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Abstract Given a distributed network represented by a
weighted undirected graph G = (V, E) on n vertices, and a
parameter k, we devise a randomized distributed algorithm
that whp computes a routing scheme in O(n1/2+1/k + D) ·
no(1) rounds, where D is the hop-diameter of the network.
Moreover, for odd k, the running time of our algorithm is
O(n1/2+1/(2k) + D) ·no(1). Our running time nearly matches
the lower bound of �̃(n1/2+ D) rounds (which holds for any
scheme with polynomial stretch). The routing tables are of
size Õ(n1/k), the labels are of size O(k log2 n), and every
packet is routed on a path suffering stretch at most 4k − 5+
o(1). Our construction nearly matches the state-of-the-art
for routing schemes built in a centralized sequential man-
ner. The previous best algorithms for building routing tables
in a distributed small messages model were by Lenzen and
Patt-Shamir (In: Symposium on theory of computing con-
ference, STOC’13, Palo Alto, CA, USA, 2013) and Lenzen
and Patt-Shamir (In: Proceedings of the 2015 ACM sympo-
sium on principles of distributed computing, PODC 2015,
Donostia-San Sebastián, Spain, 2015). The former has sim-
ilar properties but suffers from substantially larger routing
tables of size O(n1/2+1/k), while the latter has sub-optimal
running time of Õ(min{(nD)1/2 · n1/k, n2/3+2/(3k) + D}).

A preliminary version [11] of this paper was published in PODC’16.
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1 Introduction

A routing scheme in a distributed network is a mechanism
that allows packets to be delivered from any node to any other
node. The network is represented as a weighted undirected
graph, and each node should be able to forward incom-
ing data by using local information stored at the node, and
the (short) packet’s header. The local routing information is
often referred to as a routing table. The routing scheme has
two main phases: in the preprocessing phase, each node is
assigned a routing table and a short label. In the routing phase,
each node receiving a packet should make a local decision,
based on its own routing table and the packet’s header (which
contains the label of the destination), to which neighbor to
forward the packet to. The stretch of a routing scheme is the
worst ratio between the length of a path on which a packet is
routed to the shortest possible path.

Designing efficient routing schemes is a central problem
in the area of distributed networking, and was studied inten-
sively [1,2,4,6,7,15,30,30,33]. The first general tradeoffs
for this problem were given in pioneering works by Peleg
and Upfal [30] and Awerbuch and Bar-Noy [1]. In a sem-
inal paper [33], Thorup and Zwick presented the following
compact routing scheme:Given aweighted graphG on n ver-
tices and a parameter k ≥ 1, the scheme has routing tables of
size Õ(n1/k),1 labels of size O(k log n) and stretch 4k − 5.
(Assuming that port numbers may be assigned by the rout-
ing process, otherwise the label size increases by a factor

1 The Õ hides logO(1) n factors.
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of log n.)2 The state-of-the-art is a scheme of [4], which is
based on [33], and improves the stretch to 3.68k.

All the results above assume that the preprocessing phase
can be executed in a sequential centralized manner. How-
ever, as the problem of designing a compact routing scheme
is inherently concerned with a distributed network, con-
structing the scheme efficiently in a distributed manner is a
very natural direction. We focus on the standard CONGEST
model [27]. In this model, every vertex initially knows only
the edges touching it, and communication between vertices
occurs in synchronous rounds. On every round, each vertex
may send a small message to each of its neighbors. Every
message takes a unit time to reach the neighbor, regardless
of the edge weight. The time complexity is measured by the
number of rounds it takes to complete a task (we assume local
computation does not cost anything). Often the time depends
on n, the number of vertices, and D, the hop-diameter of
the graph. The hop-diameter is the maximum hop-distance
between two vertices, where the hop-distance is the minimal
number of edges on a path between the vertices (regardless
of the weights). The hop-diameter is not to be confused with
the shortest path diameter S, which is the maximal num-
ber of hops a shortest path uses (assuming shortest paths are
unique). We always have D ≤ S, and typically D is small
while S could be as large as �(n). We also assume, as com-
mon in the literature [13,17,19,20,25], that edge weights are
integers and at most polynomial in n (so that they can be sent
in a single message).

A rich research thread is concerned with finding effi-
cient distributed (approximation) algorithms for classical
graph problems (e.g., minimum spanning tree, minimum cut,
shortest paths), in sub-linear time [8,14,17,29,32]. There
are several results obtaining running times of the form
Õ(

√
n + D), e.g. for MST, connectivity, minimum cut,

approximate shortest path tree, etc. These results are often
accompanied by (nearly) matching lower bounds. The lower
bound of [32], based on [9,29], implies that devising a rout-
ing schemewith any polynomial stretch requires �̃(

√
n+ D)

rounds.
The first result on computing a routing scheme in a dis-

tributed manner within o(n) rounds (for general graphs with
D = o(n)), was shown by Lenzen and Patt-Shamir [20].3

Their algorithm, given a graph on n vertices and a param-
eter k, provides routing tables of size Õ(n1/2+1/k), labels
of size O(log n · log k), stretch at most O(k log k), and has
a nearly optimal running time of Õ(n1/2+1/k + D) rounds.

2 They also presented stretch 2k−1, assuming “handshaking”: allowing
the source and destination to communicate before the routing phase
begins, but it is often desirable to avoid handshaking. Henceforth, we
discuss only routing schemes that do not allow handshaking.
3 We remark that for the class of k-chordal graphs, [26] showed a con-
struction of a routing scheme that could be computed efficiently in a
distributed manner.

Note that the routing tables are of size �(
√

n) for any value
of k, which could be prohibitively large (the routing scheme
of [33] supports stretch 3 with Õ(

√
n) table size). They also

show implications for related problems, such as approximate
diameter, generalized Steiner forest, and distance estimation.
In a follow-up paper, [22] showed how to improve the stretch
of the above scheme to roughly 3k/2 (for any k divisible by
4). They also exhibited a different tradeoff, that overcame
the issue of large routing tables. They devised an algorithm
that produced routing tables of size Õ(n1/k), labels of size
O(k log2 n) and stretch 4k − 3 + o(1),4 but the number of
rounds increases to Õ(min{(nD)1/2 ·n1/k, n2/3+2/(3k)+D}).
Note that for moderately large hop-diameter D ≈ n1/3, the
number of rounds is bounded by only ≈n2/3 for any value
of k. (They also show a variant where the number of rounds
is Õ(S + n1/k), but as was mentioned above, S might be
much larger than D.) All these and our results are not in the
setting of name-independent routing, in which the label of
a vertex is its ID. Lenzen and Patt-Shamir [20] showed a
strong lower bound for the latter setting: any such scheme
with stretch ρ (even average stretch ρ) must take �̃(n/ρ2)

rounds to compute in this model.
In the distance estimation problem (also known as sketch-

ing, or distance labeling), we wish to compute a small sketch
for each vertex, so that given any two sketches, one can
efficiently compute the (approximate) distance between the
vertices. This problem was introduced in [28], who provided
initial existential results. In [31], a distributed (randomized)
algorithm running in Õ(S·n1/k) roundswas shown, that com-
putes sketches of size O(kn1/k log n) with stretch at most
2k − 1. While this essentially matches the best sequential
algorithm of [34], the number of rounds could be�(n), even
when D is small. In [20], a running time of Õ(n1/2+1/k + D)

rounds was presented, at the cost of significantly increasing
the stretch to O(k2).5 Izumi and Wattenhofer [18] showed a
lower bound of n1/2+�(1/k) rounds for this problem. In the
Conclusion part of their paper [18], Izumi and Wattenhofer
posed an open problem:

An open problem related to our results is to find algo-
rithms whose running time gets close to our lower
bounds.

Our contribution We devise a randomized distributed algo-
rithm running in (n1/2+1/k+D)·min{(log n)O(k), 2Õ(

√
log n)}

rounds, that with high probability (whp),6 computes a com-
pact routing scheme with routing tables of size O(n1/k log2

n), labels of size O(k log2 n), and stretch at most 4k − 5 +
4 The paper [22] claimed label size O(k log n), but in [23] it was com-
municated to us that the actual size is O(k log2 n).
5 In fact, they showed a scheme in which it suffices to have a sketch of
one vertex, and a O(k log n) size label of the other vertex, to derive the
distance estimation. Our result has a similar property.
6 By “high probability” we mean with probability at least 1− n−c, for
any desired constant c.
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Table 1 Comparison of compact routing schemes for graphs with n vertices, m edges, hop-diameter D, and shortest path diameter S

Number of rounds Table size Label size Stretch

[4,33] O(m) Õ(n
1
k ) O(k log n) 3.68k

[22] Õ(S + n
1
k ) Õ(n

1
k ) O(k log n) 4k − 3

[20,22] Õ(n
1
2 + 1

4k + D) Õ(n
1
2 + 1

4k ) O(log n) 6k − 1 + o(1)

[22] Õ(min{(nD)
1
2 · n

1
k , n

2
3 + 2

3k + D}) Õ(n
1
k ) O(k log2 n) 4k − 3 + o(1)

[24] (n
1
2 + 1

k + D) · 2Õ(
√
log n) Õ(n

1
k ) O(k log2 n) 4k − 3 + o(1)

This paper, even k (n
1
2 + 1

k + D) · min{(log n)O(k), 2Õ(
√
log n)} Õ(n

1
k ) O(k log2 n) 4k − 5 + o(1)

This paper, odd k (n
1
2 + 1

2k + D) · min{(log n)O(k), 2Õ(
√
log n)} Õ(n

1
k ) O(k log2 n) 4k − 5 + o(1)

o(1). Moreover, for odd k, the running time of our algorithm
is (n1/2+1/(2k) + D) ·min{(log n)O(k), 2Õ(

√
log n)}. Note that

our result nearly matches the construction of [33], up to loga-
rithmic terms in the size and o(1) additive term in the stretch.
This is even though the latter is computed in a sequential
centralized manner. Observe that our running time nearly
matches the lower bound of [32], and is substantially better
than that of [22] whenever D ≥ n�(1) (which achieved sim-
ilar size-stretch tradeoff). The previous result obtaining near
optimal running time [20], suffers from excessive routing
table size.

As a corollary, we show a distance estimation scheme,
that can be computed in a distributed manner in (n1/2+1/k +
D) · min{(log n)O(k), 2Õ(

√
log n)} rounds for even k, and for

odd k in (n1/2+1/(2k) + D) · min{(log n)O(k), 2Õ(
√
log n)}

rounds, providing sketches of size O(n1/k log n)with stretch
2k−1+o(1). Each distance estimation takes only O(k) time.
Our result combines the improved running time of [20] (up to
lower order terms), with the near optimal size-stretch trade-
off of [31]. Moreover, our bound for the running time of
distance estimation scheme nearly matches the lower bound
n1/2+�(1/k) of Izumi and Wattenhofer [18], addressing their
open problem. See Table 1 for a concise summary of previous
and our results.

We note that to the best of our knowledge, all existing rout-
ing schemes [1,2,4,23,30,34], as well as the routing scheme
that we present in this paper, enable distance estimation, i.e.,
given routing tables and labels of a pair u, v of vertices, one
can compute (without communication) a distance estimate
d̂(u, v), which approximates the actual distance dG(u, v)

between u and v up to the stretch factor of the routing scheme.
All routing schemes of this type require, by the lower bound
of [18], at least n1/2+�(1/k) rounds to compute.

When preparing this submission, we learnt that concur-
rently and independently of us [24] cameupwith a distributed
algorithm running in (n1/2+1/k + D) · 2Õ(

√
log n) rounds,

that with high probability, computes a routing scheme with
routing tables of size Õ(n1/k), labels of size O(k log2 n),
and stretch at most 4k − 3 + o(1). Their result has slightly

worse stretch, and a larger number of rounds whenever
k <

√
log n/ log log n, or if k is odd.

1.1 Overview of techniques

Let us first briefly sketch the Thorup–Zwick construction of
a routing scheme. First they designed a routing scheme for
trees, with routing tables of constant size and logarithmic
label size. (Throughout the paper, the size is measured in
RAMwords, i.e., eachword is of size O(log n).) For a general
graph G = (V, E) on n vertices, they randomly sample a
collection of sets V = A0 ⊇ A1 · · · ⊇ Ak = ∅, where for
each 0 < i < k, each vertex in Ai−1 is chosen independently
to be in Ai with probability n−1/k . The cluster of a vertex
u ∈ Ai\Ai+1 is defined as

C(u) = {v ∈ V : dG(u, v) < dG(v, Ai+1)} . (1)

They proved that each cluster C(x) can be viewed as a tree
rooted at x , and showed an efficient procedure that given a
pair u, v ∈ V , finds a vertex x so that routing in the tree C(x)

has small stretch. So each vertex u maintains in its routing
table the routing information for all trees C(x) containing
it, while the label of u consists of the tree-labels for a few
special trees. They also show that (with high probability)
every vertex is contained in at most Õ(n1/k) trees.

The first difficulty we must deal with is that the routing
scheme of Thorup–Zwick for a (single) tree could take a
linear number of rounds to construct. We thus develop a vari-
ation on that scheme, that can be implemented efficiently in
a distributed network. The basic idea is inspired by Kutten
and Peleg [19] (and also used in [25]), which is to select
≈√

n vertices that partition the tree into bounded depth sub-
trees. We then apply the TZ-scheme locally in every subtree.
The subtler part is to design a global routing scheme for the
virtual tree7 induced on the sampled vertices, which must
incorporate the local routing information.

7 By a virtual tree we mean a tree whose edges are not present in the
network.
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Approximate clusters Once we have a distributed algorithm
for routing in trees, we set off to apply the TZ-scheme for
general graphs. Unfortunately, it is not known how to com-
pute the exact clusters efficiently in a distributed manner. In
order to circumvent this barrier, we introduce the notion of
approximate clusters. An approximate cluster is a subset of a
cluster, that may exclude vertices that are “near” the bound-
ary. [Slightly more formally, we may omit vertices for which
the inequality (1) becomes false if we multiply the left hand
side by a 1 + ε factor, for a small ε > 0.] Our main techni-
cal contributions are: exhibiting a procedure that computes
these approximate clusters, and showing that these approxi-
mate clusters are sufficient for constructing a routing scheme,
with nearly matching size and stretch as in [33].

The construction of clustersC(u) for u ∈ Ai\Ai+1, where
i < k/2, can be done in a straightforward manner (within
the allotted number of rounds), since the depth of the cor-
responding tree is Õ(

√
n) with high probability, and since

the overlap (the number of clusters containing a fixed ver-
tex) is only Õ(n1/k). The main challenge is computing the
approximate clusters in the large scales, for i ≥ k/2. To this
end, we employ several tools. The first is approximate multi-
source hop-bounded distance computation, which appeared
recently in [25] (a certain variant of it appeared also in [21]).
This enables us to compute approximations for B-hops short-
est paths (paths that use at most B edges), from a given m
sources to every vertex, in Õ(B+m+D) rounds. The second
tool we use is hopsets. The notion of hopsets was introduced
by Cohen [5] in the context of parallel approximate shortest
path algorithms, and it has found applications in dynamic,
streaming anddistributed settings aswell [3,16,17].A (β, ε)-
hopset is a (small) set of edges F , so that every shortest path
has a corresponding β-hops path, whose weight is at most
1 + ε larger.

We compute the approximate clusters in the large scales as
follows. First we sample ≈√

n vertices (those in Ak/2), and
compute approximate

√
n-hops shortest paths from all the

sampled vertices. Next we apply a (β, ε)-hopset on the graph
induced by these sampled vertices, where β ≤ 2Õ(

√
log n) and

ε ≈ 1/k4. (A pair of sampled vertices is connected in this
graph by an edge if and only if one is reachable from the other
via an approximate

√
n-hop-bounded shortest path.) An effi-

cient distributed algorithm to construct such hopsets is given
by Henzinger et al. [17] and Elkin and Neiman [10].We shall
use the construction of [10], since it facilitates much smaller
β whenever k is small. (There are also some additional prop-
erties of hopsets from [10], that make them more convenient
in the context of routing. See Sect. 2.) This enables us to
compute the approximate clusters on the sampled vertices,
since we need only β steps of exploration from each source
u, using again that the overlap is small. Finally, we extend
each approximate cluster to the other vertices, by initiating an

exploration from each sampled vertex to hop-distance ≈√
n

in the original graph (in fact, one can use the multi-source
hop-bounded distance computation of [25]). The correctness
follows since with high probability, every vertex that should
be included in some approximate cluster C̃(u), has either u
or a sampled vertex within ≈√

n hops on the shortest path to
it. The thresholds for entering an approximate cluster must
be set carefully, so that every vertex on that shortest path will
also join C̃(u), in order to guarantee that the trees will indeed
be connected (which is clearly crucial for routing), and on
the other hand, to make sure that no vertex participates in
too many trees. Unlike the exact TZ clusters, approximate
clusters generally do not have to be connected.

The fact that our clusters are only approximate induces
increased stretch. The analysis is similar to that of [34],which
consists of k iterations of searching for the “right” tree. We
must pay a factor of 1+ O(ε) in every one of these iterations,
but fortunately, the hopset construction allows us to take suf-
ficiently small ε, so that all the additional stretch accumulates
to an additive o(1).

From a high level, our approach is similar to those of [20,
22]. In [22], they also use a variant of the TZ-routing scheme,
which allows small errors in the distance estimations. The
main difference is in handling the large scales. In [20], the
idea was to build a spanner on a sample of ≈√

n vertices,
which reduces the number of edges. So a routing scheme can
be efficiently computed on the spanner, and then extended to
the entire graph. This approach inherently suffers from large
storage requirement, since every vertex needs to know all the
spanner edges. In [22] the ideawas to “delay” the start of large
scales from k/2 to roughly l0 = (k/2) · (1 + log D/ log n).
Then they apply a distance estimation on the sampled vertices
at scale l0 (those in Al0 ) to construct the routing tables for all
higher scales, and extend these to the remainder of the graph.
However, the exploration in the graph on Al0 may need to be
of ≈n1−l0/k hops, which induces a factor of D · n1−l0/k =
(nD)1/2 to the number of rounds. The use of hopsets allows
us to avoid the large memory requirement, since the routing
is oblivious to the hopset, while significantly shortening the
exploration range. Since the exploration range is proportional
to the running time, the latter also decreases.

1.2 Organization

After stating in Sect. 2 some of the tools we shall apply,
in Sect. 3 we describe the notion of approximate clusters,
and show how to compute these efficiently in a distributed
manner. In Sect. 4 we show our distributed tree routing. Then
in Sect. 5, we demonstrate how these approximate clusters
could be used for a routing scheme in general graphs. Finally,
in Sect. 6 we show the distance estimation scheme.
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2 Preliminaries

Let G = (V, E, w) be a weighted graph on n vertices.
We assume that w : E → {1, . . . , poly(n)} (without this
assumption, there will be a logarithmic dependence on the
aspect ratio in the data structures’ size and running times).
Let D be the hop-diameter of G, that is, the diameter of G if
all weights were 1. Denote by dG the shortest path metric on
G. Assume, as we may, that all shortest paths are unique. Let
d(t)

G be the t-hops shortest path distance (abusing notation,

since this is not a metric). That is, d(t)
G (u, v) is the shortest

length of a path from u to v, that has at most t edges (set
d(t)

G (u, v) = ∞ if every path from u to v has more than
t edges). For each u, v ∈ V , define hG(u, v) as the num-
ber of hops on the shortest path in G between u and v. We
shall always use this notation with respect to the input graph
G, and thus will omit the subscript. A (dominating) virtual
graph on G is a graph G ′ = (V ′, E ′, w′) with V ′ ⊆ V ,
and for every u, v ∈ V ′ we have that dG ′(u, v) ≥ dG(u, v).
Every vertex in V ′ should know all the edges of E ′ touching
it. The following lemma formalizes the broadcast ability of
a distributed network (see, e.g., [27]).

Lemma 1 Suppose every v ∈ V holds mv messages, each of
O(1) words, for a total of M = ∑

v∈V mv . Then all vertices
can receive all the messages within O(M + D) rounds.

Bellman–Ford algorithm The classical Bellman–Ford is an
algorithm to compute shortest paths in a graph from a cer-
tain root vertex u ∈ V (or a set of vertices). Every vertex
v ∈ V holds a vector bv of distances to other vertices. Ini-
tially, bu(u) = 0 and all other entries are ∞. The algorithm
is executed in iterations. In every iteration v communicates
bv to its neighbors, and updates bv according to the messages
it received from its neighbors and the edge weights to those
neighbors. In order to provide efficient implementation in
distributed models, we often will use bounded-depth explo-
rations, where v will send bv(u) to its neighbors iff some
condition is met. Usually the condition is that bv(u) is suffi-
ciently small, and the exact bound might change in different
settings.

2.1 Tools

We will make use of the following theorem due to [25,
Theorem 3.6], which shows how to compute hop-bounded
distances from a given set of sources efficiently in a dis-
tributed manner.

Theorem 1 [25] Given a weighted graph G = (V, E, w) of
hop-diameter D, a set V ′ ⊆ V , and parameters B ≥ 1 and
0 < ε < 1, there is a (randomized) distributed algorithm
that whp runs in Õ(|V ′| + B + D)/ε rounds, so that every

u ∈ V will know values {duv}v∈V ′ satisfying8

d(B)
G (u, v) ≤ duv ≤ (1 + ε)d(B)

G (u, v), (2)

Remark 1 While not explicitly stated in [25], the proof also
provides that each u ∈ V knows, for every v ∈ V ′, a vertex
p = pv(u) which is a neighbor of u satisfying

duv ≥ w(u, p) + dpv. (3)

Hopsets The following notion of hopsets was introduced by
Cohen [5].

Definition 1 (Hopsets) A set of (weighted) edges F is a
(β, ε)-hopset for a weighted graph G = (V, E, w), if in
the graph H = (V, E ∪ F), for every u, v ∈ V ,

dG(u, v) ≤ dH (u, v) ≤ d(β)
H (u, v) ≤ (1 + ε)dG(u, v). (4)

We will need the following path-reporting property from our
hopset. This property will be crucial for the connectivity of
the trees corresponding to the approximate clusters.

Property 1 A hopset F for a graph G is called path-
reporting, if for every hopset edge (u, v) ∈ F of weight b,
there exists a corresponding path P in G between u and v of
length b. Furthermore, every vertex x on P knows dP (x, u)

and dP (x, v), and its neighbors on P.

The following result is from [10], which provides a
path-reporting hopset. We remark that the original hopset
construction of [5] could be made path-reporting. Also, in
[17, Theorem 4.10], a distributed algorithm constructing a
hopset is provided, which possibly could be made path-
reporting, however, it inherently cannot provide a better
hopbound than 2Õ(

√
log n).

Theorem 2 [10] Let G be a weighted graph on n vertices
with hop-diameter D, let 0 < ε < 1, and let G ′ be a virtual
graph on G with m vertices. Let 0 < ρ < 1/2 be a parameter,

and write β =
(
logm
ε·ρ

)O(1/ρ)

. Then there is a randomized

distributed algorithm that whp computes in Õ(m1+ρ+D)·β2

rounds, a path-reporting (β, ε)-hopset F for G ′.

We remark that in many applications (see, e.g., applications
in [5,10]) the size of the hopset is important. However, here
we care about the number of rounds required to compute the
hopset, and not its size.
Approximate shortest path tree (SPT)Recently, [17] obtained
an efficient distributed algorithm for computing an approxi-
mate SPT, which we shall use. Let us first define the problem

8 The computed values are symmetric, that is, duv = dvu whenever
u, v ∈ V ′.
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124 M. Elkin, O. Neiman

formally. Let G = (V, E, w) be a weighted graph. Given a
set of vertices A ⊆ V , computing an (1 + ε)-approximate
SPT rooted at A, means that every vertex u ∈ V will know a
value d̂(u) satisfying

dG(u, A) ≤ d̂(u) ≤ (1 + ε)dG(u, A), (5)

and that u will know a vertex ẑ(u) ∈ A so that dG(u, ẑ(u)) ≤
d̂(u). The following theorem is a slight variation on a theo-
rem shown in [17]. Here we use the hopsets of [10] for an
improved running time.

Theorem 3 Let G = (V, E, w) be a weighted graph on
n vertices with hop-diameter D. Given a set A ⊆ V
of size |A| ≤ 2

√
n ln n, integer k ≥ 1 and 1

polylog n <

ε < 1, there is a distributed algorithm that computes an
(1 + ε)-approximate SPT rooted at A in (n1/2+1/(2k) + D) ·
min{(log n)O(k), 2Õ(

√
log n)} rounds.

We defer the proof to Appendix 1.

3 Distributed routing scheme

In this section we define the notions of approximate pivots
and approximate clusters, and describe an efficient dis-
tributed algorithm that computes these. Let us first recall the
basic definitions from [34].

Let G = (V, E, w) be a weighted graph and fix k ≥ 1.
Sample a collection of sets V = A0 ⊇ A1 · · · ⊇ Ak = ∅,
where for each 0 < i < k, each vertex in Ai−1 is chosen
independently to be in Ai with probability n−1/k . A point
z ∈ Ai is called an i-pivot of v, if dG(v, z) = dG(v, Ai ).
The cluster of a vertex u ∈ Ai\Ai+1 is defined as

C(u) = {v ∈ V : dG(u, v) < dG(v, Ai+1)}. (6)

We quote a claim from [34], which provides a bound on the
overlap of clusters.

Claim 2 With high probability, each vertex is contained in
at most 4n1/k log n clusters.

The following claim shows that (with high probability)
the sets Ai have favorable properties.

Claim 3 With high probability the following holds for every
0 ≤ i ≤ k − 1: (1) |Ai | ≤ 4n1−i/k ln n, and (2) For every
u, v ∈ V such that h(u, v) > 4ni/k ln n, there exists a vertex
of Ai on the shortest path between u and v.

Proof Fix i . The first assertion holds by a simple Chernoff
bound, since every vertex is chosen to be in Ai independently
with probability n−i/k , and the expected size of Ai is n1−i/k .
For the second assertion, let u, v be such that h(u, v) >

4ni/k ln n (recall that h(u, v) is the number of hops on the
shortest path from u to v in G). The probability that none of
the vertices on the unique u to v shortest path is included in
Ai is at most

(
1 − n−i/k

)4ni/k ln n ≤ n−4.

Taking a union bound on the k possible values of i and
(n
2

)

pairs completes the proof. ��
Fromnowon assume that all the events in the claims above

hold, which yields the following corollary.

Corollary 4 For any 0 ≤ i < k − 1, u ∈ Ai\Ai+1 and
v ∈ C(u), it holds that h(u, v) ≤ 4n(i+1)/k ln n.

Proof If it were the case that h(u, v) > 4n(i+1)/k ln n, then
Claim 3 would imply that there exists a vertex of Ai+1 on
the shortest path from v to u. In particular, dG(v, u) >

dG(v, Ai+1), which contradicts (6). ��

3.1 Approximate clusters and pivots

Since we do not know how to compute efficiently in a dis-
tributed manner the pivots and clusters, we settle for an
approximate version, which is formally defined in this sec-
tion. Fix the parameter ε = 1

48k4
. For each v ∈ V and

0 ≤ i ≤ k − 1, a point ẑ ∈ Ai is called an approximate
i-pivot of v if

dG(v, ẑ) ≤ (1 + ε)dG(v, Ai ). (7)

Now we define for each 0 ≤ i ≤ k − 1 and each vertex
u ∈ Ai\Ai+1, a set of vertices which we call an approximate
cluster. The approximate cluster is a subset of the cluster
C(u), and it is allowed to exclude vertices of C(u)which are
“close” to the boundary. First define the vertices that are far
from the boundary (with respect to ε), as

Cε(u) =
{

v ∈ V : dG(u, v) <
dG(v, Ai+1)

1 + ε

}

. (8)

The approximate cluster C̃(u) will be a set that satisfies the
following:

C6ε(u) ⊆ C̃(u) ⊆ C(u). (9)

Each approximate cluster C̃(u)we compute,will be stored
as a tree rooted at u; that is, each vertex v ∈ C̃(u) will store
a pointer to its parent in the tree. This tree (abusing notation,
we call this tree C̃(u) as well) has the property that distances
to the root u are approximately preserved; that is, for any
v ∈ C̃(u) we have that

dG(u, v) ≤ dC̃(u)
(u, v) ≤ (1 + ε)4dG(u, v). (10)
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Remark 2 Since C̃(u) ⊆ C(u), Claim 2 implies that
with high probability, each vertex is contained in at most
4n1/k log n approximate clusters.

In the remainder of this section we devise an efficient
distributed algorithm for computing the approximate pivots
and the trees built from approximate clusters, and show the
following.

Theorem 4 Let G = (V, E) be a weighted graph with
n vertices and hop-diameter D, and let k ≥ 1 be an
integer. Set ε = 1/(48k4). Then there is a randomized
distributed algorithm that whp computes all approximate
pivots and approximate clusters (with respect to ε) within

(n1/2+1/k + D) · min{(log n)O(k), 2Õ(
√
log n)} rounds.9

Computing pivots We first compute the pivots for 0 ≤ i ≤
�k/2�. For these values of i we can compute the exact pivots.
We conduct 4ni/k · ln n iterations of Bellman–Ford rooted
in the vertex set Ai . As a result, every v ∈ V learns the
exact value d̂i (v) = dG(v, Ai ) and a pivot ẑi (v) ∈ Ai .
Indeed, for any v ∈ V , if u ∈ Ai is a vertex such that
dG(v, u) = dG(v, Ai ), then Claim 3 implies that h(v, u) ≤
4ni/k · ln n, so the exploration will detect this shortest path.
As every message consists of O(1) words (every vertex
sends to its neighbors the name of the vertex in Ai and
the current distance to it), the total number of rounds is
∑�k/2�

i=0 O(ni/k · ln n) ≤ Õ(n1/2+1/(2k)).
For �k/2� < i ≤ k − 1 we can only compute approx-

imate pivots ẑi (v) for each v ∈ V . For each such i , apply
Theorem 3 with root set Ai and the parameter ε (indeed
by Claim 3, |Ai | ≤ 4n1−(�k/2�+1)/k ln n ≤ 2

√
n ln n, and

ε = �(1/k4) ≥ �(1/ log4 n)). This will take (n1/2+1/(2k) +
D) · min{(log n)O(k), 2Õ(

√
log n)} rounds. At the end, every

vertex v ∈ V will know its approximate pivot ẑi (v), and the
(approximate) distance d̂i (v), as returned by the algorithm.
By (5), ẑi (v) satisfies the requirement from an approximate
pivot [see (7)].

3.2 Building the small trees

For 0 ≤ i < �k/2�, we can compute the trees C(u) corre-
sponding to the actual clusters. We need to find such a tree
for every u ∈ Ai\Ai+1, and it is done in the following man-
ner. For each such u in parallel, we initiate a bounded-depth
Bellman–Ford exploration for 4n(i+1)/k ln n iterations. This
means that each v ∈ V that receives a message originated at
u, and computes that its (current) distance to u is bv(u), will
join C(u) and broadcast the message to its neighbors in G iff

bv(u) < dG(v, Ai+1). (11)

9 For odd k the number of rounds becomes (n1/2+1/(2k) + D) ·
min{(log n)O(k), 2Õ(

√
log n)}.

(Recall that for i ≤ �k/2�, each vertex stores the distance
to the exact i-th pivot d̂i (v) = dG(v, Ai ).) The vertex v will
also store the name of its parent in C(u), the neighbor p ∈ V
that sent v the message which last updated bv(u).

We now argue that if v ∈ C(u), then v will surely receive
a message from u and will have bv(u) = dG(u, v). Let P
be the shortest path in G between u and v. Note that every
vertex y on P has y ∈ C(u), because

dG(y, u) = dG(v, u) − dG(v, y)
(6)
< dG(v, Ai+1)−dG(v, y)

≤ dG(y, Ai+1).

It follows by a simple induction that every such y will receive
a message with the exact distance by(u) = dG(y, u) and
thus will send it onwards, after at most h(u, y) steps of the
algorithm. In particular, distances to the root u in C(u) are
preserved exactly. Corollary 4 asserts that for all v ∈ C(u)

we have that h(u, v) ≤ 4n(i+1)/k ln n. So there are enough
Bellman–Ford iterations to reach all vertices of C(u).

The middle level When k is odd, the level i = (k − 1)/2
induces a relatively large running time Õ(n1/2+3/(2k)) (see
the upcoming paragraph on running-time analysis), if one
uses the algorithm that was described above. To overcome
this, we use a different method for this level. We apply The-
orem 1 on the set of sources S = Ai\Ai+1, with B =
4n(i+1)/k · ln n and ε, so that each vertex v ∈ V will get a
distance estimate bv(u) for each u ∈ S. Indeed, if v ∈ C(u)

then by Corollary 4, h(u, v) ≤ B, so that the distance esti-
mate returned by the theorem is a 1 + ε approximation to
dG(u, v) = d(B)

G (u, v).
We say that v joins the (approximate) cluster C̃(u) of u ∈

S if the following holds

bv(u) < dG(v, Ai+1),

(recall that v knows the exact distance to its i+1 = (k+1)/2-
pivot). The parent p of v in the tree induced by C̃(u) will be
the parent given by Remark 1. We show that this p will join
C̃(u) as well. This holds because

bp(u)
(3)≤ bv(u) − w(v, p) < dG(v, Ai+1) − dG(v, p)

≤ dG(p, Ai+1).

Finally, we note that this is an approximate cluster; since
dG(u, v) ≤ bv(u) it follows that C̃(u) ⊆ C(u), while if
v ∈ Cε(u) then

bv(u)
(2)≤ (1 + ε)dG(u, v)

(8)
< dG(v, Ai+1),

so C̃(u) ⊇ Cε(u), satisfying (9). (We remark that the middle
level is the only one in which one may use Theorem 1. In all
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other levels, either the number of sources |Ai | ≈ n1−i/k or
the required depth B ≈ n(i+1)/k will be larger thann1/2+1/k .)

Running time By Claim 2, every vertex can belong to at most
Õ(n1/k) clusters. Hence, the congestion at every Bellman–
Ford iteration is at most Õ(n1/k). Thus the number of
rounds required to implement each of the 4n(i+1)/k ln n iter-
ations of Bellman–Ford is Õ(n1/k). When k is even, the
total running time is

∑k/2−1
i=0 Õ(n(i+2)/k) = Õ(n1/2+1/k).

When k is odd, the middle level (k − 1)/2 will take time
Õ(|S| + B + D) = Õ(n1/2+1/(2k) + D), while the lower
levels will take

∑(k−3)/2
i=0 Õ(n(i+2)/k) = Õ(n1/2+1/(2k)). So

for odd k, the total running time is Õ(n1/2+1/(2k) + D).

3.3 Building the large trees

Building the trees C̃(u) for u ∈ Ai\Ai+1 when i ≥ �k/2� is
more involved, since the number of iterations for the simple
Bellman–Ford style approach grows like ≈n(i+2)/k . We will
use the fact that there are only few vertices in Ai , and divide
the computation into two phases. In the first phase we com-
pute virtual trees only on ≈√

n vertices, and in the second
phase we extend the trees to the entire graph. Before we turn
to the two-phase construction, we describe the preprocessing
stage, in which we build structures that are later used in both
phases.

3.3.1 Preprocessing

Let V ′ = A�k/2�, and set B = 4n/E[|V ′|] · ln n. That is,
for even k we set B = 4n1/2 · ln n, while for odd k, B =
4n1/2+1/(2k) · ln n. Apply Theorem 1 to G with the set V ′ and
parameters B and ε/2. By Claim 3 we may assume |V ′| ≤
4n1/2 ln n, and since 1/ε ≤ 48 log4 n, the number of rounds
required is whp Õ(n1/2+1/(2k) + D). From now on assume
that (2) indeed holds (with ε replaced by ε/2). This happens
whp. Let G ′ = (V ′, E ′, w′) be a (virtual) graph on G, and
for each u, v ∈ V ′ with duv < ∞, set the weight of the
edge connecting them to be w′(u, v) = duv (where duv is
the value computed in Theorem 1). Following [25], it can be
shown that

Claim 5 For any u, v ∈ V ′,

dG(u, v) ≤ dG ′(u, v) ≤ (1 + ε/2)dG(u, v). (12)

Proof The left hand side of (12) holds since if u =
v0, v1, . . . , vl = v is the shortest-path in G ′ from u to v,
then

dG ′(u, v) =
l−1∑

i=0

dvi vi+1

(2)≥
l−1∑

i=0

d B
G (vi , vi+1)

≥
l−1∑

i=0

dG(vi , vi+1) ≥ dG(u, v).

To see the right hand side of (12): if h(u, v) ≤ B then
(2) implies that dG ′(u, v) ≤ duv ≤ (1 + ε/2)d B

G (u, v) =
(1 + ε/2)dG(u, v). Otherwise, consider the shortest-path
from u to v in G. By Claim 3, there exist vertices u =
u0, u1, . . . , ul = v on this path such that ui ∈ V ′ and
h(ui , ui+1) ≤ B for all 0 ≤ i < l.10 Now, using the tri-
angle inequality and (2) again,

dG ′(u, v) ≤
l−1∑

i=0

dui ui+1

(2)≤ (1 + ε/2)
l−1∑

i=0

d B
G (ui , ui+1)

= (1 + ε/2)
l−1∑

i=0

dG(ui , ui+1)

= (1 + ε/2)dG(u, v). ��

Apply Theorem 2 on G ′ with parameters ε/3 and ρ =
max{1/k, log log n/

√
log n}. We obtain a (β, ε/3)-hopset

F with β = min{2Õ(
√
log n), (log n)O(k)}. The number of

rounds required is Õ(|V ′|1+ρ + D) · β2 = (n1/2(1+1/k) +
D) · min{2Õ(

√
log n), (log n)O(k)}.

Let G ′′ = (V ′, E ′ ∪ F, w′′) be the graph obtained from
G ′ by adding all the hopset edges. (Note that some edges
may have their weight replaced. In the case of conflict, the
weights w′′ agree with the weights of the hopset F .) By (4)
and (12) we have that G ′′ is indeed a virtual graph since
dG ′′(u, v) ≥ dG ′(u, v) ≥ dG(u, v). On the other hand,

d(β)

G ′′ (u, v) ≤ (1 + ε/3)dG ′(u, v)

≤ (1 + ε/2)(1 + ε/3)dG(u, v)

≤ (1 + ε)dG(u, v).

We conclude that the graph G ′′ satisfies the following
property: for every u, v ∈ V ′,

dG(u, v) ≤ d(β)

G ′′ (u, v) ≤ (1 + ε)dG(u, v). (13)

3.3.2 Construction

Fix �k/2� ≤ i ≤ k − 1. Recall that every v ∈ V ′ knows
of the hopset edges touching it, and every u ∈ V knows the
approximate B-limited distances to the vertices of V ′. We
build the trees C̃(u) for all u ∈ Ai\Ai+1 in parallel, in two
main phases.

10 The claim guarantees the existence of u1, but we may apply it on the
pair u1, v as well (since the shortest-path between them is a subset of
the u to v shortest-path) to obtain u2, and so on.
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Phase 1 For each such u, conduct β iterations of depth-
bounded Bellman–Ford in the graph G ′′.11 (Since this is a
virtual graph, all the messages will be collected at the root
of some BFS tree of G via pipelined convergecast, and then
broadcasted to the entire graph G via pipelined broadcast.
See Lemma 1.) If v ∈ V ′ receives a message that originated
at u with (current) distance to u which is bv(u), it will join
the approximate cluster of u and forward the message to its
neighbors in G ′′ iff

bv(u) <
d̂i+1(v)

(1 + ε)3
. (14)

[Recall that d̂i+1(v) is the approximate distance from v to the
its (approximate) level i+1pivot.] The vertexvwill also store
its virtual parent, the neighbor p ∈ V ′ that sent v themessage
which last updated bv(u). For each u ∈ Ai\Ai+1, we have
a (virtual) tree C̃ ′(u) on the vertices of V ′ that received a
message originated at u and satisfy (14).

Phase 1.5 The purpose of this step is to guarantee that every
vertex which was added to the (virtual) tree being built for
some u ∈ Ai\Ai+1, will have an appropriate parent in G
(through which it will route later on). The issue is that hopset
edges are not equipped with parents in G, unlike the edges of
G ′, for which Remark 1 provides parents. We deal with this
by using the path-reporting property of hopset edges—each
such edge is realized by a path inG ′, sowe ensure the vertices
of this path join the tree as well, and set parents accordingly.
We now describe this formally.

When the first phase ends after β iterations, for every
hopset edge (x, y) ∈ F such that x is the virtual parent of y
we do the following. Let P be the path in G ′ realizing this
edge. Each v ∈ V ′(P)\{x} that has bv(u) value (for some
u ∈ Ai\Ai+1) at least bx (u)+ dP (x, v), updates its distance
estimate to be bv(u) = bx (u) + dP (x, v), joins C̃ ′(u) (if it
hasn’t already), and sets its virtual parent as v′, where v′ is
the neighbor of v on P closer to x (recall Property 1, which
guarantees that v knows the relevant information).

Finally, set the real parents: for each vertex v ∈ C̃ ′(u)

with a virtual parent v′, set p(v) = pv′(v) (see Remark 1 for
the definition and computation of pv′(v)). Recall that (v, v′)
is a virtual edge (of the graph G ′), while (v, p(v)) is a “real”
edge from G.

Phase 2Herewe extend each virtual tree C̃ ′(u) to the vertices
ofV . For all u ∈ Ai\Ai+1, every vertex v ∈ C̃ ′(u) broadcasts
to the entire graph its value bv(u) (and the name of u). A
vertex y ∈ V will add itself to C̃(u) if

dyv + bv(u) <
d̂i+1(y)

1 + ε
, (15)

11 See (14) below for the required condition on depth.

where dyv is the value computed in Theorem 1. Also, y will
set p(y) = pv(y) as its (real) parent in C̃(u) for the v min-
imizing by(u) = dyv + bv(u) (breaking ties arbitrarily). We
remark that the condition of (15) is less stringent than that
of (14). That is, vertices of V ′ that did not join C̃ ′(u), may
now be included in C̃(u).

Claim 6 For any u ∈ Ai\Ai+1, the vertices v ∈ V ′ added
to C̃ ′(u) in phase 1.5 with distance estimate bv(u) satisfy the
following:

bv(u) <
d̂i+1(v)

(1 + ε)2
. (16)

Proof To see this, let (x, y) ∈ F be the hop-set edge which
triggered the addition of v to C̃ ′(u) at phase 1.5, and let P
be the path in G ′ realizing this edge, then

bv(u) ≤ dP (x, v) + bx (u) = dP (x, y) − dP (v, y) + bx (u)

= by(u) − dP (v, y).

It follows that

bv(u) ≤ by(u) − dP (v, y)
(14)
<

d̂i+1(y)

(1 + ε)3
− dG(v, y)

(5)≤ dG(y, Ai+1) − dG(v, y)

(1 + ε)2

≤ dG(v, Ai+1)

(1 + ε)2

(5)≤ d̂i+1(v)

(1 + ε)2
. ��

The next lemma asserts that the values bv(u) approximate
well the distances to the root u of the virtual tree.

Lemma 7 For any u ∈ Ai\Ai+1 and v ∈ C̃(u) with the
corresponding value bv(u), we have that

dG(u, v) ≤ bv(u) ≤ (1 + ε)4dG(u, v). (17)

Proof We consider 3 cases according to the phase in which
v joins C̃(u).
Case 1 First we prove for v ∈ C̃ ′(u) added at phase 1. Note
that the left hand side of (17) can be verified by induction
on the iteration in which bv(u) was last updated. The base
case u = v clearly holds. Assume it holds for v′ (the virtual
parent of v). Recall that w′′ is the weight function in G ′′. We
have

bv(u) = w′′(v, v′) + bv′(u)

≥ dG ′′(v, v′) + dG(u, v′)
(13)≥ dG(u, v).

We now turn to the right hand side of (17). Seeking con-
tradiction, assume

bv(u) > (1 + ε)4dG(u, v). (18)
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Let P be the shortest β-hops path in G ′′ from u to v, and
we will show (by induction) that every vertex z on P , which
lies h hops from u, must join C̃ ′(u) with value bz(u) ≤
dP (u, z) by the iteration h of the Bellman–Ford exploration
of phase 1. The base case for z = u clearly holds. Fix any
other z ∈ P with h hops to u on P , and assume it holds for
p, the neighbor of z on P (the one closer to u), so we have
that bp(u) ≤ dP (u, p) by iteration h − 1. At iteration h, p
will broadcast its value bp(u), and thus z could have updated
its value to be bp(u) + w′′(p, z). In particular,

bz(u) ≤ bp(u) + w′′(p, z)

≤ dP (u, p) + w′′(p, z) = dP (u, z). (19)

We now argue bz(u) satisfies (14), which would cause z to
join C̃ ′(u),

bz(u)
(19)≤ dP (u, z)

= dP (u, v) − dP (v, z)

≤ d(β)

G ′′ (u, v) − dG(v, z) (20)
(13)≤ (1 + ε)dG(u, v) − dG(v, z)
(18)≤ bv(u)

(1 + ε)2
− dG(v, z) (21)

(14)
<

d̂i+1(v)

(1 + ε)4
− dG(v, z)

(5)≤ dG(v, Ai+1) − dG(v, z)

(1 + ε)3

≤ dG(z, Ai+1)

(1 + ε)3

(5)≤ d̂i+1(z)

(1 + ε)3
, (22)

where (20) uses that P is the shortest β-hops path in G ′′, and
(21) uses the contradiction assumption (18) (note that it was
used with the term (1 + ε)3 rather than (1 + ε)4). Hence z
joins C̃ ′(u), and so bv(u) ≤ dP (u, v). Hence

bv(u) ≤ dP (u, v) = d(β)

G ′′ (u, v)
(13)≤ (1 + ε)dG(u, v),

which contradicts our assumption that (17) does not hold.
Case 1.5 We now turn to vertices v ∈ C̃ ′(u) who joined
in phase 1.5. The left hand side holds since if (x, y) ∈ F
is the hop-set edge that triggered the addition of v, and P ′
is the path in G ′ realizing this edge, we have that bv(u) =
dP ′(v, x) + bx (u) ≥ dG(v, x) + dG(x, u) ≥ dG(v, u). For
the right hand side, note that we only used the fact that v

joined in phase 1 at (22), so we can repeat the argument,
replacing the use of (14) by (16). We indeed lose a factor
of 1 + ε, but the inequality is still valid, yielding the same
contradiction.

Case 2 Finally, we turn to v ∈ C̃(u) joining at phase 2. Note
that for each such v, there exists some x ∈ V ′ for which v sets
its value to be bv(u) = dvx +bx (u) ≥ dG(v, x)+dG(x, u) ≥
dG(v, u), which proves the left hand side of (17). For the right
hand side, we consider two subcases.
Subcase a Consider first the case that h(v, u) ≤ B. Since
v could update bv(u) directly from the broadcast of u itself,
we have

bv(u) ≤ 0 + dvu
(2)≤ (1 + ε)d(B)

G (v, u) = (1 + ε)dG(v, u),

as required.
Subcase b The other case is when h(v, u) > B, but then
Claim 3 (with i = �k/2�) implies that there exists x ∈ V ′
on the shortest path in G from v to u, with h(v, x) ≤ B. In
particular, d(B)

G (x, v) = dG(x, v). Again seeking contradic-
tion, assume (17) does not hold for v. Let P be the shortest
(at most) β-hops path from u to x in G ′′. We claim that every
z ∈ P must have joined C̃ ′(u) at phase 1. To see this by
induction, fix z ∈ P with h hops from u on P , and assume p
(the neighbor of z closer to u) did join by the h−1 iteration of
Bellman–Ford, with bp(u) ≤ dP (u, p). When p broadcasts
bp(u) at step h, then indeed bz(u) ≤ bp(u) + w′′(p, z) =
dP (u, z). Now,

bz(u) ≤ dP (u, z)

≤ d(β)

G ′′ (u, x) − dP (z, x)

(13)≤ (1 + ε)dG(u, x) − dG(z, x)

= (1 + ε)[dG(u, v) − dG(x, v)] − dG(z, x)

≤ bv(u)

(1 + ε)3
− dG(x, v) − dG(z, x)

(15)
<

d̂i+1(v)

(1 + ε)4
− dG(x, v) − dG(z, x)

(7)≤ dG(v, Ai+1) − dG(x, v) − dG(z, x)

(1 + ε)3

≤ dG(z, Ai+1)

(1 + ε)3

≤ d̂i+1(z)

(1 + ε)3
. (23)

[(23) is because x lies on the shortest u − v path in G.]
This implies bz(u) satisfies (14) and thus z indeed joins

C̃ ′(u) by iteration h of phase 1. In particular, x joins by the
end of phase 1, and broadcasts bx (u) at phase 2. We already
proved that x satisfies (17), so we have that

bv(u) ≤ bx (u) + dxv ≤ (1 + ε)4dG(u, x)+(1 + ε)d B
G (x, v)

≤ (1 + ε)4dG(u, v),
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(Recall that dxv is the value computed by the algorithm of
Theorem1.) This yields a contradiction to (18) and concludes
the proof. ��

The following lemma shows that the sets C̃(u) satisfy the
requirement from approximate clusters. The proof is similar
to that of Lemma 7, though it uses the definition of Cε(u),
rather than the (contradiction) assumption that bv(u) is large.

Lemma 8 For any u ∈ Ai\Ai+1, the set C̃(u) satisfies (9).

Proof For the right hand side of (9), note that if v ∈ C̃ ′(u),
then

dG(u, v)
(17)≤ bv(u)

(14)∧(16)
<

d̂i+1(v)

(1 + ε)2

(5)≤ dG(v, Ai+1),

so v ∈ C(u) as well. For the left hand side of (9) (at this
point we only show that C̃ ′(u) ⊇ C6ε(u) ∩ V ′), consider
v ∈ C6ε(u) ∩ V ′, and let P be the (at most) β-hops shortest
path from v to u in G ′′. It suffices to show that every vertex
y along this path which is h hops from u will join C̃ ′(u) and
have by(u) ≤ dP (y, u) by the iteration h of Bellman–Ford
in phase 1. Assume (by induction) that p, the predecessor
of y on P , joins C̃ ′(u) and satisfies bp(u) ≤ dP (p, u) by
iteration h − 1. Thus, p sends at iteration h the value bp(u).
Since by(u) ≤ w′′(y, p) + bp(u) ≤ w′′(y, p) + dP (u, p) =
dP (u, y), it remains to show that this value of by(u) satisfies
(14), and thus y joins C̃ ′(u). To this end,

by(u) ≤ dP (u, y)

≤ d(β)

G ′′ (u, v) − dP (y, v)

(13)≤ (1 + ε)dG(u, v) − dG(y, v)

≤ (1 + ε)dG(v, Ai+1)

1 + 6ε
− dG(y, v)

<
dG(v, Ai+1) − dG(y, v)

(1 + ε)3

≤ dG(y, Ai+1)

(1 + ε)3

(5)≤ d̂i+1(y)

(1 + ε)3
.

where the fourth inequality uses that v ∈ C6ε(u) (recall (8)).
This implies v will join C̃ ′(u) in phase 1.

We now prove that (9) holds for C̃(u). For the right hand
side, let y ∈ C̃(u)\C̃ ′(u), then there exists v ∈ V ′ for which
y satisfies (15). So we obtain

dG(y, u) ≤ dG(y, v) + dG(v, u)
(2)∧(17)≤ dyv + bv(u)

(15)
<

d̂i+1(y)

1 + ε

(5)≤ dG(y, Ai+1).

This implies that y ∈ C(u). For the left hand side of (9),
assume y ∈ C6ε(u). Consider first the case that h(u, y) ≤ B.
Then when u broadcasts bu(u) = 0 at phase 2, y will add
itself to C̃(u) because

dyu + 0
(2)≤ (1 + ε)d(B)

G (y, u) = (1 + ε)dG(y, u)

(8)≤ 1 + ε

1 + 6ε
· dG(y, Ai+1)

(5)
<

d̂i+1(y)

1 + ε
. (24)

The other case is that h(y, u) > B. Then by Claim 3 there
is a vertex v ∈ V ′ on the shortest path from y to u so that
h(y, v) ≤ B. We now argue that v ∈ C̃ ′(u), by a similar
(though slightly more involved) argument as above. To see
this, consider the shortest path P with (at most) β-hops in
G ′′ from u to v, and we claim that each vertex z on this path
with h hops from u, will join C̃ ′(u) with bz(u) ≤ dP (u, z)
by iteration h of the Bellman–Ford of phase 1. Again by
induction, at step h the vertex z heard bp(u) ≤ dP (u, p)

from its predecessor p on P . Then indeed bz(u) ≤ bp(u) +
w′′(p, z) ≤ dP (u, z). Now we show that z joins C̃ ′(u).

bz(u) ≤ dP (u, z)

= d(β)

G ′′ (u, v) − dP (z, v)

(13)≤ (1 + ε)dG(u, v) − dG(z, v)

= (1 + ε)[dG(u, y) − dG(y, v)] − dG(z, v) (25)

≤ (1 + ε)dG(y, Ai+1)

1 + 6ε
− dG(y, v) − dG(z, v)

≤ dG(y, Ai+1) − dG(y, v) − dG(z, v)

(1 + ε)3

≤ dG(z, Ai+1)

(1 + ε)3

(5)≤ d̂i+1(z)

(1 + ε)3
, (26)

where (25) uses that v is on the shortest path in G from u
to y, and (26) uses that y ∈ C6ε(u). In particular, we have
shown v ∈ C̃ ′(u) by the end of phase 1. It follows that v will
broadcast the value bv(u) ≤ d(β)

G ′′ (u, v) in the second phase.
Since h(y, v) ≤ B,

by(u) ≤ dyv + bv(u)

(2)≤ (1 + ε)d B
G (y, v) + d(β)

G ′′ (u, v)

(13)≤ (1 + ε)[dG(y, v) + dG(u, v)]
= (1 + ε)dG(y, u)
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(8)≤ 1 + ε

1 + 6ε
· dG(y, Ai+1)

<
d̂i+1(y)

1 + ε
.

So y will be added to C̃(u). This concludes the proof of
the lemma. ��

Our next goal is to argue that the parent setting ensures
that root-vertex distances in each cluster tree satisfy (10), i.e.,
are approximated up to a factor (1+ ε)4. It suffices to prove
the following claim.

Claim 9 For any u ∈ Ai\Ai+1, and any v ∈ C̃(u), if p =
p(v) is the (real) parent of v with corresponding value bp(u),
then p ∈ C̃(u) and

bv(u) ≥ w(v, p) + bp(u). (27)

Once this claim is established, we get by induction on the
depth of the tree that dC̃(u)

(u, v) ≤ bv(u). The base case
when u = v clearly holds. Assume for p = p(v) that
dC̃(u)

(u, p) ≤ bp(u), and now

dC̃(u)
(u, v) = w(v, p) + dC̃(u)

(u, p)

≤ w(v, p) + bp(u)
(27)≤ bv(u).

Combining this with Lemma 7 establishes (10).

Proof of Claim 9 Consider first the case that v ∈ C̃ ′(u), and
there are two sub-cases to consider. In the first sub-case, v

updated bv(u) in phase 1 from some x ∈ C̃ ′(u), who sent
bx (u) over the (virtual) edge (x, v) ∈ E ′ (which is not a hop-
set edge). Then by the definition of G ′, bv(u) = w′(x, v) +
bx (u) = dxv + bx (u), the virtual parent of v is set to x ,
and the real parent is thus p = px (v). Since p receives a
message from x in the second phase, it sets bp(u) to at most
dpx + bx (u). It follows that

bp(u) ≤ dpx + bx (u)
(3)≤ dvx − w(v, p) + bx (u)

= bv(u) − w(v, p), (28)

which satisfies (27). But we must also argue that p indeed
joins the tree C̃(u). Here we use the relaxed condition of (15)
[compared to (14)], and obtain that

bp(u)
(28)≤ bv(u) − w(v, p) (29)

(14)
<

d̂i+1(v)

(1 + ε)3
− dG(v, p) (30)

(5)≤ dG(v, Ai+1) − dG(v, p)

1 + ε

≤ dG(p, Ai+1)

1 + ε

≤ d̂i+1(p)

1 + ε
, (31)

which satisfies (15).
The second sub-case is that v updated bv(u) in phase 1 or

1.5 due to some hop-set edge (x, y) ∈ F , so that v lies on the
path P in G ′ realizing this edge (it could be that y = v, if it
happened in phase 1). We set bv(u) = bx (u)+dP (x, v), and
the virtual parent of v is v′ ∈ V ′, its neighbor on P which is
closer to x . Recall that in G ′, the weight w′(v, v′) = dvv′ , so
that

dP (x, v) = dP (x, v′) + dvv′ . (32)

The real parent of v is set as p = pv′(v). Since v′ broadcasts
in phase 2 its estimate bv′(u) ≤ bx (u)+dP (x, v′), it follows
that

bp(u) ≤ dpv′ + bv′(u)

(3)≤ (dvv′ − w(v, p)) + (bx (u) + dP (x, v′))
(32)= bx (u) + dP (v, x) − w(v, p)

= bv(u) − w(v, p),

as required in (27). Again, to see that p ∈ C̃(u), we repeat
the calculation of (29) with one change: in (30), replace the
use of (14) by (16), which will have the factor of (1 + ε)3

replaced by (1 + ε)2, but this suffices to satisfy (31).
We turn to the case that v ∈ C̃(u)\C̃ ′(u). Let x ∈ C̃ ′(u)

be the vertex which broadcasts in phase 2 a value bx (u) min-
imizing bv(u) = dvx + bx (u). The parent of v is thus set to
be p = px (v), and now

bp(u) ≤ dpx + bx (u)
(3)≤ dvx − w(v, p) + bx (u)

= bv(u) − w(v, p),

The proof that p ∈ C̃(u) is again similar to (29). ��

Running time We noted that the number of rounds required
for the preprocessing is Õ(n1/2+1/(2k) + D) ·min{2Õ(

√
log n),

(log n)O(k)}. Since by (9) we have C̃ ′(u) ⊆ C(u), then
Remark 2 implies that v ∈ V ′ sends at most Õ(n1/k) dis-
tance estimates bv(·). As |V ′| ≤ Õ(n1/2), by Lemma 1,
implementing a single Bellman–Ford iteration will take
Õ(n1/2+1/k + D) rounds. As there are β iterations in phase
1 (and a single one in phases 1.5 and 2), the total number
of rounds is Õ(n1/2+1/k + D) ·min{2Õ(

√
log n), (log n)O(k)}.

(For odd k, both |V ′| · n1/k, B ≤ Õ(n1/2+1/(2k)), so we get
Õ(n1/2+1/(2k) + D) · min{2Õ(

√
log n), (log n)O(k)} rounds.)
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4 Distributed tree routing

In this section we present a modification of the (exact) rout-
ing scheme of Thorup–Zwick for rooted trees, that can be
implemented efficiently in a distributed manner. The price is
that the size of the labels and tables increases by a factor of
log n, compared to what [33] achieved.

Theorem 5 Fix a graph G = (V, E) on n vertices with
hop-diameter D. For any tree T which is a subgraph of G,
there is a routing scheme with stretch 1, routing tables of size
O(log n) and labels of size O(log2 n), that can be computed
in a distributed manner within Õ(

√
n + D) rounds.

Lemma 10 If we are given n trees, each a sub-graph of G =
(V, E), so that each vertex v ∈ V participates in at most s
trees, then routing schemes for all the trees can be computed
in Õ(

√
n · s + D) rounds.

Let us first recall briefly how (a simplified version of) the
TZ scheme works. For every non-leaf vertex, define a heavy
child as the child with the largest subtree. Run a depth first
search (DFS) on the tree, each vertex u receives an entry time
au and exit time bu . The routing table stored at each vertex
u consists of the name and port number of its parent p(u) in
the tree, the name (and port) of its heavy child h(u), and the
numbers au, bu . The label of a vertex u contains the number
au and additional �log n�words: consider the path P from the
root to u, for every vertex w on this path such that its heavy
child is not on P , we append to the label of u the name of w

and the port number leading from w to its child on P . The
observation is that whenever the path does not use the heavy
child, the size of the subtree shrinks by a factor of at least
2, so this can happen only �log n� times. In order to route
from u to v, every intermediate vertex x does as follows: if
ax = av we are done, if av /∈ (ax , bx ), we know the DFS did
not find v in the subtree rooted at x , so x sends the message
to its parent, and if av ∈ (ax , bx ) then v lies in the subtree of
x . In the latter case, x examines the label of v for an entry of
the form (x, x ′), if it exists it sends to its child x ′, if not, x
sends the message to its heavy child.

In order to obtain a scheme that runs efficiently in a dis-
tributed manner, we cannot compute heavy children and run
DFS on the entire tree. Instead, we shall apply certain vari-
ants of the TZ-scheme in two levels. Let T be a tree on the
vertices V (T ) ⊆ V , rooted at z. For u ∈ V (T ), denote by
p(u) the parent of u in T .We assume that every vertex knows
the names of its parent and its children. The basic idea is to
randomly sample γ ≥ c · ln n, for a sufficiently large con-
stant c, vertices U ⊆ V . (γ here is a parameter.) Each vertex
in V chooses itself to U independently with probability γ

n .
Partition the tree T into subtrees according to the vertices of
U (T ) = (U ∩ V (T )) ∪ {z}, by removing each edge from a
vertex ofU (T ) to its parent. Note that this partitions T into a

forest F of |U (T )| subtrees, each of these subtrees is rooted
at a vertex ofU (T ). Forw ∈ U (T ), denote by Tw the subtree
in F rooted inw. Let T ′ denote the virtual tree on the vertices
of U (T ), where w is a parent of u in T ′, if p(u) lies in Tw.
We shall devise a routing scheme for each Tw, and a global
scheme that routes in T ′. We begin by bounding the depth of
each subtree; let B = 4n

γ
· ln n.

Claim 11 With high probability, |U | = O(γ ), and for each
w ∈ U (T ), the tree Tw has depth at most B.

Proof The first event holds with high probability by a sim-
ple Chernoff bound. For the second: by independence, the
probability that a path P in T of length B has P ∩ U = ∅, is
(
1 − γ

n

)4n/γ ln n ≤ 1

n4 .

Taking a union bound on the O(n2) possible paths (in a tree,
choosing the path’s endpoints determines it) completes the
proof. ��
Remark Observe that we still have high probability that the
events of Claim 11 hold over n different trees of the Thorup–
Zwick cover.

From now on assume the events of Claim 11 hold. The
assignment has two phases.

Phase 1 In the first phase we compute a routing scheme for
each Tw in the forest F , in parallel. In each round, every
vertex u that received messages from all its children, sends
to its parent in F the size of its subtree (by summing up the
sizes of the subtrees of the children of u). By Claim 11, the
depth of each tree in F is at most B, and in each round we
send one word per vertex. Hence after B rounds every vertex
knows the size of its subtree (in F), and in particular, can
infer who is its heavy child. Now each w ∈ U (T ) can start a
parallel DFS of Tw—that is, every vertex assigns entry and
exit times to all if its children in parallel (it is possible since it
knows the sizes of every child’s subtree). Each vertex in Tw

adds to its routing table (p(x), h(x), ax , bx , w), which are
the name of the parent of x , the heavy child of x , the entry
and exit times, and the name w. This computation (parallel
DFS) will also require O(B) rounds, since all subtrees work
in parallel.

The (local) label assignment for vertices in Tw is done
in the following manner. Starting from w (which has empty
label), every vertex x that receives a label � from its parent,
and has children x1, . . . , xl , sends � to its heavy child, and
� ◦ (x, xi ) to xi for each non-heavy child xi . The label �(x)

will consist of ax and the list � of edges that was given to x .

Phase 2 In the second phase we compute a routing scheme
on T ′. Every u ∈ U (T ) sends a message to its parent x
in T , and receives from x the following message: �(x), the
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name w such that x ∈ Tw (so that the edge (w, u) should be
in T ′), and also the port number e(x, u) of x leading to u.
Then every such u broadcasts ((w, u), x, �(x), e(x, u)) to the
entire graph. Once the root vertex z has full information on
T ′, it may locally compute the TZ routing scheme for T ′. The
routing table given to u ∈ U (T ) is slightly different than in
the usual scheme, as it will contain local routing information
for the vertex leading to the heavy child. More formally, the
table will be (h′(u), �(y), e(y, h′(u)), a′

u, b′
u). Here h′(u) is

the name of heavy child of u in T ′, y ∈ Tu is the portal vertex
which is the parent of h′(u) in T , and e(y, h′(u)) is the port
of y leading to h′(u). Note that z has the name, label and the
appropriate port of y when h′(u) reported the edge (u, h′(u)).
Finally a′

u, b′
u are the entry and exit times of the DFS run by

z on T ′. Observe that �(y) has size O(log n), and this term
dominates the size of a routing table. There are at most O(γ )

such tables. Hence Lemma 1 implies that we can broadcast
to the entire graph all these messages within O(γ log n + D)

rounds. In addition, every vertex u ∈ U (T ) sends the routing
table given to it to all the vertices in Tu . Since we can send
the information inside each subtree in parallel, it will take
only O(B log n) rounds.

The label assignment to the vertices of T ′ is also modi-
fied, since for every possible edge taken in T ′ which is not
leading to a heavy child, we must add the local routing infor-
mation. Fix u ∈ U (T ). Assume ((v1, w1), . . . , (vl , wl)) is
the list of all edges in the path of T ′ from z to u, so that
each wi is a non-heavy child of vi . Ordinarily, this list would
have been the label of u (along with a′

u). However, in order
to be able to route in T ′, we replace each such edge with
(vi , wi , �(xi ), e(xi , wi )), where xi is the parent of wi in T ,
�(xi ) is the label xi received in the first phase (for local rout-
ingwithin Tvi ), and e(xi , wi ) is the port leading from xi towi .
Recall that z knows the label and appropriate port of every
such xi . Since each �(xi )has size atmost O(log n)words, and
l ≤ log n, we have that the label size is O(log2 n). As before,
each u ∈ U (T ) propagates this label �′(u) to every vertex in
Tu . The number of rounds is therefore O(γ log2 n + D).

Protocol The routing from u to v will be done as follows.
Assume we have arrived to an intermediate vertex x that
lies in Tw. First x checks if routing in T ′ is required, by
comparing a′

v with a′
x , b′

x (recall that a′
v is part of the label of

v, and the routing table of x contains a′
x = a′

w and b′
x = b′

w).
If a′

v = a′
x then v ∈ Tw, and we proceed to route inside Tw.

If a′
v /∈ (a′

x , b′
x ), we need to route to the subtree rooted at the

parent of w in T ′, and if a′
v ∈ (a′

x , b′
x ) then we need to route

to the appropriate child of w in T ′,
Routing inside Tw This is done exactly as in the TZ

scheme, while considering the local routing tables of ver-
tices in Tw and �(v). If ax = av we are done. If av /∈ (ax , bx )

we route to the parent of x (stored in the local routing table
of x), and when av ∈ (ax , bx ), we inspect �(v): if it contains

an edge of the form (x, x ′), for some x ′, we route to x ′. Oth-
erwise to the heavy child of x (the heavy child’s name is also
in the local routing table of x).

Routing to the parent of w in T ′ This is simple, x just
routes to its parent, its name is stored in the local routing
table of x . Eventually we will reach w (since all vertices in
Tw have the same �′ label), and route from it to vertex in the
tree of w’s parent in T ′.

Routing to a child of w in T ′ Here we inspect �′(v), if it
contains an entry of the form (w,w′, �(y), e(y, w′)) then we
know we have to route in T ′ from w to its child w′ in T ′.
Fortunately, the label �(y) provides us the required routing
information to route in Tw to the portal vertex y (that has w′
as a child in T ). From y we go to its child w′ using the port
e(y, w′). If the label �′(v) contains no such entry, then we
knowwe need to route to the heavy child ofw in T ′. Here the
label of v is useless, but we stored the label of y′ ∈ Tw, the
portal vertex which is the parent of this heavy child, in the
routing table of each vertex of Tw. Using the label of y′ we
can route locally in Tw, and from y′ route to h′(w) (using the
port number for the heavy child stored in the routing table).

When constructing routing tables and labels for one single
tree, the overall running time is O(γ · log2 n + D) + O(B ·
log n) = O(γ · log2 n + n

γ
· log2 n + D), i.e., O(D + √

n ·
log2 n), by setting γ = √

n.

Proof of Lemma 10 To avoid high running time, we shall
perform the routing tables and labels computations in par-
allel in all cluster trees, while appending to each message
the name of the relevant tree. In the first phase, which can
be implemented in Õ(

√
n) rounds for each tree, we send

information on the graph edges (every vertex notifies all its
neighbors in each round), so the overhead due to participa-
tion in up to s trees is only a factor of s. In the second phase,
however, we broadcast messages to the entire graph. So we
need a bound on the number of these messages. For each tree
T ′ (which consists of the vertices of U alone) we broadcast
two messages per vertex: the first informing the root of its
existence, its parent, and the local routing information. In
the second message, the root broadcasts routing information
and a label for the vertex. Each message is of size O(log2 n).
By charging these messages to the vertices of U , each such
vertex pays for 2 messages per tree containing it. But the
number of these trees is at most s, so we need to broadcast at
most Õ(

√
n · s) words. By Lemma 1, these can be broadcast

to the entire graph in Õ(
√

n · s + D) rounds.
We next argue that this bound can be further improved to

Õ(
√

n · s + D), using random start times (see e.g. [12]).
Every root w of a tree Tw in one of the forests F (each

cluster tree gives rise to one such a forest) tosses a start-
ing time start(w) uniformly at random from the interval
[1, c · ln n · √

ns], for a sufficiently large constant c. It then
starts broadcasting to vertices of Tw at time 20 · start(w). [It
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broadcasts to them the value start(w).] Each round of this
broadcast is replaced by stages consisting of 20 rounds each.
Specifically, a vertex x in Tw that already received the mes-
sage from its parent tries to deliver it to its children for 20
consecutive rounds. We will show that, whp, for every edge,
on one of these rounds no congestion will be experienced.
Only when these 20 rounds are over, the children of x will
start broadcasting.

Consider a specific edge e = (x, y) in a tree Tw. Let
w1, w2, . . . , ws be the roots of trees Twi that contain this
edge. [Recall that, by Claim 2, whp, s = O(n1/k · log n).]
Let t1, t2, . . . , ts be the respective hop-distances between wi

and the closer endpoint of ei to wi . In other words, for every
i ∈ [s], if wi broadcasted a message over Twi , and no other
messages would have interfered with its broadcast, then the
broadcast ofwi would traverse ei on step ti . (For convenience,
we number the steps starting from 0.)

For any index R, the probability that the broadcast of wi

willwant to traverse e on stage R, conditioned on the assump-
tion that it experienced no congestionwhatsoever before that,
is the probability that wi starts broadcasting at stage R − ti ,
i.e., this is equal to IP(start(wi ) = R − ti ). The latter prob-
ability is at most 1

c
√

ns ln n
. For a positive integer α ≤ s, the

probability that α cluster trees wish to employ e on stage
R, conditioned on the assumption that no congestion was
experienced by any of them so far, is at most

(
1

c ln n · √
ns

)α

·
(

s

α

)

≤
(

s

c ln n · √
ns

)α

≤
(

1

n1/2−1/(2k)

)α

.

For α = 20, this probability is at most 1
n10−10/k ≤ 1

n5
. By

union-bound over all stage indices R ≤ n, and all the |E | ≤
n2 edges, we still have an only negligible probability that a
congestion was ever experienced throughout the algorithm.
(Here we say that a congestion is experienced if a vertex v

wishes to broadcast amessagem on a stage R of the algorithm
through an edge (v, u) incident on v, and v cannot do it for
the entire α = 20 rounds of this stage, because of other
transmissions that employ the same edge.)

Hence, whp, in O(B · α) + O(
√

ns ln n) = Õ(B +
n1/2+1/(2k) ln n) rounds, all broadcasts of the values of start-
ing times will be completed. (Recall that B is an upper bound
on the depth of trees Twi .) This completes Phase 0 of the algo-
rithm.

Now the algorithm proceeds to Phase 1, on which con-
vergecasts are conducted in all these trees. As a result of
these convergecasts, every vertex x ∈ Twi knows the size of
its subtree in Twi . These convergecasts are conducted by a
similar procedure to the one that was described above, i.e.,
all leaves of Twi start broadcasting at stage start(wi ), and

each stage lasts for α = 20 rounds. Hence these converge-
casts are also completed in O(B + √

ns · ln n) rounds. Then
the “parallel DFSs” are conducted in all the trees in paral-
lel by the same procedure of tree broadcast. As a result, all
vertices x in these trees Twi learn their routing tables within
Twi . They also learn their routing labels within additional
O(B log n +√

ns log2 n) time. [Note that for labels one may
need to send messages of size O(log n) words, and so stages
of length O(α · log n) = O(log n) are needed.]

Phase 2 is performed in the same way as was already
described. Specifically, the algorithmconducts convergecasts
of messages (�(x), w, e(x, u)), where u ∈ U (T ) and x is its
parent in T , for some cluster tree T , over the BFS tree τ

of the entire graph G. Since every selected vertex u may
participate in up to s trees, and there are O(γ ) selected
vertices, this convergecast requires O(γ ·s+D) time. Analo-
gously, the broadcast of the computed routing tables requires
O(γ · s log n + D) time.

Then each u ∈ U (T ) sends its routing table to all ver-
tices of Tu . This is done using the tossed starting times and
with stages of α rounds each, as in Phase 1. Hence this step
requires O(B log n + √

ns log2 n) time. Finally, the labels
of selected nodes in T ′ are broadcasted over the BFS tree τ

within additional O(γ · s · log2 n + D) time.
To summarize, the overall running time of the algorithm

is Õ(B + D+√
ns +γ ·s) = Õ( n

γ
+ D+n1/2+1/(2k)+γ ·s).

By setting γ = √
n/s = n1/2−1/(2k)√

log n
, we get the running time

of Õ(
√

ns + D) = Õ(n1/2+1/(2k) + D). ��

5 Routing based on approximate clusters

In this section we show that approximate pivots and approxi-
mate clusters suffice for a compact routing scheme, and prove
our main result.

Theorem 6 Let G = (V, E) be a weighted graph with
n vertices and hop-diameter D, and let k ≥ 1 be a
parameter. Then there exists a routing scheme with stretch
at most 4k − 5 + o(1), labels of size O(k log2 n) and
routing tables of size O(n1/k log2 n), that can be com-
puted in a distributed manner within (n1/2+1/k + D) ·
min{(log n)O(k), 2Õ(

√
log n)} rounds, and for odd k only

(n1/2+1/(2k) + D) · min{(log n)O(k), 2Õ(
√
log n)} rounds.

Construction Apply Theorem 4 on G to obtain approximate
pivots and approximate clusters for all vertices. For each
0 ≤ i ≤ k − 1 and each u ∈ Ai\Ai+1, construct the routing
scheme for trees given by Theorem 5 on C̃(u). (We postpone
the proof of Theorem 5, i.e., the description of the algo-
rithm that constructs routing tables and labels for each tree,
to Sect. 4.) Specifically, in each tree, every vertex stores a
table of size O(log n) and has a label of size O(log2 n).

123



134 M. Elkin, O. Neiman

The routing table of each v ∈ V consists of all the tree-
routing tables, for every u ∈ V such that v ∈ C̃(u). The
label of v consists of the tree-labels for the (at most) k trees
C̃(ẑ0(v)), . . . , C̃(ẑk−1(v)), where ẑi (v) is the approximate
i-pivot of v (note that it could be that v does not belong to
some of these trees, the label of v will mark these asmissing).
ByRemark 2 there are atmost O(n1/k log n) trees containing
v, and as each tree-table is of size O(log n), the routing table
size is as promised. Since each tree-label is of size O(log2 n),
the label size also obeys the given bound.

Finding a tree Assume we would like to route from vertex u
to vertex v. The routing protocol will find a vertexw = ẑi (v)

for some 0 ≤ i ≤ k − 1, such that the stretch of the (unique)
path from u to v in the tree C̃(w) is at most 4k − 5 + o(1).
The algorithm to find such a vertex appears in Algorithm 1.

Algorithm 1 Find-tree(u, v)

1: i ← 0;
2: while |{u, v} ∩ C̃(ẑi (v))| < 2 do
3: i ← i + 1;
4: end while
5: return ẑi (v);

We note that our algorithm differs slightly from that of
[33], since it could be the case that v does not belong to the
cluster centered at the pivot of v at level i . For this reason we
keep searching until we find a cluster containing both u, v.

First we claim that the algorithm is correct. Note that the
definition of approximate cluster (9) implies that C̃(x) = V
for every x ∈ Ak−1 (this holds since the distance to Ak

is defined as ∞). Therefore when i = k − 1 it must be
that both u, v ∈ C̃(ẑk−1(v)), and the algorithm indeed halts.
The tree C̃(w) contains both u, v (where w = ẑi (v) is the
vertex returned by the algorithm), by definition. Finally, the
information from the label of v indicates which of these trees
contain it, and the routing table of u also lists the names of
all trees containing it. So we can run the algorithm from u
knowing the label of v.

Once u computes the root w, it appends w to the message
header alongwith the label of v. From this point on the header
does not change, and we route in the tree C̃(w). Since this
routing is exact, it remains to bound the stretch incurred by
using the tree.

Bounding stretch We distinguish between two types of iter-
ations i that the algorithm did not stop at. Let Iu = {0 ≤
i ≤ k − 1 : u /∈ C̃(ẑi (v))}, and let Iv = {0 ≤ i ≤ k − 1 :
{u, v}∩C̃(ẑi (v)) = {u}} be the remaining iterations in which
the algorithm did not halt. For any i ∈ Iu , by (9) it holds that
C6ε(ẑi (v)) ⊆ C̃(ẑi (v)). Hence, we have u /∈ C6ε(ẑi (v)),
which implies that

dG(u, ẑi+1(u))
(7)≤ (1 + ε)dG(u, Ai+1)

(8)≤ (1 + ε)(1 + 6ε)dG(u, ẑi (v))

≤ (1 + 8ε)dG(u, ẑi (v)). (33)

Similarly for i ∈ Iv ,

dG(v, ẑi+1(v)) ≤ (1 + ε)dG(v, Ai+1)

≤ (1 + ε)(1 + 6ε)dG(v, ẑi (v))

≤ (1 + 8ε)dG(v, ẑi (v)). (34)

Define the following values y0 = dG(u, v), x0 = 0, and
for 0 < i ≤ k − 1 define recursively yi = (1 + 10ε) · (y0 +
xi−1), and xi = (1+ε) ·(y0+ yi ). Assume that the algorithm
halted at iteration i ′. Then for each 0 ≤ i ≤ i ′ we claim that

dG(v, ẑi (v)) ≤ xi . (35)

We verify the validity of (35) by induction. The base case
trivially holds since ẑ0(v) = v and x0 = 0. Fix 0 < i ≤ i ′.
The algorithm did not halt at iteration i − 1. If it is the case
that i − 1 ∈ Iu , then we have that

dG(u, ẑi (u))
(33)≤ (1 + 8ε)dG(u, ẑi−1(v))

≤ (1 + 8ε) · (dG(u, v) + dG(v, ẑi−1(v)))

(35)≤ (1 + 8ε) · (y0 + xi−1)

≤ yi . (36)

The other case is that i − 1 ∈ Iv . Since ẑi (u) ∈ Ai we obtain

dG(u, ẑi (u))
(7)≤ (1 + ε)dG(u, Ai )

≤ (1 + ε)dG(u, ẑi (v))

≤ (1 + ε) · (dG(u, v) + dG(v, ẑi (v)))

(34)≤ (1 + ε) · (dG(u, v)

+(1 + 8ε)dG(v, ẑi−1(v)))

≤ (1 + 10ε) · (y0 + xi−1)

= yi (37)

We conclude that in both cases,

dG(v, ẑi (v)) ≤ (1 + ε)dG(v, Ai )

≤ (1 + ε)dG(v, ẑi (u))

≤ (1 + ε) · (dG(u, v) + dG(u, ẑi (u)))

(36)∧(37)≤ (1 + ε) · (y0 + yi )

= xi . (38)
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We now have a recurrence xi = (1 + ε)(2 + 10ε)y0 +
(1 + ε)(1 + 10ε)xi−1. Solving it yields

xi = (1 + ε)(2 + 10ε)y0

i−1∑

j=0

((1 + ε)(1 + 10ε)) j .

We use the fact that for any real x ≥ 0 and positive integer r
such that xr ≤ 1/2, the following holds (1+ x)r ≤ 1+2xr .
Now we may bound xi by

xi ≤ (2 + 13ε)y0

i−1∑

j=0

(1 + 12ε) j

≤ (2 + 13ε)y0

i−1∑

j=0

(1 + 24ε j)

≤ (2 + 13ε)y0(i + 12εi2)

≤ (2 + 13ε)y0(i + 1/(4k2)), (39)

where in the last inequality we use that ε = 1
48k4

≤ 1
48k2i2

.
Finally, using that i ′ ≤ k − 1 and that w = ẑi ′(v), the stretch
is given by

dC̃(w)
(u, w) + dC̃(w)

(w, v)

(10)≤ (1 + ε)4(dG(u, w) + dG(v,w))

(35)≤ (1 + 5ε) · (dG(u, v) + 2xi ′)
(39)≤ (1 + 5ε) · (1 + (4 + 26ε)(k − 1 + 1/(4k2)))

·dG(u, v)

≤ (4k − 3 + o(1)) · dG(u, v).

In order to improve the stretch to the promised 4k −
5 + o(1), we use same trick as in [33]. They used recur-
sive sampling to guarantee that each vertex u ∈ A0\A1 has
|C(u)| ≤ 4n1/k . (In the recursive sampling, centers of clus-
ters which are larger than 4n1/k may be sampled again to A1.
As shown in [33], this may increase by O(log n) factor the
size of A1. We note that this resampling can be easily done
in the distributed setting, since for the first level we compute
the exact clusters and know their respective sizes.) Now, each
vertex u ∈ A0\A1 will add to its routing table all the vertices
in C(u). The algorithm will change slightly in the first itera-
tion: we try to find u in C(v) as before, but also check if v is
in C(u). If v is found in C(u) then we are done (with stretch
1). Otherwise, it follows that dG(v, A1) ≤ dG(u, v), that is,
we can bound x1 ≤ (1+ ε) · y0. This saves an additive term
of dG(u, v) in both xi and yi for all i ≥ 1, and thus reduces
the final stretch by 2dG(u, v). We refer the reader to [33] for
more details.

Running timeByTheorem4, the time required to compute the
approximate pivots and the trees C̃(u) for every u ∈ Ai\Ai+1

is (n1/2+1/k + D) · min{(log n)O(k), 2Õ(
√
log n)}, when k is

even, and (n1/2+1/(2k) + D) · min{(log n)O(k), 2Õ(
√
log n)},

when k is odd. ByClaim 2, each vertex participates in at most
Õ(n1/k) trees.Hence, byLemma10,whichwill be stated and
proven in Sect. 4, it will take only Õ(n1/2+1/(2k)+ D) rounds
to compute the routing tables for all trees in parallel. We
conclude that the total number of rounds is (n1/2+1/k + D) ·
min{(log n)O(k), 2Õ(

√
log n)}, for even k, and (n1/2+1/(2k) +

D) · min{(log n)O(k), 2Õ(
√
log n)}, for odd.

6 Distance estimation

In this section we sketch how the routing tables can be used
for distance estimation, and prove the following.

Theorem 7 Let G = (V, E) be a weighted graph with n
vertices and hop-diameter D, and let k ≥ 1 be a param-
eter. Then there exists a distance estimation scheme, that
assigns a sketch of size O(n1/k log n) for each node, and
has stretch 2k − 1 + o(1), that can be computed by a
randomized distributed algorithm within (n1/2+1/k + D) ·
min{(log n)O(k), 2Õ(

√
log n)} rounds (whp). In the case of odd

k, the running time can be decreased to (n1/2+1/(2k) + D) ·
min{(log n)O(k), 2Õ(

√
log n)}. Furthermore, the distance com-

putation can be done in time O(k).

Apply Theorem 4, which computes all the approximate
pivots and approximate clusters. Each vertex v ∈ V includes
in its sketch the pair (u, bv(u)), for every u ∈ V so that
v ∈ C̃(u). (Here bv(u) is the approximate distance to u
computed in Sect. 3). Also for every 0 ≤ i ≤ k − 1, add
(ẑi (v), d̂i (v)), which is the approximate i-pivot and distance
to it. By Remark 2, every sketch is of size O(n1/k log n).
The algorithm that computes a distance estimate given two
sketches is similar to that of [34]. We state it formally in
Algorithm 2.

Algorithm 2 Dist(u, v)

1: i ← 0;
2: w ← u;
3: while v /∈ C̃(w) do
4: i ← i + 1;
5: (u, v) ← (v, u);
6: w ← ẑi (u);
7: end while
8: return d̂i (u) + bv(w);

Observe that the sketch contains all the relevant infor-
mation for executing Algorithm 2. When the while loop
terminates, it must be that v ∈ C̃(w). This implies that v

has the estimate bv(w), while u stores the approximate dis-
tance d̂i (u) to every one of its approximate pivots. The stretch

123



136 M. Elkin, O. Neiman

analysis is a variant of the analysis of [34], similar in spirit
to that of Sect. 5. Roughly speaking, on the stretch 2k − 1
achieved by Thorup and Zwick [34], we pay a multiplica-
tive factor of (1 + O(ε))k due to the fact that distances are
approximated. However, this boils down to an o(1) additive
term, since ε = 1

48k4
, and so (1 + O(ε))k = 1 + O(1/k3).

Appendix: Proof of Theorem 3

Let X ⊆ V be a set of vertices so that each v ∈ V is sampled
to X independently with probability 1/

√
n. Define V ′ =

A ∪ X , and note that with high probability B = 4
√

n ln n ≥
|V ′| (since it is given that |A| ≤ 2

√
n ln n). Apply the same

preprocessing steps as in Sect. 3.3.1 with V ′ as defined here,
to obtain a graph G ′′ on V ′ satisfying (13).

Computing approximate SPT for V ′ The first step is to com-
pute the values (d̂(v), ẑ(v)) for vertices v ∈ V ′. Every vertex
in v ∈ A initializes its values as (0, v), while v /∈ A sets
(∞,⊥). Conduct β = min{2Õ(

√
log n), (log n)O(k)} itera-

tions of Bellman–Ford rooted at A: at every iteration, every
vertex v ∈ V ′ broadcasts its pair (d̂(v), ẑ(v)) to the entire
graph, and if u ∈ V ′ has w′′(u, v) + d̂(v) < d̂(u), then u
updates its pair to be (w′′(u, v) + d̂(v), ẑ(v)). (Recall that
w′′ is the edge weight function of G ′′, where the latter is the
virtual graph given by Theorem 1 augmented with the hopset
edges of Theorem 2.)

The number of rounds required to construct G ′′ is
(n1/2+1/(2k) + D) · min{2Õ(

√
log n), (log n)O(k)}, and by

Lemma 1 this term also bounds the number of rounds it takes
to broadcast the O(|V ′| · β) messages for the Bellman–Ford
iterations.

Extending the SPT to V At the end of the β iterations of
Bellman–Ford, every vertex u ∈ V knows (d̂(v), ẑ(v)) for
every v ∈ V ′. Every vertex u ∈ V computes

d̂(u) = min
v∈V ′{duv + d̂(v)}, (40)

and sets ẑ(u) = ẑ(v), where v ∈ V ′ is the minimizer of (40).
(Recall that duv is the value computed in Theorem 1.)
Analysis We assume all the events of Claim 3 hold (which
happens with high probability). For u ∈ V let zu ∈ A be a
vertex satisfying dG(u, zu) = dG(u, A). Sincewe performed
β iterations of Bellman–Ford, using (13) with v ∈ V ′ and
zv ∈ A ⊆ V ′ we have that v′ satisfies (5).

Consider now some u ∈ V , and let v ∈ V ′ be the mini-
mizer in (40). The left hand side of (5) holds, as the fact that
v ∈ V ′ satisfies (5) implies

duv + d̂(v)
(2)≥ d(B)

G (u, v) + dG(v, A)

≥ dG(u, v) + dG(v, A) ≥ d(u, A).

For the right hand side of (5): in the case that h(u, zu) ≤ B,
by (2) we get that

d̂(u) ≤ duzu + d̂(zu) ≤ (1 + ε)d(B)
G (u, zu) + 0

= (1 + ε)dG(u, zu).

Otherwise h(u, zu) > B, and by Claim 3 there exists v ∈
X ⊆ V ′ on the shortest path in G from u to zu with h(u, v) ≤
B. Since (5) holds for v,

d̂(u) ≤ duv + d̂(v)

(2)≤ (1 + ε)d(B)
G (u, v) + (1 + ε)dG(v, A)

≤ (1 + ε)dG(u, v) + (1 + ε)dG(v, zu)

= (1 + ε)dG(u, zu).
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