startk t-operation that returns ok or Ak ,
which is the first t-operation transaction Tk must invoke, or a
tryAk t-operation that returns Ak . However, the actions per-

formed inside the startk may be performed as part of the first
t-operation performed by the transaction.

2.2 Configurations and executions

A configuration of a TM implementation specifies the state
of each base object and each process. In the initial configura-
tion, each base object has its initial value and each process is
in its initial state. An event (or step) of a transaction invoked
by some process is an invocation of a t-operation, a response
of a t-operation, or an atomic primitive operation applied to
base object along with its response. An execution fragment
is a (finite or infinite) sequence of events E = e1, e2,
An execution of a TM implementation M is an execution
fragment where, informally, each event respects the specifi-
cation of base objects and the algorithms specified byM. In
the next section, we define precisely how base objects should
behave in a hybrid model combining direct memory accesses
with cached accesses (hardware transactions).

The read set (resp., the write set) of a transaction Tk in
an execution E , denoted RsetE (Tk) (and resp.WsetE (Tk)), is
the set of t-objects that Tk attempts to read (and resp. write)
by issuing a t-read (and resp. t-write) invocation in E (for
brevity, we sometimes omit the subscript E from the nota-
tion). The data set of Tk is Dset(Tk) = Rset(Tk)∪Wset(Tk).
Tk is called read-only if Wset(Tk) = ∅; write-only if
Rset(Tk) = ∅ and updating if Wset(Tk) �= ∅. Note that we
consider the conventional dynamic TM model: the data set
of a transaction is identifiable only by the set of t-objects the
transaction has invoked a read orwrite in the given execution.

For any finite execution E and execution fragment E ′,
E · E ′ denotes the concatenation of E and E ′ and we say that
E · E ′ is an extension of E . For every transaction identifier
k, E |k denotes the subsequence of E restricted to events of
transaction Tk . If E |k is non-empty, we say that Tk partici-
pates in E , and let txns(E) denote the set of transactions that
participate in E . Two executions E and E ′ are indistinguish-
able to a set T of transactions, if for each transaction Tk ∈ T ,
E |k = E ′|k.

2.3 Complete and incomplete transactions

A transaction Tk ∈ txns(E) is complete in E if E |k ends
with a response event. The execution E is complete if all
transactions in txns(E) are complete in E . A transaction Tk ∈
txns(E) is t-complete if E |k ends with Ak or Ck ; otherwise,
Tk is t-incomplete. Tk is committed (resp. aborted) in E if
the last event of Tk is Ck (resp. Ak). The execution E is
t-complete if all transactions in txns(E) are t-complete. A
configuration C after an execution E is quiescent (resp. t-
quiescent) if every transaction Tk ∈ t xns(E) is complete
(resp. t-complete) in E .

123

170 D. Alistarh et al.

2.4 Contention

We assume that base objects are accessed with read-modify-
write (rmw) primitives [19,27]. A rmw primitive 〈g, h〉
applied to a base object atomically updates the value of the
object with a new value, which is a function g(v) of the old
value v, and returns a response h(v). A rmw primitive event
on a base object is trivial if, in any configuration, its appli-
cation does not change the state of the object. Otherwise, it
is called nontrivial.

Events e and e′ of an execution E contend on a base object
b if they are both primitives on b in E and at least one of them
is nontrivial.

In a configuration C after an execution E , every incom-
plete transaction T has exactly one enabled event inC , which
is the next event T will perform according to the TM imple-
mentation. We say that a transaction T is poised to apply an
event e after E if e is the next enabled event for T in E . We
say that transactions T and T ′ concurrently contend on b in
E if they are each poised to apply contending events on b
after E .

We say that an execution fragment E is step contention-
free for t-operation opk if the events of E |opk are contiguous
in E . An execution fragment E is step contention-free for
Tk if the events of E |k are contiguous in E , and E is step
contention-free if E is step contention-free for all transac-
tions that participate in E .

2.5 TM correctness

A history exported by an execution fragment E is the subse-
quence of E consisting of only the invocation and response
events of t-operations. Let HE denote the history exported
by an execution E . Two histories H and H ′ are equivalent if
txns(H) = txns(H ′) and for every transaction Tk ∈ txns(H),
H |k = H ′|k. For any two transactions Tk, Tm ∈ txns(E),
we say that Tk precedes Tm in the real-time order of E
(Tk ≺RT

E Tm) if Tk is t-complete in E and the last event
of Tk precedes the first event of Tm in E . If neither Tk pre-
cedes Tm nor Tm precedes Tk in real-time order, then Tk and
Tm are concurrent in E . An execution E is sequential if every
invocation of a t-operation is either the last event in H or is
immediately followed by a matching response, where H is
the history exported by E . An execution E is t-sequential if
there are no concurrent transactions in E .

Let E be a t-sequential execution. For every operation
readk(X) in E , we define the latest written value of X as fol-
lows: (1) If Tk contains a writek(X, v) preceding readk(X),
then the latest written value of X is the value of the latest
such write to X . (2) Otherwise, if E contains a writem(X, v),
Tm precedes Tk , and Tm commits in E , then the latest written
value of X is the value of the latest such write to X in E .
(This write is well-defined since E starts with T0 writing to

all t-objects.) We say that readk(X) is legal in a t-sequential
execution E if it returns the latest written value of X , and
E is legal if every readk(X) in H that does not return Ak is
legal in E .

For a history H , a completion of H , denoted H̄ , is a history
derived from H as follows:

1. for every incomplete t-operation opk that is a readk ∨
writek of Tk ∈ txns(H) in H , insert Ak somewhere after
the last event of Tk in E ; otherwise if opk = tryCk , insert
Ak or Ck somewhere after the last event of Tk

2. for every complete transaction Tk in the history derived
in (1) that is not t-complete, insert tryCk · Ak after the
last event of transaction Tk .

Definition 1 (Opacity and strict serializability) A finite
history H is opaque if there is a legal t-complete t-sequential
history S, such that for any two transactions Tk, Tm ∈
txns(H), if Tk ≺RT

H Tm , then Tk ≺RT
S Tm , and S is equivalent

to a completion of H [25].
A finite history H is strictly serializable if there is a legal

t-complete t-sequential history S, such that for any two trans-
actions Tk, Tm ∈ txns(H), if Tk ≺RT

H Tm , then Tk ≺RT
S Tm ,

and S is equivalent to cseq(H̄), where H̄ is some comple-
tion of H and cseq(H̄) is the subsequence of H̄ reduced to
committed transactions in H̄ .

2.6 TM-liveness

A liveness property specifies the conditions under which a t-
operation must return. A TM implementation provides wait-
free (WF) TM-liveness if it ensures that every t-operation
returns in a finite number of its steps. A weaker property of
obstruction-freedom (OF) ensures that every operation run-
ning step contention-free returns in a finite number of its own
steps. The weakest property we consider here is sequential
TM-liveness that only guarantees that t-operations running
in the absence of concurrent transactions returns in a finite
number of its steps.

3 Hybrid transactional memory (HyTM)

3.1 Direct accesses and cached accesses

We now describe the execution model of a Hybrid Trans-
actional Memory (HyTM) implementation. In our HyTM
model, every base object can be accessed with two kinds
of primitives, direct and cached.

In a direct access, the rmw primitive operates on the mem-
ory state: the direct-access event atomically reads the value
of the object in the sharedmemory and, if necessary,modifies
it.

123

Inherent limitations of hybrid transactional memory 171

In a cached access performed by a process i , the rmw
primitive operates on the cached state recorded in process
i’s tracking set τi . One can think of τi as the L1 cache
of process i . A hardware transaction is a series of cached
rmw primitives performed on τi followed by a cache-commit
primitive.

More precisely, τi is a set of triples (b, v,m) where
b is a base object identifier, v is a value, and m ∈
{shared, exclusive} is an access mode. The triple (b, v,m)

is added to the tracking set when i performs a cached rmw
access of b, where m is set to exclusive if the access is
nontrivial, and to shared otherwise. We assume that there
exists some constant TS (representing the size of the L1
cache) such that the condition |τi | ≤ TS must always
hold; this condition will be enforced by our model. A base
object b is present in τi with mode m if ∃v, (b, v,m)

∈ τi .
A trivial (resp. nontrivial) cached primitive 〈g, h〉 applied

to b by process i first checks the condition |τi | = TS
and if so, it sets τi = ∅ and immediately returns ⊥ (we
call this event a capacity abort). We assume that TS is
large enough so that no transaction with data set of size
1 can incur a capacity abort. If the transaction does not
incur a capacity abort, the process checks whether b is
present in exclusive (resp. any) mode in τ j for any j �= i .
If so, τi is set to ∅ and the primitive returns ⊥. Other-
wise, the triple (b, v, shared) (resp. (b, g(v), exclusive)) is
added to τi , where v is the most recent cached value of
b in τi (in case b was previously accessed by i within
the current hardware transaction) or the value of b in
the current memory configuration, and finally h(v) is
returned.

A tracking set can be invalidated by a concurrent process:
if, in a configuration C where (b, v, exclusive) ∈ τi (resp.
(b, v, shared) ∈ τi), a process j �= i applies any primitive
(resp. any nontrivial primitive) to b, then τi becomes invalid
and any subsequent cached primitive invoked by i sets τi

to ∅ and returns ⊥. We refer to this event as a tracking set
abort.

Finally, the cache-commit primitive issued by process i in
configuration C with a valid τi does the following: for each
base object b such that (b, v, exclusive) ∈ τi , the value of b
in C is updated to v. Finally, τi is set to ∅ and the primitive
returns commit.

Note that HTM may also abort spuriously, or because of
unsupported operations [39]. The first cause can be modelled
probabilistically in the above framework, which would not
however significantly affect our claims and proofs, except
make for a more cumbersome presentation. Also, our lower
bounds are based exclusively on executions containing t-
reads and t-writes. Therefore, since our primary focus in this
paper are lower bounds, we only consider contention and
capacity aborts.

3.2 Slow-path and fast-path transactions

In the following, we partition HyTM transactions into fast-
path transactions and slow-path transactions. Practically,
two separate algorithms (fast-path one and slow-path one)
are provided for each t-operation.

A slow-path transaction models a regular software trans-
action. An event of a slow-path transaction is either an
invocation or response of a t-operation, or a rmw primitive
on a base object.

A fast-path transaction essentially encapsulates a hard-
ware transaction. An event of a fast-path transaction is either
an invocation or response of a t-operation, a cached primi-
tive on a base object, or a cache-commit: t-read and t-write
are only allowed to contain cached primitives, and tryC con-
sists of invoking cache-commit. Furthermore, we assume that
a fast-path transaction Tk returns Ak as soon an underly-
ing cached primitive or cache-commit returns ⊥. Figure 1
depicts such a scenario illustrating a tracking set abort: fast-
path transaction T2 executed by process p2 accesses a base

Fast-Path

(access of b)

T2 A2

T1

E

(b, v, exclusive) τ2 after E

(a)

Fast-Path

(write to b)

T2 A2

T1

E

(b, v, shared) τ2 after E

(b)

Fig. 1 Tracking set aborts in fast-path transactions a τ2 is invalidated by (fast-path or slow-path) transaction T1’s access of base object b b τ2 is
invalidated by (fast-path or slow-path) transaction T1’s write to base object b

123

172 D. Alistarh et al.

W2(X, v)

W1(X, v)

Fast-Path

Slow-Path

T2

T1

E
Aborted or incomplete

fast-path transaction T2

(a)

W1(X, v)

Slow-Path

T1

E

(b)

Fig. 2 Execution E in Fig. 2a is indistinguishable to T1 from the execution E ′ in Fig. 2b

object b in shared (and resp. exclusive) mode and it is added
to its tracking set τ2. Immediately after the access of b by
T2, a concurrent transaction T1 applies a nontrivial primitive
to b (and resp. accesses b). Thus, the tracking set of p2 is
invalidated and T2 must be aborted in any extension of this
execution.

We provide two key observations on this model regard-
ing the interactions of non-committed fast path transactions
with other transactions. Let E be any execution of a HyTM
implementation M in which a fast-path transaction Tk is
either t-incomplete or aborted. Then the sequence of events
E ′ derived by removing all events of E |k from E is an exe-
cution of M. Moreover:

Observation 1 To every slow-path transaction Tm ∈ t xns
(E), E is indistinguishable from E ′.

Observation 2 If a fast-path transaction Tm ∈ t xns(E) \
{Tk} does not incur a tracking set abort in E, then E is indis-
tinguishable to Tm from E ′.

Intuitively, these observations say that fast-path transac-
tions which are not yet committed are invisible to slow-path
transactions, and can communicatewith other fast-path trans-
actions only by incurring their tracking-set aborts. Figure 2
illustrates Observation 1: a fast-path transaction T2 is con-
current to a slow-path transaction T1 in an execution E . Since
T2 is t-incomplete or aborted in this execution, E is indistin-
guishable to T1 from an execution E ′ derived by removing
all events of T2 from E . Analogously, to illustrate Obser-
vation 2, if T1 is a fast-path transaction that does not incur
a tracking set abort in E , then E is indistinguishable to T1
from E ′.

4 Defining instrumentation

Now we define the notion of code instrumentation in fast-
path transactions.

An execution E of a HyTM M appears t-sequential to a
transaction Tk ∈ t xns(E) if there exists an execution E ′ of
M such that:

– t xns(E ′) ⊆ t xns(E) \ {Tk} and the configuration after
E ′ is t-quiescent,

– every transaction Tm ∈ t xns(E) that precedes Tk in real-
time order is included in E ′ such that E |m = E ′|m,

– for every transaction Tm ∈ t xns(E ′), RsetE ′(Tm) ⊆
RsetE (Tm) and WsetE ′(Tm) ⊆ WsetE (Tm), and

– E ′ · E |k is an execution ofM.

Intuitively, as the name indicates, execution E appears t-
sequential to a transaction Tk participating in E if Tk cannot
distinguish E from a t-complete execution E ′ which includes
all the t-complete transactions preceding Tk in E and per-
forming the same steps as in E .

Definition 2 (Data and metadata base objects) Let X be
the set of t-objects operated by a HyTM implementationM.
Now we partition the set of base objects used by M into
a set D of data objects and a set M of metadata objects
(D ∩ M = ∅). We further partition D into sets DX associated
with each t-object X ∈ X : D = ⋃

X∈X DX , for all X �= Y
in X , DX ∩ DY = ∅, such that:

1. In every execution E , each fast-path transaction Tk ∈
t xns(E) only accesses base objects in

⋃
X∈DSet (Tk) DX

or M.
2. Let E ·ρ and E ·E ′ ·ρ′ be two t-complete executions, such

that E and E · E ′ are t-complete, ρ and ρ′ are complete
executions of a transaction Tk /∈ t xns(E · E ′), Hρ =
Hρ′ , and ∀Tm ∈ t xns(E ′), Dset(Tm) ∩ Dset(Tk) = ∅.
Then the states of the base objects

⋃
X∈DSet (Tk) DX in

the configuration after E · ρ and E · E ′ · ρ′ are the same.
3. Let execution E appear t-sequential to a transaction Tk

and let the enabled event e of Tk after E be a primitive
on a base object b ∈ D. Then, unless e returns ⊥, E · e
also appears t-sequential to Tk .

Intuitively, the first condition says that a transaction is only
allowed to access data objects based on its data set. The sec-
ond condition says that transactions with disjoint data sets
can communicate only via metadata objects. Finally, the last
condition means that base objects in D may only contain the

123

Inherent limitations of hybrid transactional memory 173

“values” of t-objects, and cannot be used to detect concurrent
transactions. Note that our results lower bound the number
of metadata objects that must be accessed by some fast-path
transaction in a given execution, thus from a cost perspective,
D should be made as large as possible.

All HyTM proposals we are aware of, such as Hybrid-
NOrec [13,40], PhTM [35] and others [11,15,32,42], con-
form to our definition of instrumentation in fast-path transac-
tions. For instance, HybridNOrec [13,40] employs a distinct
base object in D for each t-object and a global sequence
lock as the metadata that is accessed by fast-path trans-
actions to detect concurrency with slow-path transactions.
Similarly, the HyTM implementation by Damron et al. [15]
also associates a distinct base object inD for each t-object and
additionally, a transaction header and ownership record as
metadata base objects. In fact, our framework even character-
izes conventional STMs such as DSTM [28] and NOrec [14]
which maintain similar separation between data and mata-
data base objects.

Definition 3 (Uninstrumented HyTMs) A HyTM imple-
mentation M provides uninstrumented writes (resp. reads)
if in every execution E of M, for every write-only (resp.
read-only) fast-path transaction Tk , all primitives in E |k are
performed on base objects in D. A HyTM is uninstrumented
if both its reads and writes are uninstrumented.

Observation 3 Consider any execution E of a HyTM imple-
mentation M which provides uninstrumented reads (resp.
writes). For any fast-path read-only (resp. write-only) trans-
action Tk /∈ t xns(E), that runs step-contention free after E,
the execution E appears t-sequential to Tk.

4.1 Impossibility of uninstrumented HyTMs

We now show that any strictly serializable HyTM must be
instrumented, even under a very weak progress assumption
by which a transaction is guaranteed to commit only when
run t-sequentially (also known as minimal progress [25]):

Definition 4 (Sequential TM-progress for HyTMs) A
HyTM implementationM provides sequential TM-progress
for fast-path transactions (and resp. slow-path) if in every
execution E of M, a fast-path (and resp. slow-path) trans-
action Tk returns Ak in E only if Tk incurs a capacity abort
or Tk is concurrent to another transaction. We say that M
provides sequential TM-progress if it provides sequential
TM-progress for fast-path and slow-path transactions.

Theorem 4 There does not exist a strictly serializable unin-
strumented HyTM implementation that ensures sequential
TM-progress and TM-liveness.

Proof Suppose by contradiction that such aHyTMM exists.
For simplicity, assume that v is the initial value of t-objects X ,

Y and Z and transactions are executed by distinct processes.
Let E be the t-complete step contention-free execution of
a slow-path transaction T0 that performs read0(Z) → v,
write0(X, nv), write0(Y, nv) (nv �= v), and commits. Such
an execution exists sinceM ensures sequential TM-progress.

ByObservation3, any transaction that runs step contention-
free starting from a prefix of E must return a non-abort value.
Since any such transaction reading X orY must return vwhen
it starts from the empty prefix of E and nv when it starts from
E .

Thus, there exists E ′, the longest prefix of E that cannot
be extended with the t-complete step contention-free execu-
tion of a fast-path transaction reading X or Y and returning
nv. Let e be the enabled event of T0 in the configuration
after E ′. Without loss of generality, suppose that there exists
an execution E ′ · e · Ey where Ey is the t-complete step
contention-free execution fragment of some fast-path trans-
action Ty that reads Y is returns nv (Fig. 3a).

Claim 5 M has an execution E ′ · Ez · Ex , where

– Ez is the t-complete step contention-free execution frag-
ment of a fast-path transaction Tz that writes nv �= v to
Z and commits

– Ex is the t-complete step contention-free execution frag-
ment of a fast-path transaction Tx that performs a single
t-read readx (X) → v and commits.

Proof By Observation 3, the extension of E ′ in which Tz
writes to Z and tries to commit appears t-sequential to Tz .
By sequential TM-progress, Tz completes the write and com-
mits. Let E ′ · Ez (Fig. 3b) be the resulting execution of M.

Similarly, the extension of E ′ in which Tx reads X and
tries to commit appears t-sequential to Tx . By sequential TM-
progress, Tx commits and let E ′·Ex be the resulting execution
of M. By the definition of E ′, readx (X) must return v in
E ′ · Ex .

SinceM is uninstrumented and the data sets of Tx and Tz
are disjoint, the sets of base objects accessed in the execution
fragments Ex and Ey are also disjoint. Thus, E ′ · Ez · Ex is
indistinguishable to Tx from the execution E ′ · Ex , which
implies that E ′ · Ez · Ex is an execution of M (Fig. 3c). ��

Finally, we prove that the sequence of events, E ′ · Ez · Ex ·
e · Ey is an execution of M.

Since the transactions Tx , Ty , Tz have pairwise disjoint
data sets in E ′ · Ez · Ex · e · Ey , no base object accessed in
Ey can be accessed in Ex and Ez . The read operation on X
performed by Ty in E ′ ·e ·Ey returns nv and, by the definition
of E ′ and e, Ty must have accessed the base object bmodified
in the event e by T0. Thus, b is not accessed in Ex and Ez

and E ′ · Ez · Ex · e is an execution of M. Summing up,
E ′ · Ez · Ex · e · Ey is indistinguishable to Ty from E ′ · e · Ey ,

123

174 D. Alistarh et al.

(a)

(b)

(c)

(d)

Fig. 3 Executions in the proof of Theorem 4; execution in 3d is not
strictly serializable a Ty must return the newvalue b since Tz is uninstru-
mented, by Observation 3 and sequential TM-progress, Tz must commit

c since Tx does not access any metadata, it cannot abort and must return
the initial value value of X d Ty does not contend with Tx or Tz on any
base object

which implies that E ′ · Ez · Ex · e · Ey is an execution ofM
(Fig. 3d).

But the resulting execution is not strictly serializable.
Indeed, suppose that a serialization exists. As the value writ-
ten by T0 is returned by a committed transaction Ty , T0 must
be committed and precede Ty in the serialization. Since Tx
returns the initial value of X , Tx must precede T0. Since T0
reads the initial value of Z , T0 must precede Tz . Finally, Tz
must precede Tx to respect the real-time order. The cycle in
the serialization establishes a contradiction. ��

5 Linear instrumentation lower bound

In this section, we show that giving HyTM the ability to
run and commit transactions in parallel brings considerable
instrumentation costs. We focus on a natural progress condi-
tion called progressiveness [22–24] that allows a transaction
to abort only if it experiences a read-write or write-write
conflict with a concurrent transaction:

Definition 5 (Progressiveness for HyTMs) We say that
transactions Ti and Tj conflict in an execution E on a t-object
X if X ∈ Dset(Ti)∩Dset(Tj) and X ∈ Wset(Ti)∪Wset(Tj).

AHyTM implementationM is fast-path (resp. slow-path)
progressive if in every execution E ofM and for every fast-
path (and resp. slow-path) transaction Ti that aborts in E ,
either Ai is a capacity abort or Ti conflicts with some transac-
tion Tj that is concurrent to Ti in E . We sayM is progressive
if it is both fast-path and slow-path progressive.

We show that for every opaque fast-path progressive HyTM
that provides obstruction-free TM-liveness, an arbitrarily
long read-only transaction might access a number of distinct
metadata base objects that is linear in the size of its read set
or experience a capacity abort.

The following auxiliary results will be crucial in proving
our lower bound. We observe first that a fast path transaction
in a progressive HyTM can contend on a base object only
with a conflicting transaction.

Lemma 1 LetM be any fast-path progressive HyTM imple-
mentation. Let E · E1 · E2 be an execution of M where E1

(and resp. E2) is the step contention-free execution fragment
of transaction T1 /∈ t xns(E) (and resp. T2 /∈ t xns(E)),
T1 (and resp. T2) does not conflict with any transaction in
E · E1 · E2, and at least one of T1 or T2 is a fast-path trans-
action. Then, T1 and T2 do not contend on any base object
in E · E1 · E2.

123

Inherent limitations of hybrid transactional memory 175

Proof Suppose, by contradiction that T1 or T2 contend on
the same base object in E · E1 · E2.

If in E1, T1 performs a nontrivial event on a base object
on which they contend, let e1 be the last event in E1 in which
T1 performs such an event to some base object b and e2, the
first event in E2 that accesses b. Otherwise, T1 only performs
trivial events in E1 to base objects on which it contends with
T2 in E · E1 · E2: let e2 be the first event in E2 in which E2

performs a nontrivial event to some base object b on which
they contend and e1, the last event of E1 in T1 that accesses b.

Let E ′
1 (and resp. E ′

2) be the longest prefix of E1 (and
resp. E2) that does not include e1 (and resp. e2). Since before
accessing b, the execution is step contention-free for T1,
E · E ′

1 · E ′
2 is an execution of M. By construction, T1 and

T2 do not conflict in E · E ′
1 · E ′

2. Moreover, E · E1 · E ′
2 is

indistinguishable to T2 from E · E ′
1 · E ′

2. Hence, T1 and T2
are poised to apply contending events e1 and e2 on b in the
execution Ẽ = E · E ′

1 · E ′
2. Recall that at least one event of

e1 and e2 must be nontrivial.
Consider the execution Ẽ · e1 · e′

2 where e
′
2 is the event of

p2 in which it applies the primitive of e2 to the configuration
after Ẽ · e1. After Ẽ · e1, b is contained in the tracking set of
process p1. If b is contained in τ1 in the shared mode, then e′

2
is a nontrivial primitive on b, which invalidates τ1 in Ẽ ·e1 ·e′

2.
If b is contained in τ1 in the exclusive mode, then any subse-
quent access of b invalidates τ1 in Ẽ ·e1 ·e′

2. In both cases, τ1
is invalidated and T1 incurs a tracking set abort. Thus, trans-
action T1 must return A1 in any extension of E · e1 · e2—a
contradiction to the assumption that M is progressive. ��
Iterative application of Lemma 1 implies the following:

Corollary 1 Let M be any fast-path progressive HyTM
implementation. Let E · E1 · · · Ei · Ei+1 · · · Em be any exe-
cution of M where for all i ∈ {1, . . . ,m}, Ei is the
step contention-free execution fragment of transaction Ti /∈
t xns(E) and any two transactions in E1 · · · Em do not con-
flict. For all i, j = 1, . . . ,m, i �= j , if Ti is fast-path, then Ti
and Tj do not contend on a base object in E · E1 · · · Em

Proof Let Ti be a fast-path transaction. By Lemma 1, in
E ·E1 · · · Ei · · · Em , Ti does not contend with Ti−1 (if i > 1)
or Ti+1 (if i < m) on any base object and, thus, Ei com-
mutes with Ei−1 and Ei+1. Thus, E · E1 · · · Ei−2 · Ei · Ei−1 ·
Ei+1 · · · Em (if i > 1) and E · E1 · · · Ei−1 · Ei+1 · Ei ·
Ei+2 · · · Em (if i < m) are executions of M. By iteratively
applying Lemma 1, we derive that Ti does not contend with
any Tj , j �= i .

We say that execution fragments E and E ′ are similar if
they export equivalent histories, i.e., no process can see the
difference between them by looking at the invocations and
responses of t-operations. We now use Corollary 1 to show
that t-operations only accessing data base objects cannot
detect contention with non-conflicting transactions.

Lemma 2 Let E be any t-complete execution of a pro-
gressive HyTM implementation M that provides OF TM-
liveness. For any m ∈ N, consider a set of m executions of
M of the form E · Ei · γi · ρi where Ei is the t-complete step
contention-free execution fragment of a transaction Tm+i , γi
is a complete step contention-free execution fragment of a
fast-path transaction Ti such that Dset(Ti) ∩ Dset(Tm+i) =
∅ in E · Ei · γi , and ρi is the execution fragment of a
t-operation by Ti that does not contain accesses to any
metadata base object. If, for all i, j ∈ {1, . . . ,m}, i �= j ,
Dset(Ti) ∩ Dset(Tm+ j) = ∅, Dset(Ti) ∩ Dset(Tj) = ∅ and
Dset(Tm+i)∩Dset(Tm+ j) = ∅, then there exists a t-complete
step contention-free execution fragment E ′ that is similar to
E1 · · · Em such that for all i ∈ {1, . . . ,m}, E · E ′ · γi · ρi is
an execution of M.

Proof Observe that any two transactions in the execution
fragment E1 · · · Em access mutually disjoint data sets. Since
M is progressive and provides OF TM-liveness, there exists
a t-sequential execution fragment E ′ = E ′

1 · · · E ′
m such that,

for all i ∈ {1, . . . ,m}, the execution fragments Ei and E ′
i are

similar and E · E ′ is an execution ofM. Corollary 1 implies
that, for all i ∈ {1, . . . ,m}, M has an execution of the form
E · E ′

1 · · · E ′
i · · · E ′

m · γi . More specifically, M has an exe-
cution of the form E · γi · E ′

1 · · · E ′
i · · · E ′

m . Recall that the
execution fragment ρi of fast-path transaction Ti that extends
γi contains accesses only to base objects in

⋃
X∈DSet (Ti) DX .

Moreover, for all i, j ∈ {1, . . . ,m}; i �= j , Dset(Ti) ∩
Dset(Tm+ j) = ∅ and Dset(Tm+i) ∩ Dset(Tm+ j) = ∅.

It follows that M has an execution of the form E · γi ·
E ′
1 · · · E ′

i ·ρi · E ′
i+1 · · · E ′

m . and the states of each of the base
objects

⋃
X∈DSet (Ti) DX accessed by Ti in the configuration

after E ·γi · E ′
1 · · · E ′

i and E ·γi · Ei are the same. But E ·γi ·
Ei · ρi is an execution of M. Thus, for all i ∈ {1, . . . ,m},
M has an execution of the form E · E ′ · γi · ρi . ��

Finally, we are now ready to derive our lower bound.

Theorem 6 LetMbe any progressive, opaqueHyTM imple-
mentation that provides OF TM-liveness. For every m ∈ N,
there exists an execution E inwhich some fast-path read-only
transaction Tk ∈ t xns(E) satisfies either (1) Dset(Tk) ≤ m
and Tk incurs a capacity abort in E or (2) Dset(Tk) = m and
Tk accesses Ω(m) distinct metadata base objects in E.

Here is a high-level overview of the proof technique. Let κ

be the smallest integer such that some fast-path transaction
running step contention-free after a t-quiescent configuration
performs κ t-reads and incurs a capacity abort.

We prove that, for allm ≤ κ −1, there exists a t-complete
execution Em and a set Sm with |Sm | = 2κ−m of read-only
fast-path transactions that access mutually disjoint data sets
such that each transaction in Sm that runs step contention-

123

176 D. Alistarh et al.

free from Em and performs t-reads of m distinct t-objects
accesses at least one distinct metadata base object within the
execution of each t-read operation.

We proceed by induction. Assume that the induction state-
ment holds for all m < κ − 1. We prove that a set Sm+1;
|Sm+1| = 2κ−(m+1) of fast-path transactions, each of which
run step contention-free after the same t-complete execution
Em+1, perform m + 1 t-reads of distinct t-objects so that at
least one distinct metadata base object is accessed within the
execution of each t-read operation. In our construction, we
pick any two new transactions from the set Sm and show that
one of them running step contention-free from a t-complete
execution that extends Em performsm+1 t-reads of distinct
t-objects so that at least one distinct metadata base object is
accessedwithin the execution of each t-read operation. In this
way, the set of transactions is reduced by half in each step of
the induction until one transaction remains which must have
accessed a distinct metadata base object in every one of its
m + 1 t-reads.

Intuitively, since all the transactions that we use in our
construction access mutually disjoint data sets, we can apply
Lemma 1 to construct a t-complete execution Em+1 such that
each of the fast-path transactions in Sm+1 when running step
contention-free after Em+1 perform m + 1 t-reads so that at
least one distinct metadata base object is accessed within the
execution of each t-read operation.

We now present the formal proof:

Proof In the constructions which follow, every fast-path
transaction executes at most m + 1 t-reads. Let κ be the
smallest integer such that some fast-path transaction run-
ning step contention-free after a t-quiescent configuration
performs κ t-reads and incurs a capacity abort.We proceed by
induction.

Induction statement.We prove that, for allm ≤ κ −1, there
exists a t-complete execution Em and a set Sm with |Sm | =
2κ−m of read-only fast-path transactions that accessmutually
disjoint data sets such that each transaction T fi ∈ Sm that
runs step contention-free from Em and performs t-reads ofm
distinct t-objects accesses at least one distinct metadata base
object within the execution of each t-read operation. Let E fi
be the step contention-free execution of T fi after Em and let
Dset(T fi) = {Xi,1, . . . , Xi,m}.
The induction. Assume that the induction statement holds
for all m ≤ κ − 1. The statement is trivially true for the base
case m = 0 for every κ ∈ N.

We will prove that a set Sm+1; |Sm+1| = 2κ−(m+1) of
fast-path transactions, each of which run step contention-
free from the same t-quiescent configuration Em+1, perform
m + 1 t-reads of distinct t-objects so that at least one distinct
metadata base object is accessed within the execution of each
t-read operation.

The construction proceeds in phases: there are exactly |Sm |
2

phases. In each phase, we pick any two new transactions from
the set Sm and show that one of them running step contention-
free after a t-complete execution that extends Em performs
m + 1 t-reads of distinct t-objects so that at least one distinct
metadata base object is accessed within the execution of each
t-read operation.

Throughout this proof, we will assume that any two
transactions (and resp. execution fragments) with distinct
subscripts represent distinct identifiers.

For all i ∈ {0, . . . , |Sm |
2 − 1}, let X2i+1, X2i+2 /∈

⋃|Sm |−1

i=0
{Xi,1, . . . , Xi,m} be distinct t-objects and let v be

the value of X2i+1 and X2i+2 after Em . Let Tsi denote a
slow-path transaction which writes nv �= v to X2i+1 and
X2i+2. Let Esi be the t-complete step contention-free execu-
tion fragment of Tsi running immediately after Em .

Let E ′
si be the longest prefix of the execution Esi such

that Em · E ′
si can be extended neither with the complete step

contention-free execution fragment of transaction T f2i+1 that
performs itsm t-reads of X2i+1,1, . . . , X2i+1,m and then per-
forms read f2i+1(X2i+1) and returns nv, norwith the complete
step contention-free execution fragment of some transaction
T f2i+2 that performs t-reads of X2i+21 , . . . , X2i+2,m and then
performs read f2i+2(X2i+2) and returns nv. Progressiveness
and OF TM-liveness ofM stipulates that such an execution
exists.

Let ei be the enabled event of Tsi in the configuration
after Em · E ′

si . By construction, the execution Em · E ′
si

can be extended with at least one of the complete step
contention-free executions of transaction T f2i+1 perform-
ing (m + 1) t-reads of X2i+1,1, . . . , X2i+1,m, X2i+1 such
that read f2i+1(X2i+1) → nv or transaction T f2i+2 per-
forming t-reads of X2i+2,1, . . . , X2i+2,m, X2i+2 such that
read f2i+2(X2i+2) → nv. Without loss of generality, sup-
pose that T f2i+1 reads the value of X2i+1 to be nv after
Em · E ′

0i
· ei .

For any i ∈ {0, . . . , |Sm |
2 − 1}, we will denote by αi the

execution fragment which we will construct in phase i . For
any i ∈ {0, . . . , |Sm |

2 −1}, we prove thatM has an execution
of the form Em · αi in which T f2i+1 (or T f2i+2) running step
contention-free after a t-complete execution that extends Em

performsm+1 t-reads of distinct t-objects so that at least one
distinct metadata base object is accessed within the execu-
tion of each first m t-read operations and T f2i+1 (or T f2i+2) is
poised to apply an event after Em · αi that accesses a distinct
metadata base object during the (m + 1)th t-read. Further-
more, we will show that Em ·αi appears t-sequential to T f2i+1

(or T f2i+2).
(Construction of phase i)

Let E f2i+1 (and resp. E f2i+2) be the complete step
contention-free execution of the t-reads of X2i+1,1, . . . ,

X2i+1,m (and resp. X2i+2,1, . . . , X2i+2,m) running after Em

123

Inherent limitations of hybrid transactional memory 177

by T f2i+1 (and resp. T f2i+2). By the inductive hypothesis,
transaction T f2i+1 (and resp. T f2i+2) accesses m distinct
metadata objects in the execution Em · E f2i+1 (and resp.
Em · E f2i+2). Recall that transaction T f2i+1 does not con-
flict with transaction Tsi . Thus, by Corollary 1, M has
an execution of the form Em · E ′

si · ei · E f2i+1 (and resp.
Em · E ′

si · ei · E f2i+2).
Let Er f2i+1 be the complete step contention-free execution

fragment of read f2i+1(X2i+1) that extends E2i+1 = Em ·E ′
si ·

ei ·E f2i+1 . ByOF TM-liveness, read f2i+1(X2i+1)must return
a matching response in E2i+1 · Er f2i+1 . We now consider two
cases.

Case I: Suppose Er f2i+1 accesses at least one metadata base
object b not previously accessed by T f2i+1 .

Let E ′
r f2i+1

be the longest prefix of Er f2i+1 which does not
apply any primitives to any metadata base object b not previ-
ously accessed by T f2i+1 . The execution Em · E ′

si ·ei · E f2i+1 ·
E ′
r f2i+1

appears t-sequential to T f2i+1 because E f2i+1 does not
contend with Tsi on any base object and any common base
object accessed in the execution fragments E ′

r x2i+1
and Esi by

T f2i+1 and Tsi respectively must be data objects contained in
D. Thus, we have that |Dset(T f2i+1)| = m+1 and that T f2i+1

accesses m distinct metadata base objects within each of its
first m t-read operations and is poised to access a distinct
metadata base object during the execution of the (m + 1)th

t-read. In this case, let αi = Em · E ′
si · ei · E f2i+1 · E ′

r f2i+1
.

Case II: Suppose Er f2i+1 does not access any metadata base
object not previously accessed by T f2i+1 .

In this case, we will first prove the following:

Claim 7 M has an execution of the form E2i+2 = Em ·
E ′
si · ei · Ē f2i+1 · E f2i+2 where Ē f2i+1 is the t-complete step

contention-free execution of T f2i+1 in which read f2i+1(X2i+1)

→ nv, T f2i+1 invokes tryC f2i+1
and returns a matching

response.

Proof Since Er f2i+1 does not contain accesses to any distinct
metadata base objects, the execution Em · E ′

si · ei · E f2i+1 ·
Er f2i+1 appears t-sequential to T f2i+1 . By definition of the
event ei , read f2i+1(X2i+1) must access the base object to
which the event ei applies a nontrivial primitive and return
the response nv in E ′

si · ei · E f2i+1 · Er f2i+1 . By OF TM-
liveness, it follows that Em · E ′

si · ei · Ē f2i+1 is an execution
of M.

Now recall that Em · E ′
si · ei · E f2i+2 is an execution of

M because transactions T f2i+2 and Tsi do not conflict in
this execution and thus, cannot contend on any base object.
Finally, because T f2i+1 and T f2i+2 access disjoint data sets in
Em · E ′

si · ei · Ē f2i+1 · E f2i+2 , by Lemma 1 again, we have that
Em · E ′

si · ei · Ē f2i+1 · E f2i+2 is an execution of M.

Let Er f2i+2 be the complete step contention-free execution
fragment of read f2i+2(X2i+2) after Em ·E ′

si ·ei · Ē f2i+1 ·E f2i+2 .
By the induction hypothesis and Claim 7, transaction T f2i+2

must accessm distinct metadata base objects in the execution
Em · E ′

si · ei · Ē f2i+1 · E f2i+2 .
If Er f2i+2 accesses some metadata base object, then by the

argument given in Case I applied to transaction T f2i+2 , we get
that T f2i+2 accesses m distinct metadata base objects within
each of the first m t-read operations and is poised to access
a distinct metadata base object during the execution of the
(m + 1)th t-read.

Thus, suppose that Er f2i+2 does not access any metadata
base object previously accessed by T f2i+2 . We claim that this
is impossible and proceed to derive a contradiction. In partic-
ular, Er f2i+2 does not contend with Tsi on any metadata base
object. Consequently, the execution Em ·E ′

si ·ei · Ē f2i+1 ·E f2i+2

appears t-sequential to Tx2i+2 since Erx2i+2 only contends
with Tsi on base objects in D. It follows that E2i+2 · Er f2i+2

must also appear t-sequential to T f2i+2 and so Er f2i+2 cannot
abort. Recall that the base object, say b, to which Tsi applies
a nontrivial primitive in the event ei is accessed by T f2i+1

in Em · E ′
si · ei · Ē f2i+1 · E f2i+2 ; thus, b ∈ DX2i+1 . Since

X2i+1 /∈ Dset(T f2i+2), b cannot be accessed by T f2i+2 . Thus,
the execution Em · E ′

si ·ei · Ē f2i+1 · E f2i+2 · Er f2i+2 is indistin-

guishable to T f2i+2 from the execution Êi ·E ′
si ·E f2i+2 ·Er f2i+2

in which read f2i+2(X2i+2) must return the response v (by
construction of E ′

si).
But we observe now that the execution Em · E ′

si · ei ·
Ē f2i+1 · E f2i+2 · Er f2i+2 is not opaque. In any serialization
corresponding to this execution, Tsi must be committed and
must precede T f2i+1 because T f2i+1 read nv from X2i+1. Also,
transactionT f2i+2 must precedeTsi becauseT f2i+2 readv from
X2i+2. However T f2i+1 must precede T f2i+2 to respect real-
time ordering of transactions. Clearly, there exists no such
serialization—contradiction.

Letting E ′
r f2i+2

be the longest prefix of Er f2i+2 which does
not access a base object b ∈ M not previously accessed by
T f2i+2 , we can let αi = E ′

si · ei · Ē f2i+1 · E f2i+2 · E ′
r f2i+2

in
this case.

Combining Cases I and II, the following claim holds.

Claim 8 For each i ∈ {0, . . . , |Sm |
2 −1},M has an execution

of the form Em · αi in which

(1) some fast-path transaction Ti ∈ t xns(αi) performs t-
reads of m + 1 distinct t-objects so that at least one
distinct metadata base object is accessed within the exe-
cution of each of the first m t-reads, Ti is poised to access
a distinct metadata base object after Em · αi during
the execution of the (m + 1)th t-read and the execution
appears t-sequential to Ti ,

123

178 D. Alistarh et al.

(2) the two fast-path transactions in the execution fragment
αi do not contend on the same base object.

(Collecting the phases)
We will now describe how we can construct the set Sm+1

of fast-path transactions from these |Sm |
2 phases and force

each of them to access m + 1 distinct metadata base objects
when running step contention-free after the same t-complete
execution.

For each i ∈ {0, . . . , |Sm |
2 − 1}, let βi be the subsequence

of the execution αi consisting of all the events of the fast-
path transaction that is poised to access a (m + 1)th distinct
metadata base object. Henceforth, we denote by Ti the fast-
path transaction that participates in βi . Then, from Claim 8,
it follows that, for each i ∈ {0, . . . , |Sm |

2 − 1}, M has an
execution of the form Em · E ′

si · ei · βi in which the fast-path
transaction Ti performs t-reads of m + 1 distinct t-objects
so that at least one distinct metadata base object is accessed
within the execution of each of the firstm t-reads, Ti is poised
to access a distinct metadata base object after Em · E ′

si ·ei ·βi

during the execution of the (m+1)th t-read and the execution
appears t-sequential to Ti .

The following result is a corollary to the above claim that is
obtained by applying the definition of “appears t-sequential”.
Recall that E ′

si ·ei is the t-incomplete execution of slow-path
transaction Tsi that accesses t-objects X2i+1 and X2i+2.

Corollary 2 For all i ∈ {0, . . . , |(Sm |
2 − 1}, M has an

execution of the form Em · Ei · βi such that the configu-
ration after Em · Ei is t-quiescent, t xns(Ei) ⊆ {Tsi } and
Dset(Tsi) ⊆ {X2i+1, X2i+2} in Ei .

We can represent the execution βi = γi · ρi where fast-
path transaction Ti performs complete t-reads of m distinct
t-objects in γi and then performs an incomplete t-read of the
(m+1)th t-object in ρi inwhich Ti only accesses base objects
in

⋃

X∈DSet (Ti)
{X}. Recall that Ti and Tsi do not contend on

the same base object in the execution Em · Ei · γi . Thus, for
all i ∈ {0, . . . , |Sm |

2 − 1}, M has an execution of the form
Em · γi · Ei · ρi .

Observe that the fast-path transaction Ti ∈ γi does not
access any t-object that is accessed by any slow-path transac-
tion in the execution fragment E0 · · · E |Sm |

2 −1. By Lemma 2,

there exists a t-complete step contention-free execution frag-
ment E ′ that is similar to E0 · · · E |Sm |

2 −1 such that for all

i ∈ {0, . . . , |Sm |
2 − 1}, M has an execution of the form

Em ·E ′ ·γi ·ρi . By our construction, the enabled event of each
fast-path transaction Ti ∈ βi in this execution is an access to
a distinct metadata base object.

Let Sm+1 denote the set of all fast-path transactions that
participate in the execution fragment β0 · · · β |(Sm |

2 −1 and

Em+1 = Em · E ′. Thus, |Sm+1| fast-path transactions, each
of which run step contention-free from the same t-quiescent

configuration, perform m + 1 t-reads of distinct t-objects
so that at least one distinct metadata base object is accessed
within the execution of each t-read operation. This completes
the proof. ��

6 Instrumentation-optimal HyTM algorithms

In this section, we describe two “instrumentation-optimal”
progressive HyTMs. We show that these implementations
are provably opaque in our HyTM model.

6.1 A linear upper bound on instrumentation

We prove that the lower bound in Theorem 6 is tight by
describing an ‘instrumentation-optimal” HyTM implemen-
tation (Algorithm 1) that is opaque, progressive, provides
wait-free TM-liveness, uses invisible reads.

Algorithm 1 Progressive opaque HyTM implementation
that provides uninstrumentedwrites and invisible reads; code
for process pi executing transaction Tk

1: Shared objects:

2: v j ∈ D, for each t-object X j
3: allows reads, writes and cas
4: r j ∈ M, for each t-object X j
5: allows reads, writes and cas

6: Local objects:

7: Lset(Tk) ⊆ Wset(Tk), initially empty
8: Oset(Tk) ⊆ Wset(Tk), initially empty

Code for slow-path transactions

9: readk (X j): // slow-path

10: if X j /∈ Rsetk then
11: [ov j , k j] := read(v j)

12: Rset(Tk) := Rset(Tk) ∪ {X j , [ov j , k j]}
13: if r j �= 0 then
14: Return Ak

15: if ∃X j ∈ Rset (Tk):(ov j , k j) �= read(v j) then
16: Return Ak

17: Return ov j
18: else
19: ov j := Rset(Tk).locate(X j)

20: Return ov j

21: writek (X j , v): // slow-path

22: (ov j , k j) := read(v j)

23: nv j := v

24: Wset(Tk) := Wset(Tk) ∪ {X j , [ov j , k j]}
25: Return ok

26: tryCk (): // slow-path

27: if Wset(Tk) = ∅ then
28: Return Ck

29: locked := acquire(Wset(Tk))
30: if ¬ locked then

123

Inherent limitations of hybrid transactional memory 179

31: Return Ak

32: if isAbortable() then
33: release(Lset(Tk))
34: Return Ak

35: for all X j ∈ Wset(Tk) do
36: if v j .cas([ov j , k j], [nv j , k]) then
37: Oset(Tk) := Oset(Tk) ∪ {X j }
38: else
39: undo(Oset(Tk))
40: release(Wset(Tk))
41: Return Ck

42: Function: isAbortable() :

43: if ∃X j ∈ Rset(Tk): X j /∈ Wset(Tk) ∧ read(r j) �= 0 then
44: Return true
45: if ∃X j ∈ Rset (Tk):[ov j , k j] �= read(v j) then
46: Return true
47: Return false

48: Function: acquire(Q):

49: for all X j ∈ Q do
50: if r j .cas(0, 1) then
51: Lset(Tk) := Lset(Tk) ∪ {X j }
52: else
53: release(Lset(Tk))
54: Return false

55: Return true

56: Function: release(Q):

57: for all X j ∈ Q do
58: r j .write(0)

59: Return ok

60: Function: undo(Oset(Tk)):

61: for all X j ∈ Oset(Tk) do
62: v j .cas([nv j , k], [ov j , k j])
63: release(Wset(Tk))
64: Return Ak

Code for fast-path transactions

65: readk (X j): // fast-path

66: [ov j , k j] := read(v j) // cached read

67: if read(r j) �= 0 then
68: Return Ak

69: Return ov j

70: writek (X j , v): // fast-path

71: write(v j , [nv j , k]) // cached write

72: Return ok

73: tryCk (): // fast-path

74: commit − cachei // returns Ck or Ak

6.1.1 Base objects

For every t-object X j , our implementation maintains a base
object v j ∈ D that stores the value of X j and a metadata base
object r j , which is a lock bit that stores 0 or 1.

6.1.2 Fast-path transactions

For a fast-path transaction Tk , the readk(X j) implementation
first reads r j to check if X j is locked by a concurrent updat-
ing transaction. If so, it returns Ak , else it returns the value
of X j . Updating fast-path transactions use uninstrumented
writes: write(X j , v) simply stores the cached state of X j

along with its value v and if the cache has not been invali-
dated, updates the shared memory during tryCk by invoking
the commit − cache primitive.

6.1.3 Slow-path read-only transactions

Any readk(X j) invoked by a slow-path transaction first reads
the value of the object from v j , checks if r j is set and then per-
forms value-based validation on its entire read set to check
if any of them have been modified. If either of these condi-
tions is true, the transaction returns Ak . Otherwise, it returns
the value of X j . A read-only transaction simply returns Ck

during the tryCommit.

6.1.4 Slow-path updating transactions

The writek(X, v) implementation of a slow-path transaction
stores v and the current value of X j locally, deferring the
actual update in shared memory to tryCommit.

During tryCk , an updating slow-path transaction Tk
attempts to obtain exclusive write access to its entire write
set as follows: for every t-object X j ∈ Wset(Tk), it writes
1 to each base object r j by performing a compare-and-set
(cas) primitive that checks if the value of r j is not 1 and,
if so, replaces it with 1. If the cas fails, then Tk releases
the locks on all objects X	 it had previously acquired by
writing 0 to r	 and then returns Ak . Intuitively, if the cas
fails, some concurrent transaction is performing a t-write to
a t-object in Wset(Tk). If all the locks on the write set were
acquired successfully, Tk checks if any t-object in Rset(Tk) is
concurrently being updated by another transaction and then
performs value-based validation of the read set. If a conflict
is detected from the these checks, the transaction is aborted.
Finally, tryCk attempts to write the values of the t-objects
via cas operations. If any cas on the individual base objects
fails, there must be a concurrent fast-path writer, and so Tk
rolls back the state of the base objects that were updated,
releases locks on its write set and returns Ak . The roll backs
are performed with cas operations, skipping any which fail
to allow for concurrent fast-path writes to locked locations.
Note that if a concurrent read operation of a fast-path trans-
action T	 finds an “invalid” value in v j that was written by
such transaction Tk but has not been rolled back yet, then T	

either incurs a tracking set abort later because Tk has updated
v j or finds r j to be 1. In both cases, the read operation of T	

aborts.

123

180 D. Alistarh et al.

The implementation uses invisible reads (no nontrivial
primitives are applied by reading transactions). Every t-
operation returns a matching response within a finite number
of its steps.

6.1.5 Complexity

Every t-read operation performed by a fast-path transaction
accesses a metadata base object once (the lock bit corre-
sponding to the t-object), which is the price to pay for
detecting conflicting updating slow-path transactions. Write
operations of fast-path transactions are uninstrumented.

Lemma 3 Algorithm 1 implements an opaque TM.

Proof Let E by any execution of Algorithm 1. Since opacity
is a safety property, it is sufficient to prove that every finite
execution is opaque [7]. Let<E denote a total-order on events
in E .

Let H denote a subsequence of E constructed by select-
ing linearization points of t-operations performed in E . The
linearization point of a t-operation op, denoted as 	op is asso-
ciated with a base object event or an event performed during
the execution of op using the following procedure.

Completions. First, we obtain a completion of E by remov-
ing some pending invocations or adding responses to the
remaining pending invocations as follows:

– incomplete readk , writek operation performed by a slow-
path transaction Tk is removed from E ; an incomplete
tryCk is removed from E if Tk has not performed any
write to a base object r j ; X j ∈ Wset(Tk) in Line 36,
otherwise it is completed by including Ck after E .

– every incomplete readk , tryAk , writek and tryCk per-
formed by a fast-path transaction Tk is removed from
E .

Linearizationpoints.Nowa linearization H of E is obtained
by associating linearization points to t-operations in the
obtained completion of E . For all t-operations performed
a slow-path transaction Tk , linearization points as assigned
as follows:

– For every t-read opk that returns a non-Ak value, 	opk is
chosen as the event in Line 11 of Algorithm 1, else, 	opk
is chosen as invocation event of opk

– For every opk = writek that returns, 	opk is chosen as the
invocation event of opk

– For every opk = tryCk that returns Ck such that
Wset(Tk) �= ∅, 	opk is associated with the first write to a
base object performed by release when invoked in Line
40, else if opk returns Ak , 	opk is associated with the
invocation event of opk

– For every opk = tryCk that returns Ck such that
Wset(Tk) = ∅, 	opk is associated with Line 28

For all t-operations performed a fast-path transaction Tk , lin-
earization points as assigned as follows:

– For every t-read opk that returns a non-Ak value, 	opk is
chosen as the event in Line 66 of Algorithm 1, else, 	opk
is chosen as invocation event of opk

– For everyopk that is a tryCk ,	opk is the commit − cachek
primitive invoked by Tk

– For every opk that is a writek , 	opk is the event in Line
71.

<H denotes a total-order on t-operations in the complete
sequential history H .

Serialization points. The serialization of a transaction Tj ,
denoted as δTj is associated with the linearization point of a
t-operation performed by the transaction.

We obtain a t-complete history H̄ from H as follows. A
serialization S is obtained by associating serialization points
to transactions in H̄ as follows: for every transaction Tk in
H that is complete, but not t-complete, we insert tryCk · Ak

immediately after the last event of Tk in H .

– If Tk is an updating transaction that commits, then δTk is
	tryCk

– If Tk is a read-only or aborted transaction, then δTk is
assigned to the linearization point of the last t-read that
returned a non-Ak value in Tk

<S denotes a total-order on transactions in the t-sequential
history S.

Claim 9 If Ti ≺H Tj , then Ti <S Tj

Proof This follows from the fact that for a given transaction,
its serialization point is chosen between thefirst and last event
of the transaction implying if Ti ≺H Tj , then δTi <E δTj

implies Ti <S Tj . ��
Claim 10 S is legal.

Proof We claim that for every read j (Xm) → v, there exists
some slow-path transaction Ti (or resp. fast-path) that per-
forms writei (Xm, v) and completes the event in Line 36 (or
resp. Line 71) such that read j (Xm) ⊀

RT
H writei (Xm, v).

Suppose thatTi is a slow-path transaction: since read j (Xm)

returns the response v, the event in Line 11 succeeds the
event in Line 36 performed by tryCi . Since read j (Xm)

can return a non-abort response only after Ti writes 0 to
rm in Line 58, Ti must be committed in S. Consequently,
	tryCi

<E 	read j (Xm). Since, for any updating committing
transaction Ti , δTi = 	tryCi

, it follows that δTi <E δTj .

123

Inherent limitations of hybrid transactional memory 181

Otherwise if Ti is a fast-path transaction, then clearly Ti
is a committed transaction in S. Recall that read j (Xm) can
read v during the event in Line 11 only after Ti applies the
commit − cache primitive. By the assignment of lineariza-
tion points, 	tryCi

<E 	read j (Xm) and thus, δTi <E 	read j (Xm).
Thus, to prove that S is legal, it suffices to show that there

does not exist a transaction Tk that returns Ck in S and per-
forms writek(Xm, v′); v′ �= v such that Ti <S Tk <S Tj .

Ti and Tk are both updating transactions that commit.
Thus,

(Ti <S Tk) ⇐⇒ (δTi <E δTk)

(δTi <E δTk) ⇐⇒ (tryCi
<E 	tryCk

)

Since, Tj reads the value of X written by Ti , one of the fol-
lowing is true: 	tryCi

<E 	tryCk
<E 	read j (Xm) or 	tryCi

<E

	read j (Xm) <E 	tryCk
.

Suppose that 	tryCi
<E 	tryCk

<E 	read j (Xm).

(Case I:) Ti and Tk are slow-path transactions.
Thus, Tk returns a response from the event in Line 29

before the read of the base object associated with Xm by Tj

in Line 11. Since Ti and Tk are both committed in E , Tk
returns true from the event in Line 29 only after Ti writes 0
to rm in Line 58.

If Tj is a slow-path transaction, recall that read j (Xm)

checks if X j is locked by a concurrent transaction, then per-
forms read-validation (Line 13) before returning a matching
response. We claim that read j (Xm) must return A j in any
such execution.

Consider the following possible sequence of events: Tk
returns true from acquire function invocation, updates the
value of Xm to shared-memory (Line 36), Tj reads the base
object vm associated with Xm , Tk releases Xm by writing 0 to
rm and finally Tj performs the check in Line 13. But in this
case, read j (Xm) is forced to return the value v′ written by
Tm—contradiction to the assumption that read j (Xm) returns
v.

Otherwise suppose that Tk acquires exclusive access to
Xm by writing 1 to rm and returns true from the invocation
of acquire, updates vm in Line 36), Tj reads vm , Tj performs
the check in Line 13 and finally Tk releases Xm by writing 0
to rm . Again, read j (Xm) must return A j since Tj reads that
rm is 1—contradiction.

A similar argument applies to the case that Tj is a fast-path
transaction. Indeed, since every data base object read by Tj

is contained in its tracking set, if any concurrent transaction
updates any t-object in its read set, Tj is aborted immediately
by our model(cf. Sect. 3).

Thus, 	tryCi
<E 	read j (X) <E 	tryCk

.

(Case II:) Ti is a slow-path transaction and Tk is a fast-
path transaction. Thus, Tk returns Ck before the read of the

base object associated with Xm by Tj in Line 11, but after
the response of acquire by Ti in Line 29. Since read j (Xm)

reads the value of Xm to be v and not v′, Ti performs the cas
to vm in Line 36 after the Tk performs the commit − cache
primitive (since if otherwise, Tk would be aborted in E). But
then the cas on vm performed by Ti would return false and
Ti would return Ai—contradiction.

(Case III:) Tk is a slow-path transaction and Ti is a fast-
path transaction. This is analogous to the above case.

(Case IV:) Ti and Tk are fast-path transactions. Thus, Tk
returns Ck before the read of the base object associated with
Xm by Tj in Line 11, but before Ti returns Ci (this follows
from Observations 1 and 2). Consequently, read j (Xm) must
read the value of Xm to be v′ and return v′—contradiction.

We now need to prove that δTj indeed precedes 	tryCk
in

E .
Consider the two possible cases:

– Suppose that Tj is a read-only transaction. Then, δTj is
assigned to the last t-read performed by Tj that returns
a non-A j value. If read j (Xm) is not the last t-read that
returned a non-A j value, then there exists a read j (X ′)
such that 	read j (Xm) <E 	tryCk

<E 	read j (X ′). But then
this t-read of X ′ must abort by performing the checks in
Line 13 or incur a tracking set abort—contradiction.

– Suppose that Tj is an updating transaction that com-
mits, then δTj = 	tryC j

which implies that 	read j (X) <E

	tryCk
<E 	tryC j

. Then, Tj must neccesarily perform the
checks in Line 32 and return A j or incur a tracking set
abort—contradiction to the assumption that Tj is a com-
mitted transaction.

The proof follows. ��

The conjunction of Claims 9 and 10 establish that Algo-
rithm 1 is opaque.

Theorem 11 There exists an opaque HyTM implementation
M that provides uninstrumented writes, invisible reads, pro-
gressiveness and wait-free TM-liveness such that in every
execution E of M, every read-only fast-path transaction
T ∈ t xns(E) accesses O(|Rset(T)|) distinct metadata base
objects.

Proof (TM-liveness and TM-progress) Since none of the
implementations of the t-operations in Algorithm 1 contain
unbounded loops or waiting statements, Algorithm 1 pro-
vides wait-free TM-liveness i.e. every t-operation returns a
matching response after taking a finite number of steps.

Consider the cases under which a slow-path transaction
Tk may be aborted in any execution.

123

182 D. Alistarh et al.

– Suppose that there exists a readk(X j) performed by Tk
that returns Ak from Line 13. Thus, there exists a trans-
action that has written 1 to r j in Line 50, but has not yet
written 0 to r j in Line 58 or some t-object in Rset(Tk)
has been updated since its t-read by Tk . In both cases,
there exists a concurrent transaction performing a t-write
to some t-object in Rset(Tk), thus forcing a read-write
conflict.

– Suppose that tryCk performed by Tk that returns Ak from
Line 30. Thus, there exists a transaction that has written
1 to r j in Line 50, but has not yet written 0 to r j in Line
58. Thus, Tk encounters write-write conflict with another
transaction that concurrently attempts to update a t-object
inWset(Tk).

– Suppose that tryCk performed by Tk that returns Ak from
Line 32. Since Tk returns Ak from Line 32 for the same
reason it returns Ak after Line 13, the proof follows.

Consider the cases under which a fast-path transaction Tk
may be aborted in any execution E .

– Suppose that a readk(Xm) performed by Tk returns Ak

from Line 67. Thus, there exists a concurrent slow-path
transaction that is pending in its tryCommit and has writ-
ten 1 to rm , but not released the lockon Xm i.e. Tk conflicts
with another transaction in E .

– Suppose that Tk returns Ak while performing a cached
access of some base object b via a trivial (and resp. non-
trivial) primitive. Indeed, this is possible only if some
concurrent transaction writes (and resp. reads or writes)
to b. However, two transactions Tk and Tm may contend
on b in E only if there exists X ∈ Dset(Ti) ∩ Dset(Tj)

and X ∈ Wset(Ti) ∪ Wset(Tj). from Line 30. The same
argument applies for the case when Tk returns Ak while
performing commit − cachek in E .

(Complexity) The implementation uses uninstrumented
writes since eachwritek(Xm) simplywrites to vm ∈ DXm and
does not access any metadata base object. The complexity of
each readk(Xm) is a single access to ametadata base object rm
in Line 67 that is not accessed any other transaction Ti unless
Xm ∈ Dset(Ti). while the tryCk just calls cache − commitk
that returnsCk . Thus, each read-only transaction Tk accesses
O(|Rset(Tk)|) distinct metadata base objects in any execu-
tion. ��

6.2 Providing partial concurrency at low cost

We showed that allowing fast-path transactions to run con-
currently in HyTM results in an instrumentation cost that is
proportional to the read-set size of a fast-path transaction.
But can we run at least some transactions concurrently with

constant instrumentation cost, while still keeping invisible
reads?

Algorithm 2 Opaque HyTM implementation with progres-
sive slow-path and sequential fast-path TM-progress; code
for Tk by process pi

1: Shared objects:

2: v j ∈ D, for each t-object X j
3: allows reads, writes and cas
4: r j ∈ M, for each t-object X j
5: allows reads, writes and cas
6: Count , fetch-and-add object

Code for slow-path transactions

7: tryCk (): // slow-path

8: if Wset(Tk) = ∅ then
9: Return Ck

10: locked := acquire(Wset(Tk))
11: if ¬ locked then
12: Return Ak

13: Count .add(1)
14: if isAbortable() then
15: release(Lset(Tk))
16: Return Ak

17: for all X j ∈ Wset(Tk) do
18: if v j .cas((ov j , k j), (nv j , k)) then
19: Oset(Tk) := Oset(Tk) ∪ {X j }
20: else
21: Return undo(Oset(Tk))
22: release(Wset(Tk))
23: Count .add(−1)
24: Return Ck

Code for fast-path transactions

25: readk (X j): // fast-path

26: if Rset (Tk) = ∅ then
27: l ← read(Count) // cached read

28: if l �= 0 then
29: Return Ak

30: (ov j , k j) := read(v j) // cached read

31: Return ov j

32: writek (X j , v): // fast-path

33: v j .write(nv j , k) // cached write

34: Return ok

35: tryCk (): // fast-path

36: commit − cachei // returns Ck or Ak

Algorithm 2 implements a slow-path progressive opaque
HyTM with invisible reads and wait-free TM-liveness.
To fast-path transactions, it only provides sequential TM-
progress (they are only guaranteed to commit in the absence
of concurrency), but in return the algorithm is only using a
single metadata base object f a that is read once by a fast-
path transaction and accessed twice with a fetch-and-add

123

Inherent limitations of hybrid transactional memory 183

primitive by an updating slow-path transaction. Thus, the
instrumentation cost of the algorithm is constant.

Intuitively, f a allows fast-path transactions to detect the
existence of concurrent updating slow-path transactions.
Each time an updating slow-path updating transaction tries
to commit, it increments f a and once all writes to data base
objects are completed (this part of the algorithm is identical
to Algorithm 1) or the transaction is aborted, it decrements
f a. Therefore, f a �= 0 means that at least one slow-path
updating transaction is incomplete. A fast-path transaction
simply checks if f a �= 0 in the beginning and aborts if so,
otherwise, its code is identical to that in Algorithm 1. Note
that this way, any update of f a automatically causes a track-
ing set abort of any incomplete fast-path transaction.

Theorem 12 There exists an opaque HyTM implementation
that provides uninstrumentedwrites, invisible reads, progres-
siveness for slow-path transactions, sequential TM-progress
for fast-path transactions and wait-free TM-liveness such
that in every its execution E, every fast-path transaction
accesses at most one metadata base object.

Proof The proof of opacity is almost identical to the analo-
gous proof for Algorithm 1 in Lemma 3.

AswithAlgorithm1, enumerating the cases underwhich a
slow-path transaction Tk returns Ak proves that Algorithm 2
satisfies progressiveness for slow-path transactions.Any fast-
path transaction Tk ; Rset(Tk) �= ∅ reads the metadata base
object Count and adds it to the process’s tracking set (Line
27). If the value ofCount is not 0, indicating that there exists
a concurrent slow-path transaction pending in its tryCommit,
Tk returns Ak . Thus, the implementation provides sequential
TM-progress for fast-path transactions.

Also, in every execution E ofM, no fast-path write-only
transaction accesses anymetadata base object and a fast-path
reading transaction accesses the metadata base objectCount
exactly once, during the first t-read. ��

7 Related work

The term instrumentation was originally used in the context
of HyTMs [13,35,40] to indicate the overhead a hardware
transaction induces in order to detect pending software trans-
actions. The impossibility of designing HyTMs without any
code instrumentation was informally suggested in [13]. We
prove this formally in this paper.

In [8], Attiya and Hillel considered the instrumentation
cost of privatization, i.e., allowing transactions to isolate data
items by making them private to a process so that no other
process is allowed to modify the privatized item. The model
we consider is fundamentally different, in that we model
hardware transactions at the level of cache coherence, and
do not consider non-transactional accesses. (In particular,

neither data nor meta-data objects are private in our model.)
The proof techniques we employ are also different.

Uninstrumented HTMs may be viewed as being disjoint-
access parallel (DAP) [9,30,34]. As such, some of the
techniques used in the proof of Theorem 4 extend those used
in [9,21,25]. However, proving lower bounds on the instru-
mentation costs of the HyTM fast-path is challenging, since
such t-operations can automatically abort due to any con-
tending concurrent step.

Circa 2005, several papers introduced HyTM imple-
mentations [6,15,32] that integrated HTMs with variants
of DSTM [28]. These implementations provide nontrivial
concurrency between hardware and software transactions
(progressiveness), by imposing instrumentation on hardware
transactions: every t-read operation incurs at least one extra
access to a metadata base object. Our Theorem 6 shows that
this overhead is unavoidable. Of note, write operations of
these HyTMs are also instrumented, but our Algorithm 1
shows that it is not necessary.

Implementations like PhTM [35] and HybridNOrec [13]
overcome the per-access instrumentation cost of [15,32] by
realizing that if one is prepared to sacrifice progress, hard-
ware transactions need instrumentation only at the bound-
aries of transactions to detect pending software transactions,
à la Transactional Lock Elision (TLE) [38]. Inspired by this
observation, our HyTM implementation described in Algo-
rithm 2 overcomes the linear per-read instrumentation cost
by allowing hardware readers to abort due to a concurrent
software writer, but maintains progressiveness for software
transactions, unlike [13,35,36]. Recent experimental results
on today Intel and IBM POWER8 HTMs show that instru-
mentation is indeed a huge cost to concurrency in opaque
HyTMs [10,11,20], thus demonstrating that the lower bound
costs established in this paper also exist in practice.

References [26,40] provide detailed overviews on HyTM
designs and implementations. The software component of
the HyTM algorithms presented in this paper is inspired by
progressive STM implementations [14,17,33] and is subject
to the lower bounds for progressive STMs established in [8,
23,25,33].

8 Concluding remarks

We have introduced an analytical model for HyTM that cap-
tures the notion of cached accesses as performed by hardware
transactions. We then derived lower and upper bounds in this
model that capture the inherent tradeoff between the degree
of concurrency between hardware and software transactions,
and the metadata-access overhead introduced on the hard-
ware.

To precisely characterize the costs incurred by hardware
transactions, we made a distinction between the set of mem-

123

184 D. Alistarh et al.

ory locations which store the data values of the t-objects,
and the locations that store the metadata information. To the
best of our knowledge, all known HyTM proposals, such as
HybridNOrec [13,40], PhTM [35] and others [15,32] avoid
co-locating the data andmetadata within a single base object.

Recent work has investigated alternatives to the STM fall-
back, such as sandboxing [2,12], or hardware-accelerated
STM [43,44], and the use of both direct and cached accesses
within the same hardware transaction to reduce instrumenta-
tion overhead [20,32,40,41]. Specifically, [20] showed how
to build efficient HyTMs for IBM POWER8 architectures
which allow the use of direct accesses within hardware trans-
actions to reduce instrumentation overhead. Another recent
approach proposed reduced hardware transactions [36],
where a part of the slow-path is executed using a short
fast-path transaction, which allows to partially eliminate
instrumentation from the hardware fast-path. Amalgamated
lock elision (ALE) was proposed in [3] which improves over
TLE by executing the slow-path as a series of segments, each
of which is a dynamic length hardware transaction. We plan
to extend our model to incorporate such schemes in future
work.

OurHyTMmodel is a natural extension of previous frame-
works developed for Software Transactional Memory, and
has the advantage of being relatively simple. We hope that
our model and techniques will enable more research on the
limitations and power of HyTM systems, and that our results
will prove useful for practitioners.

Acknowledgements The study was funded by Agence Nationale
de la Recherche (Grant No. ANR-14-CE35-0010-01, project DIS-
CMAT), National Science Foundation (Grant Nos. CCF-1217921,
CCF-1301926), U.S. Department of Energy (Grant No. IIS-1447786).

References

1. Advanced Synchronization Facility Proposed Architectural Speci-
fication (2009). http://developer.amd.com/wordpress/media/2013/
09/45432-ASF_Spec_2.1.pdf

2. Afek, Y., Levy, A., Morrison, A.: Software-improved hardware
lock elision. In: PODC. ACM (2014)

3. Afek, Y., Matveev, A., Moll, O.R., Shavit, N.: Amalgamated lock-
elision. In: Distributed Computing—29th International Sympo-
sium, DISC 2015, Tokyo, Japan, October 7–9, 2015, Proceedings,
pp. 309–324 (2015). doi:10.1007/978-3-662-48653-5_21

4. Alistarh, D., Eugster, P., Herlihy, M., Matveev, A., Shavit, N.:
Stacktrack: An automated transactional approach to concurrent
memory reclamation. In: Proceedings of the Ninth European Con-
ference onComputer Systems, EuroSys ’14, pp. 25:1–25:14.ACM,
New York, NY, USA (2014). doi:10.1145/2592798.2592808

5. Alistarh, D., Kopinsky, J., Kuznetsov, P., Ravi, S., Shavit, N.:
Inherent limitations of hybrid transactional memory. In: Dis-
tributed Computing—29th International Symposium, DISC 2015,
Tokyo, Japan,October 7-9, 2015, Proceedings, pp. 185–199 (2015).
doi:10.1007/978-3-662-48653-5_13

6. Ananian, C.S., Asanovic, K., Kuszmaul, B.C., Leiserson, C.E.,
Lie, S.: Unbounded transactional memory. In: Proceedings of the

11th International Symposium on High-Performance Computer
Architecture, HPCA ’05, pp. 316–327. IEEE Computer Society,
Washington, DC, USA (2005). doi:10.1109/HPCA.2005.41

7. Attiya, H., Hans, S., Kuznetsov, P., Ravi, S.: Safety of deferred
update in transactional memory. In: IEEE 33rd International Con-
ference on Distributed Computing Systems 0, pp. 601–610 (2013).
doi:10.1109/ICDCS.2013.57

8. Attiya, H., Hillel, E.: The cost of privatization in software transac-
tionalmemory. IEEETrans. Computers 62(12), 2531–2543 (2013).
http://dblp.uni-trier.de/db/journals/tc/tc62.html#AttiyaH13

9. Attiya, H., Hillel, E., Milani, A.: Inherent limitations on
disjoint-access parallel implementations of transactional mem-
ory. Theory Comput. Syst. 49(4), 698–719 (2011). doi:10.1007/
s00224-010-9304-5

10. Brown, T., Ravi, S.: Cost of concurrency in hybrid transactional
memory. In: Workshop on Transactional Computing (Transact),
2017 (2017)

11. Calciu, I., Gottschlich, J., Shpeisman, T., Pokam, G., Herlihy, M.:
Invyswell: a hybrid transactional memory for haswell’s restricted
transactional memory. In: International Conference on Paral-
lel Architectures and Compilation, PACT ’14, Edmonton, AB,
Canada, August 24-27, 2014, pp. 187–200 (2014). doi:10.1145/
2628071.2628086

12. Calciu, I., Shpeisman, T., Pokam, G., Herlihy, M.: Improved single
global lock fallback for best-effort hardware transactional memory.
In: Transact 2014 Workshop. ACM (2014)

13. Dalessandro, L., Carouge, F., White, S., Lev, Y., Moir, M.,
Scott, M.L., Spear, M.F.: Hybrid NOrec: a case study in
the effectiveness of best effort hardware transactional mem-
ory. In: R. Gupta, T.C. Mowry (eds.) ASPLOS, pp. 39–52.
ACM (2011). http://dblp.uni-trier.de/db/conf/asplos/asplos2011.
html#DalessandroCWLMSS11

14. Dalessandro, L., Spear, M.F., Scott, M.L.: Norec: streamlining stm
by abolishing ownership records. SIGPLAN Not. 45(5), 67–78
(2010). doi:10.1145/1837853.1693464

15. Damron, P., Fedorova, A., Lev, Y., Luchangco, V., Moir, M., Nuss-
baum, D.: Hybrid transactional memory. SIGPLAN Not. 41(11),
336–346 (2006). doi:10.1145/1168918.1168900

16. Dice, D., Lev, Y., Moir, M., Nussbaum, D.: Early experience with
a commercial hardware transactional memory implementation. In:
Proceedings of the 14th International Conference on Architec-
tural Support for Programming Languages and Operating Systems,
ASPLOS XIV, pp. 157–168. ACM, New York, NY, USA (2009).
doi:10.1145/1508244.1508263

17. Dice, D., Shalev, O., Shavit, N.: Transactional locking ii. In:
Proceedings of the 20th International Conference on Distributed
Computing, DISC’06, pp. 194–208. Springer, Berlin, Heidelberg
(2006). doi:10.1007/11864219_14

18. Dragojević, A., Herlihy, M., Lev, Y., Moir, M.: On the power of
hardware transactional memory to simplify memory management.
In: Proceedings of the 30th Annual ACM SIGACT-SIGOPS Sym-
posium on Principles of Distributed Computing, PODC ’11, pp.
99–108.ACM,NewYork, NY,USA (2011). doi:10.1145/1993806.
1993821

19. Ellen, F., Hendler, D., Shavit, N.: On the inherent sequentiality of
concurrent objects. SIAM J. Comput. 41(3), 519–536 (2012)

20. Felber, P., Issa, S., Matveev, A., Romano, P.: Hardware read-write
lock elision. In: Proceedings of the Eleventh European Conference
on Computer Systems, EuroSys ’16, pp. 34:1–34:15. ACM, New
York, NY, USA (2016). doi:10.1145/2901318.2901346

21. Guerraoui, R., Kapalka, M.: On obstruction-free transactions. In:
Proceedings of the twentieth annual symposium on Parallelism in
algorithms and architectures, SPAA ’08, pp. 304–313. ACM, New
York, NY, USA (2008). doi:10.1145/1378533.1378587

22. Guerraoui, R., Kapalka, M.: On the correctness of transactional
memory. In: Proceedings of the 13th ACM SIGPLAN Symposium

123

http://developer.amd.com/wordpress/media/2013/09/45432-ASF_Spec_2.1.pdf
http://developer.amd.com/wordpress/media/2013/09/45432-ASF_Spec_2.1.pdf
http://dx.doi.org/10.1007/978-3-662-48653-5_21
http://dx.doi.org/10.1145/2592798.2592808
http://dx.doi.org/10.1007/978-3-662-48653-5_13
http://dx.doi.org/10.1109/HPCA.2005.41
http://dx.doi.org/10.1109/ICDCS.2013.57
http://dblp.uni-trier.de/db/journals/tc/tc62.html#AttiyaH13
http://dx.doi.org/10.1007/s00224-010-9304-5
http://dx.doi.org/10.1007/s00224-010-9304-5
http://dx.doi.org/10.1145/2628071.2628086
http://dx.doi.org/10.1145/2628071.2628086
http://dblp.uni-trier.de/db/conf/asplos/asplos2011.html#DalessandroCWLMSS11
http://dblp.uni-trier.de/db/conf/asplos/asplos2011.html#DalessandroCWLMSS11
http://dx.doi.org/10.1145/1837853.1693464
http://dx.doi.org/10.1145/1168918.1168900
http://dx.doi.org/10.1145/1508244.1508263
http://dx.doi.org/10.1007/11864219_14
http://dx.doi.org/10.1145/1993806.1993821
http://dx.doi.org/10.1145/1993806.1993821
http://dx.doi.org/10.1145/2901318.2901346
http://dx.doi.org/10.1145/1378533.1378587

Inherent limitations of hybrid transactional memory 185

on Principles and Practice of Parallel Programming, PPoPP ’08,
pp. 175–184. ACM, New York, NY, USA (2008). doi:10.1145/
1345206.1345233

23. Guerraoui, R., Kapalka, M.: The semantics of progress in lock-
based transactional memory. SIGPLAN Not. 44(1), 404–415
(2009). doi:10.1145/1594834.1480931

24. Guerraoui, R., Kapalka, M.: Transactional memory: Glimmer of
a theory. In: Proceedings of the 21st International Conference on
Computer Aided Verification, CAV ’09, pp. 1–15. Springer-Verlag,
Berlin, Heidelberg (2009). doi:10.1007/978-3-642-02658-4_1

25. Guerraoui, R., Kapalka, M.: Principles of Transactional Memory.
Synthesis Lectures on Distributed Computing Theory. Morgan and
Claypool, San Rafael (2010)

26. Harris, T., Larus, J.R., Rajwar, R.: Transactional Memory. Syn-
thesis Lectures on Computer Architecture, 2nd edn. Morgan &
Claypool Publishers, San Rafael (2010)

27. Herlihy, M.: Wait-free synchronization. ACM Trans. Progr. Lang.
Syst. 13(1), 123–149 (1991)

28. Herlihy, M., Luchangco, V., Moir, M., Scherer III, W.N.: Software
transactional memory for dynamic-sized data structures. In: Pro-
ceedings of the Twenty-second Annual Symposium on Principles
of Distributed Computing, PODC ’03, pp. 92–101. ACM, New
York, NY, USA (2003). doi:10.1145/872035.872048

29. Herlihy, M., Moss, J.E.B.: Transactional memory: architectural
support for lock-free data structures. In: ISCA, pp. 289–300 (1993)

30. Israeli, A., Rappoport, L.: Disjoint-access-parallel implementa-
tions of strong shared memory primitives. In: PODC, pp. 151–160
(1994)

31. Karnagel, T., Dementiev, R., Rajwar, R., Lai, K., Legler, T.,
Schlegel, B., Lehner, W.: Improving in-memory database index
performance with intel ® transactional synchronization extensions.
In: 20th IEEE International Symposium on High Performance
Computer Architecture, HPCA 2014, Orlando, FL, USA, Febru-
ary 15-19, 2014, pp. 476–487 (2014). doi:10.1109/HPCA.2014.
6835957

32. Kumar, S., Chu, M., Hughes, C.J., Kundu, P., Nguyen, A.: Hybrid
transactional memory. In: Proceedings of the Eleventh ACM
SIGPLAN Symposium on Principles and Practice of Parallel Pro-
gramming, PPoPP ’06, pp. 209–220. ACM, New York, NY, USA
(2006). doi:10.1145/1122971.1123003

33. Kuznetsov, P., Ravi, S.: On the cost of concurrency in transactional
memory. In: OPODIS, pp. 112–127 (2011). Full version: http://
arxiv.org/abs/1103.1302

34. Kuznetsov, P., Ravi, S.: Grasping the gap between blocking and
non-blocking transactional memories. J. Parallel Distrib. Comput.
101, 1–16 (2017). doi:10.1016/j.jpdc.2016.10.008

35. Lev, Y.,Moir,M., Nussbaum,D.: Phtm: Phased transactionalmem-
ory. In: InWorkshop onTransactional Computing (Transact), 2007.
research.sun.com/scalable/pubs/ TRANSACT2007PhTM.pdf

36. Matveev, A., Shavit, N.: Reduced hardware transactions: a new
approach to hybrid transactional memory. In: Proceedings of the
25th ACM symposium on Parallelism in algorithms and architec-
tures, pp. 11–22. ACM (2013)

37. Ohmacht, M.: Memory Speculation of the Blue Gene/Q Compute
Chip (2011). http://wands.cse.lehigh.edu/IBM_BQC_PACT2011.
ppt

38. Rajwar, R., Goodman, J.R.: Speculative lock elision: Enabling
highly concurrent multithreaded execution. In: Proceedings of the
34th Annual ACM/IEEE International Symposium on Microar-
chitecture, MICRO 34, pp. 294–305. IEEE Computer Society,
Washington, DC, USA (2001). http://dl.acm.org/citation.cfm?
id=563998.564036

39. Reinders, J.: Transactional Synchronization in Haswell (2012).
http://software.intel.com/en-us/blogs/2012/02/07/transactional-sy
nchronization-in-haswell/

40. Riegel, T.: Software Transactional Memory Building Blocks
(2013). Chapter 7. Thesis

41. Riegel, T., Marlier, P., Nowack, M., Felber, P., Fetzer, C.: Opti-
mizing hybrid transactional memory: The importance of nonspec-
ulative operations. In: Proceedings of the 23rd ACM Symposium
on Parallelism in Algorithms and Architectures, pp. 53–64. ACM
(2011)

42. Ruan, W., Spear, M.F.: Hybrid transactional memory revisited.
In: Distributed Computing—29th International Symposium, DISC
2015, Tokyo, Japan, October 7–9, 2015, Proceedings, pp. 215–231
(2015). doi:10.1007/978-3-662-48653-5_15

43. Saha, B., Adl-Tabatabai, A.R., Jacobson, Q.: Architectural sup-
port for software transactional memory. In: Proceedings of the
39th Annual IEEE/ACM International Symposium on Microar-
chitecture, MICRO 39, pp. 185–196. IEEE Computer Society,
Washington, DC, USA (2006). doi:10.1109/MICRO.2006.9

44. Spear, M.F., Shriraman, A., Dalessandro, L., Dwarkadas, S.,
Scott, M.L.: Nonblocking transactions without indirection using
alert-on-update. In: Proceedings of the Nineteenth Annual ACM
Symposium on Parallel Algorithms and Architectures, SPAA ’07,
pp. 210–220. ACM, New York, NY, USA (2007). doi:10.1145/
1248377.1248414

45. Yoo, R.M., Hughes, C.J., Lai, K., Rajwar, R.: Performance eval-
uation of intel® transactional synchronization extensions for
high-performance computing. In: Proceedings of the International
Conference on High Performance Computing, Networking, Stor-
age and Analysis, SC ’13, pp. 19:1–19:11. ACM, New York, NY,
USA (2013). doi:10.1145/2503210.2503232

123

http://dx.doi.org/10.1145/1345206.1345233
http://dx.doi.org/10.1145/1345206.1345233
http://dx.doi.org/10.1145/1594834.1480931
http://dx.doi.org/10.1007/978-3-642-02658-4_1
http://dx.doi.org/10.1145/872035.872048
http://dx.doi.org/10.1109/HPCA.2014.6835957
http://dx.doi.org/10.1109/HPCA.2014.6835957
http://dx.doi.org/10.1145/1122971.1123003
http://arxiv.org/abs/1103.1302
http://arxiv.org/abs/1103.1302
http://dx.doi.org/10.1016/j.jpdc.2016.10.008
http://wands.cse.lehigh.edu/IBM_BQC_PACT2011.ppt
http://wands.cse.lehigh.edu/IBM_BQC_PACT2011.ppt
http://dl.acm.org/citation.cfm?id=563998.564036
http://dl.acm.org/citation.cfm?id=563998.564036
http://software.intel.com/en-us/blogs/2012/02/07/transactional-synchronization-in-haswell/
http://software.intel.com/en-us/blogs/2012/02/07/transactional-synchronization-in-haswell/
http://dx.doi.org/10.1007/978-3-662-48653-5_15
http://dx.doi.org/10.1109/MICRO.2006.9
http://dx.doi.org/10.1145/1248377.1248414
http://dx.doi.org/10.1145/1248377.1248414
http://dx.doi.org/10.1145/2503210.2503232

	Inherent limitations of hybrid transactional memory
	Abstract
	1 Introduction
	1.1 Hybrid transactional memory
	1.2 Modelling HyTM
	1.3 The cost of concurrency
	1.4 Low-instrumentation HyTM
	1.5 Roadmap

	2 Preliminaries
	2.1 Transactional memory (TM)
	2.2 Configurations and executions
	2.3 Complete and incomplete transactions
	2.4 Contention
	2.5 TM correctness
	2.6 TM-liveness

	3 Hybrid transactional memory (HyTM)
	3.1 Direct accesses and cached accesses
	3.2 Slow-path and fast-path transactions

	4 Defining instrumentation
	4.1 Impossibility of uninstrumented HyTMs

	5 Linear instrumentation lower bound
	6 Instrumentation-optimal HyTM algorithms
	6.1 A linear upper bound on instrumentation
	6.1.1 Base objects
	6.1.2 Fast-path transactions
	6.1.3 Slow-path read-only transactions
	6.1.4 Slow-path updating transactions
	6.1.5 Complexity

	6.2 Providing partial concurrency at low cost

	7 Related work
	8 Concluding remarks
	Acknowledgements
	References

