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Abstract In this paper, we study uncontended complexity
of anonymous k-set agreement algorithms, counting the num-
ber of memory locations used and the number of memory
updates performed in operations that encounter no con-
tention. We assume that in contention-free executions of a
k-set agreement algorithm, only “fast” read and write oper-
ations are performed, and more expensive synchronization
primitives, such as CAS, are only used when contention is
detected. We call such concurrent implementations interval-
solo-fast and derive the first nontrivial tight bounds on space
complexity of anonymous interval-solo-fast k-set agreement.

1 Introduction

One of the central distributed abstractions is k-set agree-
ment [7], where a collection of processes propose their
private inputs, and each process must output one of the pro-
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posed inputs, so that at most k distinct values are output.
By bounding the uncertainty about the inputs, a k-set agree-
ment protocol can be used to implement k generic replicated
services in a consistent and fault-tolerantway [11,16]. There-
fore, complexity of set agreement protocols has become one
of the most important topics in the theory of distributed com-
puting.

It is known that 1-set agreement, under the original name
of consensus, cannot be solved in an asynchronous read-write
shared memory system in a deterministic and fault-tolerant
way [10,21]. More generally, k-set agreement cannot be
solved using read-write shared memory as long as k or more
processes can fail by crashing (prematurely halting their
computations) [3,18,24]. In particular, k-set agreement can-
not be solved in the wait-free manner [16], i.e., tolerating
up to n − 1 faulty processes, where n is the number of
processes in the system. These impossibility results stem
from the difficulty of handling contended executions: pro-
cess concurrently accessing shared data may not be able to
distinguish executions inwhich conflicting decisionsmust be
taken.

To circumvent the above impossibilities, we should thus
use stronger (and more expensive) synchronization primi-
tives, such as compare-and-swap. One way to decrease the
overall costs is to require that a process invokes such primi-
tives only if in the presence of interval contention, i.e., when
its propose operation is concurrent with the propose opera-
tion of another process. In contention-free executions, only
cheaper read and write primitives are used. We call a wait-
free algorithm with these properties interval-solo-fast.

Ideally, interval-solo-fast algorithms should have an opti-
mized behavior in uncontended executions, as they are
believed to be common in practice [22]. It is therefore
natural to explore the uncontended complexity of set agree-
ment algorithms: how many memory operations (reads and
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writes) need to be performed and how many distinct mem-
ory locations need to be accessed in the absence of interval
contention?

In general, interval-solo-fast consensus and, thus, k-set
agreement for any k ≥ 1, can be solved with only con-
stant uncontended complexity [22]. To make the problem
nontrivial, we restrict our study to anonymous consensus
algorithms, i.e., algorithms not using process identifiers and,
thus, programming all processes identically. Besides intellec-
tual curiosity, there are practical reasons to study anonymous
algorithms in the shared memory model, discussed in [14].
Our results. On the lower-bound side, we show that any
anonymous interval-solo-fast k-set agreement algorithm
exhibits non-trivial uncontended complexity that depends
on n, the number of processes, k, the degree of agree-
ment, and m, the cardinality of the set V of all input
values that are allowed to be proposed. More precisely, we
show that the space complexity of a propose operation is in
�(min(

√
n/k, log (m/k)/ log log (m/k))). Also, if the algo-

rithm uses less than �−1(m/k) memory locations, where
�−1 is the inverse of the factorial function, we show that,
in the worst case, a propose operation running solo, i.e.,
without any other process invoking propose, must write to
�(min(

√
n/k, log (m/k)/ log log (m/k))) distinct memory

locations. This metric, which we call solo-write complexity,
is upper-bounded by the step complexity of the algorithm, i.e.,
the worst-case number of all primitive operations applied to
shared memory locations by an individual propose opera-
tion. In the special case of input-oblivious algorithms, where
the sequence of memory locations written in a solo execution
does not dependon the input value,wederive a stronger lower
bound of�(

√
n/k) on solo-write complexity. Our proof only

requires the algorithm to ensure that operations terminate in
solo executions, so the lower bounds also hold for abortable
[2,15] and obstruction-free [17] implementations.1

We then show that our lower bound is tight. Our match-
ing interval solo-fast k-set agreement algorithm is based on
our novel k-value-splitter abstraction, extending the classical
splitter mechanism [5,20,23]. The abstraction is interest-
ing in its own right. Informally, a k-value-splitter exports
a single operation split that takes a value in a value set V
as a parameter and returns a boolean response so that (1)
if split(v) completes before any other split operation starts,
then it returns true, and (2) the number of distinct inputs of
operations that returned true is at most k.

We describe a transformation of a k-value-splitter into an
anonymous and interval-solo-fast k-set agreement algorithm,

1 Informally, an obstruction-free algorithm ensures that every operation
running solo from any configuration eventually returns. An abortable
algorithm ensures that every operation returns in a finite number of its
own steps but, in case when it encounters contention, a special abort
response can be returned.

Table 1 Space and solo-write complexity for anonymous interval-solo-
fast k-set agreement

Input-oblivious Not input-oblivious

�(
√
n/k) �

(
min

(√
n/k, log (m/k)

log log (m/k)

))

incurring only a constant overhead with respect to the k-
value-splitter complexity.

Then we present two value-splitter read-write imple-
mentations. The first algorithm is a novel anonymous
and input-oblivious implementation of a k-value-splitter
that exhibits O(

√
n/k) space and solo-write complex-

ity. The second (not input-oblivious) algorithm exhibits
O(log (m/k)/ log log (m/k)) space and solo-write complex-
ity. The two implementations, combined with our value-
splitter-based k-set agreement algorithm, provide the desired
O(min(

√
n/k, log (m/k)/ log log (m/k))) upper bound.

Our results are summarized in Table 1. It is interest-
ing to notice that, for the case of consensus (k = 1),
the step complexities are O(n) for the first algorithm and
O(logm/ log logm) for the second one.Aspnes andEllen [1]
showed that any anonymous consensus protocol has to exe-
cute �(min(n, logm/ log logm)) steps in solo executions.
Thus, our consensus algorithms also have asymptotically
optimal step complexity.

Overall, our results imply the first nontrivial tight lower
bound on the space complexity for general k-set agreement
known so far, complementing the recent �(n) bound on the
space complexity of solo-terminating anonymous consensus
[12]. In the case of binary consensus, where the set of pos-
sible input values is of size 2, our constant-space consensus
algorithm exhibits a linear gap between algorithms adapting
to interval contention vs. step contention. The gap is derived
from the bound proved in [26] : any solo terminating binary
consensus algorithmuses at leastn−1 read/write base objects
(usually called registers). This result also holds if the algo-
rithm can use the identifiers of the processes. In the case
of multi-valued consensus, our results also show that there
is an inherent gap between anonymous and non-anonymous
consensus algorithms: regardless of the number of possible
inputs, non-anonymous consensus has constant uncontended
complexity [22].

2 Related work

The idea of optimizing concurrent algorithms for uncon-
tended executions was suggested by Lamport in his “fast”
mutual exclusion algorithm [20]. The term solo-fast was
introduced by Attiya et al. [2] to denote implementations that
in absence of step contention only apply reads and writes.
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Informally, an operation performed by a process encounters
step contention if another process takes steps in the oper-
ation’s interval. To avoid confusion, in the following we
rename these algorithms step-solo-fast.

Fich et al. [9] have shown that any solo-terminating (and,
as a result, obstruction-free) read-write (non-anonymous)
consensus protocol must use �(

√
n) memory locations.

Gelashvili [12] proved a stronger �(n) lower bound for
the anonymous case. Zhu [26] proved this lower bound
for the more general non-anonymous case. Attiya et al. [2]
showed that any step-solo-fast either use �(

√
n) space or

incur �(
√
n) memory stalls per operation. No obstruction-

free or step-solo-fast algorithmmatching these lower bounds
is known so far: existing algorithms typically expose O(n)

space complexity. These lower bounds focus on step con-
tention and do not extend to uncontended executions, where
no interval contention is encountered. In [8], an �(

√
n/k)

space-complexity bound for anonymous obstruction-free k-
set agreement was derived, but, given the �(n) bound
established in [12] for obstruction-free consensus,we conjec-
ture that the space complexity of k-set agreement is�(n−k),
matching the recent algorithm by Bouzid et al. [4].

Our k-value-splitter abstraction is inspired by the splitter
mechanism in [5,23], originally suggested by Lamport [20].
Unlike the splitter object, more than one process can return
true but only if these processes propose at most k distinct
input values. The idea of adapting the outputs of an algorithm
to the number of distinct inputs was originally proposed by
Yang et al. [25]. In the case of k = 1, we can implement
a 1-value splitter using a conflict-detector object [1] plus
a constant number of registers. The novel input-oblivious
value-splitter implementation we present is inspired by the
obstruction-free leader election algorithm recently proposed
by Giakkoupis et al. [13].

This paper generalizes our recent bounds for anonymous
consensus presented in [6].
Roadmap The rest of the paper is organized as follows. We
give preliminary definitions in Sect. 3. We present our lower
bound in Sect. 4 and our upper bound in Sect. 5.We conclude
the paper in Sect. 6.

3 Preliminaries

The model of computation We consider a standard asyn-
chronous shared-memory model in which n > 1 processes
communicate by applying atomic (or linearizable [19]) oper-
ations on shared variables, called base objects. We assume
every base object maintains a state and exports a subset of
the Read, Write and Compare-And-Swap (CAS) operations.
Read(R) returns the value of R, andWrite(R, v) sets the state
of R to v.CAS(R, e, v) checks if the state of R is e and, if so,

sets the state of R to v and returns true; otherwise, the state
remains unchanged and false is returned.

A register is a base object that exports only the Read and
Write operations.
Algorithms and executions To implement a (high-level)
object from a set of base objects, processes follow an algo-
rithm A, associating each process p with a deterministic
automatonAp. To avoid confusion between the base objects
and the implemented one, we reserve the term operation for
the object being implemented andwe call primitives the oper-
ations on base objects. We say that an operation is performed
on a high-level object and that a primitive is applied to a base
object.

Each process has a local state that consists of the values
stored in its local variables and a programme counter.

A configuration specifies the state of each base object and
the local state of each process at one moment. In an initial
configuration, all base objects have the initial values specified
by the algorithm and all processes are in their initial states.

A process is active if an operation has been invoked by the
process but the operation has not yet produced a matching
response; otherwise the process is called idle. We assume
that an operation can only be invoked by an idle process and
only active processes take steps. A configuration is quiescent
if every process is idle in it.

An execution fragment of an algorithm is a (possibly
infinite) sequence C1, φ1, . . . ,Ci , φi , . . . of configurations
alternating with steps, where each step is the application of
a primitive φi to some base object in configuration Ci result-
ing in configuration Ci+1. For any finite execution fragment
α ending with configuration C and any execution fragment
α′ starting at C , the execution αα′ is the concatenation of
α and α′; in this case α′ is called an extension of α. An
execution is an execution fragment starting from the initial
configuration C0.

In an infinite execution, a process is correct if it takes
an infinite number of steps or is idle from some point on.
Otherwise, the process is called crashed. A crashed process
is active.

In a solo execution, only one process takes steps. An oper-
ation invokedby aprocess in a given execution is completed if
its invocation is followed by a matching response. An opera-
tion invoked by a process p in an execution E is uncontended
if no process other than p is active between its invocation
and response. We also say that p executes its operation in the
absence of interval contention.

Finally, we say that an operation executes in the absence of
step contention if all the steps of the operation are contiguous
in the execution.
k-set agreement The k-set agreement [7] object exports one
operation propose(v), where v is an input taken from some
domain V (|V | ≥ k + 1). The output values must satisfy the
following properties:
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• k-Agreement: the set of all output values contains at most
k distinct values.

• Validity: every output value is one of the input values.

In the special case of k = 1, 1-set agreement is called con-
sensus.
Properties of algorithmsAn algorithm iswait-free if in every
execution, each correct process completes each of its opera-
tion in a finite number of its own steps [16].

A wait-free algorithm is interval-solo-fast if, in the
absence of interval contention, a process only applies read
and write primitives.

An algorithm is input-oblivious if a process accesses the
same sequence of base objects in any solo execution of the
algorithm, regardless of its input.

An algorithm A is anonymous if Ap does not depend
on p, i.e., the algorithm programs the processes identically,
regardless of their identifiers.

In this paper we are concerned with two complexity met-
rics: space complexity, i.e., the number of base objects an
algorithm uses, and solo-write complexity, i.e., the maximal
number of writes performed in a solo execution of a sin-
gle operation of an algorithm, taken over all possible input
values. Note that solo-write complexity is upper-bounded by
the step complexity of the algorithm, i.e., the number of base-
object accesses a single operation may perform.

4 Lower bounds for interval-solo-fast k-set
agreement

Consider any n-process anonymous implementation of
interval-solo-fast k-set agreement with a set V of input val-
ues, where |V | = m ≥ k + 1. In this section, we show
that the uncontended space complexity of this implemen-
tation must be �(min(

√
n/k, log (m/k)/ log log (m/k))).

Moreover, if the space complexity is less than �−1(m/k),
where �−1 is the inverse of the factorial function (�(x) =
x !), then the implementation must have an execution in
which some propose operation, running solo, performs
�(min(

√
n/k, log (m/k)/ log log (m/k)))writes on distinct

base objects.
We also show that in the special case when the implemen-

tation is input-oblivious, the bounds on uncontended space
complexity and solo-write complexity become �(

√
n/k).

Overview of the proof Assume that there exists an interval-
solo-fast anonymous k-set agreement algorithmA that uses at
mostb distinct base objectswithb<min(

√
n/k, �−1(m/k)).

Recall that �−1(x) ∈ �(log x/ log log x).
By the way of contradiction, we are going to show that the

algorithm must have an execution in which k + 1 different
values are returned.

To this aim, we are going to iteratively construct an exe-
cution of A which is, for every process p, indistinguishable
from an execution in which p runs solo. Since the imple-
mentation is interval-solo-fast, no process applies primitives
other than reads andwrites in the constructed execution.Also,
there are k + 1 processes that complete their operations, and
each of these processes decides on its distinct input value,
establishing a contradiction. We use the remaining processes
to hide contention by covering registers written by the k + 1
deciding processes: when reading such a register, a deciding
process should obtain the value it previously wrote. These
processes are clones of deciding processes. In particular, a
clone of a process p in the execution is a process with the
same input as p which proceeds in lockstep with p, reading
and writing the same values as p, until immediately before
some write to a base object. For each base object written
by a deciding process p, we let some clones of p poised
to write to this base object to later rewrite the value written
by p.
Selecting “confusing” inputs Let C0 be the initial configu-
ration of A. For each u ∈ V , let αu denote the execution of
A in which a process, starting from C0, invokes propose(u)

and runs solo until the operation completes. Since the algo-
rithm is anonymous, αv does not depend on the process
identifier.

For a given u ∈ V , consider the sequence of base objects
written in αu , ordered by the times they are first written in
αu . For our proof to work there must be a set U of k + 1
distinct values such that the sequences of base objects, put in
the order of the times they are first written in executions αu ,
u ∈ U , are prefix-related: for each two such sequences, one
is a prefix of the other.

For an input-oblivious algorithm, all these sequences are
identical, regardless of the relation between m and b. Thus
U can be any set of k + 1 distinct input values.

For non input-oblivious algorithms, the existence of such
k + 1 distinct values is implied by the condition b <

�−1(m/k). There are m possible input values u (and, thus,
possible executions αu), and at most b! possible orders in
which b base objects can be written for the first time in exe-
cutions αu , u ∈ V . Using the fact that b < �−1(m/k) and,
thus, b! < m/k, we are going to show that there exists a
set of k + 1 distinct values such that the sequences of base
objects, put in the order of the times they are first written in
executions αu , u ∈ U , are prefix-related.

Indeed, let fu : {1, . . . , b} → {1, . . . , b}∪{⊥} be defined
as follows: fu(1) is the first registerwritten inαu , and for each
i = 2, . . . , b, fu(i) is the first register written in αu that does
not appear in { f (1), . . . , f (i − 1)}, or ⊥ if there is no such
register. Note that, by the definition, for each fu , there exists
j ∈ {1, . . . , b}, such that for all i = 1, . . . , j , fu(i) 	= ⊥ and
for all i = j+1, . . . , b, fu(i) = ⊥. We say that fu is a prefix
of fv if for each i = 1, . . . , b, fu(i) 	= ⊥ ⇒ fu(i) = fv(i).
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Lemma 1 If b < �−1(m/k), where m = |V |, then there
exists U ⊆ V such that |U | = k + 1 and for all u, v ∈ U,
either fu is a prefix of fv or vice versa.

Proof Consider an injective function g : {1, . . . , b} →
{1, . . . , b}. Note that there are exactly b! such functions.
Since b! < m/k, there must be an injective function g :
{1, . . . , b} → {1, . . . , b} and a setU ⊆ V of size k + 1 such
that for each u ∈ U , fu is a prefix of g. Thus, for all u, v ∈ U ,
both fu and fv are prefixes of g, and, hence, have that either
fu is a prefix of fv or vice versa. �

Lower bound For the rest of the proof, letU be a set of inputs
in V such that |U | = k+1 and for all u, v ∈ U , either fu is a
prefix of fv or vice versa. Let ρ = r1, . . . , rb be a sequence
of base objects such that for each u ∈ U , the sequence of
base objects, ordered by the times they are first written in αu

is a prefix of ρ: ∀i = 1, . . . , b, fu(i) ∈ {ri ,⊥}. Let t ≤ b be
the length of the longest such sequence.

For each u∈U , we write αu=α0,uβ1,uα1,u · · · βsu ,uαsu ,u ,
where su ≤ t and for each i = 1, . . . , su , βi,u is the first write
to ri in αu .

Assume, without loss of generality, that U = {0, . . . , k}
and fix a set of k+1 distinct processes {p0, . . . , pk}. Remem-
ber that two configurations are indistinguishable to a process,
if the process has the same state in both configurations.

For i ∈ {0, . . . , t}, we say that a configuration Di = C0γi
is i -confusing if:

• at most k(1 + ∑i−1
j=0 j) + 1 processes take steps in γi ,

• for each u ∈ U , Di is indistinguishable for pu from
Coα0,uβ1,uα1,u · · · β
i ,uα
i ,u , where 
i = min(su, i),
and

• there exists a process pu , u ∈ U , such that the states of the
shared memory in Di and Coα0,uβ1,uα1,u · · · β
i ,uα
i ,u

are the same.

Lemma 2 For each i = 0, . . . , t , if n ≥ k(1+∑i−1
j=0 j)+1,

then A has an i-confusing configuration.

Proof In the base case i=0, we take D0 to beC0α0,0 · · · α0,k .
The execution α0,0 · · · α0,k is read-only and, thus, D0 is, for
every process pu , u ∈ U , starting with input u, indistinguish-
able fromC0α0,u . Note that at most k+1 processes take steps
in α0,0 · · ·α0,k and the state of the memory in D0 is the same
as in any C0α0,u for each u ∈ U .

Suppose now that the claim holds for 0, . . . , i −1, and let
Di−1 = C0γi−1 be a (i−1)-confusing configuration.We can
construct γ ′

i−1 which is exactly like γi−1, except that for each
register rm ∈ {r1, . . . , ri−1} and each u ∈ U , whenever pu
performs its last write to rm in γi−1 (if it does), we introduce
a distinct clone of pu that is stopped just before performing
this write.Wemake an exception for pu that satisfies the third

condition on the (i − 1)-confusing configuration Di−1—for
this process we do not add clones.

Since no pu can distinguish C0γi−1 from C0α0,uβ1,u

α1,u · · · β
i−1,uα
i−1,u , where 
i−1 = min(su, i −1), and one
of the processes pu does not require clones in the constructed
execution, the number of clones we add is at most k(i − 1).
Since we have at least k(1 + ∑i−1

j=0 j) + 1 processes and at

most k(1 + ∑i−2
j=0 j) + 1 of them are involved in γi−1, we

can indeed add k(i − 1) such clones.
Note that for each u ∈ U , either i − 1 ≥ su and pu has

terminated its operation by outputting its own input u, or
i −1 < su and the next step pu is about to perform inC0γ

′
i−1

is the write βi,u on ri .
Now we extend γ ′

i−1 to construct γi as follows. Take
any not yet terminated pu , and let it perform the write
βi,u . Then we let every clone of pu (if any) perform its
write on one of the registers written by pu in γi−1. Let
τi,u be this block write by the clones and C0γ

′
i−1βi,uτi,u be

the resulting configuration. Note that pu cannot distinguish
C0γ

′
i−1βi,uτi,u from C0α0,uβ1,u · · · αi−1,uβi,u if it runs solo

from these two configurations. Thus, we extend the execu-
tion to obtain C0γ

′
i−1βi,uτi,uαi,u that is indistinguishable for

pu from C0α0,uβ1,uα1,u · · ·βi,uαi,u .
By performing this procedure for every process that has

not yet terminated in C0γ
′
i−1, one by one, starting from the

process that was the last to write in γi−1, we obtain γi such
that (1) γi involves at most k(1+ ∑i−2

j=0 j) + 1+ k(i − 1) =
k(1+∑i−1

j=0 j)+ 1 processes, (2) for every pu , u ∈ U , C0γi
is indistinguishable from C0α0,uβ1,uα1,u · · ·β
i ,uα
i ,u , and
(3) if pu is the last process to perform its writes in γi , then
the states of registers r1, . . . , ri (and, thus, of the memory,
as these are the only registers modified in these executions)
in C0γi and C0α0,uβ1,uα1,u · · · βi,uαi,u are identical. Thus,
Di = C0γi is an i-confusing configuration. �
Now we are ready to prove our lower bound:

Theorem 3 Any n-process m-valued interval-solo-fast
anonymous k-set agreement algorithm must have space
complexity in �(min(

√
n/k, log (m/k)/ log log (m/k))). If

the algorithm uses fewer than �−1(m/k) registers then
it has solo-write complexity in �(min(

√
n/k, log (m/k)/

log log (m/k))). If the algorithm is input-oblivious, then its
space and solo-write complexities are in �(

√
n/k)).

Proof Suppose, by contradiction, that an n-processm-valued
interval-solo-fast anonymous k-set agreement algorithmuses
at most b base objects such that b ≤ √

n/k and either b <

�−1(m/k) or the algorithm is input-oblivious.
Then, n ≥ k(1+ b2−b

2 ) + 1 and by Lemma 2, there exists
a t-confusing configuration Dt for some t ≤ b. There exists
U ⊆ V , such that no process pu , u ∈ U , can distinguish Dt

from C0α0,uβ1,uα1,u · · ·β
t ,uα
t ,u and, since su ≤ t , 
i,t =
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min(su, t) = su , we derive that no pu can distinguish Dt from
C0αu and, thus, every pu must terminate by outputting u in
Dt . Hence, we obtain a contradiction by constructing an exe-
cution ofA in which k+1 different values are decided. Thus,
it must hold that either b ≥ �−1(m/k) or b >

√
n/k, which

gives space complexity at least min(
√
n/k, �−1(m/k)) ∈

�(min(
√
n/k, log (m/k)/ log log (m/k))).Moreover, ifb <

�−1(m/k), we get solo-write complexity in �(min(
√
n/k,

log (m/k)/ log log (m/k))).
If the algorithm is input-oblivious, we get both space and

solo-write complexity in �(
√
n/k). �

5 Optimal interval-solo-fast k-set agreement

In this section we present an algorithm that implements
interval-solo-fast k-set agreement. This algorithm can be
seen as a generalization the splitter-based consensus algo-
rithm in [22], where we replace the splitter object with
the k-value-splitter object that we introduce in this
paper.

5.1 k-Value-splitters

A splitter provides processes with a single operation split()
that returns a boolean response, so that (i) if a process runs
solo, it must obtain true and (ii) true is returned to at most
one process.

A k-value-splitter exports a single operation split(v) (v ∈
V , for some input domain V ) and relaxes property (ii) of
splitters by allowingmultiple processes to obtain true but for
no more than k different input values. Note that, unlike con-
ventional splitters [5,20,23], the conditions restricting the
outputs of a k-value-splitter are based on distinct values,
rather than distinct processes. Besides, as we are interested in
solving k-set agreement, we introduce a generalized abstrac-
tion using parameter k.

More formally:

Definition 4 A k-value-splitter supports a single operation
spli t (v), taking as input a value v in some domain V , that
returns a boolean and, in any given execution, ensures the
following properties:

1. Solo execution If a split operation completes before any
other split operation is invoked, then it returns true, and

2. k-VS-agreement If S is the set of the inputs of the split
operations that return true, then |S| ≤ k.

We use a k-value-splitter object to construct an anony-
mous k-set agreement algorithm. The algorithm incurs only
a constant overhead with respect to the implementation of

the k-value-splitter it uses and is interval-solo-fast assuming
that the underlying k-value-splitter is interval-solo-fast.

Then we describe two anonymous interval-solo-fast
implementations of a k-value-splitter. The first one is input-
oblivious and exhibits O(

√
n/k) solo-write and space com-

plexity, regardless of the number m of possible inputs. The
second one exhibits complexities O(log (m/k)/
log log (m/k)), regardless of the number of processes n.
The two algorithms provide a matching upper bound to our
�(min(

√
2n/k, log (m/k)/ log log (m/k))) lower bound.

5.2 k-set agreement using k-value-splitter

The pseudocode of our k-set agreement algorithm is given
in Algorithm 1. A value decided by the k-set agreement is
written in a variable D, initially ⊥ /∈ V . The first steps by
a process p are to check if D stores a non-⊥ value and if
so, return this value. Otherwise, the process accesses the k-
value-splitter object KVS.

If it obtains true from its invocation of KVS.split(v), p
writes its input value v in a register F . Then, it reads a register
Z to check if some other process has detected contention. If
the value of Z is false (no contention) p decides its own
value. Before returning the decided value, process p writes
it in D. The write primitives on F and D, with a read of Z in
between, are intended to ensure that either process p detects
that some other process is around and resorts to applying a
CAS primitive on D, or the contending process adopts the
input value of p.

If p obtains false from the value-splitter, it sets Z to true
(contention is detected). Recall that this may happen if more
than one process accessed the value-splitter, regardless of
their input values. Then, p reads register F and, if F stores a
non-⊥ value, adopts the value as its current proposal. Finally,
it applies the CAS primitive on D with its proposal and
decides the value read in D.

Notice that, assuming that the k-value-splitter is interval-
solo-fast, a process running in the absence of interval
contention reaches a decision applying only reads andwrites.

In the following we prove that Algorithm 1 indeed imple-
ments interval-solo-fast k-set agreement, assuming that KVS
is an interval-solo-fast implementation of a k-value-splitter.
We show that such implementations exist in the next subsec-
tion.
Correctness and complexity of Algorithm 1

Lemma 5 (Agreement) No more than k different values are
returned.

Proof Given that only values stored in D can be returned, it
is sufficient to show that at most k values can be stored in D.

By the algorithm D is updated in lines 12 and 5. Note
that, since a CAS succeeds in updating the value of D in
line 12 only if D contains ⊥ and, since D is updated with
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Shared variables:
D, F , initially ⊥
Z , initially f alse
k-value-splitter KVS

Procedure: propose(v)
1 if (t := Read(D)) 	= ⊥ then return t
2 if KVS.spli t(v) then
3 Write(F, v);
4 if ¬(Read(Z)) then
5 Write(D, v);
6 return v

7 end
8 else
9 Write(Z , true);

10 if (t := Read(F)) 	= ⊥ then v := t ;
11 end
12 CAS(D,⊥, v);
13 res := Read(D);
14 return res

Algorithm 1: Interval-solo-fast k-set agreement

a non-⊥ value in V , at most one process may succeed with
its CAS. D is updated at line 5 only if the corresponding
process obtains true from the k-value-splitter. By the k-VS-
Agreement property of k-value-splitters, at most k distinct
values can be written in D in line 5.

Thus, the only possibility for k + 1 different values to
be stored in D is when one process, say p, applies a CAS
in line 12 and updates D with a value v and other processes
write k distinct values in D in line 5.Assume by contradiction
that it is true.

Note that p must have obtained false from the k-value-
splitter, otherwise at most k−1 other values could be written
in D in line 5, by the k-VS-Agreement property of k-value-
splitters. Thus, before applying CAS on D, p has read F in
line 10. Since the values written in F are the k values written
in D, at line 5, p has read ⊥ in F . In the other case, p will
adopt the value in F and will apply the CAS with this value,
so only k values will be stored in D.

Then p reads F before any other process writes to it. By
the algorithm, p has previously set the “contention flag” Z
to true in line 9. Therefore, after any writing in F , a process
must find Z set to true (“contention is detected”) and resort
to CAS instead of writing in D in line 5—a contradiction. �

Lemma 6 Algorithm 1 is interval-solo-fast.

Proof If a process p invokes its propose operation and finds
a non-⊥ value in D, then p returns after having applied a
single read on D, so the claim follows.

Otherwise, suppose that p initially finds D = ⊥ and
applies the CAS primitive (line 12). We show that there is
an operation that overlaps with the propose of p.

By inspecting the pseudo-code, it is easy to see that p
applies the CAS primitive only if (1) it has read Z = true

(line 4) or (2) it has obtained false from KVS. In both cases
another process q previously invoked a propose operation.

By the algorithm, before completing its operation, q either
writes its decided (non-⊥) value in D (line 5) or tries to
update D with its decided value using CAS (line 12), which
fails only if D already contains a non-⊥ value. Given that p
has initially found ⊥ in D, we deduce that the operation of
q has not completed before the operation of p has started.
Thus, the two operations overlap. The assumption that the
value-splitter is interval-solo-fast and the fact the algo-
rithm contains no loops or waiting statements, implies the
claim. �
Lemmata 5 and 6 imply:

Theorem 7 If KVS is an interval-solo-fast implementation
of a k-value-splitter, with a space complexity b and a solo-
write complexity s, then Algorithm 1 implements interval-
solo-fast k-set agreement with space complexity b + 3 and
solo-write complexity s + 2.

The complexity claims follow directly from the pseudo-code.

5.3 Interval-solo-fast k-value-splitter implementations

Input-oblivious value-splitter Algorithm 2 describes our
anonymous and input-oblivious implementation of a k-value-
splitter. The algorithm only uses an array R of b registers
where b2 − 3b + 4 > (2n − 2)/k and is, trivially, interval-
solo-fast. Thus, by Theorem 3, the space complexity of our
interval-solo-fast consensus algorithm is asymptotically opti-
mal.

In the algorithm, a process p performing operation split(v)

tries to write its input value to registers R[0], . . . , R[b − 1].
Each time, before writing to R[i], p reads i + 1 registers :
it verifies that R[0], . . . , R[i − 1] store v and that R[i] still
stores the initial value ⊥. If this is not the case, i.e., either
another split operation has previously completed or there is
a concurrent one, the operation returns false. After the last
write to R[b−1], the operation returns true. Note that several
processes proposing the same value and executing in lock-
step may return true.

Note also that the solo-write complexity of Algorithm 2
is b = O(

√
n/k). Since, for i = 1 to b, in the i th iteration,

a process reads i registers, the algorithm also has step com-
plexity of O(n/k) which has been shown to be optimal for
the case k = 1 [1].

The following lemmawill be instrumental in showing that
Algorithm 2 satisfies the k-VS-Agreement property.

Lemma 8 Let γ be an execution and let i ∈ {1, . . . , b −
1}. Suppose k + 1 processes q0, . . . , qk write distinct values
u0, . . . , uk to R[i + 1] during γ . Then, there exists a set Pi
of processes such that:
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Shared variables:
Array of registers R[0 . . . b − 1] with b2 − 3b + 4 > 2(n − 1)/k.
Initially ⊥
Procedure: split(v)

1 Lastwritten := −1;
2 while (Lastwritten < b − 1) do
3 if Lastwritten 	= −1 then
4 for i := 0..Lastwritten do
5 if Read(R[i]) 	= v then return f alse;
6 end
7 end
8 if Read(R[Lastwritten + 1]) 	= ⊥ then return f alse;
9 Write(R[Lastwritten + 1], v);

10 Lastwritten + +;
11 end
12 return true;

Algorithm 2: Anonymous and input-oblivious k-value-
splitter

• |Pi | = i · k,
• qi /∈ P,
• at the configuration that immediately succeeds the last
write primitive applied by processes in Pi , R[i+1] = ⊥;

• γ passes through a configuration C in which R[i] 	= ⊥ in
C and each process in Pi applies a write primitive after
C.

Proof Fix an i such that 0 < i < b − 1 and let Q =
{q0, . . . , qk} be k + 1 distinct processes that write distinct
values {u0, . . . , uk} in R[i + 1] in an execution γ . By the
pseudocode of Algorithm 2, these processes also write in
R[i]. Before writing in R[i + 1], a process makes sure that
R[0], R[1], . . . , R[i] contain its own input value (lines 4, 5),
and R[i + 1] contains the initial value ⊥ (line 8).

Let C be the configuration immediately before the first
read by a process in Q after it writes in R[i]. By definition
R[i] 	= ⊥ in C . Let C ′ be the configuration immediately
after the last process in Q performs its read of R[i+1] before
writing to it in γ . By the algorithm, the write in R[i + 1] by
any q j follows C ′ in γ .

For a given l, 0 ≤ l < i , consider the order of the k + 1
read operations on R[l] executed by processes in Q after their
writes on R[i]. Assume, without loss of generality, that the
order is q0, . . ., qk . Also, since for each h = 1,. . ., k qh−1

reads uh−1 in R[l] and qh reads uh in R[l], there must be a
process ph,l that writes uh in R[
] between these two read
operations. We show that this is the last write of ph,l in γ .
Indeed, before performing the next write (on R[l + 1]), ph,l

reads R[l + 1]. Since the write by ph,l follows the read on
R[l] by process qh−1, by the algorithm, qh−1 has previously
written uh−1 	= ⊥ in R[i] and, thus, in R[l + 1]. Hence,
in the configuration immediately before the write in R[l] by
ph,l we have R[l + 1] 	= ⊥. The check in line 8 implies
that ph,l cannot write to any register after R[l]. Note that all
these processes ph,l must be distinct from any q j : otherwise,
we contradict the fact that every q j writes in R[i], i > l.
Note that ph,l is different from any ph′,l ′ if h′ 	= h or l 	= l ′.
Thus, there are i ·k such processes: one for each register R[l],
0 ≤ l < i , and each h, 1 ≤ h ≤ k.

Finally, since the last write primitive of ph,l precedes con-
figurationC ′, at the configuration immediately after thiswrite
R[i + 1] stores the initial value. This is illustrated in Fig. 1.

Moreover, since the last write of ph,l happens after a read
by a process in Q, it is applied after the configuration C .

Thus, the set Pi of i · k processes ph,l , l = 0, . . . , i − 1,
and h = 1, . . . k, satisfies the conditions of the lemma. �

Lemma 9 (k -VS-Agreement) Invocations of split(v) return
true for at most k distinct values.

Proof Suppose, by contradiction, that k + 1 invocations of
split performed by processes q0, . . . , qk with distinct values
{u0, . . . , uk} return true. Recall that before returning true, a
process q j has to write its input value u j in all b registers. For
each i = 1, . . . b − 2, let Pi be the i · k processes, satisfying
the conditions specified by Lemma 8.

Consider any two sets Pi , Pl , 0 < i < l < b − 1. We
show that Pi ∩ Pl = ∅. Indeed, by the definition of Pi , in
the configuration when the processes in Pi have completed
all their writes, R[i + 1] stores ⊥ and, by the algorithm,
since l > i , R[l] also stores ⊥. But, by the definition of
Pl , each process in Pl has applied a write primitive after a
configuration where R[l] 	= ⊥. Thus, Pi and Pl are disjoint.

Recall that each q j , j ∈ {0, . . . , k}, writes to R[b−1] and,
thus, does not belong to ∪b−2

i=1 Pi . Hence, the total number of

processes must be at least k + 1 + ∑b−2
i=1 ik = k + 1 +

Fig. 1 Execution for Lemma 8, assuming that q0, . . . , qk read R[l] in that order
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k b2−3b+2
2 , which contradicts the assumption that that b2 −

3b + 4 > 2n−2
k . �

Lemma 10 (Wait-freedom) In every execution, each correct
process completes its split operation in a finite number of its
own steps.

Proof By the pseudo-code of Algorithm 2 the value of
Lastwri t ten at the beginning of the i th iteration of thewhile
loop is equal to i − 2 (lines 1 and 10). Then, by the exit con-
dition of the while loop, this is executed at most b+ 1 times.
Similarly the for loop is executed a finite number of times.
Then, a correct process either returns a response on line 5 or
on line 8, or after at most b + 1 iterations of the while loop.

�
Theorem 11 Algorithm 2 is an interval-solo-fast anony-
mous input-oblivious implementation of a k-value-splitter
with solo-write and space complexities in O(

√
n/k).

Proof Since only read-write registers are used and the split
operation is wait-free by Lemma 10, the algorithm is trivially
interval-solo-fast.

By Lemma 9, the algorithm satisfies the k-VS-Agreement
property. We prove in the following that the Solo Execution
property is also satisfied. Consider any solo execution γ in
which a split(v) by a process p completes and suppose, by
contradiction, that the operation returns f alse. By inspecting
the pseudocode, it is easy to see that the value of Lastwritten
is equal to the index of the last register p wrote or to −1
if no such writes took place. To return f alse p must have
either read a value different from its input (line 5) or a value
different from ⊥ in a register p has not yet written (line 8).
But this contradicts the fact that γ is a solo execution. Thus,
the algorithm satisfies the Solo Execution property. �
Non-input-oblivious k-value-splitter We now describe an
anonymous k-value-splitter algorithm that exhibits O(log
(m/k)/ log log (m/k)) complexity. The algorithm uses an
array R of b registers, where b! = �m/k�. The values set
is partitioned into l = �m/k� subsets V1, . . ., Vl ; the size
of each subset is at most k. A unique permutation π j of
the registers in R is associated to each value subset Vj for
each j ∈ {1, . . . , l}. The permutation is used as the order in
which the processes access the registers during the execu-
tion of split(v) with v ∈ Vj . Therefore, the algorithm is not
input-oblivious.

In its i-th access, a process executing split(v) with v ∈ Vj

first reads register R[π j (i)]; if ⊥ is read, the process writes
v to it; If a value v′ 	= v is read, it returns false (contention is
detected). If the process succeeds in writing v in all registers,
it returns true. The algorithm is also trivially anonymous and
interval-solo-fast.

Shared variables:
Registers R[0..b − 1], initially ⊥, where b! = �m/k�
Procedure: split(v), where v ∈ Vj

1 for i := 0..b − 1 do
2 t := Read(R[π j (i)]);
3 if t = ⊥ then Write(R[π j (i)], v);
4 if t 	= v then return f alse;
5 end
6 return true;

Algorithm 3: Non-input-oblivious k-value-splitter

Theorem 12 Algorithm 3 implements anonymous interval-
solo-fastm-valued k-value-splitter with solo-write and space
complexity in O(log (m/k)/ log log (m/k)).

Proof If an operation split(v) runs solo, then no value other
than v can be found in any register (line 2). Thus the Solo
Execution property is ensured.

Suppose, by contradiction, that k + 1 split() operations
with distinct values return true. Among these k + 1 values,
there are two distinct values, v and v′ that belong to two dis-
tinct subsets, respectively Vi and Vh . Let j, 
 be two indexes
in {1, . . . , b} such that j appears before 
 in πi but 
 appears
before j in πh . By the algorithm, before returning true, pv

and pv′ have read, respectively, v and v′ in both R[ j] and
R[
].

Without loss of generality, let v be written to R[ j] before
v′ is written to R[
]. By the algorithm, before any process
performing split(v′) reads R[ j] in line 2 (and, thus, writes
v′ to R[ j] in line 3), v′ has been written to R[
], and, by
the assumption, v has been written to R[ j]. Hence, the pro-
cess will not find ⊥ in R[ j] and will not write to R[ j]—a
contradiction. Therefore, the algorithm satisfies the k-VS-
Agreement property.

Since every operation performs b writes and b reads,
where b! = �m/k�, the step and space complexities of the
algorithm are O(log (m/k)/ log log (m/k)). �

6 Concluding remarks

In this paper, we present matching lower and upper bounds
�(min(

√
n/k, log (m/k)/ log log (m/k))) on the space

complexity of anonymous interval-solo-fast k-set agree-
ment implementations. If the implementation uses less than
�−1(m/k) registers, then its solo-write complexity must
be �(min(

√
n/k, log (m/k)/ log log (m/k))). If the imple-

mentation is input-oblivious, its solo-write complexity is
�(

√
n/k). Our matching interval-solo-fast k-set implemen-

tation exhibit solo-write complexity (and, thus, uncontended
space complexity) of O(min(

√
n/k, log (m/k)/

log log (m/k))). Our results imply the first non-trivial tight
bound for general k-set agreement.
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The proof of our lower bound is based on constructing
executions in which no process is aware of interval con-
tention and, thus, the lower bounds also apply to abortable
[2,15] k-set agreement algorithms, where operations are
allowed to return a specific abort response when interval
contention is detected, and be-reinvoked later. An interesting
open question is whether a matching abortable k-set agree-
ment algorithm can be found.
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