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Abstract The k-set agreement problem is a generalization
of the consensus problem. Namely, assuming that each pro-
cess proposes a value, every non-faulty process must decide
one of the proposed values, under the constraint that at most
k different values are decided. This is a hard problem in
the sense that it cannot be solved in a pure read/write asyn-
chronous system, in which k or more processes may crash.
Oneway to sidestep this impossibility result consists inweak-
ening the termination property, requiring only that a process
decides if it executes alone during a long enough period of
time. This is the well-known obstruction-freedom progress
condition. Consider a system of n anonymous asynchronous
processes that communicate through atomic read/write reg-
isters, and such that any number of them may crash. This
paper addresses and solves the challenging open problem of
designing an obstruction-free k-set agreement algorithmwith
only (n−k+1) atomic registers. From a sharedmemory cost
point of view, our algorithm is the best algorithm known to
date, thereby establishing a new upper bound on the number
of registers needed to solve this problem. For the consensus
case (k = 1), the proposed algorithm is up to an additive
factor of 1 close to the best known lower bound. Further,
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the paper extends this algorithm to obtain an x-obstruction-
free solution to the k-set agreement problem that employs
(n − k + x) atomic registers (with 1 ≤ x ≤ k < n),
as well as a space-optimal solution for the repeated ver-
sion of k-set agreement. Using this last extension, we prove
that n registers are enough for every colorless task that is
obstruction-free solvable with identifiers and any number of
registers.
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1 Introduction

Two challenging adversaries: failures and anonymity Due
to failures, concurrent processes have to deal not only with
finite asynchrony (i.e., finite but arbitrary process speed), but
also with infinite asynchrony (i.e., process crashes). In this
context, mutex-based synchronization becomes inoperative,
andpioneeringworks in fault-tolerantdistributed computing,
e.g., [27,31], have instead promoted the design of “concur-
rent reading while writing” algorithms [25,32,37].

This new approach to synchronizing concurrent accesses
has given rise to novel progress conditions; namely wait-
freedom, non-blocking, and obstruction-freedom. Consider
a concurrent object O . Wait-freedom means that any oper-
ation on O must terminate if the invoking process does not
crash [22]. The non-blocking progress condition, also named
lock-freedom, states that at least one process that does not
crash returns from all its operations on O [26]. In the case of
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obstruction-freedom, a process should return from its opera-
tion on O if it executes solo during a long enough period of
time [23].

On the other hand, anonymous systems are characterized
by the fact that processes have no identity, execute the exact
same code and the same initialization of their local variables.
Hence, they are – in a strong sense – identical [3,39], andmay
only differ from their local input values.

Considering the previous adversaries that are crashes as
well as anonymity, a fundamental question is the following:
“Given some concurrent object, is it possible to imple-
ment this object despite the failures of processes and their
anonymity?” If the answer is “yes”, we are interested in
doing it with a small number of multi-writer/multi-reader
(MWMR) atomic registers.1 In this paper, we address this
fundamental question, where the concurrent object is k-set
agreement, and the progress condition under consideration
is obstruction-freedom.

Consensus and k -set agreement The k-set agreement prob-
lem is introduced in [12]. This problem generalizes con-
sensus, which corresponds to the case where k = 1. In
the following, we use the notation (n, k)-set agreement to
make explicit the fact that we consider a system of n pro-
cesses. Every participating process proposes a value, and
must decide a value if it does not crash (termination). On
the safety side, a decided value must be a value that was
proposed by some process (validity), and at most k different
values can be decided (agreement).

The case for obstruction-freedom Designing a determinis-
tic solution to the consensus problem in a non-anonymous
and asynchronous system prone to even a single crash is not
possible, be the communication medium a message-passing
system [17], or read/write registers [29]. More generally,
if k or more processes may crash, there is no determinis-
tic read/write algorithm able to solve (n, k)-set agreement
[7,24,35]. These impossibility results remain true in anony-
mous systems.

As we are interested in the computing power of pure
read/write asynchronous crash-prone anonymous systems,
we neither want to enrich the underlying system with addi-
tional power (e.g., synchrony assumptions, random numbers,
or failure detectors [6]), nor impose constraints on the input
vector collectively proposed by the processes [19]. As a con-
sequence, to sidestep the above impossibility results, instead
of wait-freedom or non-blocking, we consider in this paper
the obstruction-freedom progress condition [23]. For (n, k)-

1 Let us observe here that single-writer/multi-reader registers aremean-
ingless in anonymous systems. This is due to the fact that, as processes
have no identity, it is not possible to link each of them to some specific
registers (for which the process would be the only writer).

set agreement, this property establishes that a process decides
a value only if it executes solo during a “long enough” period
of time without interruption. The notion of x-obstruction-
freedom [38] extends this idea to any group of at most x
processes. The practical interest of obstruction-freedom is
discussed in [16]. An in-depth study of complexity issues of
obstruction-free algorithms is presented in [4].

Content and contributions of this paper: an historical
perspective In this paper, we present an obstruction-free
algorithm solving the (n, k)-set agreement problem in an
asynchronous anonymous read/write systemwhere any num-
ber of processes may crash. Our algorithm employs (n −
k + 1) MWMR atomic registers, i.e., exactly n registers
for consensus. In the case of (n, k)-set agreement, the

best lower bound known so far [15] is Ω(
√

n
k − 2). The

anonymous obstruction-free (n, k)-set agreement algorithms
presented in [13,15] requires 2(n − k) + 1 MWMR reg-
isters. Hence our algorithm provides a gain of (n − k)
registers.

For consensus, an algorithm is sketched in [41], which
(as ours) required n MWMR atomic registers. Always in
the case of consensus, Gelashvili [20] recently proved that
n/20 registers are necessary, and Zhu proved a lower bound
of n − 1 registers for non-anonymous consensus [42]. As a
consequence, the algorithm we present in this paper is up to
an additive factor of 1 close to the best known lower bound
for non-anonymous consensus.

In the repeated version of the (n, k)-set agreement prob-
lem, processes participate in a sequence of (n, k)-set agree-
ment instances.We further show that a simplemodification of
our base construction solves this problem without additional
registers. The authors of [15] prove that (n − k + 1) atomic
registers are necessary to solve the repeated (n, k)-set agree-
ment problem in an anonymous system. As a consequence,
our solution is space optimal.

A technical perspective The algorithms proposed in this
paper are round-based. They follow the pattern “snapshot;
local computation;write”,where the snapshot andwrite oper-
ations occur on (n − k + 1) MWMR registers. This pattern
is reminiscent of the one named “look; compute; move”
found in robot algorithms [18,36]. Interestingly, in our base
solution and in the x-obstruction-free variation, processes
do not maintain any local information between successive
rounds. In this sense, the two algorithms are locally memo-
ryless.

In our base algorithm, a register contains a quadruplet con-
sisting of a round number, two control bits, and a proposed
value. The algorithm exploits a partial order over the quadru-
plets. The way a process computes a new quadruplet is the
key of this algorithm. The variation for the repeated (n, k)-set
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agreement problem requires each register to store two addi-
tional fields, one of them being the sequence number of the
corresponding instance, the other one containing the values
decided in the previous (n, k)-set agreement instances. In the
x-obstruction-free algorithm, the last field of a quadruplet is
a set of values, allowing up to x processes to concurrently
progress.

The base algorithm we present hereafter applies a locally
memoryless variation of the following pattern: Each process
executes a sequence of asynchronous rounds, until it sees
two “identical” consecutive rounds. When this occurs, the
process can decide a value, and no other process will be
able to decide a different value in the next rounds. Multi-
ple wait-free consensus algorithm were proposed in the past
that apply this pattern (see e.g., [5,14,32–34]). These algo-
rithms cover anonymous as well as non-anonymous systems,
binary and multivalued consensus. Some use an eventual
leader failure detector Ω [11], while others rely on random-
ization.

A universality perspective In addition to the anonymous
algorithms for consensus and k-set agreement, we also
introduce in this paper a universal construction [22]. This
construction works with the obstruction-freedom progress
condition, and applies to concurrent objects that can be
implemented in anonymous systems with any number of
MWMR atomic registers. It requires only n such regis-
ters.

This universal construction tells us that, in the case of the
obstruction-freedom progress condition, distributed objects
implementable anonymously with any number of MWMR
atomic registers require in fact only n registers.

Furthermore, in regard to colorless tasks [8], that is
distributed problems which do not require some form of
symmetry breaking, we show that identifiers do not bring
more computational power. A similar result for colorless
tasks was recently presented in [40]. While our approach
is constructive, the one described in [40] is based on topol-
ogy.

Roadmap Section 2 presents the computing model and the
definitions used in this paper. Section 3 depicts an anonymous
obstruction-free algorithmsolving consensus.This algorithm
captures the essence of our solution. Its correctness is proved
in Sect. 4. Section 5 extends it to solve (n, k)-set agree-
ment. Then, the case where (n, k)-set agreement is used
repeatedly is addressed in Sect. 6. In Sect. 7, we consider
the x-obstruction-freedom progress condition, and present a
solution using (n − k + x) registers. The reduction results
on the power of repeated anonymous consensus (universal
construction) are presented in Sect. 8. Finally, Sect. 9 closes
the paper.

2 Computing model and problem definition

2.1 Computing model

Process model The distributed system consists of n asyn-
chronous processes {p1, . . . , pn}. When considering a pro-
cess pi , the integer i is called its index. Indexes are used to
ease the exposition from an external observer point of view.
Processes do not have identities and execute the very same
code. It is assumed that they know the value of n.

Let T denote the increasing sequence of time instants
(observable only from an external point of view). At each
time instant, a unique process is activated to execute a step.
A step consists in a read or a write to some register (access
to the shared memory) possibly followed by a finite number
of internal operations (on local variables).

Up to (n−1) processes may crash. Before crashing a pro-
cess executes correctly its algorithm. After it crashed (if it
ever does), a process executes no more step. From a termi-
nology point of view, and given an execution, a faulty process
is a process that crashes, and a correct process is a process
that does not crash. No process knows if it is correct or faulty
(this is because, before crashing, a faulty process behaves as
a correct one).

Communicationmodel In addition to processes, the comput-
ing model includes a communication medium made up of m
multi-writer/multi-reader (MWMR) atomic registers (let us
notice that anonymity prevents processes from using single-
writer/multi-reader registers). Registers are encapsulated in
an array denoted REG[1..m]. The registers are atomic. This
means that read and write operations appear as if they have
been executed sequentially, and this sequence (a) respects
the real-time order of non-concurrent operations, and (b) is
such that each read returns the value written by the closest
preceding write operation (or the initial value of the register
if there is no preceding write operation) [28]. When consid-
ering the set of concurrent objects defined from a sequential
specification, atomicity is named linearizability [26], and the
sequence of operations is called a linearization. Moreover,
the time instant at which an operation appears as being exe-
cuted is called its linearization point.

From atomic registers to a snapshot object At the upper
layer, where consensus and (n, k)-set agreement are solved,
weuse the arrayREG[1..m] to construct a snapshot object [1].
This object, denoted REG hereafter, provides processes with
the operations write() and snapshot(). When a process
invokes REG.write(x, v), it deposits the value v in REG[x].
When it invokes REG.snapshot() it obtains the content of
thewhole array.The snapshot object is linearizable, i.e., every
invocation ofREG.snapshot() appears as instantaneous. For
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function sup(T ) is % T is a set of quadruplets %
(S1) let eve conf ict , v be max(T ); % lexicographical order %
(S2) let tuples(T ) be {X | X ∈ T ∧ X.rnd = r};
(S3) let conf ict(T ) be conf ict ∨ |tuples(T )| > 1;
(S4) return eve conf ict(T ), v .

Fig. 1 The function sup()

the REG object, a linearization is a sequence of write and
snapshot operations.

An anonymous non-blocking (thus obstruction-free) im-
plementation of a snapshot object is described in [21]. This
implementation does not require additional atomic registers.
In the following, we consider that the snapshot object REG
is implemented using this algorithm.

2.2 Consensus and (n, k)-set agreement

Obstruction-free consensus Aconsensus object is a one-shot
object that provides each process with a single opera-
tion denoted propose(). “One-shot” means that a process
invokes propose() at most once. When a process invokes
propose(v), we say that it “proposes v”. When the invoca-
tion of propose() returns value v′, we say that the invoking
process “decides v′”.

A process executes “solo” when it keeps on executing
while the other processes have halted their execution (at any
point of their algorithm). In the context of the obstruction-free
progress condition (see below the OF-termination property),
the consensus problem is defined by the following properties,
that is, to be correct, any obstruction-free algorithm must
satisfy such properties.

– Validity. If a process decides a value, this value was pro-
posed by a process.

– Agreement. No two processes decide different values.
– OF-termination. If there is a time after which a correct
process executes solo, it decides a value.

– SV-termination. If a single value is proposed, all correct
processes decide.

Validity relates outputs to inputs. Agreement relates the out-
puts. Termination states the conditions under which a correct
process must decide. There are two cases. The first is related
to obstruction-freedom. The second one is independent of
the concurrency and failure pattern; it is related to the input
value pattern.2

2 In an anonymous system, the input values are the only way to distin-
guish processes.

Obstruction-free (n, k) -set agreement An obstruction-free
(n, k)-set agreement object is a one-shot object which has
the same validity, OF-termination, and SV-termination prop-
erties as consensus, and for which we replace the agreement
property with:

– Agreement. At most k different values are decided.

Section 3, that follows, describes a base algorithm to solve
the obstruction-free anonymous consensus problem. Fur-
ther in the paper, this algorithm is extended twice: first in
Sect. 5 to solve (n, k)-set agreement, then in Sect. 7, to
address the x-obstruction-freedomprogress condition (in lieu
of obstruction-freedom).

3 Obstruction-free anonymous consensus
algorithm

The obstruction-free anonymous consensus algorithm is pre-
sented in Fig. 2. This algorithm relies on the sup() function
detailed inFig. 1.As indicated in the Introduction, fromadata
structure point of view, its essence is captured by quadruplets
written in the MWMR atomic registers.

Shared memory The shared memory is made up of a
snapshot object REG, composed of n MWMR atomic reg-
isters. Initially, each of these registers contains a quadruplet
〈0,down,false,⊥〉. The meaning of these fields is the
following.

– The first field, denoted rd, is a round number.
– The second field, denoted �v� (level), has a value in

{up,down}, where up > down.
– The third field, denoted cf � (conflict), is a boolean (ini-
tially equals to false). We assume true > false.

– The last field, denoted va� holds a value. It is initialized
to⊥, a default value that cannot be proposed. We assume
that the set of proposed values is totally ordered, and that
⊥ is smaller than any proposed value.

When considering the lexicographical order, it is easy to see
that the set of all the possible quadruplets 〈rd, �v�, cf �, va�〉
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is totally ordered. This total order, and its reflexive closure,
are denoted “<” and “≤”, respectively.

Notion of conflict and the function sup() In Fig. 1, we define
the function sup(). This function plays a central role in the
algorithm. It takes a non-empty set of quadruplets T as input
parameter, and returns a quadruplet, which is the supremum
of T , defined as follows.

Let 〈r, �eve�, conf �ict, v〉 be the maximal element of T
according to the lexicographical order (line S1), and let
tuples(T ) be the set of tuples in T associated with the max-
imal round number r (line S2). The set T is conflicting if
either conf �ict is true, or the set tuples(T ) contains more
than one element (line S3).

Function sup(T ) first checks whether T is conflicting
(lines S2–S3). Then, at line S4, the function returns the tuple
〈r, �eve�, conf �ict(T ), v〉, where the flag conf �ict(T ) indi-
cates if the input set T is conflicting. Let us notice that,
since true > false, the quadruplet returned by sup(T )

is always greater than, or equal to, the greatest element in T ,
i.e., sup(T ) ≥ max(T ).

The algorithm Our base construction is pretty simple, and
consists in an appropriatemanagement of the snapshot object
REG, so that the n quadruplets it contains (a) never allow
validity or agreement to be violated, and (b) eventually allow
termination under good circumstances (which occur when
obstruction-freedom is satisfied or when a single value is
proposed).

In Fig. 2, when a process pi invokes proposes(vi ), it
enters a loop that it will exit at line 03 (provided it terminates)
with the statement return(va�), where va� is the decided
value. After entering the loop, a process issues a snapshot and
assigns the returned array to its local variable view[1..n] (line

02). Then, there are two main cases according to the value
stored in view.

– Case 1 (lines 03–05). All the entries of viewi contain the
same quadruplet 〈r, �eve�, conf �ict, va�〉, and r > 0.
Then, there are three sub-cases to consider.

– Case 1.1. If the level is up and the conflict is false,
the invoking process decides the value va� (line 03).

– Case 1.2. If now the level is down and the conflict
field is false, process pi enters the next round by
writing 〈r + 1,up,false, val〉 in the first entry of
REG (line 04).

– Case 1.3. If there is a conflict, pi enters the next round
by writing 〈r + 1,down,false, val〉 in the first
entry of REG (line 05).

– Case 2 (lines 06–08). Not all the entries of viewi are
equal or, possibly, one of them contains the quadruplet
〈0,−,−,−〉. In such a case, pi first calls the function
sup(view[1], · · · , view[n], 〈1,down,false, vi 〉) by
executing line 06. This call returns a quadruplet X greater
than all the input quadruplets, or equal to the greatest of
them. As we have seen previously, this quadruplet X may
inherit or discover a conflict. Moreover, as the quadruplet
〈1,down,false, vi 〉 is an input parameter of sup(),
X.va� cannot equal ⊥. Since none of the predicates at
lines 03–05 is satisfied, at least one entry of view[1..n]
is different than X . Thenprocess pi writes X intoREG[z],
where, from its point of view, z is the first entry of REG
whose content differs from X (lines 07–08).

The underlying operational intuition As indicated in the
Introduction, the intuition that underlies the algorithm pre-
sented at Fig. 2 is similar to the one used in some non-

operation propose(vi) is
(01) repeat forever
(02) view ← REG.snapshot();
(03) case (∃r > 0, va : ∀z : view[z] = r, up, false, va ) then

return(va );
(04) (∃r > 0, va : ∀z : view[z] = r, down, false, va ) then

REG.write(1, r + 1, up, false, va );
(05) (∃r > 0, va eve : ∀z : view[z] = eve true, va ) then

REG.write(1, r + 1, down, false, va );
(06) otherwise let eve cf va

← sup(view[1], · · · , view[n], 1, down, false, vi );
(07) z ← smallest index y such that view[y] = eve cf va ;
(08) REG.write(z, eve cf va );
(09) end case
(10) end repeat.

Fig. 2 Anonymous obstruction-free consensus
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anonymous consensus algorithms (e.g., [5,32,34]), namely if
a process executes two consecutive rounds (scans) returning
the same values, it can safely decide.

To understand the above observation, let us first consider
the very simple case where a unique process pi executes the
algorithm. With its initial call to REG.snapshot() at line
02, this process obtains a view in which all the elements
are equal to 〈0,down,false,⊥〉. Hence, pi executes line
06, where the invocation of sup() returns the quadruplet
〈1,down,false, vi 〉, that is written into REG[1] at line 08.
Then, during the second round, pi computes with the help of
function sup() again the quadruplet. 〈1,down,false, vi 〉.
This quadruplet is written into REG[2]. The above steps con-
tinue until pi writes 〈1,down,false, vi 〉 in all the registers
of REG[1..n]. When this occurs, pi obtains at line 02 a view
where all the elements equal 〈1,down,false, vi 〉. It con-
sequently executes line 04 and writes 〈2,up,false, vi 〉
in REG[1]. Then, during the following rounds, process pi
writes 〈2,up,false, vi 〉 in the other registers of REG, by
executing line 08. When this is done, pi obtains a snapshot
containing solely 〈2,up,false, vi 〉.When this occurs, pro-
cess pi executes line 03 where it decides the value vi .

Let us now consider the case where, while pi is execut-
ing, another process p j invokes propose(v j ) with v j = vi .
It is easy to see that, in such a case, pi and p j collaborate
to fill in REG with the same quadruplet 〈2,up,false, vi 〉.
If v j �= vi , depending on the concurrency pattern, a con-
flict may occur. For instance, it occurs if REG contains both
〈1,down,false, vi 〉 and 〈1,down,false, v j 〉. If a con-
flict appears, it will be propagated from round to round, until
a process executes alone a higher round.

Remark 1 Let us first notice that no process needs to mem-
orize in its local memory the values that it will use during
the next rounds. Not only processes are anonymous, but their
code is also memoryless (no persistent variables). The snap-
shot objectREG constitutes thewholememory of the system.
Hence, as defined in the Introduction, the algorithm is locally
memoryless. In this sense, and from a locality point of view,
it has a “functional” flavor.

Remark 2 Let us now assume the n-bounded concurrency
model [2,30]. This model is made up of an arbitrary number
of processes, but, at any time, there are at most n processes
executing steps. This allowsprocesses to leave the systemand
other processes to join it as long as the concurrency degree
does not exceed n.

The previous algorithm works without modification in
such a model. A proposed value is now a value proposed
by any of the N processes that participate in the algorithm.
Hence, if N > n, the number of proposed values can be
greater than the upper bound n on the concurrency degree.
This versatility dimension of the algorithm is a direct conse-
quence of the previous locally memoryless property.

4 Proof of the algorithm

This section presents a correctness proof of the previous
obstruction-free anonymous consensus algorithm. After a
few definitions provided in Sect. 4.1, Sect. 4.2 shows that
a relation “	” defined over the quadruplets is a partial order.
This relation is central to prove the key properties of the algo-
rithm. Such properties are established in Sects. 4.3 and 4.4.
Then, based on these properties, Sect. 4.5 shows that the
algorithm is correct.

4.1 Definitions and notations

Let E be the universal set of quadruplets that can be writ-
ten in REG. Given X ∈ E , its four fields are denoted X.rd,
X.�v�, X.cf � and X.va�, respectively. Relations > and ≥
refer to the lexicographical ordering over E . In addition,
where appropriate, we consider that the array view[1..n] is
the set {view[1], · · · , view[n]}.
Definition 1 Let X,Y ∈ E .

X � Y
def= (X > Y ) ∧ [(X.rd > Y.rd) ∨ (X.cf �)]

Wewrite X � Y (X “dominates” Y ) when (a) X is lexico-
graphically greater than Y and (b) the round of X is greater
than the round of Y , or X indicates a conflict (in this case, as
X > Y , we have X.rd = Y.rd).

At the operational level the algorithm ensures that the
quadruplets it generates are totally ordered by relation >.
Differently, the relation � (which is a partial order on these
quadruplets, see Sect. 4.2) captures the relevant part of this
total order, and is consequently the key cornerstone on which
the proof of the algorithm relies.

When X � Y holds, we say “X strictly dominates Y ”.
Similarly, “X dominates Y ”, denoted X 	 Y , means that
(X � Y ) or (X = Y ) holds. Relations � and  are defined
in the natural way.

Definition 2 Given a set of quadruplets T , T is homoge-
neous if it contains a single element, say X . We then write it
“T isH(X)”.

Notation 1 The value of the local variable view of a process
pi at time τ , is denoted viewτ

i . Similarly the value of an
atomic register REG[x] at time τ is denoted REGτ [x], and
the value of REG at time τ is denoted REGτ .

Notation 2 W(x, X) denotes the writing of a quadruplet X
in the register REG[x].
Definition 3 We say “a process p j covers REG[x] at time τ”
when its next non-local step after time τ is W(x, X), where
X is the quadruplet which is written. In this case we also say
“W(x, X) covers REG[x] at time τ” or “REG[x] is covered
byW(x, X) at time τ”.

123



Anonymous obstruction-free (n, k)-set agreement with n − k + 1 atomic read/write registers 105

Let us notice that if p j covers REG[x] at time τ , then τ

necessarily lies between the last snapshot issued by p j at
line 02 and its planned writeW(x, X) that will occur at line
04, 05, or 08.

4.2 The relation � is a partial order

Lemma 1 	 is a partial order.

Proof The antisymmetry of relation 	 follows from the fact
that > is an order.

To prove transitivity, let us assume that X 	 Y andY 	 Z .
We have to show that X 	 Z . If X = Y or Y = Z , the claim
follows trivially. Hence, assume that X � Y and Y � Z and
let us prove that X � Z . Observe that, due to the definition of
�, we have

(
(X � Y )∧(Y � Z)

) ⇒ (
(X > Y )∧(Y > Z)

)
.

As (X > Y ) ∧ (Y > Z), it follows by transitivity of > that
X > Z . To prove X � Z , it thus remains to show that(
(X.rd > Z .rd) ∨ (X.cf �)

)
.

Let us observe that, due to the definition of �, we have
(X � Y ) ⇒ (

(X.rd > Y.rd) ∨ (X.cf �)
)
. If (X.cf �)

then the claim follows trivially. So assume in following that
(X.cf � = false). Therefore, (X.rd > Y.rd). But as (Y >

Z), we have (Y.rd ≥ Z .rd). By transitivity this yields to
(X.rd > Z .rd). This, combined with the fact that X > Z
showed above, implies that X � Z . ��

4.3 Extracting the relations � and � from the algorithm

The definition of function sup(), which takes a non-empty
set of quadruplets as input parameter was given in Fig. 1. The
next lemma shows that the quadruplet returned by a call to
sup(T ), dominates all the elements in T .

Lemma 2 Let T be a non-empty set of quadruplets. Then,
∀ X ∈ T : sup(T ) 	 X.

Proof Let X ∈ T and S = sup(T ). We have to prove
that S 	 X . Let us first observe that, as S = sup(T ) ≥
max(T ) ≥ X , we have S ≥ X . If S = X then the
lemma follows immediately. So let us assume in the follow-
ing that S > X . To prove S � X , we need to show that(
(S.cf �) ∨ (S.rd > X.rd)

)
. Assume that (S.cf � = false)

and let us prove that (S.rd > X.rd).
As (sup(T ).cf � = false), it follows from the code in

Fig. 1 that conf �ict(T ) = false and sup(T ) = max(T ).
Therefore, sup(T ) is the unique quadruplet of T associated
with the round number sup(T ).rd. All other elements of
T if any have a strictly smaller round number. Therefore,
S.rd > X.rd. This establishes the claim. ��

Lemma 3 If pi executes W(−,Y ) at time τ , then for every
X ∈ viewτ

i : Y 	 X.

Proof We consider two cases according to the line at which
the write occurs.

– Y is written at line 04 or 05. It follows that Y.rd =
(max(viewτ

i ).rd)+1. Therefore, for every X ∈ viewτ
i :

Y.rd > X.rd. Hence Y � X .
– Y is written at line 08. In such a case, due to the call
to function sup() at line 06, the quadruplet Y written
by pi is equal to sup(T ) where T is defined as the set
{viewτ

i [1], · · · , viewτ
i [n], 〈1,down,false, vi 〉}. Let

us then apply Lemma 2. It follows that for every quadru-
plet X in viewτ

i , we have Y = sup(T ) 	 X . ��

Lemma 4 Let us assume that no process is covering the reg-
ister REG[x] at time τ . For every write W(−, X) that (a)
occurs after τ and (b) was not covering a register of REG at
time τ , we have X 	 REGτ [x].
Proof The proof is by contradiction. Let pi be the first pro-
cess that executes a writeW(−, X) contradicting the lemma.
This means that W(−, X) is not covering a register of REG
at time τ and X �	 REGτ [x]. Let this write occur at time
τ2 > τ . Thus, all writes that take place between time τ and
time τ2 comply with the lemma. We derive a contradiction
by showing that X 	 REGτ [x].

Let τ1 < τ2 be the linearization time of the last snap-
shot taken by pi (line 02) before executingW(−, X). Since
W(−, X) was not covering a register of REG at time τ , the
snapshot preceding this write was necessarily taken after τ .
That is, τ1 > τ , and we have τ2 > τ1 > τ .

According to Lemma 3, X 	 viewτ2
i [x]. But since the

snapshot returning viewτ2
i is linearized at τ1, it follows that

viewτ2
i = REGτ1 . Therefore, we have X 	 REGτ1 [x] (let us

call this assertion R).
In the following we show that REGτ1 [x] 	 REGτ [x]. If

REG[x] was not updated between time τ and time τ1, then
REGτ1 [x] = REGτ [x] and the claim follows. Otherwise,
if REG[x] was updated between τ and τ1, the content of
REGτ1 [x], let it be Y , is the result of a write W(x, Y ) that
occurred between τ and τ1 and that was not covering a regis-
ter ofREG at time τ (let us remember that nowrite is covering
REG[x] at time τ , which is crucial in the proof). We assumed
above that τ2 is the first time at which the lemma is contra-
dicted. Hence the write W(x,Y ), which occurs before τ2,
complies with the requirements of the lemma. It follows that
Y 	 REGτ [x], and we thus have REGτ1 [x] 	 REGτ [x].

But it was shown above (see assertion R) that X 	
REGτ1 [x]. Hence, due to the transitivity of the relation 	
(Lemma 1), we obtain X 	 REGτ [x], a contradiction that
concludes the proof of the lemma. ��
Lemma 5 Let τ and τ ′ ≥ τ be two time instants. If REGτ ′

isH(Y ), then there exists X ∈ REGτ such that Y 	 X.
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Proof If REGτ ′ = REGτ , the lemma holds trivially. So let us
assume in the following that REGτ ′ �= REGτ which means
that a write happens between τ and τ ′.

If 〈0,down,false,⊥〉 ∈ REGτ , as every quadruplet Y
written in REG is such that Y.rd ≥ 1 (line 04,05, or lines
06–08), we have Y � 〈0,down,false,⊥〉.

So, let us assume that 〈0,down,false,⊥〉 /∈ REGτ

and consider the last write in REG before τ . Assume this
happens at τ− ≤ τ and let pi be the writing process. Pro-
cess pi has no write covering a register of REG at time
τ−. Consequently, at most (n − 1) processes3 have a write
covering a register of REG at time τ−. Hence, there exists
x ∈ {1, . . . , n} such that no write is covering REG[x] at
time τ−. Let X = REGτ−[x] = REGτ [x]. If X = Y then the
claim of the lemma follows trivially. So assume in the follow-
ing that X �= Y . Since REGτ−[x] = X , REGτ ′ [x] = Y and
Y �= X , there is necessarily a write W(x,Y ) that occurred
between τ− and τ ′. As this write was not covering a register
of REG at time τ−, it follows (according to Lemma 4) that
Y 	 X , which proves the lemma. ��
The two following lemmas are corollaries of Lemma 5.

Lemma 6 If REGτ is H(X), REGτ ′
is H(Y ), and τ ′ ≥ τ ,

then Y 	 X.

Lemma 7 If REGτ is H(X), REGτ ′
is H(Y ), τ ′ ≥ τ ,

(Y.rd = X.rd) and (¬Y.cf �) then (Y.va� = X.va�).

Proof According to Lemma 6, Y 	 X . If Y = X then the
claim follows immediately. So let us assume Y � X . As
(Y.rd = X.rd) and (¬Y.cf �), the definition of 	 implies
that Y.va� = X.va�. ��

4.4 Exploiting homogeneous snapshots

Lemma 8 [(X ∈ REGτ ) ∧ (X.�v� = up)] ⇒ (∃τ ′ < τ :
REGτ ′

isH(Z) ∧ Z = 〈X.rd−1,down,false, X.va�〉)
Proof We first show the existence of some process that
writes a tuple X ′ = 〈X.rd, X.�v�,false, X.va�〉 intoREG.
Depending on the value of X.cf �, there are two cases to con-
sider.

– If X.cf � = false, then let X ′ = X . Since X.�v� =
X ′.�v� = up, X was necessarily written into REG by
some process (let us recall that the initial value of each
register of REG is 〈0,down,false,⊥〉).

– If X.cf � = true, let us consider the time τ1 at which X
was written for the first time into REG, say by pi . Since
X.�v� = up, both τ1 and pi are well defined. This write

3 Let us notice that this is the only place in the proofwhere the algorithm
requires more than (n − 1) MWMR atomic registers.

of X happens necessarily at line 08 (If it was at line 04
or 05, we would have X.cf � = false).
Therefore, X was computed at line 06 by function sup().
Namelywe have X = sup(T ), where the set T is equal to
{viewτ [1], · · · , viewτ [n], 〈1,down,false, vi 〉}. Ob-
serve that X /∈ T , otherwise X would not be written for
the first time at τ1. Let X ′ = max(T ). Since X /∈ T , it
follows that X �= X ′. Due to line S4of the functionsup(),
X and X ′ differ only in their conflict field. Therefore,
as X.cf � = true, it follows that X ′.cf � = false.
Finally, as X ′.�v� = up and all registers of REG are
initialized to 〈0,down,false,⊥〉, it follows that X ′
was necessarily written into REG by some process.

In both cases, there exists a time at which a process writes
X ′ = 〈X.rd, X.�v�,false, X.va�〉 into REG. Let us con-
sider the first process pi that does so. This occurs at some
time τ2 < τ . As X ′.�v� = up, this write can occur only at
line 04 or line 08.

We first show that this write occurs necessarily at line 04.
Assume for contradiction that the write of X ′ into REG hap-
pens at line 08. In this case, the quadruplet X ′ was computed
at line 06. Therefore, X ′ = sup(T ) where the set T is equal
to {viewτ2 [1], · · · , viewτ2 [n], 〈1,down,false, vi 〉}. Ob-
serve thatsup(T ) andmax(T ) candiffer only in their conflict
field. As sup(T ).cf � = X ′.cf � = false, it follows that
X ′ = sup(T ) = max(T ). Consequently, X ′ ∈ viewτ2 . That
is, pi is not the first process that writes X ′ in REG, con-
tradiction. Therefore, the write necessarily happens at line
04.

From the precondition at line 04, viewτ2 is H(〈X ′.rd −
1,down,false, X ′.va�〉), and the lemma holds. ��
Lemma 9 [(REGτ isH(X)) ∧ (X.�v� = up) ∧ (¬X.cf �)
∧ (REGτ ′

isH(Y )) ∧ (Y.rd ≥ X.rd)] ⇒ (Y.va� = X.va�)

Proof The proof is by induction on Y.rd. Let us first assume
that Y.rd = X.rd, for which we consider two cases.

– (Case τ ≥ τ ′) Since X.cf � = false, it follows from
Lemma 7 that Y.va� = X.va�.

– (Case τ ′ > τ ) Lemma 6 tells us that Y 	 X . As
Y.rd = X.rd, it follows that Y.�v� ≥ X.�v� = up,
and consequently Y.�v� = up. Thus, REGτ ′

is H(Y ),
Y.�v� = up and Y.rd = X.rd. According to Lemma 8,
this implies that there is τ1 < τ and τ ′

1 < τ ′ such
that REGτ1 isH(〈X.rd−1,down,false, X.va�〉) and
REGτ ′

1 is H(〈Y.rd − 1,down,false,Y.va�〉). From
Lemma 6, we have

– either 〈X.rd − 1,down,false, X.va�〉 	 〈Y.rd −
1,down,false,Y.va�〉,

– or symetrically 〈Y.rd − 1,down,false, Y.va�〉 	
〈X.rd − 1,down,false, X.va�〉.
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Since by assumption X.rd = Y.rd, we obtain X.va� =
Y.va�.

For the induction step, let assume that the lemma is true
up to Y.rd = ρ ≥ r , and let us prove it for ρ + 1. To this
end, we have to show that Y.va� = X.va� for every Y that is
written in REG with Y.rd = ρ + 1. Let us assume by con-
tradiction that Y.va� �= X.va� and let pi be the first process
that writes 〈ρ + 1,−,−,Y.va�〉 into REG. This happens at
line 04 or 05. In all cases, this implies that, at this moment,
view j is H(〈ρ,−,−,Y.va�〉). But, according to the induc-
tion assumption, this implies Y.va� = X.va�, a contradiction
which completes the proof of the lemma. ��

4.5 Proof of the algorithm: using the previous lemmas

Lemma 10 No two processes decide different values.

Proof Let r be the smallest round in which a process
decides, pi and va� being the deciding process and the
decided value, respectively. There is a time τ at which
viewτ

i is H(〈r,up,false, va�〉). Due to Lemma 9, every
homogeneous snapshot starting from round r is necessarily
associated with the value va�. Therefore, only this value can
be decided in any round higher than r . Since r was assumed
to be the smallest round in which a decision occurs, the con-
sensus agreement property follows. ��

Lemma 11 For every quadruplet X that is written in REG,
X.va� is a value proposed by some process.

Proof Let us assume by contradiction that X.va� = v was
not proposed by a process, and let pi be the first process that
writes X into REG. We consider two cases according to the
line at which the write occurs.

Assume first that v is written to REG at either line 04 or
line 05. In this case, pi obtained a view of REG in which
at least some register contains the value v. According to the
predicate of these two lines, the round number associated
with v is necessarily greater than 0 which implies that v was
previously written into REG and was not there initially. But
this means that pi is not the first process which writes v into
REG, a contradiction.

Now, consider that v iswritten at line 08. In such a case, the
quadruplet X , where X.va� = v, was returned by a call to
sup(view[1], · · · , view[n], 〈1,down,false, vi 〉). It fol-
lows that v is either vi , the proposal of pi , or some value that
was previously written by another process. But, by assump-
tion, pi is assumed to be the first process to write v. Hence,
we know that v = vi . ��

Lemma 12 A decided value is a proposed value.

Proof If a process decides a value v, it does it at line 03.
Hence, according to the predicate of line 03, the round num-
ber associated with this value is greater than 0 which means
that v was necessarily written into REG by some process.
It then follows from Lemma 11, that v was proposed by a
process, which establishes the claim. ��
Lemma 13 Let T be a non-empty set of quadruplets. For
every T ′ ⊆ T : sup(T ′ ∪ {sup(T )}) = sup(T ).

Proof Let S = sup(T ). Hence S.rd is the highest round
number in T . Moreover, S is greater than, or equal to, any
quadruplet in T . Hence, max(T ′ ∪ {S}) = S. Therefore,
combinedwith the the definition of sup(), we have: sup(T ′∪
{S}) = 〈S.rd, S.�v�, conf �ict(T ′ ∪ {S}), S.va�〉. Thus, in
order to prove that sup(T ′ ∪ {S}) = S, we need to show
that conf �ict(T ′ ∪ {S}) = S.cf �. Depending on the value of
S.cf �, there are two cases to consider.

– (Case S.cf � = true) As S = max(T ′ ∪ {S}) and
due to the definition of conf �ict() (line S3 in Fig. 1),
S.cf � = true implies that conf �ict(T ′ ∪ {S}) = true.

– (Case S.cf � = false) Since S = sup(T ), S.cf � =
false implies that |tuples(T ) = 1|. It follows that S
has a round number that is strictly greater than any other
element of T . As T ′ ⊆ T , it follows that S is the only
quadruplet in T ′ ∪ {S} with a round number equal to
S.rd. Hence, |tuples(T ′ ∪ {S}) = 1|. Since we assumed
S.cf � = false and S = max(T ′ ∪ {S}), it follows that
conf �ict(T ′ ∪ {S}) = false.

From the above case analysis, we obtain that conf �ict(T ′ ∪
{S}) = S.cf �. ��
Lemma 14 If there is a time after which a process executes
solo, it decides a value.

Proof Assume that pi eventually runs solo, we need to show
that pi decides. There exists a time τ , after which no other
process than pi writes into REG. Let τ ′ ≥ τ be the first
time at which pi takes a snapshot after τ . This snapshot
is well defined, as pi runs solo after τ and the imple-
mentation of atomic snapshot is obstruction-free. Let S =
sup(viewτ ′

i [1], · · · , viewτ ′
i [n], 〈1,down,false, vi 〉).

Let us first show that there is a time after τ at which REG
isH(S).

– If REGτ ′
isH(S), we are done.

– If REGτ ′
is not H(S), pi executes line 06 and computes

S. Then it writes S in an entry of REG (containing a value
different from S), and re-enters the loop. If REG is then
H(S), we are done. Otherwise, pi executes again line 06
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and, due to Lemma 13, the quadruplet computed by the
function sup() is equal to S. It follows that after a finite
number of iterations of the loop, REG isH(S).

When REG isH(S), we have the following.

– If S = 〈−,up,false,−〉, pi decides in line 03.
– If S = 〈r,down,false, va�〉, then pi writes Y = 〈r +

1,up,false, va�〉 in line 04. Using the same argument
as above, there is a time at which REG becomes H(Y ),
and the previous case holds.

– If S = 〈r,−,true, va�〉, then pi writes Y = 〈r +
1,down,false, va�〉 in line 05. Then pi keeps writing
Y in the following iterations until REG becomes H(Y ),
and the previous case holds.

Hence, in all cases pi eventually decides. ��
Lemma 15 If a single value is proposed, all correct pro-
cesses decide.

Proof Let us assume that all processes propose the same
value v. It follows that all the processes keep writing X =
〈1,down,false, v〉 until REG becomesH(X). Then, once
every register of REG has been updated at least once, the
processes start writing Y = 〈2,up,false, v〉 until REG is
H(Y ) and v. When this occurs, v is decided. ��
Theorem 1 The algorithm presented in Fig. 2 solves the
obstruction-free consensus problem.

Proof The proof follows directly from the conjunction of
Lemma 10 (Agreement), Lemma 12 (Validity), Lemma 14
(OF-Termination), and Lemma 15 (SV-Termination). ��

5 From consensus to (n, k)-set agreement

The algorithm Our previous obstruction-free consensus
algorithm provides us “for free” with an obstruction-free
solution to the (n, k)-set agreement problem. The only dif-
ference lies in the size of the snapshot object REG, which is
now an array of (n− k+1) MWMR atomic registers instead
of an array of n MWMR atomic registers.

Theorem 2 Assuming an underlying snapshot object com-
posed of (n−k+1)MWMRatomic registers, the algorithmof
Fig. 2 solves the obstruction-free (n, k)-set agreement prob-
lem.

Proof The arguments for the validity and liveness properties
are the same as the ones of the consensus algorithm since
they do not depend on the size of REG.

As far as the k-set agreement property is concerned (no
more than k different values are decided), we have to show

that (n − k + 1) registers are sufficient. To this end, let us
consider the (k − 1) first decided values, where the notion
“first” is defined with respect to the linearization time of the
snapshot invocation (line 02) that immediately precedes the
invocation of the corresponding deciding statement (return()

at line 03). Let τ be the time just after the linearization of
these (k − 1) “deciding” snapshots. Starting from τ , at most
(n− (k−1)) = (n− k+1) processes access the array REG,
which is made up of exactly (n − k + 1) registers. It follows
that, after time τ , these (n − k + 1) processes execute the
algorithm of Fig. 2, with the help of a snapshot object of
size (n − k + 1). Hence, from τ , these at most (n − k + 1)
processes execute actually an anonymous obstruction-free
consensus algorithm, during which they can decide at most
one more value. It follows that at most k values are decided
by the n processes. ��

6 From one-shot to repeated (n, k)-set agreement

6.1 The repeated (n, k)-set agreement problem

In the repeated (n, k)-set agreement problem, processes exe-
cute a sequence of (n, k)-set agreements. More precisely, a
process invokes sequentially the operation propose(1, v),
then propose(2, v′), etc., where 1, 2, . . . stands for the
sequence number of the (n, k)-set agreement instance, and
v, v′, . . . is the value the process proposes to this instance.

It would be possible to associate a specific instance of the
base algorithm described in Fig. 2 with each sequence num-
ber, but this would require (n − k + 1) atomic read/write
registers per instance. The next section shows that in fact the
repeated problem can be solved with only (n−k+1) atomic
registers. According to the complexity results of [15], it fol-
lows that this algorithm is optimal in regard to the number of
atomic read/write registers it uses. This closes the discussion
regarding the space complexity of the repeated form of the
(n, k)-set agreement problem.

6.2 Adapting the algorithm

From quadruplets to sextuplets Instead of a quadruplet, the
registers of the snapshot object REG now contains a sextu-
plet X = 〈sn, rd, �v�, cf �, va�, dcd〉. The four fields X.rd,
X.�v�, X.cf �, and X.va� are the same as before. The addi-
tional field X.sn is a sequence number. The other additional
field X.dcd is an initially empty list. From a rotational point
of view, the j th element of this list is written X.dcd[ j]; it
contains a value decided at the j th instance of the repeated
(n, k)-set agreement problem.

The total order over the sextuplets “>” is as previously
lexicographical but now applies to the six fields. In particular,
given two lists dcd and dcd ′, the relation dcd > dcd ′ holds
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when there exists j ≥ 1 such that dcd[ j] > dcd ′[ j] and for
every 1 ≤ k < j , it is true that dcd[k] ≥ dcd[k′]. Relation
“�” is defined as follows:

X � Y
def= (X > Y ) ∧ [(X.sn > Y.sn)

∨ (X.rd > Y.rd) ∨ (X.cf �)].

Local variables Each process pi now manages two local
variables. The scope of these variables is the whole repeated
(n, k)-set agreement problem. (Hence, we do no longer have
the locally memoryless property of the base obstruction-free
algorithm presented in Fig. 2.)

– The variable sni , initialized to 0, is used by pi to generate
its sequence numbers. It is assumed that pi increments
sni before invoking propose(sni , vi ).

– The local list dcdi is used by pi to store the value it has
decided during the previous instances of the (n, k)-set
agreement. Hence, dcdi [sn] contains the value decided
by pi during the snth instance. These lists are exchanged
by the processes,which allows the slower of them to catch
up when they are in late.

The algorithm Figure 3 describes the algorithm executed at
some process pi . The new parts, with respect to the base
algorithm in Fig. 2, are underlined and in blue. To ease the
understanding, both algorithms use the same line numbering.
Figure 3 contains a single new line, marked with “N”. Sup-
pressing all the underlined parts of the new algorithm leads
to our base solution. In what follows, we detail the internals
of our solution then establish its correctness.

– Line 03. When all the entries of the view obtained by pi
contain only sextupletswhosefirst fivefields are equal, pi

decide the value va�. But before returning va�, pi writes
va� in dcdi [sni ]. The idea is that, when pi will execute
the next (n, k)-set agreement instance (whose sequence
number will be sni + 1), it will be able to help processes
with a sequence number smaller than sni .

– Line 04. Process pi obtains a quadruplet of the form
〈sni , r,down,false, va�,−〉. In such a case, pi writes
〈sni , r,down,false, va�, dcdi 〉 to REG[1]. (Let us
notice here that thewrite of dcdi is to help other processes
deciding (n, k)-set agreement instances whose sequence
number is smaller than sni .)

– Line 05. Similar to the previous case, except that a conflict
now appears in the view computed by the process pi .

– Lines 06–10. Process pi computes the supremum of the
snapshot view obtained at line 03, aswell as the sextuplet
〈sni , 1,down,false, va�, dcdi 〉. We then consider the
two following cases:

– If the sequence number of the supremum is greater
than sni , process pi benefit from the list of decisions
stored in the supremum. More precisely, this help is
obtained from the item dec[sni ]. Similarly to line
03, process pi then writes this decision in dcdi [sni ]
before returning from its call.

– In the other case, the sequence number of the supre-
mum is equal to sni . Process pi then executes the
same operations as in the basic algorithm (lines 07–
08).

6.3 Proof of the algorithm

This section first presents a simple technical lemma, and
then shows that the algorithm described in Fig. 3 solves the
repeated (n, k)-set agreement problem.

operation propose(sni , vi) is
(01) repeat forever
(02) view ← REG .snapshot();
(03) case (∃r > 0, va : ∀z : view[z] = sni , r, up, false, va ) then

dcd i[sni] ← va ;
return(va );

(04) (∃r > 0, va : ∀z : view[z] = sni , r, down, false, va ) then
REG .write(1, sni , r + 1, up, false, va dcdi );

(05) (∃r > 0, va eve : ∀z : view[z] = sni eve true, va ) then
REG .write(1, sni , r + 1, down, false, va dcdi );

(06) otherwise let inst eve conf ict , va dec
← sup(view[1], · · · , view[n], sni , 1, down, false, vi, dcdi );

(N) if (inst > sni) then dcdi [sni ] ← dec[sni ]; return dcdi [sni ] end if;
(07) z ← smallest index y such that view[y] = min(view[1], · · · , view[n]);
(08) REG .write(z, inst eve conf ict , va dec );
(09) end case
(10) end repeat.

Fig. 3 Repeated anonymous obstruction-free consensus
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Lemma 16 For any m ≥ 1, if X is written in REG and
X.sn = m, then for every 1 ≤ k < m, X.dcd[k] exists.

Proof Let X be some sextuplet in REG for which X.sn = m
holds. Name pi the process that first writes X .

The operation of pi might occur either at line 04, 05 or
08.

By definition of the repeated (n, k)-set agreement, if pi
starts instance m of the problem, than it has already returned
from the prior instances.As a consequence, if thewrite occurs
at line 04 or 05, then the invariant holds.

Now in the case where the write takes place at line 08,
the definition of function sup() tells us that either some pro-
cess wrote a quadruplet Y with Y.sn = m previously, or
X = 〈sni , 1,down,false, vi , dcdi 〉. In the former case,
we repeat our previous reasoning. In the later, we know that
the invariant holds since pi has already taken a decision in
the instances prior to m. ��

Theorem 3 The algorithm in Fig. 3 is an obstruction-free
solution to the repeated (n, k)-set agreement problem.

Proof Let us consider some execution ρ of the algorithm
in Fig. 3. Let m be an instance that was executed in ρ. We
name Um the set of decisions taken at instance m in ρ. We
also define Vm ⊆ Um the decisions taken at instance m in ρ

before a higher instance begins, that is before some sextuplet
X with X.sn > m is observed by a process in REG.

First of all, let us notice that, if no interleaving takes place
betweenm and a higher instance, the algorithm of Fig. 3 boils
down to our base algorithm. As a consequence, decisions in
Vm are valid and |Vm | ≤ k.

Let us now choose some decision u ∈ Um taken by a
process pi in ρ. Below, we show that u ∈ Vm holds.

– If the decision takes place at line 03, then it occurs before
an instance higher than m begins. Thus, by definition
u ∈ Vm holds.

– Let us now consider the case where process pi decides at
line N with inst > m, choosing dec[m] as its decision.
Lemma 16 tell us that this value is well-defined. In Fig. 3,
we observe that a process p j might update dcd j [m] with
value u only in the case where it decides u in instance m
at line 03. Thus, u belongs to Vm .

The previous reasoning shows that every instance is safe,
in the sense that it satisfies both the validity and agreement
properties of the (n, k)-set agreement problem.

InFig. 3, a process decides before a higher instance begins,
or it decides immediately afterward. Consequently, the prop-
erties of OF-termination and SV-termination follow from the
validity property and the fact that our base solution satisfies
these two properties. ��

Theorem 3 tells us that solving repeated (n, k)-set agree-
ment in an anonymous system does not require more atomic
read/write registers than the base non-repeated version. The
additional cost lies only in the size of the atomic registers
which contain two supplementary unbounded fields. As we
pointed out at the beginning of this section, the lower bound
established in [15] induces that the algorithm in Fig. 3 is
space-optimal.

7 The case of x-obstruction-freedom

This section extends the base algorithm described in Fig. 2
to obtain a solution to the anonymous (n, k)-set agreement
problem with a stronger progress condition, namely x-
obstruction-freedom. It first defines x-obstruction-freedom,
then details the modifications to the base algorithm, and
finally prove its correctness.

7.1 Problem statement

The notion of x-obstruction-freedom [38] guarantees that
for every set of processes P , with |P| ≤ x , every cor-
rect process in P returns from its operation invocation if
no process outside of P takes a step for a “long enough”
period of time. This progress property extends naturally
obstruction-freedom, which corresponds to the case where
x = 1. Moreover, x-obstruction-freedom and wait-freedom
coincide in every n-process system where x ≥ n. In the case
where x < n, x-obstruction-freedom depends on the concur-
rency pattern, while wait-freedom does not.

The variant of the (n, k)-set agreement problem that inter-
ests us is defined as follows. Its Validity, Agreement and
SV-Termination properties remain the ones we stated in
Sect. 2.2. Differently, OF-Termination is modified as fol-
lows:

– x-OF-termination. If there is a time after which at most
x correct processes take steps, each of these processes
eventually decides a value.

Let observe that every x-obstruction-free solution to (n, k)-
set agreement is also a wait-free solution to (k + 1, k)-set
agreement when x > k. It then follows from [7,24,35] that
there is no x-obstruction-free algorithm for x > k. As a
consequence, the rest of this section assumes x ≤ k.

7.2 Algorithm

The shared memory Under x-obstruction-freedom, up to
x processes may concurrently progress without preventing
termination.As a consequence, in comparison to obstruction-
freedom, solving k-set agreement in this setting requires to
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deal with more contention scenarios. To cope with these
additional interleavings of processes, we increase the num-
ber of entries in REG. More precisely, REG now contains
m = (n − k + x) entries.

Ordering the quadruplets In the base algorithm, the four
fields of some quadruplet X are the round number X.rd, the
level X.�v�, the conflict flag X.c f �, and the value X.val.
Coping with x-concurrency requires to replace the last field,
whichwas initially a singleton,with a set of values.Hereafter,
this new field is denoted X.valset.

In line with the definitions of Sect. 4.1, let “>” denote the
lexicographical order over the set of quadruplets, where the
relation � is generalized as follows to take into account the
fact that the last field of a quadruplet is now a non-empty set
of values:

X � Y
def= (X > Y ) ∧ [(X.rd > Y.rd)

∨ (X.cf �) ∨ (X.valset ⊇ Y.valset)]

In comparison to the definition appearing in Sect. 4, the
sole new case where the ordering X � Y holds is (X >

Y ) ∧ (X.valset ⊇ Y.valset). This case captures the fact that,
as long as at most x input values are competing at some
round, there is no conflict. If such a situation arises, we sim-
ply construct a quadruplet that aggregates the different input
values.

Modifications to the sup() function Figure 4 describes the
new definition of function sup(). Compared with the orig-
inal algorithm in Fig. 1, it introduces a few modifications
(underlined and in blue). Those are detailed below.

– Line S1. As pointed out previously, the last field of a
quadruplet is now a set of values. The lexicographical
ordering over such sets is as follows: sets are ordered first
according to their size, and second using some arbitrary
order over their elements. By abuse of notation, this order
is also written <. For instance, we have {10, 8, 2} <

{10, 4, 3} and {10, 4, 3} < {15, 12}. It is assumed that
for any set of values S, S < ⊥ holds.

– Line S2. This line does not change.

– Lines S3 and S4. This variant extends the definition of a
conflict. Namely, it considers as a conflict the case where
more than x distinct tuples are competing at round r , and
also the additional case wheremore than x distinct values
are competing at round r .

– Lines S5 and S6. Compared to Fig. 1, function sup()

returns a quadruplet that may contain additional input
values. This comes from the fact that the function aggre-
gates the x greatest values competing at round r .

Solving (n, k) -set agreement under x -obstruction-freedom
Figure 5 presents the modified algorithm solving the (n, k)-
set agreement problem, in which the progress condition is
x-obstruction-freedom. Let us notice that it is also locally
memoryless.

In Fig. 5, the differences between the two algorithms are
underlined and in blue. These differences come from the fact
that, as detailed previously, each quadruplet now contains a
set of input values in its last field. The main difference is at
line 03.

– Line 03. When deciding, a process must pick one of the
values provided in the snapshot taken from REG.

7.3 Correctness proof

This section proves that Fig. 5 describes a correct solution
to the (n, k)-set agreement problem, when considering x-
obstruction-freedom as the progress condition. The proof
scheme is similar to the one used in Sect. 4.

Theorem 4 The algorithm in Fig. 5 is a solution to the x-
obstruction-free (n, k)-set agreement problem.

Proof Validity and SV-Termination follow from a reasoning
identical to the one conducted for the base algorithm.

As far as the Agreement property is concerned, let us first
observe that the relation � remains a partial order. Then,
considering some non-empty set of quadruplets T and some
X ∈ T , the rewriting of function sup() maintains that the
relation sup(T ) 	 X holds. Indeed, we have sup(T ) ≥
max(T ) and either (i) X.rd < sup(T ).rd, or (ii) there is a
conflict leading to sup(T ).cf � = true, or alternatively (iii)
since |values(T )| ≤ x , we have X.valset ⊆ sup(T ).valset.

function sup(T ) is % T is a set of quadruplets whose last field is now a set of values %
(S1) let eve conf ict , valset be max(T ) %redrolacihpargocixel%;
(S2) let tuples(T ) be {X | X ∈ T ∧ X.rnd = r};
(S3) let values(T ) be {v | X ∈ T ∧ v ∈ X.valset};
(S4) let conf ict(T ) be conflict ∨ |tuples(T )| > x ∨ |values(T )| > x;
(S5) let valset be the (at most) x greatest values in values(T );
(S6) return eve conf ict(T ), valset .

Fig. 4 Function sup() suited to x-obstruction-freedom
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operation propose(vi) is
(01) repeat forever
(02) view ← REG.snapshot();
(03) case (∃r > 0, valset : ∀z : view[z] = r, up, false, valset ) then

let va be any value in valset ;
return(va );

(04) (∃r > 0, valset : ∀z : view[z] = r, down, false, valset ) then
REG.write(1, r + 1, up, false, valset );

(05) (∃r > 0, valset eve : ∀z : view[z] = eve true, valset ) then
REG.write(1, r + 1, down, false, valset );

(06) otherwise let eve cf valset
← sup(view[1], · · · , view[n], 1, down, false, {vi} );

(07) z ← smallest index y such that view[y] = eve cf valset ;
(08) REG .write(z, eve cf valset );
(09) end case
(10) end repeat.

Fig. 5 Anonymous x-obstruction-free (n, k)-set agreement

Then, let us consider a run where at most (n − k + x)
processes take steps. From what precedes, we may conclude
that (excluding Lemmas 7 and 9) Lemmas 3– 8 hold for the
algorithm in Fig. 5. The reformulations of Lemmas 7 and 9 as
well as their respective correctness proofs are stated below.

��
Lemma 17 If REGτ is H(X), REGτ ′

is H(Y ), τ ′ ≥ τ ,
(Y.rd = X.rd) and (¬Y.cf �) then (Y.valset ⊇ X.valset).

Proof According to Lemma 6, we have Y 	 X . If Y =
X , then the claim follows immediately. On the other hand,
if Y � X holds, since we know that (Y.rd = X.rd) and
(¬Y.cf �), the definition of relation 	 implies that we have
Y.valset ⊇ X.valset. ��
Lemma 18 [(REGτ isH(X)) ∧ (X.�v� = up) ∧ (¬X.cf �)
∧ (REGτ ′

isH(Y )) ∧ (Y.rd ≥ X.rd)] ⇒ (Y.valset ⊇
X.valset ∨ X.valset ⊇ Y.valset).

Proof The proof is by induction on Y.rd. Let us first assume
Y.rd = X.rd. There are two cases.

– (Case τ ≥ τ ′) As X.cf � equals false, Lemma 17
implies that X.valset ⊇ Y.valset.

– (Case τ ′ > τ ). From Lemma 6, we know that Y 	 X . As
Y.rd = X.rd, it follows that Y.�v� ≥ X.�v� = up.
Applying Lemma 8, we obtain the existence of two
quadruplets ZX = 〈X.rd − 1,down,false, X.valset〉
and ZY = 〈X.rd−1,down,false,Y.valset〉 such that
REG isH(ZX ) andH(ZY ) at some points in time. From
Lemma 17, we deduce that X.valset ⊇ Y.valset, or the
converse, holds.

For the cases where Y.rd > X.rd, let us consider that
our induction hypothesis holds up to some round r . Then,

let pi be the first process that writes at round r + 1 some
quadruplet 〈r+1,−,−,Y.valset〉 into REG. This happens at
either line 04, or line 05 in Fig. 5. In both cases, our induction
hypothesis implies that X.valset ⊇ Y.valset or the converse
holds. ��
Lemma 19 At most x values are decided.

Proof Let V be the set of decided values. Since each decision
takes place at line 03, there exists a set (Xv)v∈V of tuples such
that someprocess observes anhomogeneous snapshotH(Xv)

with Xv.cf � = false, Xv.�v� = up and v ∈ Xv.valset.
For a tuple Xv , since Xv.cf � = false, |Xv.valset| ≤ x

holds. From Lemma 18, we deduce that for any two values
v,w ∈ V , either Xv.valset ⊆ Xw.valset, or the converse,
holds. The conjunction of the above two observations implies
that |V | ≤ x . ��

Applying the reasoning of Sect. 5, Lemma 19 implies that
the algorithm described in Fig. 5 satisfies the Agreement
property of (n, k)-set agreement: n − (n − k + x) processes
may decide up to (k−x) values, and the (n−k+x) remaining
processes decide at most x values.

The next lemmas establish that the x-OF-termination
property holds. To this end, and in line with the definition
of x-OF-termination, we will consider some set of processes
Px , with |PX | ≤ x , and a run λ of the algorithm in Fig. 5
satisfying λ = λ1λ2, and only the processes of Px take steps
during λ2. If x = 1, then the algorithm in Fig. 5 boils down
to our base solution. As a consequence, we assume hereafter
x ≥ 2.

Lemma 20 All the correct processes decide inλ, or for every
round r, every entry of REG contains eventually some tuple
X with X.rd > r .
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Proof We proceed by contradiction.
Let P = {p1, . . . , pm} be the largest set of processes that

never decide. Consider a point in time τ0 where only the
processes in P take steps. At time τ + 1 > τ0 and for every
process pi ∈ P ,

– if pi modifies viewi , then this corresponds to the value
of REGτ (line 02); and

– if pi writes some tuple X in REG, then we have X ≥
sup(viewτ

i ) (lines 04, 05 and 08).

We note Sτ = {sup(viewτ
1 ), . . . , sup(viewτ

m),

sup(REGτ )} and mτ = min(Sτ ). The above observation
tells us that the sequence (mτ )τ≥τ0 is growing.

By hypothesis, there exists some round r and an entry
REG[i] such that REG[i] never contains a tuple X with
X.rd > r . At the light of the code in Fig. 5, every entry
REG[ j] should satisfy REG[ j].rd ≤ r at all time.

From what precedes, the sequence (mτ )τ≥τ0 is upper
bounded and converges toward some value m.

Note τ1 the time at which the convergence takes places,
that is mτ = m is true for every τ ≥ τ1. After time τ1,
every new write W(−, X) to REG is such that X ≥ m. As
a consequence, m can be written to an entry of REG at most
|P| times after time τ1 (see lines 07 and 08 in Fig. 5).

It follows that eventually it is true forever that sup(REGτ )

> m holds, or that all the entries of REG contains m. Both
cases leads to a contradiction: The former case is not possi-
ble, since m is the limit of (mτ )τ≥τ0 . In the later, a process
eventually observes an homogeneous snapshot for m. Since
this process cannot decide, it executes line 04 or 05, writing
some tuple X in REG with X.rd = m.rd + 1. ��
Lemma 21 All the processes of Px decides in λ.

Proof Execution λ is such that λ = λ1λ2 and only the pro-
cesses of Px take steps in λ2. Lemma 20 tells us that either
all the processes in Px decide, or λ2 contains an unbounded
amount of rounds, starting from some round r0. Let us con-
sider the later case, assuming without lack of generality, that
none of the processes in Px decide in λ2.

For some round r , we note Xr the set {X : ∃pi , τ :
viewτ

i isH(X)∧ X.rd = r}. We also define Vr as min({V :
∃X ∈ Xr ∧ X.valset = V }). In what follows, we state
several claims regarding the sequence (Vr )r>r0 . ��

C1. ∀X, r : (∃τ, j : REGτ [ j] = X ∧ X.rd = r + 1) �⇒
X.valset ≥ Vr .

Proof The above equation is true initially, as for any i ,
REG0[i] = 〈0,down,false,⊥〉. Then, consider that it
holds up to time τ , and assume that a process pi writes a
tuples X in REG with X.rd = r + 1 at time τ + 1. If

pi executes line 04 or 05, then there exists Y ∈ Xr with
X.valset = Y.valset ≥ Vr . Otherwise pi executes line 08
and in such a case X = sup(viewτ

i ). Observe that for any
Z ∈ viewτ

i satisfying Z .rd = r + 1, line S5 in function
sup() implies that X.valset ≥ Z .valset, and from our induc-
tion hypothesis, Z .valset ≥ Vr . Thus, X.valset ≥ Vr holds.

��

C2. ∀X, r : (∃τ, j : REGτ [ j] = X ∧ X.rd = r + 1 ∧
X.valset = Vr ) �⇒ X.cf � = false.

Proof The above equation is initially true. In what follows,
we consider that it holds up to time τ , and assume that at
time τ + 1 a process pi writes some tuple X in REG with
X.rd = r + 1 ∧ X.valset = Vr .

For the sake of contradiction, consider that X.cf � =
true. In Fig. 5, a write to REG might occur either at line
04, 05 or 08. Since X.cf � = true holds, pi executes line
08 at time τ + 1 with X = sup(viewτ

i ).
Define M = max(T ), with T = {Z ∈ viewτ

i : Z .rd =
r + 1}. From the code at lines S5 and S6 in Fig. 4, M.rd =
X.rd = r + 1 and X.valset ≥ M.valset are both true. Claim
C1 implies that M.valset ≥ Vr .

As X.valset ≥ M.valset and X.valset = Vr , necessarily
M.valset = Vr . Then, applying our induction hypothesis,
we deduce that M.cf � = false. Since X.cf � = true,
either |tuple(T )| > x or |values(T )| > x holds. Below, we
explore each of these two cases.

– (|values(T )| > x) For every Z ∈ T , |Z .valset| ≤ x
holds. Hence, there exist Y, Z ∈ T with Y.valset �=
Z .valset. By C1, Z .valset ≥ Vr and Y.valset ≥ Vr
are true. It follows, that X.valset ≥ M.valset ≥
max(Y.valset, Z .valset) > Vr . Contradiction.

– (|tuple(T )| > x) Choose Z ∈ T . If Z .valset = Vr ,
our induction hypothesis implies that Z .cf � = false
holds. Thus, there are at most two tuples in T of the form
〈r + 1,−,false, Vr 〉. As x ≥ 2, T contains at least
three elements. It follow from C1 that there exists some
Z ∈ T with Z .valset > Vr . From which, we deduce that
M.valset > Vr . Contradiction. ��

C3. ∀r > r0 : Vr < Vr+2.

Proof Claim C1 implies that Vr ≤ Vr+1 ≤ Vr+2. Consider
that for some round r , the assertion Vr = Vr+1 = Vr+2

holds.
Choose X and Y respectively in Xr+1 and Xr+2, with

X.valset = Y.valset = Vr . From claim C2, X.cf � = false
holds. Applying C1, a short induction tells us that every tuple
Z with (Z .valset = Vr∧Z .rd = r+2) satisfies Z .�v� = up.
This implies that Y.�v� = up is true. Since C2 holds also
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for the tuple Y , Y.cf � = false holds. As a consequence,
some process decides at round r + 2. This contradicts that
r + 2 > r0 is true. ��

If the number of rounds is not bounded, then the claim
C3 implies that (Vr )r>r0 diverges. However, any element in
this sequence is a subset of the values proposed at round r0,
contradicting such an assumption. ��

Lemmas 19 and 21 induce that Fig. 5 depicts an x-
obstruction-free solution to the (n, k)-set agreement prob-
lem. ��

8 On the power of repeated anonymous consensus

8.1 Universality of n MWMR registers

Let us first turn our attention to non-anonymous systems
made up of n asynchronous processes communicating with
SWMR read/write registers. Let us first notice that, if an
object can be implemented with an arbitrary number of
SWMR atomic read/write registers, it can be implemented
with only n SWMR atomic read/write registers, one per pro-
cess. This follows from the observation that, for every writer
pi , we can glue together all the SWMR atomic read/write
registers that pi accesses into an array stored in a single
register. At the light of this result, we raise the question
whether a similar result exists in the context of anony-
mous systems. This section answers positively this question,
showing that what can be obstruction-free computed by n
anonymous processes with an arbitrary number of MWMR
atomic registers, can also be obstruction-free computed by n
anonymous processes with no more than n MWMR atomic
registers.

Theorem 5 Let O be an object that can be obstruction-free
implemented by n anonymous processes and any number of
MWMR atomic read/write registers. O can be obstruction-
free implemented by n anonymous processes and n MWMR
atomic read/write registers.

Proof The proof consists in building a simple universal
construction whose core is the obstruction-free anonymous
repeated consensus algorithm presented in Sect. 6. Let (a)
p1, ..., pn be the application processes, (b) R1, R2, etc.,
be the MWMR atomic read/write registers they share (there
registers implement object O), and (c) in1, ..., inn be the
individual inputs of the n processes. Let q1, ..., qn be a set of
n anonymous simulators.

Each simulator qi is assigned exactly one process pi .
Moreover, the local memory of each simulator contains a
copy of all the registers R1, R2, etc. The memory shared by
the simulators contains only the snapshot object on which
is built the obstruction-free anonymous repeated consensus

algorithm. Hence, it is made up of n atomic read/write reg-
isters.

Each application process executes a sequence of steps, that
is a sequence of read andwrite operations on the registers R1,
R2, etc.

The simulation is a sequence of repeated consensus, and
proceeds as follows.

– First consensus. Each simulator qi proposes the value
propi =“step of process with input ini is: read register
Rx” (or “‘step of process with input ini is: write v in
register Ry”), where “read register Rx” or “ write v in
register Ry” is the first step of pi . Let dec be the value
decided by this first consensus instance. There are two
cases.

– If dec = propi , qi applies locally the operation “read
register Rx” (or “write v in register Ry”), and pre-
pares (for the next consensus instance) a newproposal
propi according to next step of pi as defined by its
code, namely, propi is “step of process with input
ini is: ...”.

– If dec �= propi , qi keeps its proposal propi for the
next consensus instance, but modifies its local copy
of Ry if dec is “write v in register Ry”.

– Second consensus. Each simulator qi proposes the value
propi it computed after it terminated the first consen-
sus instance, and proposes it to the second consensus
instance.

– And so on.

Let us observe that, as several processes can have the same
input and anonymous processes have the same code, it is
possible that several simulators propose the same value prop
to a consensus instance, where prop is “step of process with
input ini is read register Rx” (or “step of process with input
ini is write v register Ry”. If such a prop is decided by the
corresponding consensus instance, and the decided value is
“write v in register Ry”, only one write is applied to Ry by
each simulator. This does not create a problem, as this write
of v in Ry can be seen as a digest of the corresponding number
of consecutive writes of v in Ry , each one overwriting the
previous one.

It follows from the sequence of repeated consensus that all
simulators see the same sequence of steps issued by the pro-
cesses, which is a linearization of the operations issued by the
processes. In addition, each process pi inherits the progress
of its simulator qi . Hence, if a simulator qi executes alone
a long enough period of time to compute an output, so does
the corresponding simulated process pi , which concludes the
proof of the theorem. ��
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8.2 Anonymity, tasks, and colorless tasks

The previous theorem showed that, in an anonymous system,
n registers are sufficient to obstruction-free implement any
object O implemented with more registers. An interesting
follow-up question is to know which distributed tasks (see
below), usually considered in a non-anonymous system, can
be solved in an anonymous setting. As we shall see below,
this set contains at least all colorless tasks, i.e., the distributed
tasks that do not involve some kind of symmetry breaking
argument.

Distributed tasks A distributed task T is defined by a set I
of input n-vectors, a set O of output n-vectors and a map Δ

from I to 2O. If the input value of a process p in I ∈ I is
⊥, we say that p does not participate to the input vector I .
Similarly if O[p] equals ⊥, process p does not decide in O .
For every distributed task T = (Δ, I,O), we require that
(i) a process may not decide ((∀p : O ′[p] ∈ {O[p],⊥} ∧
(I, O) ∈ Δ) �⇒ (I, O ′) ∈ Δ), and that (ii) a process that
does not participate, does not decide ((I [p] = ⊥ ∧ (I, O) ∈
Δ) �⇒ O[p] = ⊥).

The notion of interval linearizability (which generalizes
linearizability [26]) is introduced in [10], where it is shown
that tasks and one-shot concurrent objects are in a precise
sense equivalent (Theorem 3 in [10]). It follows that the proof
of the previous theorem remains correct if we consider a
distributed task instead of an object O .We have consequently
the following theorem.

Theorem 6 If a distributed task T is obstruction-free solv-
able by n anonymous processes and any number of MWMR
atomic read/write registers, then T is obstruction-free solv-
able by n anonymous processes with no more than n MWMR
atomic read/write registers.

The case of colorless tasks Let us note val(U ) the set of
non-null values in some vector U . Following [8], a task
T = (Δ, I,O) is colorlesswhen in a solution to T , a process
is free to adopt the input and output value of any other par-
ticipating process. Formally, ((val(I ) ⊆ val(I ′)∧val(O ′) ⊆
val(O) ∧ (∀p : I ′[p] = ⊥ �⇒ O ′[p] = ⊥) ∧ (I, O) ∈
Δ) �⇒ (I ′, O ′) ∈ Δ). This class of distributed tasks
includes notably the k-set agreement problem. The next the-
orem shows that anonymity is enoughwhen a task is colorless
and obstruction-free -solvable.

Theorem 7 Let us consider a colorless task T = (Δ, I,O)

that is obstruction-free solvable in a non-anonymous sys-
tem using any number of SWMR registers. Then, T is also
obstruction-free solvable in an anonymous system with n
MWMR atomic registers.

Proof Let us consider an obstruction-free algorithm A, that
solves T in a non-anonymous system.As n registers are suffi-
cient in such a setting, we assume (without lack of generality)
that A uses n registers only. In what follows, we present a
construction to simulate a run of A in an anonymous system,
and then proves its correctness.

Construction. In a first step, each anonymous process p
proposes (0, v) to consensus, where v is its input value.
Upon deciding some tuple (i, w), if w = v, then process
p considers that it holds identifier i ; otherwise p com-
putes i ′ = i+1 and proposes (i ′, v) to the next consensus
instance. This process repeats until p holds some identi-
fier. Then, process p executes algorithm A with input v

and identifier i . As in the proof of Theorem 5, all the pro-
cesses holding identifier i agree on simulating the next
step of process i with the help of anonymous consensus.
During this simulation, we note that registers are SWMR
and in particular that process i writes only to register R[i].
Process p decides the value the simulation of process i
outputs.

Let us now show that this construction is correct. To this end,
consider some input vector I ∈ I and a run ρ following the
above algorithm.

– If no decision occurs in ρ, the output vector O that con-
tains ⊥ everywhere satisfies (I, O) ∈ Δ.

– Assume now that a process p proposes a value u and
decides some value v. Before process p decides, it must
have chosen some identifier i . At the light of the above
construction, all the processes that have identifier i pro-
pose and decide the same value. Hence, in run ρ, the
simulated process i proposes u and decides v. General-
izing this reasoning, let us note I ′ and O ′ respectively,
the simulated input and output n-vectors during the sim-
ulation.
Since T is colorless, obstruction-free solvable, and in
an asynchronous system we cannot distinguish a non-
participating process from an initially crash one, vector
I ′ belongs to the domain of Δ. Then, we observe that
in ρ the identifiers of any two simulated processes are
different. This ensures that the simulated system is non-
anonymous. Consequently, A solves T in ρ and O ′ ∈
Δ(I ′) holds.
Let O be the n-vector output in ρ. By construction, we
know that val(O) ⊆ val(O ′) holds. As T is colorless,
we deduce that O belongs to Δ(I ′). As a consequence,
since val(I ′) ⊆ val(I ′), T is colorless and O ∈ Δ(I ′),
we conclude that O ∈ Δ(I ).

To complete the proof, let us observe that all the steps in the
above construction are obstruction-free, and that (as pointed
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out) the n-vector input in the simulation belongs to the
domain ofΔ. As a consequence, if T is obstruction-free solv-
able in a non-anonymous system, it remains obstruction-free
solvable in an anonymous system. ��

9 Conclusion

This paper first presents an obstruction-free (n, k)-set agree-
ment algorithm for a system made up of n asynchronous
anonymous processes that communicate with the help of
atomic read/write registers. This algorithm uses only (n −
k + 1) registers. In terms of the number of registers, it is
the best algorithm known so far, and, in the case of con-
sensus, it is up to an additive factor of 1 close to the best
known lower bound [41]. This algorithm answers the chal-
lenge posed in [13], and establishes a novel upper bound
of (n − k + 1) on the number of registers to solve one-
shot obstruction-free (n, k)-set agreement. This upper bound
improves the ones stated in [15] for both anonymous and non-
anonymous systems.

Further, the paper introduces a simple extension of the
base algorithm, that solves repeated (n, k)-set agreement.
The lower bound of (n − k + 1) atomic registers was estab-
lished in [15] for this problem.Hence, the proposed algorithm
proves that this bound is tight. A one-shot algorithm solving
anonymous (n, k)-set agreement problem in the context of x-
obstruction-freedom is also described. This algorithmmakes
use of (n − k + x) atomic read/write registers.

All the proposed algorithms rely on the same round-based
data structure. The base one-shot algorithm does not require
persistent local variables, and in addition to a proposed value,
an atomic register solely contains two bits and a round num-
ber. The algorithm solving repeated (n, k)-set agreement
requires that each atomic register includes two more fields.

This paper also establishes two reduction results. The first
one shows that any distributed task that is obstruction-free
solvable in an anonymous system with any number of regis-
ters is also obstruction-free solvable with solely n registers.
The second reduction shows that this amount of registers is
also enough for every colorless task that is obstruction-free
solvable in a non-anonymous system.

Let the MWMR-number of a concurrent object O be
the minimal number of MWMR atomic registers needed to
implement O in an n-process asynchronous anonymous sys-
tem in which any number of processes may crash. Using
this terminology, it is shown in [15] that the MWMR-
number of the repeated obstruction-free (n, k)-set agreement
object is at least (n − k + 1). Showing that this number
is actually (n − k + 1), this paper closes the correspond-
ing lower bound problem. Furthermore, Theorem 5 shows
that no object (defined by a sequential specification) has an
MWMR-number greater than n. Finally, we conjecture that

(n−k+1) is theMWMR-number of the one-shot obstruction-
free (n, k)-set agreement object, and more generally that
(n−k+x) is theMWMR-number of one-shot x-obstruction-
free (n, k)-set agreement objects, when 1 ≤ x ≤ k < n.
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