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Abstract We consider the backup placement problem,
defined as follows. Some nodes (processors) in a given net-
work have objects (e.g., files, tasks) whose backups should
be stored in additional nodes for increased fault resilience. To
minimize the disturbance in case of a failure, it is required
that a backup copy should be located at a neighbor of the
primary node. The goal is to find an assignment of backup
copies to nodeswhichminimizes themaximum load (number
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or total size of backup copies) over all nodes in the network. It
is known that a natural selfish local improvement policy has
approximation ratioΩ(log n/ log log n); we show that it may
take this policy Ω(

√
n) time to reach equilibrium in the dis-

tributed setting. Our main result in this paper is a randomized
distributed algorithm which finds a placement in polyloga-

rithmic time and achieves approximation ratio O
(

log n
log log n

)
.

We obtain this result using a randomized distributed approxi-
mation algorithm for f -matching in bipartite graphs thatmay
be of independent interest.

1 Introduction

There are many scenarios in networks, e.g., in the context of
cloud computing, where an object, such as a file or a task,
resides in an unreliable processor. It is common practice in
such cases to store a backup copy of the object at a nearby
location (say, an adjacent node), so that in case of a failure
in the primary location, the required service can be quickly
switched over to the backup, thus minimizing unavailability
time.

Clearly, not all backup placements are equal: consider,
as the simplest example, an n-node fully connected net-
work. If all nodes choose to place their backup copies at
node 0 (except node 0, of course), then a fault at node 0
will make all backup copies unavailable. A much preferable
placement would be for each node i to place its backup at
node (i + 1) mod n: this way, each node stores exactly one
copy, which is theminimum possible in any case. To quantify
this preference, one can measure the quality of a placement
by the maximum load, i.e., the maximum, over all nodes,
of the number (or total size) of copies they store, and the
optimization goal is to minimize the maximum load.
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Observe that there are cases which do not admit a good
solution: if the network topology is a star, then all leavesmust
store their backup copies at the center node (in this case, all
solutions are isomorphic). Therefore it makes sense to mea-
sure not the absolute maximum load of a given placement,
but rather the approximation ratio, i.e., the ratio between the
maximum load of a given placement and the smallest possi-
ble maximum load in the given topology, i.e., the maximum
load of an optimal placement.

In this paper we study distributed solutions to the backup
placement problem. To the best of our knowledge, the only
known distributed algorithm for this problem is the very sim-
ple (and hence attractive) local improvement rule, which says
that nodes act selfishly to decrease the load their backup copy
sees [22]. For example, if the backup copy of node v resides
in a neighbor u which stores 7 backup copies, and if v learns
that its other neighbor w stores only 3 copies, then v will
move its copy from u to w (assuming that moving an object
is an atomic operation). It is known that the approximation
ratio (called price of anarchy in this context) for this rule

is Θ
(

log n
log log n

)
, where n is the number of nodes in the sys-

tem [12]. While the upper bound on the approximation ratio
may be acceptable, it turns out that the dynamics of the local
improvement rule is problematic: as we show in this paper,
the number of rounds required to reach equilibrium may be
as large as Ω(

√
n) in the worst case, even under the most

optimistic assumptions on concurrency.
The main result in this paper is a randomized poly-

logarithmic-time distributed algorithm for backup place-
ment, an exponential improvement over the running timeover
the selfish rule. The algorithm runs in the congestmodel,
i.e., execution proceeds in synchronous rounds in which
nodes send small messages (see details in Sect. 2). The algo-
rithm can be used in two ways: in one mode of operation,

the algorithm guarantees approximation ratio O
(

log n
log log n

)
.

In the other mode of operation, the algorithm is fed a load
bound L and a parameter ε > 0, and it finds a placement with
maximum load L which places at least a (1 − ε)-fraction of
the maximum possible number of backups that can be placed
under the given constraint of maximum load L (the running
time in this case is also polynomial in ε−1). In both cases,
the algorithm can deal with the following generalizations of
the problem:

– The primary locations may be any subset of nodes.
– The backup locations for each primary location may be
any subset of nodes, assuming that each primary location
can communicate with all its possible backup locations
in O(1) rounds.

– Objects may have different sizes, and the load of a node
is the sum of the sizes of the copies it stores.

– Each object requires k backup copies in different loca-
tions, where k ∈ N is a given parameter.

Our algorithm is based on a randomized distributed approxi-
mation algorithm for f -matching in bipartite graphs thatmay
be of independent interest. We provide hardness results and
both minimum load and maximum coverage versions of the
problem, and we also compare maximal solutions (i.e., solu-
tion that cannot be augmented) to maximum solutions in the
maximum coverage case.

1.1 Paper organization

The remainder of this paper is organized as follows. In
Sect. 2 we formalize the problem. Related work is given
in Sect. 3. Section 4 discusses the sequential complexity of
the problems. In Sect. 5 we analyze a few simple distributed
algorithms and present our polylog-time algorithm. Section 6
relates maximal solutions to maximum solutions. We con-
clude in Sect. 7.

2 Model

Throughout this paper,we consider a simple undirected graph
G = (V, E), where V is the set of nodes and E is the set of
edges. We use n to denote |V | andΔ to denote the maximum
node degree of G. An undirected edge between nodes v and
u is denoted by (v, u) and we define (u, v) and (v, u) to

denote the same edge. We use NG(u)
def= {v | (u, v) ∈ E} to

denote the set of neighbors of a node u. If G is clear from
the context, we simply write N (u). The set of all positive
integers is denoted by N and N0 is used to denote the set of
all non-negative integers.

2.1 Problem statement

In the backup placement problem the input is as follows. We
are given a set C ⊆ V of client nodes and a set S ⊆ V of
server nodes. The sets may overlap, and their union need not
be V . For each client c ∈ C we are given a size (or length)
�(c) ∈ N of the resource of which backups copies are to be

stored. Let �max
def= maxc∈C �(c) denote the maximum size.

We refer to an instance as uniform if all sizes are 1. In the
non-uniform case, we assume that �max = nO(1). In addition,
we are given a parameter k ∈ N called the replication factor.

The required output is a mapping β : C → 2S which
satisfies, for all c ∈ C , that β(c) ⊆ S ∩ N (c) and |β(c)| ∈
{0, k}. Henceforth we assume, without loss of generality, that
|S ∩ N (c)| ≥ k for every client c ∈ C (otherwise we must
set β(c) = ∅.) We say that a backup copy (a.k.a. file) of c is
stored at s if s ∈ β(c). A client c ∈ C is said to be satisfied
if |β(c)| = k, and unsatisfied otherwise. Let

β−1(s)
def= {c ∈ C | s ∈ β(c)} ,
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Fig. 1 Left A backup placement in a graph. All nodes are servers and
clients, and k = 1. Placement is indicated by arrows from clients to
servers. Right the corresponding bipartite graph

i.e., β−1(s) is the set of clients whose files are stored at s.
Define the load of a server s ∈ S by

L(s)
def=

∑

c∈β−1(s)

�(c) ,

i.e., L(s) is the total size of backups stored at s. We call
max{L(s) | s ∈ S} the maximum load of β.

We consider the following optimization goals for the
backup placement problem:

– Minimum Load (MinLoad): Minimize the maximum
load under the constraint that all clients must be satis-
fied.

– Maximum Coverage (MaxCov): Maximize the number
of satisfied clients, under the constraint that themaximum
load is no more than a threshold L (L is an additional
input parameter).

– Maximum Satisfied Requests (MaxSR): Maximize the
number of satisfied requests, i.e.,maximize the number
of placed backups, under the constraint that themaximum
load is no more than a threshold L (L is an additional
input parameter).

We mainly focus on the first, while the other two are mainly
used as intermediate goals.

It is sometimes convenient to formalize the backup prob-
lem using a corresponding bipartite graph G ′ = (C, S, E ′),
where C is the set of clients, S is the set of servers (a node
of G may be represented twice in G ′), and E ′ connects a
client c to a server s if and only if (c, s) ∈ E . See Fig. 1
for an example. Note that the definitions of backup place-
ment and server load apply to the bipartite graph without
change.

2.2 Execution model

We use the congestmodel [28], which is a network model
with small messages. Briefly, in this model nodes are pro-

cessors with unique IDs, connected by links that can carry
O(log n)-bit messages in a time unit. Processors are not
restricted computationally (all computations required by our
algorithms are polynomial, though). As usual, for our upper
bounds, we implicitly assume that the α-synchronizer [2] is
employed in the system, so that the algorithms operate in a
synchronous manner in the following sense. Execution pro-
ceeds in global rounds, where in each round each processor:
(i) receives messages sent by its neighbors in the previous
round, (ii) performs a local computation, and (iii) sends (pos-
sibly distinct) messages to its neighbors. Finally, we assume
that n or an upper bound N = O(n) is known to all nodes in
the network.

3 Related work

MinLoadwith a replication factor of 1 is a special case of the
problem of load balancing with restricted assignment. In the
centralized offline setting, the problem is optimally solvable
in polynomial time using flow techniques (see Sect. 4). Most
work on this problem concerns either online algorithms (see,
e.g., [3]), or selfish agents (see, e.g., [30]). It is known that
the simple (and centralized) on-line greedy algorithm where
each job is assigned to the least loaded server is (
log n�+1)-
competitive [4].

In the centralized setting, a special case of the backup
placement problem, called “assigning papers to referees,”
was studied by Garg et al. [14]. In this problem it is assumed
that each client ranks its available servers, and the goal of an
algorithm is to find an assignment whichmaximizes a certain
fairness measure defined in terms of the ranking (feasibility
of load and coverage constraints is assumed to be trivial).

The “degree constrained subgraph” framework is a gener-
alization of the backup placement problem considered in the
centralized setting. In this family of problems the goal is to
find a subgraph optimizing a certain measure (e.g., minimize
number of edges) while conforming to given degree con-
straints (e.g., minimum degree at least some d). See [1] for
relatively recent results and survey. Semi-matchings, intro-
duced in [17], are more closely related to backup placement.
Given a bipartite graph G = (C, S, E), a semi-matching is
a subset E ′ ⊆ E of edges such that each client c ∈ C is
the endpoint of exactly one edge in E ′. The cost of a semi-
matching is defined by the L p norm of the server load vector
(the vector in which each node in S is assigned the number of
E ′ edges it is incident with). In [17], a polynomial time algo-
rithm to find an optimal semi-matching is presented, under
any L p norm, including L∞ (i.e., minimizing the maximal
load). A faster deterministic algorithm is provided in [11],
and a randomized algorithm is presented in [13]. Low [25]
considers weighted semi-matchings, where each client has
a non-negative weight, and the load of a server is the sum
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of weights of clients assigned to it: under the L∞ norm,
it is shown that the weighted version is NP-hard, and a 3

2 -
approximation algorithm is presented. All these algorithms
are centralized.

Bokal et al. [6] introduce “( f, g)-quasi-matchings” and
“( f, g)-semi-matchings.” An ( f, g)-quasi-matching of G =
(C, S, E) is a set M ⊆ E , such that each c ∈ C is an end-
point of at least f (c) edges and each s ∈ S is end endpoint
of at most g(s) edges of M . In ( f, g)-semi-matchings, also
called f -matchings in general graphs [8], both functions f
and g define an upper bound on the number of edges each
node is an endpoint of. In the sequential setting, a maximum
( f, g)-semi-matching of a bipartite graph can be found in
polynomial time [21].

In the distributed setting, the basic building block used is
fast approximate maximum matching algorithms. The best
known algorithms are [5,24], both randomized (for determin-
istic algorithms, see [16,26]). Using a matching algorithm,
Patt-Shamir et al. [27] present a polylogarithmic time algo-
rithm for MaxCov with k = 1 which guarantees, for any
ε > 0 andwith high probability, a (1+ε) 2−r

1−r -approximation,
where r is the maximum ratio between a client demand and
a server capacity. This result was extended by Halldórsson
et al. [15] who give a (1 + ε) k+1−r

1−r -approximation dis-
tributed algorithm for MaxCov with replication factor k.
They also provide a distributed algorithm that computes
solutions whose expected profit is an Ω(k−2)-fraction of
the optimum. A 2-approximation of MaxCov with k = 1
and uniform file sizes can be computed using the matching
algorithm of Koufogiannakis and Young [23]. We note that
[15,23,27] consider a more general version of MaxCov in
which serversmayhavedifferent capacities.RegardingMin-
Load, we are only aware of distributed algorithms which
use large messages (i.e., they run in the localmodel [28]):
Czygrinow et al. [7] show how to find an approximation
of optimal semi-matchings in O(Δ5) rounds under the L2

norm. The approximation ratio is min
(
2, 2s+n

n

)
, where s is

the number of servers and n is the number of all nodes. They
also provide a constant approximation localalgorithm that
runs in O(min{Δ2,Δ log4 n}) rounds.

4 Sequential complexity

In this section we study the complexity of the backup place-
ment problem.

Theorem 1 MaxCovwith uniform file sizes and replication
factor k = 1 is solvable in polynomial time.

Proof The proof is by reduction to amaximumflowproblem.
Given the bipartite representation of the MaxCov instance,
add a source s with links of capacity k = 1 connecting it to
all clients, a sink t with links of capacity L connecting it to
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Fig. 2 The flow problem corresponding to the backup placement prob-
lem of Fig. 1

all servers, and assign capacity 1 to each edge in the original
bipartite graph (see example in Fig. 2). Since capacities in the
network are integral, we can find an integral optimal flow in
polynomial time (e.g.,with an augmenting path algorithm).
Furthermore, since the in-degree of each client node is 1 and
all capacities of edges incident to a client are 1, there is a one-
to-one correspondence between integral flows and MaxCov
solutions. It follows that an optimal solution can be found in
polynomial time. 
�

However, if k > 1, the above reduction does not work
since it maximizes the number of placed backups instead of
maximizing the number of satisfied clients. Even worse, in
the case of non-uniform sizes, the maximum flow may split
a single backup copy between servers, which is not feasible
in our setting. The following theorem shows that the failure
of the reduction in these cases is no accident.

Theorem 2 MaxCov with uniform file sizes is
APX-complete for k ≥ 3 and cannot be approximated to

within Ω
(
log k
k

)
, unless P = NP.

Proof The proof is by reduction from k-dimensional match-
ing (k-dm ) toMaxCovwith replication factor k and uniform
file sizes. In the k-dmproblem, given a set of k-tuples T ⊆
X1 × · · · × Xk where X1, . . . , Xk are k disjoint sets, the
task is to find the largest possible k-dimensional matching,
namely a set M ⊆ T such that if x, y ∈ M then xi �= yi , for
every i . It is known that 3dm is APX-Complete [20] and that
k-dmcannot be efficiently approximated to within a factor of

Ω
(
log k
k

)
, unless P = NP [18].

Given instance T of k-dmas above, construct an instance
of MaxCov with replication factor k as follows. There is
a client for each k-tuple in T , and a server for each ele-
ment of

⋃
j X j . There is an edge connecting each client

c = (c1, . . . , ck) ∈ X1 × · · · × Xk to the corresponding
k servers. In addition, we set L := 1.

Now, we claim that there is a k-dimensional matching M
of size t inT if andonly if there is a backupplacement that sat-
isfies t clients in the constructed instance ofMaxCov: Given
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M , we define a placement by letting β(c) = {c1, . . . , ck} for
each c = (c1, . . . , ck) ∈ M . This is a valid solution toMax-
Cov because no server is assigned more than a single client,
due to the fact that M is a k-dimensional matching. Con-
versely, given a backup placement β, each satisfied client
c must be assigned to {c1, . . . , ck}, and by the max load
constraint, no other client can be assigned to these servers,
and hence the set of satisfied clients corresponds to a k-
dimensional matching. 
�

MinLoad can be solved using the following reduction of
MinLoad toMaxCov.

Lemma 3 If an optimal solution to MaxCov can be found
in TMaxCov time, then an optimal solution to MinLoad can
be found in O(TMaxCov log n) time.

Proof Given a MinLoad instance, do a binary search over
the value of L to find the minimal value which allows to
cover all clients. To bound the number of times theMaxCov
algorithm is called, note that the largest L to consider is
n ·�max = nO(1) by our assumption that sizes are polynomial
in n. 
�

Using a reduction tomax-flow,wrapped by a binary search
as in the proof of Lemma 3, we get thatMinLoad is polyno-
mial for uniform file sizes even for general replication factor.
1 However, for non-uniform file sizes,MinLoad is strongly
NP-hard, as stated next.

Theorem 4 MinLoadwith non-uniform file sizes is strongly
NP-hard, even for replication factor 1.

Proof The proof is by reduction of the 3-partition problem
(3part ) to the decision version of the client coverage prob-
lem with k = 1 and non-uniform file sizes. 3part is defined
as follows. The input consists of multiset X of 3m positive
integers, for somem ∈ N, and the question is whether we can
partition X into m subsets such that all subsets have equal
sums. 3part remains hard even if X ⊆ (Q/4, Q/2)n , where
Q = 1

m

∑
x∈X x . Note that if X ∈ 3part , then all subsets

must be triplets.
The reduction is as follows.We construct a bipartite graph

G = (C, S, E), where |C | = 3m and |S| = m. The client set
C is defined as follows. For each element xi ∈ X we have a
node ci ∈ C , whose copy size is �(ci ) = xi . In addition, all
clients are connected to all servers. The load cap is Q. This
completes the description of the reduction.

Suppose now that the multiset X can be partitioned into
m equal-sum triplets. If we assign the clients corresponding
to each triplets to a unique server, the total load on the server

1 The reduction works for general k because the target flow value is
known in advance (it is nk). The proof of Theorem 2 uses instances that
are not fully covered.

would be Q, namely there is a solution to the corresponding
MinLoad instance. Conversely, suppose there is a solution
to the MinLoad instance. Clearly it must be the case that
each server has load exactly Q. Thus a solution toMaxCov
induces a solution to 3partand we are done. 
�

Theorem 4 and Lemma 3 imply thatMaxCov is strongly
NP-hard, but Theorem 2 provides a stronger result.

5 Distributed algorithms

In this section we consider distributed algorithms solving
MinLoad. First we show that simple solutions do not work
well: simple randomized assignments may produce solu-
tions with Ω(n) approximation ratio, and a simple selfish
rule may yield Ω(

√
n) running time for approximation ratio

Ω
(

log n
log log n

)
. By contrast, we present a polylog-complexity

algorithm for MinLoad, derived by a series of reductions
culminating in an algorithm for bipartite f -matching which
may be of independent interest.

5.1 Random placements

It may be tempting to consider random placement as a solu-
tion to MinLoad. While this method is extremely fast, we
show that its approximation ratio is quite bad, even for repli-
cation factor 1. Let R1 be the algorithm where each client
selects a neighbor server uniformly at random.

Theorem 5 R1 has expected approximation ratio Ω(n).

Proof We show that for every odd n there exists an instance
where the expected maximum load generated by R1 is
(n − 1)/2 whereas the optimal maximum load is 1. Con-
sider a graph with a center node v0 connected to n−1 nodes,
such that nodes v2i−1 and v2i are connected (see Fig. 3-left).
Since each of the n − 1 nodes chooses the center node with
probability 1/2, the expected load on the center is n−1

2 . How-
ever, an optimal solution with a maximum load of 1 exists:
nodes v2i−1 and v2i , for i > 1, select each other, while v0,
v1, and v2 select v1, v2, and v0, resp. 
�

One may be further tempted to fix the problem of R1 by
extending the range which nodes consider. Specifically, let
R2 denote the algorithm where each client selects a neighbor
server with probability inversely proportional to the neigh-
bor’s degree.While R2 is not fooled by the simplistic example
in the proof of Theorem 5, its approximation ratio is still lin-
ear, as we show next.

Theorem 6 R2 has expected approximation ratio Ω(n).

Proof Assume w.l.o.g. that n is odd, and let n′ = n−1
2 .

Define a graph with n nodes {a} ∪ ⋃n′
i=1 {bi , ci }, and edges

123
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Fig. 3 Graphs used in the
proofs of Theorem 5 (left) and
Theorem 6 (right)

{
(ci , c j ) | i �= j

} ∪ ⋃n′
i=1 {(a, bi ), (bi , ci )} (see Fig. 3-right

for an example). The ci nodes induce a complete graph with
n′ nodes. Since a and each ci have degree exactly n′, in
R2 node bi selects node a with probability 1

2 , resulting in
n′/2 = Ω(n) expected load on a. However, optimal backup
placements on this graph have maximum load 1 if n′ > 1
using the following assignment of copies: let x → y denote
placing of x’s copy in y. To obtain maximal load of 1, we
use the assignment a → b1, b1 → c1, c1 → c2, c2 → b2,
b2 → a, and bi ↔ ci for i > 2. (If n′ = 1 then load 2 is
unavoidable and achievable, say by a → b1, b1 ↔ c1.) 
�

5.2 The local improvement rule

Wenow turn our attention to themuch-studied local improve-
ment rule, defined as follows. Starting with an arbitrary
placement, clients move their copy at will: a client moves
one of its copies to another neighbor server if the resulting
load at the target server is smaller than the load at the cur-
rent server. Such a move is called a local improvement step.
An assignment in which no such move is possible is called
(Nash) equilibrium. A self-stabilizing distributed implemen-
tation of the local improvement rule is given in [22].

It is easy to see that the local improvement rule converges
to a Nash equilibrium, in which no client wants to move its
copy: the vector of sorted loads decreases lexicographically
in eachmove. However, we now prove the following stronger
result.

Theorem 7 Starting at any initial backup placement, Nash
equilibrium is reached in O(�2maxknΔS) local improvement
steps, where ΔS is the maximum server degree.

Proof Wegeneralize the proof of [22] to backups of arbitrary
size. Define a potential function

∑
s∈S L(s)2. A client that

moves a backup of size � from server s to t decreases the
potential by L(s)2 + L(t)2 − (L(s) − �)2 − (L(t) + �)2 =
2�(L(s) − L(t) − �). Since this is a local improvement step,
it must hold that L(s) > L(t) + � beforehand. Moreover,
all file sizes and thus the server loads are integers. Thus the

potential function decreases by at least 2� ≥ 2 with each
local improvement step. The potential function attains its
worst-case value if there are n clients and the backups are
concentrated on as few servers as possible. In our case, a
server can store atmostΔS backups. So assume that �kn/ΔS�
servers store ΔS backups each. Since backup sizes are at
most �max, each of the �kn/ΔS� servers has a load of at most
�maxΔS . The O(�2maxknΔS) upper bound follows. 
�

Moreover, the following result is known regarding the
price of anarchy for the local improvement rule.

Theorem 8 ([12]) A Nash-equilibrium of the local improve-

ment rule is a Θ
(

log n
log log n

)
-approximate backup placement

for the case of replication factor 1.

We complement the above results with some bad news,
namely that there are scenarios in which a large number of
steps is required to reach equilibrium.

Theorem 9 Fix a replication factor k. For any given integers
n and Δ, where 8max{8, k} ≤ Δ + 1 ≤ n, there exists a
graphwith n nodes,maximumdegreeΔ and an initial backup
placement such that Ω(kn

√
Δ) local improvement steps can

be performed before an equilibrium is reached.

Proof Wefirst showanΩ(kn3/2) lower bound for a complete
graph with n nodes. This is used as a building block to obtain
the desired Ω(kn

√
Δ) lower bound.

Let G be a complete graph with n ≥ 8max {8, k} nodes,
where all nodes are both clients and servers. Then for the
corresponding bipartite graph G ′ = (C, S, E ′) we have
|C | = |S| = n, where C and S are the client and server
sets. Let all backups have size 1. The initial placement is as
follows. Partition the servers into three sets Sh , Sc, and Sp

with |Sh | = k, |Sc| = c
def= ⌈√

n
⌉
, and

∣∣Sp
∣∣ = n − k − c.

Let s1, s2, . . . , sc denote servers in Sc. We place backups on
these servers until the load of each si ∈ Sc is equal to k+c−i .
To do so, we repeatedly visit servers s1 to sc, placing a sin-
gle backup on each server unless the desired load has been
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Fig. 4 Initial server load distribution used in the proof of Theorem 9

reached. We use backups of the same client as long as possi-
ble and pick a new client when needed. It can happen at most
k + c−1 times, that not all backups of a client can be placed
on servers of Sc. The remaining backups of such a client (at
most k − 1) are placed on the servers of Sh , giving priority
to the servers having the minimum load. This way, at most
(k + c − 1)(k − 1) ≤ kc backups are placed on servers of
Sh . As the load is evenly distributed among these servers, no
server of Sh has a load larger than k + c − 1. More back-
ups are placed on the servers of Sh until all of them have
a load equal to k + c. None of the backups that have been
placed so far will be moved by a local improvement step in
our example.

The number of unplaced backups we are now left with is

h
def= kn −

(
k(k + c) + kc + c(c − 1)

2

)

= kn − k2 − 2kc − c(c − 1)

2

≥ kn − k2 − 2k(
√
n + 1) − (

√
n + 1)

√
n

2

= kn − k2 − 2k
√
n − 2k − n

2
−

√
n

2

≥ kn − kn

8
− kn

4
− kn

32
− kn

2
− kn

16

= kn

32
.

We distribute these backups evenly among the servers of Sh .
No backup is placed on any server in Sp or Sc. The resulting
server load distribution looks similar to what is shown in
Fig. 4. Starting at this initial placement, as many of the Sh
backups as possible are moved to servers of Sp. For each
backup we use a sequence of local improvement steps such
that the backup visits the servers s1 to sc exactly once. Note
that the servers of Sp can hold all the backups of a client as

∣∣Sp
∣∣ = n − k − c

≥ n − 2k − √
n − 1 + k

≥ n − n

4
− n

8
− 1 + k

= 5

8
n − 1 + k

≥ k .

Since sc has a load of k, at most k(n− k − c) backups can be
moved from sc to servers in Sp as their load grows over time.

Summing up, exactly b
def= min(h, k(n−k−c)) = h backups

can be moved from the servers in Sh to servers in Sp. Since
each backup visits each server of Sc once, we have c local
improvement steps per backup yielding b · c ∈ Ω(kn

√
n)

improvement steps in total.
To create a graph with n′ nodes and degree Δ, for

8min{8, k} ≤ Δ + 1 ≤ n′, we use the complete graph
described above with Δ + 1 nodes as a building block and
create

⌊
n′/(Δ + 1)

⌋
copies of it. Summing up the number

of local improvement steps over all building blocks, we then
obtain the claimed lower bound of Ω(kn′√Δ). 
�

We note that Theorem 9 is an improvement over the previ-

ously known lower bound,which cannot exceedΩ
(
n log2 n
log log n

)

in an n-node graph [10]. A construction similar to Fig. 4 is
used in [9] to prove anΩ(n

√
n) lower bound for the problem

inverse to ours with k = 1.
The local improvement rule is sequential: one improve-

ment at a time. For a distributed implementation, we assume
that the local improvement steps are done atomically and
in adversarial order. By atomically we mean that a server
cannot participate in two concurrent improvement steps.
This is required to make sure that each step is indeed an
improvement (otherwise non-termination may occur due to
oscillations [22]). The adversarial order is for the sake of
studying the worst case.

Note that to implement local improvement, one has to
somehow synchronize the clients so that at most one copy is
removed or added to a server in a step. Otherwise, for exam-
ple, it may be the case that a server node v had 0 load in round
t , driving all its neighbor clients to move their copies to it,
resulting in load deg(v) in round t + 1. But even ignoring
this difficulty, and assuming the most optimistic assumption
about concurrency, namely that each server is able to per-
form one local improvement step per parallel round, only
O(n) local improvement steps would be performed in a sin-
gle round. Thus Theorem 9 yields the following immediate
corollary.

Corollary 10 For any given k and for any given integers n
and Δ, where 8max{8, k} ≤ Δ + 1 ≤ n, there are instances
of graphs with n nodes, maximum degree Δ, and replication
factor k, such that for some sequences of the local rule the
worst-case distributed running time is Ω(k

√
Δ).

We note that the self-stabilizing algorithm of [22] meets the
lower bound of Corollary 10.
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5.3 Polylog-time approximation algorithm

We now present our main result, namely an algorithm for the
backup placement problem in the congestmodel.

We start with a standard classify-and-select reduction that
allows us to reduce non-uniform file sizes to the case of uni-
form file sizes, and whose cost is an additional O(log n)

factor in both the running time and approximation ratio. The
reduction works for general k. Recall that we assume that
�max = nO(1).

Lemma 11 LetΔS denote the maximum server degree in an
instance. IfMinLoad can be solved for uniform file size and
replication factor k in time Tk and approximation ratio αk ,
then MinLoad can be solved for non-uniform file size and
replication factor k in time O(Tk logΔS) and approximation
ratio O(αk logΔS).

Proof As a first intuitive step, assume that �max and ΔS are
known to each node. Let OPT denote the optimal load for
the non-uniform MinLoad instance. We classify all clients
according to their file size: class i contains all clients with file
sizes in (2i−1, 2i ]. We consider the top 
logΔS� classes and
solveMinLoad for each class independently, assume that all
file sizes are equal to 2i . Let ALGi denote the maximum load
of the solution for class i and let OPTi denote the optimum
load.Observe thatOPTi ≤ 2OPT aswe assume atmost twice
the original file size. Thus it follows that ALGi ≤ αOPTi ≤
2αOPT.Merging the solutions for the topΔS classes, the load
on each server is at most 2αk 
logΔS� ·OPT. The remaining
files have small sizes of less than 2

ΔS
�max and are called

globally small. These files are placed arbitrarily. This adds
at most load 2�max per server as a single server has at most
ΔS adjacent clients. The result follows.

We now show how to avoid the assumption that nodes
know �max or ΔS . The idea is that each client determines
whether its file is locally small by comparing it to the maxi-
mum file size within its 2Tk-hop neighborhood instead of to
�max. Since �max is an upper bound, locally small files are
also globally small and can be placed on an arbitrary adja-
cent server. Otherwise, the client places its file according to
its class.

Consider the bipartite graph G = (C, S, E) where C is
the set of clients and S is the set of servers. W.l.o.g. let C and

S be disjoint and we define V
def= C ∪ S.

We classify all clients according to their file size: class
i ∈ N0 contains all clients with file sizes in (2i−1, 2i ]. For
a client c ∈ C , let class(c) denote the index of its class. For
convenience we define class(s) = 0 for every server s ∈ S.
Since �max is assumed to be in nO(1), there are O(log n)

classes.
Let dist(v, u) denote the length of the shortest path

between nodes v and u and deg(v) the degree of node v.

For a client c ∈ C we define

ΔS(c)
def= max{deg(s) | s ∈ S ∧ dist(c, s) = 1}

and for every node v ∈ V and r ∈ N0 we define

clmax(v, r)
def= max{class(u) | dist(v, u) ≤ r} .

We call a client c ∈ C an initiator if and only if

class(c) > clmax(c, 2Tk) − 
logΔS(c)� .

Let I ⊆ C be the set of all initiators. For a node v ∈ V and
r ∈ N0 we define

Classes(v, r)
def= {i | ∃c ∈ I : dist(v, c) ≤ r ∧ class(c) = i} .

We claim that |Classes(v, r)| ≤ 
logΔS� for all nodes
v ∈ V and any r ≤ Tk . Suppose that there is a node v ∈ V
and a non-negative integer r ≤ Tk such that |Classes(v, r)|
exceeds the given bound. Then there are two initiators u and
w within distance r of v such that

class(u) ≤ class(w) − 
logΔS� .

It holds that dist(u, w) ≤ 2r ≤ 2Tk due to the triangle
inequality. Therefore clmax(u, 2Tk) ≥ class(w) and, since
u is an initiator, it holds that

class(u) > clmax(u, 2Tk) − 
logΔS(u)�
≥ class(w) − 
logΔS� .

That is a contradiction to the above upper bound on class(u).
Now assume that every node v knows the value of

Classes(v, Tk) and all clients know whether they are initia-
tors. We postpone the discussion on how to compute that
efficiently to the end of the proof. Let A be an algorithm that,
for replication factor k and uniform files sizes, computes an
αk-approximate backup placement in at most Tk rounds. We
define

Vi
def= {v ∈ V | i ∈ Classes(v, Tk)} .

Fix a class index i ∈ N0. Let βi denote a placement that only
considers the files of initiators of Vi . We compute βi using
algorithm A, pretending that files sizes are uniform. We also
exploit the fact that βi (c) for an initiator c ∈ Vi merely
depends on inputs within distance Tk of c. By construction,
Vi contains all nodes within distance Tk of c. Thus it suffices
that only the nodes in Vi participate in the simulation of A.

We compute the placements βi for all classes i in paral-
lel. A single node v participates in the simulation of A for
at most |Classes(v, Tk)| classes. As shown above, we have
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that |Classes(v, Tk)| ∈ O(logΔS). Therefore, it follows that
the parallel simulation transmits at most O(logΔS)-times
the amount of data as a single execution of A. Thus, all
βi can be computed in parallel in time O(Tk logΔS) in the
congestmodel.

Each βi is a 2αk approximation. A server s ∈ S receives
files by atmostO(logΔS)distinctβi since |Classes(s, Tk)| ∈
O(logΔS). Thus, the union of all βi has an approximation
ratio of O(αk logΔS). Clients that are not initiators place
their files arbitrarily. Let c be such a client and let s ∈ S be
a server adjacent to c. Then we have

�(c) ≤ 2class(c) ≤ 2clmax(c,2Tk )−
logΔS(c)�

≤ 2
log �max�−log deg(s)

≤ 2�max/ deg(s) .

Since a server s cannot be assigned more than deg(s) files, it
follows that this adds at most a load of 2�max per server. The
claimed approximation ratio follows.

We now turn to computing the value ofClasses(v, Tk) and
whether a client is an initiator or not. The algorithm for that
is composed of three phases. Phase 1 is as follows:

– Every server s ∈ S sends deg(s) to all adjacent clients.
– Each client remembers the maximum value it received.

Clearly, all clients c ∈ C know the value of ΔS(c) at the end
of Phase 1. Phase 1 takes O(1) rounds to complete. Phase
2 computes clmax(c, 2Tk) for all clients c ∈ C . Assume that
nodes have an integer variable clmax.

– Every node v ∈ V sets clmax := class(v).
– For i = 1, 2, . . . , 2Tk do

1. All nodes broadcast clmax to their neighbors.
2. All nodes update clmax with the largest value received

if a value larger than clmax was received.

Observe that clmax = class(v) = clmax(v, 0) before the loop.
By induction on i , it follows that clmax of node v is equal to
clmax(v, i) after i iterations of the loop. Phase 2 takes at
most O(Tk) rounds since O(log log n) bits are transmitted
per edge in each iteration. After phases 1 and 2, a client c
knows the values of ΔS(c) and clmax(c, 2Tk) and thus can
determine whether it is an initiator. The goal of phase 3 is
to compute the value of Classes(v, Tk) for all nodes v ∈ V .
Assume that each node has a variable Classes which is a set
of class indexes.

– Every initiator c ∈ I sets Classes := {class(c)} and all
other nodes set Classes := ∅.

– For i = 1, 2, . . . , Tk do

1. All nodes broadcast Classes to their neighbors.
2. Every node adds the elements of all sets received to

its Classes variable.

Again, by induction on i , it follows that the variable Classes
of every node v is equal to Classes(v, i) after i iterations.
Note that before the first iteration of the loop we have
Classes = {class(c)} = Classes(v, 0). As shown above,
|Classes(v, i)| cannot exceed 
logΔS� for i ≤ Tk . Hence
O(logΔS log log n) bits are transmitted over an edge per iter-
ation. Therefore, the running time of phase 3 is O(Tk logΔS)

rounds. 
�
Let us consider now the problem of minimizing the max-

imum load with uniform sizes and replication factor k. Fix
the instance graph. Given a value L , letMaxCov(L) denote
the number of clients that can be satisfied when the instance
is viewed as an instance of MaxCov with server load cap
L . We say that an algorithm A α-solves MaxCov, for some
parameter α ≥ 1, if for any given L ≥ 0, A finds a placement
which places at least k · MaxCov(L) files, but with relaxed
maximum load αL .

Lemma 12 If MaxCov with uniform file size and replica-
tion factor k can be α-solved in time Tc for any L, then
MinLoad with uniform file size and replication factor k can
be solved in time O(Tc log n) and approximation ratio 4α.

Proof Let A be an algorithm which α-solves the instance in
time Tc. We use the following algorithm:

– For i = 0 to log n do

1. Run A with parameter L = 2i . Obtain solution βi

which places at least k · MaxCov(2i ) files.
2. Add βi to the output, and remove all edges used by

βi from further consideration.

Let OPT be the optimal load for the given MinLoad
instance. Clearly, when L ≥ OPT, the algorithms can place
all remaining files. Therefore all files are placed by some βi
for some i ≤ 
logOPT�. Hence the algorithm produces all
its output by time O(Tc logOPT) = O(Tc log n). Since each
βi with i ≤ 
logOPT� is a backup placement with maxi-
mum server load at most α2i , the load of the union of all
placements is at most

∑
logOPT�
i=0 α2i ≤ 4αOPT. 
�

Finally, we reduce the problem of α-solvingMaxCov to
finding approximate solutions of MaxSR. We use a reduc-
tion of MaxSR to the f -matching problem. Given a graph
G = (V, E) and a mapping f : V → N0, an f -matching is
a subset M ⊆ E such that each node v ∈ V is incident to
at most f (v) edges of M . The goal is to find such a set M
of maximum size. In the remainder of this section, ordinary
matchings, where f (v) = 1 for all nodes v ∈ V , will be
called 1-matchings.
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Lemma 13 If f -matching can be approximated to within
(1 − 1

x ) on bipartite graphs in time Tm for some x > 1,
then MaxCov with uniform file size, replication factor k,
and maximum load L can be O(logx n)-solved in time
O(Tm logx n).

Proof Let A be an algorithm obtaining, in Tm time, (1− 1
x )-

approximate f -matchings. For each client cwe set f (c) := k
and for each server s we set f (s) = L . We set t =⌊
logx kn

⌋ + 1 and use the following algorithm:

– For i = 1 to t do

1. Run A and obtain f -matching Mi .
2. Add Mi to the output, remove all edges used by Mi ,

and for each client c, decrease f (c) by the number of
edges of Mi incident to c.

Let OPT denote the set of edges used by an optimal solution
ofMaxCov, and let ALG(i) denote the set of edges used by

the algorithm after i iterations, that is ALG(i)
def= ⋃i

j=1 Mj .
A maximum f -matching computed in iteration i + 1 would
contain at least |OPT \ ALG(i)| edges. However, since Mi

is (1 − 1
x )-approximate, we have

|ALG(i + 1)| ≥ |ALG(i)| +
(
1 − 1

x

)
|OPT \ ALG(i)|

≥ |ALG(i)| +
(
1 − 1

x

)
(|OPT| − |ALG(i)|)

= |OPT| − 1

x
(|OPT| − |ALG(i)|)

which yields

|OPT | − |ALG(i + 1)| ≤ 1

x
(|OPT | − |ALG(i)|) .

The value of t is chosen such that |OPT| − |ALG(t)| < 1.
This is true for any t > logx kn since |OPT| ≤ kn. This
immediately proves the claimed time bound. Regarding the
approximation ratio, note that each Mi increases the max
load by at most L since it matches a server with at most L
clients. 
�

By the chain of reductions above, it suffices to focus on
f -matching alone. We present an approach for computing
approximate f -matchings based on the algorithm of [24] and
a reduction of f - to 1-matchings by Shiloach [29].

The basic idea in the algorithm of [24] is to eliminate
all augmenting paths up to a certain length: Hopcroft and
Karp [19] show how to translate a lower bound on the length
of augmenting paths to a lower bound on the approximation
ratio in 1-matching. Using Shiloach’s reduction, we general-
ize the result of [19] to f -matchings.

Fig. 5 Subgraph of the f -replicated graph corresponding to an edge
(v, u), where f (v) = f (u) = 3

We start by generalizing the notions of augmenting paths
and of independent set of augmenting paths to the con-
text of f -matchings. Let M be an f -matching in a graph
G = (V, E). Let degM (v) denote the number of edges of
M incident with v ∈ V . A node v is called saturated if
degM (v) = f (v) and unsaturated if degM (v) < f (v). An
augmenting path of M is a trail of odd length that starts and
ends at unsaturated nodes and alternates between edges of
E \ M and M . (A trail may visit nodes multiple times but its
edges are distinct.) An augmenting path of M may start and
end in the same node v, but only if degM (v) ≤ f (v) − 2.

When augmenting an f -matching M with an augmenting
path p, the edges of p with an odd index are added to M and
the edges with an even index are removed from M . Observe
that degM (v) of a node v increases by exactly gain(v, p)
defined as follows:

gain(v, p)
def=

⎧⎪⎨
⎪⎩

2 if v is start- and end-node of p

1 if v is either start or end-node of p

0 otherwise

Using this function, we now give a definition of independent
sets of augmenting paths.

Definition 1 A set P of augmenting paths of an f -matching
M is called independent if the augmenting paths in P are
pairwise edge-disjoint and for all nodes v,

∑
p∈P

gain(v, p) ≤ f (v) − degM (v) .

If P is an independent set of augmenting paths, then a node
v can occur as an internal node of the trails of P at most
degM (v) ≤ f (v) times. This is due to the edge-disjointness
requirement, since there are exactly degM (v) edges of M
incident to a node v. This means, for example, that in the
case of 1-matchings (but not in general), all paths in an inde-
pendent set are node-disjoint.

Shiloach [29] showed that every maximum f -matching
in a graph G = (VG , EG) has a corresponding maximum
1-matching in a graph H = (VH , EH ) which is obtained by
replacing every edge ofG with the subgraph shown in Fig. 5.
We call H the f -replicated graph. It is formally defined as
follows:
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Fig. 6 An f -matching (top)
and a corresponding matching in
the replicated graph (bottom)
with f (c) = 3 and f (s) =
f (t) = f (u) = f (v) = 2

VH
def= {vi | v ∈ VG ∧ i ∈ [1, f (v)]}

∪ {pv,u | v ∈ VG ∧ u ∈ NG(v)}
EH

def= {(vi , pv,u) | v ∈ VG ∧ u ∈ NG(v) ∧ i ∈ [1, f (v)]}
∪ {(pv,u, pu,v) | (v, u) ∈ EG}

The nodes vi with v ∈ VG and i ∈ [1, f (v)] are called virtual
copies of v. A node pv,u with (v, u) ∈ EG is called a port
node of v. An edge between two port nodes is called physical
edge. If f is clear from the context, then f is omitted and H
is just called the replicated graph of G.

Aswewill show, any f -matchingMG has a corresponding
1-matchingMH in the replicated graph such that ifMH has an
independent set of augmenting paths, then MG has an inde-
pendent set of augmenting paths of the same size. This holds
true even if we require MH to be a normalized 1-matching,
where a 1-matching is called normalized if it saturates all
port nodes. An f -matching MG of a graph G = (VG , EG)

and a normalized 1-matching MH in the replicated graph
H are called corresponding if (c, s) ∈ MG if and only if
(pc,s, ps,c) /∈ MH . An example of an f -matching and the
corresponding 1-matching is shown in Fig. 6.

Lemma 14 Let MG be an f -matching of a graph G =
(VG , EG). Then MG has a corresponding 1-matching MH

in the replicated graph H with |MH | = |EG | + |MG |.
Proof Start with the normalized 1-matching

MH = {(pv,u, pu,v) | (v, u) ∈ EG} .

For each edge (v, u) ∈ MG , augment MH with a path
vi , pv,u, pu,v, u j where i and j are chosen such that vi and
u j are unsaturated. Clearly, the result is a normalized match-
ing and it contains exactly |EG | + |MG | edges. Note that H
contains enough unsaturated virtual copies of each node of
G for this procedure to complete. 
�

Lemma 15 Every augmenting path of a normalized 1-
matching M in a replicated graph H = (VH , EH ) contains
an odd number of physical edges and these edges alternate
between M and EH \ M.

Proof Fix an augmenting path p of M . Recall that p must
start at an unsaturated node. Since H is normalized, all unsat-
urated nodes are virtual copies. Also, any trail of H of odd
length that starts at a virtual copy and does not include a
physical edge ends at a port node. Hence, p must contain a
physical edge.

Also note that any trail of H that starts at a virtual copy
and ends with its first physical edge is of even length. Thus,
the first physical edge of p must be in M . By symmetry, the
last edge of p must also be in M . Furthermore, any trail of
H that starts with a physical edge and ends with its second
physical edge is of even length. Thus, the physical edges of
p must alternate between M and EH \ M . 
�
Lemma 16 Let MG be an f -matching in a graph G and let
MH be a corresponding 1-matching in the replicated graph
H. If there is an independent set PH of augmenting paths
of MH , then there is an independent set PG of augmenting
paths of MG such that |PG | = |PH |.
Proof The set PG contains one augmenting path pG for each
pH ∈ PH . In the remainder of the proof, we describe how to
construct pG from pH and show that PG is indeed indepen-
dent.

Let p′
H be the subsequence of pH that contains all physical

edges of pH . Each physical edges (pv,u, pu,v) of p′
H corre-

sponds to the edge (v, u) ∈ EG . We set pG to the sequence
obtained by replacing each edge of p′

H with the correspond-
ing edge of EG .

By Lemma 15, the subsequence of physical edges of pH
alternates between MH and EH \ MH and is of odd length.
Thus, pG is of odd length and alternates between EG \ MG
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and MG since MG and MH are corresponding. Also, as pH
contains each physical edge at most once, pG contains each
edge at most once. Thus pG is a valid augmenting path.

The paths in PG are edge-disjoint as the paths in PH are
edge-disjoint and each physical edge of H corresponds to a
different edge of G. It remains to show that for all v ∈ VG ,∑

p∈PG gain(v, p) ≤ f (v)− degMG
(v). Fix a node v ∈ VG .

The matching MH saturates exactly degMG
(v) virtual copies

of v. The remaining f (v) − degMG
(v) virtual copies are

unsaturated. We proceed by mapping gain(v, pG) unsatu-
rated virtual copies of v to each pG ∈ PG which proves the
claim.

By construction, pG with gain(v, pG) = 2 was derived
from an augmenting path pH that starts at vi and ends at v j ,
both distinct unsaturated virtual copies of v. We map vi and
v j to pG . If gain(v, pG) = 1, then pG was derived from an
augmenting path pH that either starts or ends at a virtual copy
vi . We map vi to pG . Note that since MH is a 1-matching,
the paths in PH are vertex-disjoint and thus no virtual copy
of v is mapped twice. 
�

With the above results in place, we now proceed to prove
the following generalizations of results in [19].

Lemma 17 Let MG and NG be f -matchings of a graph G. If
|MG | = r , |NG | = s, and s > r , then there is an independent
set of at least s − r augmenting paths of M.

Proof Let H be the replicated graph ofG. Lemma 14 implies
that there are two 1-matchings MH and NH that correspond
to MG and NG , resp., and it holds |NH | − |MH | = s − r . As
this lemma is known to hold for 1-matchings [19], we have
that MH has an independent set of at least s − r augmenting
paths. Hence, MG has an independent set of at least s − r
augmenting paths by Lemma 16. 
�
Theorem 18 Let M be an f -matching of a graph G and let
s be the cardinality of a maximum f -matching of G. Then M
has an augmenting path of length at most 2 �r/(s − r)� + 1
with r = |M |.
Proof By Lemma 17 there is an independent set P of at least
s− r augmenting paths of M . Since the augmenting paths of
P are pairwise edge-disjoint, P contains atmost r edges from
M . On average, an augmenting path in P contains at most
r/(s − r) edges of M . Thus there is at least one augmenting
path p of P that contains at most �r/(s − r)� edges of M .
As the edges of p alternate between V \M and M , the length
of p is at most 2 �r/(s − r)� + 1. 
�

Theorem 18 yields the following relation between the
approximation ratio and the length of the shortest augment-
ing path of an f -matching.

Corollary 19 If the shortest augmenting path of an f -
matching M has length 2x − 1 for some x ∈ N, then the
approximation ratio of M is at least (1 − 1

x ).

Proof Let r = |M | and let s be the size of a maximum f -
matching. By Theorem 18we have 2x−1 ≤ 2 �r/(s − r)�+
1. It follows that x − 1 ≤ r/(s − r) and that r ≥ (

1 − 1
x

)
s

which proves the claim. 
�
So as in the case of 1-matchings, the approximation ratio

of f -matchings is related to the length of the shortest aug-
menting path. We now show that this relation carries over to
the length of the shortest augmenting path of the correspond-
ing 1-matching in the replicated graph.

Lemma 20 If an f -matching MG of a graph G has an aug-
menting path of length x, x ∈ N, then any corresponding
matching MH of the replicated graph H has an augmenting
path of length 3x.

Proof Let pG be the augmenting path of MG . We construct
the augmenting path pH of MH as follows. The augmenting
path pH consists of x segments of length 3, one per each edge
of pG . Let si denote the i-th segment of pH and ei denote
the i-the edge of pG . The second edge of segment si is the
physical edge (pv,u, pu,v) where ei = (v, u). We continue
by specifying the first and last edge of segments si with even
index (i.e.,ei ∈ MG) as well as the start-node and end-node
of pH . The first and last edges of all segments si with odd
index (i.e.,e /∈ MG) are implied as the (i + 1)-th segment of
pH starts with the node that the i-th segment ends with.

Let i be even and ei = (v, u). The first edge of si is
the edge of MH that connects a virtual copy of v to pv,u .
Similarly, the last edge of si is the edge of MH that connects
pu,v to a virtual copy of u. It remains to specify the start-node
and end-node of pH .

Let v be the start-node and u the end-node of pG . Since
MH is corresponding toMG , theremust be at least one unsat-
urated virtual copy of each v and u. They are chosen as
start-node and end-node of pH . Note that if v = u, then
at least two virtual copies of v are unsaturated and pH starts
and ends at distinct virtual copies of v. 
�
Corollary 21 Let MG be an f -matching. If the correspond-
ing 1-matching MH in the replicated graph does not have
augmenting paths of length less than 3(2x − 1), x ∈ N, then
the approximation ratio of MG is at least (1 − 1

x ).

Proof Assume that MH has no augmenting path of length
less than 3(2x−1). Also assume that MG has an augmenting
path of length less than 2x −1. Then MH has an augmenting
path of length less than 3(2x − 1) by Lemma 20 which is a
contradiction to the first assumption. Thus the shortest aug-
menting path of MG has length at least 2x − 1 and thus MG

is a (1 − 1
x )-approximation by Corollary 19. 
�

In addition, computations on the replicated graph can be
efficiently emulated on the original graph as the following
result shows.
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Lemma 22 LetG = (V, E)beagraph, and let f : V → N0

be such that f (v) ≤ |V | for every v ∈ V . Let A be an algo-
rithm in thecongestmodel. An execution of x rounds of A on
the f -replicated graph of G can be emulated by an algorithm
running on G in O(x) rounds in the congestmodel.

Proof Let H be the f -replicated graph of G and n = |V |.
Then H has n′ = 2m + ∑

v∈V f (v) ≤ 3n2 nodes, namely
f (v) virtual copies per node v ∈ V and 2 port nodes per
edge of G.

The emulation of a computation of A on H sends all mes-
sages exchanged over a physical edge (pv,u, pu,v) over the
corresponding edge (v, u) of G. All other communication of
A is over an edge (vi , pv,u) which is emulated internally by
node v. This is depicted in Fig. 6.

Since A is designed for the congestmodel, each node of
H transmits at most O(log n′) bits over a physical edge of H
per round. Thus the emulation transmits at most O(log n′) =
O(log n) bits per emulated round and edge of G. Hence, it
takes O(1) rounds to emulate one round of A running on H .


�
The above results on f -matchings hold for general graphs.

However, we now shift the focus back to bipartite graphs
G = (C, S, E), where C is the set of clients and S the set
of servers. Let H be an f -replicated graph of G for some
mapping f . Recall the definition of H . We show that H is
also bipartite by giving a partition ofVH into two independent
sets LH and RH . Part nodes of clients and virtual copies of
server are added to LH . Similarly, port nodes of servers and
virtual copies of clients are added to RH . We show that LH is
an independent set. The proof for RH is analogous. Consider
two nodes u and v of LH . Consider the following three cases:

1. u and v are virtual copies: The construction of H does
not include edges between virtual copies. Thus u and v

are independent.
2. u is v are port nodes: Then u and v are port nodes of

clients c and c′ respectively. H only includes an edge
between u and v if c and c′ are connected in G. Thus v

and u are independent in H as c and c′ are independent
in G.

3. u is a port node and v is a virtual copy. As u is a port node
of a client c, it is only connected to virtual copies of c.
However, v is a virtual copy of a server by definition of
LH . Thus u and v are independent.

The authors of [24] provide an algorithm for bipartite
graphs that computes 1-matchings such that the shortest aug-
menting path has a length of at least 2x − 1, where x ∈ N

is an input parameter of the algorithm. Note that the match-
ing algorithm for general graphs does not have this property.
Starting at a matching M0 = ∅, the algorithm for bipartite
graphs operates in phases. In phase i , the algorithm finds a

maximal independent set Pi of augmenting paths of Mi−1,
where all augmenting paths of Pi are of length 2i − 1. The
matching Mi is then obtained by augmenting Mi−1 with Pi .
In [24] it is shown by induction on i that Mi does not have
augmenting paths shorter than length 2i − 1. Hence, Mx is
the desired output of the algorithm. The construction of a
maximal independent set of augmenting paths in each phase
is randomized. However, with high probability, the indepen-
dent sets found in all phases are maximal. As shown in [24],
the algorithm completes x phases within O(x3 log n) rounds
in the congestmodel.

We modify the algorithm to find normalized 1-matchings
of the replicated graph. Themodified algorithm skips the first
phase and starts with the 1-matchingM1 which consists of all
physical edges of the replicated graph. Note that M1 does not
have augmenting paths of length 1. Thus, the proofs of [24]
apply and by induction on i , Mi does not have augmenting
paths shorter than length 2i − 1. Furthermore, we show that
Mi is normalized if Mi−1 is normalized. Thus, by induction
on i , the algorithm computes a normalized matching.

Lemma 23 If the 1-matching M ′ is the result of augmenting
a normalized 1-matching M of a replicated graph, then M ′
is also normalized.

Proof Since M ′ is the result of augmenting M , it holds that
degM ′(v) ≥ degM (v) for all nodes v. In particular, this holds
for all port nodes. Thus, since M saturates all port nodes, so
does M ′. 
�

We summarize our results on the modified bipartite 1-
matching algorithm as follows:

Lemma 24 A normalized 1-matching M of a bipartite repli-
cated graph such that its shortest augmenting path has a
length of at least 2x−1, x ∈ N, can be computedw.h.p.within
O(x3 log n) rounds with messages of O(log n) bits, where n
denotes the number of nodes in the replicated graph.

We conclude our results on bipartite f -matching with the
following result:

Theorem 25 For any x > 1, a (1 − 1
x )-approximate f -

matching of a bipartite graph G can be computed w.h.p. in
time O(x3 log n) in the congestmodel, where n is the num-
ber of nodes of G.

Proof By Lemma 24, a normalized 1-matching without any
augmenting paths shorter than length 6x − 3 can be com-
puted in time O(x3 log n′), where n′ is the number of nodes
of the replicated graph. Since n′ ≤ 3n2, we have that
O(x3 log n′) = O(x3 log n). By Corollary 21, the corre-
sponding f -matching is a (1 − 1

x )-approximation. 
�
Combining the above result with the reductions of Lem-

mas 12 and 13, we obtain
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Fig. 7 Example of the
construction of the mapping f
used in the proof of Theorem 28

Corollary 26 Given a MinLoad instance with uniform
sizes and replication factor k and some x > 1, an

O
(
log n
log x

)
-approximate solution can be found w.h.p. in the

congestmodel within O
(
x3 log3 n
log x

)
rounds.

If we set x = 2, our algorithm computes an O(log n)-
approximate solution ofMinLoad in O(log3 n) rounds. We
optimize slightly by choosing x = log n

log log n to obtain an

O
(

log n
log log n

)
-approximate solution of MinLoad in

O
(

log6 n
(log log n)4

)
rounds. Another possible choice for our algo-

rithm is x = n1/c, for any positive constant c. It then
computes an O(1)-approximation in O(n3/c log2 n) rounds.

By combining Corollary 26 with Lemma 11, we obtain:

Corollary 27 Given aMinLoad instance with non-uniform

sizes and replication factor k and some x > 1, an O
(
log2 n
log x

)
-

approximation can be found w.h.p. in the congestmodel

within O
(
x3 log4 n
log x

)
rounds.

6 Maximal versus maximum coverage

An alternative approach to approximate MinLoad is via
reduction to maximal MaxCov. If the replication factor is
k and file sizes are uniform, then this approach leads to an
O(k log n)-approximation ofMinLoad. A central ingredient
in the proof is the fact that amaximal solution toMaxCov is a
1

k+1 -approximation to the optimal solution. In the remainder
of this section we prove this algorithm-independent bound
and show that it is tight.

Let us first define maximal and maximum solutions to
MaxCov. Given an instance I of MaxCov, an assignment
β which satisfies a client setC is calledmaximum if for every
other solution β ′ for I , the set of satisfied clients C ′ is such
that |C ′| ≤ |C |. The solution β is called maximal if there is
no solution β ′ for I that strictly extends β, i.e., there is no β ′
such that β(c) ⊆ β ′(c) for all clients c and β(c) �= β ′(c) for
some client c.

Note that all maximum solutions satisfy the same number
of clients, which is the optimum. Regarding maximal solu-
tions, we have the following results. First, we show that the
number of satisfied clients in amaximal solution toMaxCov
is at least a ( 1

k+1 )-fraction of the number of satisfied clients
in any maximum solution.

Theorem 28 Let I = (G, k, L) be aMaxCov instance with
uniform file sizes. Let OPT be the set of clients satisfied by
some optimal solution andALG be the set of clients satisfied
by some maximal solution to I . Then |ALG| ≥ |OPT|

k+1 .

Proof We shall define a mapping f : OPT → ALG, and
the claim will follow from showing that | f −1(c)| ≤ k + 1
for any c ∈ ALG. We first define an auxiliary function g :
(OPT\ALG) → SALG, where SALG is the set of servers with
load L inALG. For a client c, we define g(c) to be an arbitrary
serverwhich is used for c underOPT and is fully loaded under
ALG. Such a server always exists because otherwise c could
be added to ALG, contradicting its maximality. Note that
|g−1(s)| ≤ |β−1

OPT(s)| ≤ L for all s ∈ SALG, because under
OPT, at most L clients are mapped to s.

We now define f . Let c ∈ OPT. If c ∈ ALG, define
f (c) := c. Suppose now that c ∈ OPT \ALG. For this part,
we construct f using the following procedure. For any node
c′, we record whether c′ was assigned to c via g(c). Initially
no node is assigned this way. To define f (c), we choose
any node c′ ∈ β−1

ALG(g(c)) that was not assigned yet by f
via g(c). We set f (c) := c′ and we say that c′ is assigned
to c via g(c). This is possible, because |β−1

ALG(g(c))| = L ,
and the number of times we assign f via g(c) is at most
|g−1(g(c))| ≤ L . This concludes the construction of f . An
example is depicted in Fig. 7.

To complete the proof, observe that for all c ∈ ALG,
| f −1(c)| ≤ k + 1: it could be that c ∈ f −1(c), and on top
of that, there are k servers s such that c ∈ β−1

ALG(s), and by
construction, f assigns a client to c at most once via each of
these servers. 
�

The 1
k+1 ratio from Theorem 28 cannot be improved in

general, as made precise in the following result.
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Fig. 8 The graph used in the
proof of Theorem 29 for k = 4.
Each node of S2 is attached to a
distinct complete bipartite graph
(only one shown) with k clients
of C2 and k − 1 servers of S3

Theorem 29 For any replication factor k and uniform file
sizes, there exists a MaxCov instance Ik and a maximal
solution ALGk such that |ALGk | = |OPTk |

k+1 , where OPTk is
the set of clients satisfied by an optimal solutions of Ik .

Proof We construct Ik as follows (see Fig. 8). There are two
sets of clients: C1 = {ai }ki=1 and C2 = {bi }k2i=1. There are
three sets of servers: S1 = {xi }ki=1, S2 = {yi }ki=1, and S3 =
{zi }k(k−1)

i=1 . The edges are defined as follows.

– Each ai ∈ C1 is connected to every server from S1 ∪ S2,
– Each bi ∈ C2 is connected to y
i/k� ∈ S2, and
– Each bi ∈ C2 is also connected to every z j ∈ S3 with


 j/(k − 1)� = 
i/k�.

Let all servers have capacity k, i.e., L := k. This concludes
the description of the instance Ik . (This graph of 2(k2 + k)
nodes can be replicated any desired number of times.)

Now, in an optimal solution to Ik , each client in C1 is
assigned all servers in S1, and each client in C2 is assigned
k − 1 servers from S3 and a single server from S2. Thus, all
k2 + k clients can be satisfied. On the other hand, consider
the solution in which each client in C1 is assigned all servers
in S2. This is a maximal solution since clearly no other client
(namely, from C2) can be added to this assignment, since
all servers in S2 are fully loaded. Hence, there is a maximal
solution with k satisfied clients. The claim follows. 
�

Weproceed to describe a reduction of α-solvingMaxCov
to computing maximal solution toMaxCov for the uniform
case.

Lemma 30 Given an algorithm that computes maximal
solutions of MaxCov with uniform file sizes and replica-
tion factor k in time T ,MaxCov can be α-solved in time αT
with α = 
(k + 1) ln n�.
Proof Let A be an algorithm that computes maximal solu-
tions toMaxCov for uniform file sizes and replication factor
k. Let L denote the bound on the server load. The following
algorithm proves the claim:

– For i = 0 to α do

1. Run algorithm A. Obtain solution βi which satisfies
at least 1

k+1MaxCov(L) clients.
2. Add βi to the output, and remove clients satisfied by

βi from further consideration.

We proceed to show that after α iterations, all clients are
satisfied. In each iteration, at most a (1 − 1

k+1 )-fraction of
the unsatisfied clients remains unsatisfied by Theorem 28.
Hence, after α iterations, the number of unsatisfied clients is

n ·
(
1 − 1

k + 1

)α

= n ·
((

1 − 1

k + 1

)k+1
) α

k+1

< n · (1/e)
α

k+1

≤ 1 .

This concludes the proof. 
�
Corollary 31 An O(k log n)-approximate solution toMin-
Load with uniform file sizes and replication factor k can
be computed in time O(T · k log2 n) where T is the time to
compute maximal solutions toMaxCov.

Proof Follows directly from Lemmas 30 and 12. 
�
We emphasize that this result is inferior to Corollary 26

regarding the approximation ratio.

7 Conclusion

This paper considered the backup placement problem which
we view as a central problem in network algorithms. We
showed that simple random placements perform very badly
in terms of placement quality, and that selfish local improve-
ment may run a very long time until stabilization is reached.
Our algorithm uses at its core a distributed matching proce-
dure, and thus it can guarantee, with high probability, both
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polylog running time and a good approximation ratio. Several
open problems remain, including

– The sequential complexity of MaxCov with replication
factor k = 2 remains open: it is solvable in polynomial
time with k = 1 while it is NP-hard with k ≥ 3.

– Can MinLoad be approximated distributively to within
(1 + ε) in polylogarithmic time?

– Is there an improvement over the classify-and-select tech-
nique used in the non-uniform case?

A collateral result of our paper is a distributed approxima-
tion algorithm for f -matching in bipartite graphs. It remains
open whether it can be extended to general graphs.
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