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Abstract Consider a set of n finite set of simple autonomous
mobile robots (asynchronous, no common coordinate sys-
tem, no identities, no central coordination, no direct com-
munication, no memory of the past, non-rigid, deterministic)
initially in distinct locations, moving freely in the plane and
able to sense the positions of the other robots. We study
the primitive task of the robots arranging themselves on the
vertices of a regular n-gon not fixed in advance (Uniform
Circle Formation). In the literature, the existing algo-
rithmic contributions are limited to conveniently restricted
sets of initial configurations of the robots and to more pow-
erful robots. The question of whether such simple robots
could deterministically form a uniform circle has remained
open. In this paper, we constructively prove that indeed the
Uniform Circle Formation problem is solvable for any
initial configuration in which the robots are in distinct loca-
tions, without any additional assumption (if two robots are
in the same location, the problem is easily seen to be unsolv-
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able). In addition to closing a long-standing problem, the
result of this paper also implies that, for pattern forma-
tion, asynchrony is not a computational handicap, and that
additional powers such as chirality and rigidity are compu-
tationally irrelevant.
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1 Introduction

Consider a set of punctiform computational entities, called
robots, located inR

2,where they can freelymove. Each entity
is provided with a local coordinate system and operates in
Look-Compute-Move cycles. During a cycle, a robot obtains
a snapshot of the positions of the other robots, expressed in its
owncoordinate system (Look); using the snapshot as an input,
it executes a deterministic algorithm (the same for all robots)
to determine a destination (Compute); and it moves towards
the computed destination along a straight line (Move).

To understand the nature of the distributed universe of
these mobile robots and to discover its computational bound-
aries, the research efforts have focused on the minimal
capabilities the robots need to have to be able to solve a
problem. Thus, the extensive literature on distributed com-
puting by mobile robots has almost exclusively focused on
very simple entities operating in strong adversarial condi-
tions. The robots we consider are anonymous (without ids
or distinguishable features), autonomous (without central
or external control), oblivious (no recollection of computa-
tions and observations done in previous cycles), disoriented
(no agreement among the individual coordinate systems, nor
on unit distance and chirality), and non-rigid (they may be
stopped before reaching the destination they compute at each
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cycle). In particular, the choice of individual coordinate sys-
tems, the activation schedule, the duration of each operation
during a cycle, and the length traveled by a robot during its
movement are determined by an adversary; the only con-
straints on the adversary are fairness (i.e., the duration of
each cycle of each robot is arbitrary but finite), and mini-
mality (i.e., there exists δ > 0, unknown to the robots, such
that, if the destination of a robot is at distance at most δ, the
robot will reach it; else it will move at least δ towards the
destination, and then it may be unpredictably stopped by the
adversary). For this type of robots, depending on the acti-
vation schedule and timing assumptions, three main models
have been studied in the literature: the asynchronous model,
ASYNC, where no assumptions are made on synchroniza-
tion among the robots’ cycles nor their duration, and the
semi-synchronous and fully synchronousmodels, denoted by
SSYNC andFSYNC, respectively, where the robots, while
oblivious and disoriented, operate in synchronous rounds,
and each round is “atomic”: all robots active in that round
terminate their cycle by the next round; the only difference is
whether all robots are activated in every round (FSYNC), or,
subject to some fairness condition, a possibly different subset
is activated in each round (SSYNC). All three models have
been intensively studied (e.g., see [2–4,6–11,16–18,25,26];
for a detailed overview refer to the recent monograph
[14]).

The research on the computability aspects has focused
almost exclusively on the fundamental class of Geometric
Pattern Formation problems. A geometric pattern (or
simply pattern) P is a set of points in the plane; the robots
form the pattern P at time t if the configuration of the robots
(i.e., the set of their positions) at time t is similar to P (i.e.,
coincident with P up to scaling, rotation, translation, and
reflection). A pattern P is formable if there exists an algo-
rithm that allows the robots to form P within finite time and
no longer move, regardless of the activation scheduling and
delays (which, recall, are decided by the adversary) and of
the initial placement of the robots in distinct points. Given
a model, the research questions are: to determine if a given
pattern P is formable in that model; if so, to design an algo-
rithm that will allow its formation; and, more in general, to
fully characterize the set of patterns formable in that model.
The research effort has focused on answering these questions
for ASYNC and less demanding models both in general
(e.g., [6,16,17,24–26]) and for specific classes of patterns
(e.g., [2,8,9,11–13,19,22]).

Among specific patterns, a special research place is occu-
pied by two classes: Point and Uniform Circle. The
class Point is the set consisting of a single point; point
formation corresponds to the important Gathering prob-
lem requiring all robots to gather at a same location, not
determined in advance (e.g., see [1,3–5,20,23]). The other
important class of patterns isUniform Circle: the points

of the pattern form the vertices of a regular n-gon, where n
is the number of robots (e.g., [2,7–9,11–13,22]).

In addition to their relevance as individual problems, the
classesPoint andUniform Circleplay another impor-
tant role. A crucial observation, by Suzuki and Yamashita
[25], is that formability of a pattern P from an initial config-
uration Γ in modelM depends on the relationship between
ρM(P) and ρM(Γ ), where ρM(V ) is a special parameter,
called symmetricity, of a multiset of points V , interpreted
as robots modeled by M. Based on this observation, it fol-
lows that the only patterns that might be formable from any
initial configuration in FSYNC (and thus also in SSYNC
and ASYNC) are single points and regular polygons (also
called uniform circles). It is rather easy to see that both
points and uniform circles can be formed in FSYNC, i.e.,
if the robots are fully synchronous. After a long quest by
several researchers, it has been shown that Gathering is
solvable (and thus Point is formable) in ASYNC (and
thus also in SSYNC) [3], leaving open only the question
of whether Uniform Circle is formable in these mod-
els. In SSYNC, it was known that the robots can converge
towards a uniform circle without ever forming it [8]. Other
results indicate that the robots can actually form Uniform
Circle inSSYNC. In fact, by concatenating the algorithm
of [19], for forming a biangular configuration, with the one
of [11], for circle formation from a biangular starting config-
uration, it is possible to form Uniform Circle starting
from any initial configuration in SSYNC (the case with four
robots has been solved separately in [12]). Observe, however,
that the two algorithms can be concatenated only because the
robots are semi-synchronous. Hence, the outstanding ques-
tion is whether it is possible to form Uniform Circle in
ASYNC.

In spite of the simplicity of its formulation and the repeated
efforts by several researchers, the existing algorithmic contri-
butions are limited to restricted sets of initial configurations
of the robots and to more powerful robots. In particular, it
has been proven that, with the additional property of chirality
(i.e., a common notion of “clockwise”), the robots can form
Uniform Circle [13], and with a very simple algorithm;
the fact that Uniform Circle is formable in ASYNC
+chirality follows also from the recent general result of [17].
The difficulty of the problem stems from the fact that the
inherent difficulties of asynchrony, obliviousness, and dis-
orientation are amplified by their simultaneous presence.

A step toward the solution has been made in [15], where
the authors solved the problem assuming that the robots had
the ability to move along circular arcs, as well as straight
lines.

In this paper we show that indeed the Uniform Circle
Formation problem is solvable for any initial configuration
of robots (located in distinct positions)without any additional
assumption, thus closing a problem that has been open for
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over a decade. This result also implies that, for Geomet-
ric Pattern Formation problems, asynchrony is not a
computational handicap, and that additional powers such as
chirality and rigidity are computationally irrelevant.

The paper is structured as follows. In the next Section,
the model and the terminology are introduced. In Sect. 3, we
describe the ideas behind our solution in an informal way.We
provide the rigorous and formal presentation of the algorithm
in Sect. 4. We then give the formal proof of correctness in
Sect. 5.

2 Model and terminology

The system consists of a swarm R = {r1, . . . , rn} of mobile
robots, which are computational entities moving and operat-
ing in theEuclideanplaneR

2. Each robot canmove freely and
continuously in the plane, and operates in Look-Compute-
Move cycles.

Look, Compute, and Move phases. The three phases of each
cycle are as follows.

1. In the Look phase, a robot takes an instantaneous snap-
shot of the positions of all robots in the swarm. This
snapshot is expressed as an n-uple of points in the robot’s
coordinate system, which is an orthogonal Cartesian sys-
tem whose origin is the robot’s current location.

2. In the Compute phase, a robot executes a deterministic
algorithm, which is the same for all robots, and computes
a destination point in its own coordinate system. The only
input to such an algorithm is the snapshot taken in the
previous Look phase.

3. In the Move phase, a robot moves toward the destination
point that it computed in the previous Compute phase. At
each instant, the velocity of the robot is either null or it
is directed toward the destination point.

After a Move phase is done, the next cycle begins with a new
Look phase, and so on.

The robots are anonymous, which means that they are
indistinguishable and do not have identifiers. This translates
into the fact that the snapshot a robot takes during a Look
phase is simply a set of points, with no additional data. Since
the origin of a robot’s local coordinate system is always the
robot’s current location, each snapshot will always contain
a point with coordinates (0, 0), representing the observing
robot itself.

Robots are also oblivious, meaning that they do not retain
any memory of previous cycles. This translates into the fact
that the only input to the algorithm executed by a robot in a
Compute phase is just the last snapshot that the robot took.
Similarly, we can say that the robots are silent, in that they

have no means of direct communication of information to
other robots.

Different robots’ coordinate systems may have different
units of distance, different orientation, and different handed-
ness. A robot’s coordinate systemmay even change from one
cycle to the next, as long as its position stays at the origin.

The operations that can be executed by a robot in the Com-
pute phase are limited to algebraic functions of the points in
the input snapshot. We assume that computations of alge-
braic functions can be performed in finite time with infinite
precision.

The robots are asynchronous, meaning that the duration
of each cycle of each robot is completely arbitrary (but finite)
and independent of the cycles of the other robots. In partic-
ular, a robot may perform a Look phase while another robot
is in the middle of a movement. Also, from the time a robot
takes a snapshot to the time it actually moves based on that
snapshot, an arbitrarily long time may pass. This means that,
when the robot actually moves, it may do so based on a very
old and “obsolete” observation. The entity that decides the
duration of each robot’s cycles is the scheduler.Wemay think
of the scheduler as an “adversary” whose goal is to prevent
the robots from performing a certain task.

During a Move phase, a robot moves directly toward the
destination point that it computed in the previous Compute
phase, along a line segment. In particular, it cannot move
backwards on such a line. However, there are no assumptions
on the robot’s speed, and the speed may also vary arbitrarily
during the Move phase. A robot can even occasionally stop
and then move again (toward the same destination point)
within the same Move phase. Again, the speed of the robot
at each time is decided by the scheduler. The scheduler may
also prevent a robot from reaching its destination point, by
stopping it in the middle of the movement and then ending its
Move phase. This model is called non-rigid in the literature
(as opposed to the rigid model, in which a robot is always
guaranteed to reach its destination by the end of every Move
phase). The only constraint that we pose on the scheduler is
that it cannot end a robot’s Move phase unless the robot has
moved by at least a positive constant δ during the current
cycle, or it has reached its destination point. This δ is mea-
sured in a universal coordinate system (i.e., not in a robot’s
local coordinate system), and it is an absolute constant that
is decided by the scheduler once and for all, and cannot be
changed for the entire execution. We stress that the value of
δ is not known to the robots, as it is not part of the input to
the algorithm executed in the Compute phase.1

1 The value of δ is assumed to be the same for all robots. However,
since the robots are finitely many, nothing changes if each robot has
a different δ: all the executions in this model are compatible with a
“global” δ that is the minimum of all the “local” δ’s.
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The scheduler also decides the robots’ initial positions
in the plane (i.e., at time t = 0), with the only constraint
that they must be n distinct locations (i.e., no two robots can
occupy the same location, initially). We assume that initially
the robots are not moving, and are waiting to be activated
by the scheduler. When the scheduler activates a robot for
the first time, it starts with a Look phase, and then proceeds
normally. Different robots may perform the first Look phase
at different times.

Note that, without loss of generality, we may assume
that each cycle’s Look and Compute phases are executed
at the same time, instantaneously. Indeed, we can “simulate”
a delay between the two phases by making a robot stay still
for a while at the beginning of the nextMove phase. Note that
some authors also distinguish aWait phase, which occurs just
before a Look. Again, this phase can be easily incorporated
into the previous Move phase. Hence, in this paper, we will
refer to only two phases: an instantaneous Look-Compute
phase, and a Move phase, in which the moving robot may
also stay still for arbitrarily long (but finite) periods of time.

Executions and properties Let a swarm of n robots operate
according to an algorithm A, starting from an initial config-
uration I , and with minimality constant δ (as defined above).
We call execution the sequence of configurations formed
by the robots as a function of time, which depends on how
the adversary activates the robots, and includes each robot’s
phase at each time. We denote by Eδ

I,A the set of all possible
executions of such a swarm. Note that, if 0 < δ′ � δ, then
Eδ
I,A ⊆ Eδ′

I,A. Since δ is not known to the robots, it makes

sense to consider the set EI,A = ⋃
δ>0 Eδ

I,A as the class of
all possible executions, regardless of how small the constant
δ is. Similarly, we define EA = ⋃

I EI,A as the class of all
possible distributed executions of algorithmA, regardless of
the initial position of the n robots (as long as they are in
distinct locations).

We call property any Boolean predicate on sequences of
configurations. We say that Eδ

I,A enjoys property P if P is

true for all executions in Eδ
I,A.

Trajectories and frozen configurations For a given execu-
tion, we denote by r(t) the position of robot r ∈ R, expressed
in a global coordinate system, at time t � 0. If r is in a Look-
Compute phase (respectively, in aMove phase) at time t , then
the trajectory of r at time t is the set consisting of the single
point r(t) (respectively, the segment with endpoints r(t) and
the destination point of r at time t).

A robot is said to be frozen at time t if its trajectory at
time t is {r(t)}. The swarm R is said to be frozen at time t
if every robot in R is frozen at time t . If the robots in the
swarm reach a frozen configuration at time t , they are said
to freeze at time t . Recall that we assume the swarm to be
frozen initially, i.e., at time t = 0.

The Uniform Circle Formationproblem.Wemayequiv-
alently regard a property of executions as a set of “behaviors”
that the robots may have. Assigning a task, or a problem, to
a swarm of robots is the same as declaring that some behav-
iors are “acceptable”, in that they attain a certain goal, and
all other behaviors are “unacceptable”. Hence, we can define
a problem in terms of the property that the executions must
satisfy. Now, given a problem, expressed as a property P of
executions, we say that algorithm A solves the problem if
EA enjoys P .

In this paperwewill consider theUniform Circle For-
mation problem, defined as the propertyU which is true only
for those executions for which there is a time t∗ such that the
robots are frozen at the vertices of a regular n-gon at every
time t � t∗. In the following, we will describe the algorithm
UCF, and we will prove that it solves the Uniform Circle
Formation problem.

Note that we insisted on having only initial configurations
with robots in distinct locations because otherwise the Uni-
form Circle Formation problem would be unsolvable.
Indeed, if two robots are initially coincident, the scheduler
can force them to remain coincident for the entire execution
(by giving them the same coordinate system and activating
them synchronously). For the same reason, in our UCF algo-
rithm we never allow two robots to collide, although this is
not explicitly imposed by the problem’s definition.

3 The algorithm: informal description

The general idea of the algorithm, called UCF, is rather sim-
ple. Its implementation is however complicated by many
technical details, which make the overall strategy quite
involved and the correctness proof very complex.

Consider the casewithn > 5 robots.Recall that the goal of
the robots is to position themselves on the vertices of a regu-
lar n-gon, and stopmoving.We call this type of configuration
Regular. Our general strategy is to have the robots move to
the smallest enclosing circle (SEC); once there, determine
their final target points, and then move to their target points.
The only exception to this procedure is when the robots form,
either “intentionally” or “accidentally”, a special type of con-
figuration called Pre-regular, in which case they follow a
special procedure.

In the following we describe the ideas behind our solution
in an informal way.

3.1 Special cases: Biangular and Pre-regular
configurations

Consider first a very special class of configurations in which
the robotsmaybe found: theBiangular configurations, exem-
plified in Fig. 1a. A Biangular configuration can be defined
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as one consisting of an even number n of robots, and having
exactly n/2 axes of symmetry. Note that a Biangular config-
uration can be partitioned into two Regular configurations of
equal size. In this situation, the robots may all have exactly
the same view of the environment, provided that their axes
are oriented symmetrically. Hence the scheduler may force
all of them to perform the same computation and then move
at the same time, whichwill force the configuration to remain
Biangular at all times (or become Regular). In this scenario,
the algorithm must ensure that a common computation and
simultaneous movements would result in the formation of a
Regular configuration. On the other hand, because of asyn-
chrony while moving towards this goal the robots may also
form different and possibly asymmetric intermediate con-
figurations. Therefore, it is clearly desirable that the robots
preserve some invariant so that any such intermediate config-
uration is treated coherently to theBiangular case. A solution
to the problem of forming a regular polygon starting from a
Biangular configuration is described in [11],where the robots
can identify a “supporting regular polygon” (see Fig. 1b), and
each robot moves towards the closest vertex of such a poly-
gon. Any intermediate configuration possibly formed while
the robots move asynchronously and independently towards
the vertices of the supporting polygon is called Pre-regular
(note that all Biangular configurations are also Pre-regular).
While executing these operations starting from a Pre-regular

xyxy

xy
xy x y

x y

x y xy

(a)

(c)

(b)

Fig. 1 a A Biangular configuration, with local axes oriented in such
a way that all robots have the same view. b The correct way to resolve
a Biangular configuration. c A generic Pre-regular configuration with
its supporting polygon, which remains invariant as the robots move
according to the arrows

configuration, the supportingpolygon remains invariant (e.g.,
see Fig. 1c). So, whenever the configuration is perceived as
Pre-regular by all the robots, moving towards the appropri-
ate vertex of the supporting polygon results in the formation
of a Regular configuration. In Lemma 23 we will prove that,
if n > 4 and a supporting polygon exists, then it is unique.

3.2 General strategy: SEC and analogy classes

Consider now a starting position of the robots that is not Pre-
regular (and hence not Biangular). Recall that the robots
have no common reference frame, and there are no “envi-
ronmental” elements that can be used by the robots to orient
themselves. This is a serious difficulty that may prevent the
robots from coordinating their movements and act “consis-
tently” from one cycle to another. To overcome this difficulty,
we identify the smallest enclosing circle (SEC) of the robots’
positions (as shown in Fig. 2a), and we make sure the robots
move in such a way as to keep SEC fixed (note that SEC is
unique and it is easy to compute). This will hold true as long
as the configuration is not Pre-regular. If the configuration
happens to become Pre-regular during the execution, then
the procedure of Sect. 3.1 will be executed, and SEC will no
longer be preserved.

SEC

SEC/3

x
y

x y

x
y

α
β

γ

α

α
α

α
α

β

β

γ

γ

SEC/3

(a) (b)

(c)

Fig. 2 a A swarm of robots, with its SEC and SEC/3. b The three
highlighted robots form an analogy class. If their axes are oriented as
indicated, the three robots have the same view. c The three dark-shaded
robots are selected as walkers, and move according to the arrows. At
the end of the move, each walker has an angular distance of π/3 (which
is a multiple of 2π/n) from a non-walker
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The general algorithm will attempt to make all robots
reach the perimeter of SEC, as a preliminary step. So, let
us consider a configuration that is not Pre-regular and in
which all robots lie on the perimeter of SEC. In this situation,
we identify pairs of robots that are located in “symmetric”
positions, i.e., such that there is an isometry of the swarm
that maps one of the two robots into the other. We call two
such robots analogous, and the swarm is thus partitioned into
analogy classes of analogous robots (see Fig. 2b). In general,
an analogy class has either the shape of a Regular set or of a
Biangular set (with some degenerate cases, such as a single
point or a pair of points).

Similarly to the Biangular case (cf. the discussion in
Sect. 3.1), the scheduler may force all the robots in an anal-
ogy class to perform the same computation and move at the
same time, thus occupying symmetric positions again, and
potentially forever. To accommodate this, we may as well
incorporate this type of behavior into the algorithm, andmake
all analogous robots always deliberatelymove together in the
same fashion.

More specifically, wewill let only one analogy class move
at a time, while all the others wait on SEC (see Fig. 2c). The
robots in the analogy class that is allowed to move are called
walkers. When the walkers have been chosen, they move
radially to SEC/3, which is the circle concentric with SEC
and whose radius is 1/3 of the radius of SEC. Once they are
all there, they move to their finish set, while staying within
SEC/3 (or in its interior). When they are all in their finish set,
they move radially to SEC again. Subsequently, a new anal-
ogy class of walkers is chosen, and so on. The walkers and
the finish set are chosen in such a way that, when the walkers
are done moving, some kind of “progress” toward a Regular
configuration is made. By “progress” we mean, for instance,
that two analogy classes merge and become one, or that the
angular distance between two robots on SEC becomes amul-
tiple of 2π/n (note that in aRegular configuration all angular
distances are multiples of 2π/n).

Of course, as the walkers move to some other location,
they all need a strategy to “wait for each other”, and make
sure to reach a configuration in which they are once again
analogous. Also, different analogy classes should plan their
movements “coherently”, in such a way that their combined
motion eventually results in the formation of a Regular con-
figuration. Note that this is complicated by the fact that,
when a class of walkers startsmoving, some of the “reference
points” the robots were using to compute their destinations
may be lost. Moreover, it may be impossible to select a class
of walkers in such a way that some “progress” is made when
they reach their destinations, and in such a way that SEC
does not change as they move. In this case, the configura-
tion is locked, and some special moves have to be made.
Finally, as the robotsmove according to the general algorithm
we just outlined, they may form a Pre-regular configuration

“by accident”. When this happens, the robots need a mecha-
nism to stop immediately and start executing the procedure
of Sect. 3.1 (note that some robots may be in the middle
of a movement when a Pre-regular configuration is formed
accidentally).

All these aspects will be discussed in some detail in this
section. Next we will show how the robots can reach SEC
from any initial configuration, as a preliminary step.

3.3 Preliminary step: reaching SEC

A simple way tomake all robots reach SECwithout colliding
is to make each of them move radially, away from the center,
as in Fig. 3a. This works nicely, as long as no two robots are
co-radial, i.e., collinear with the center of SEC. A special
case is the Central configuration, in which one robot lies at
the center of SEC.Central configurations are easily resolved,
by simply making the central robot move to SEC/3, in such
a way as not to become co-radial with any other robot.

TheCo-radial configurations that are notCentral are han-
dled as follows. First of all, if there are non-co-radial robots
that are in the interior of SEC/3, they move radially to SEC/3
(note how the evolution of a Central configuration nicely
blends with this). Then, the co-radial robots that are closest
to the center of SEC move radially toward the center, until
they are in SEC/3 (see Fig. 3b). Finally, the most internal co-
radial robots make a lateral move to become non-co-radial,

(a) (b)

(c)

Fig. 3 a All robots move radially to reach SEC. b The most internal
co-radial robots move radially to SEC/3. c When they are in SEC/3,
they make a small lateral move
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as in Fig. 3c. The lateral move is within SEC/3 (or its interior)
and it is “sufficiently small”, in order to prevent collisions. A
sufficiently small move is, for instance, a move that reduces
the angular distance to any other robot by no more than 1/3.

The reason why we make robots reach SEC/3 before per-
forming lateral moves is because we want to prevent the
accidental formation of Pre-regular configurations. We will
discuss this aspect later, in Sect. 3.9.

It is easy to see how this strategy makes the robots coor-
dinate their movements and avoid collisions. Indeed, as soon
as a robot r makes a lateral move and stops being co-radial,
it is seen by the other robots as a non-co-radial robot lying
in the interior of SEC/3. Hence, no other robot will take ini-
tiatives, and will just wait until r has reached SEC/3 and has
stopped there. This guarantees that, when a robot decides to
perform a lateral move, no other robot is in the middle of a
lateral move (i.e., the move has started but has not finished).

Also, no matter how many robots lie on the same line
through the center of SEC, the innermost will always move
first, and then the others will follow in order, after the first
has stabilized on SEC/3. When this procedure is completed,
there are nomore co-radial robots and no robots in the interior
of SEC/3. At this point, the robots can safely move toward
SEC, radially.

After this phase of the algorithm has been completed, no
two robots will ever become co-radial again. We will achieve
this through a careful selection of walkers and target points,
and by making walkers move appropriately.

3.4 Half-disk configurations

One other special initial case has to be resolved: theHalf-disk
case. In this configuration, all the robots lie in one half-disk of
SEC, and the diameter of such a half-disk is called principal
line (see Fig. 4a). The reason why we want to resolve these
configurations immediately and separately from all others
will be explained in the following, when discussing locked
configurations.

Half-disk configurations are resolved by making some
robots move from the “occupied” half-disk to the “non-
occupied” one.Note that, while doing so, some robots have to
cross the principal line. Also, by definition of SEC, the prin-
cipal line must contain robots on both endpoints. These two
robots, r1 and r2, must stay in place in order to maintain SEC
stable. Hence, exactly two other robots, which have smallest
angular distances from r1 and r2 respectively, move to the
two points in which the principal line intersects SEC/3 (see
Fig. 4b). Once they are both there, they move into the non-
occupied half-disk, remaining inside SEC/3, as in Fig. 4c.
(More precisely, if the principal line already contains some
robots on or inside SEC/3, such robots do not preliminarily
move to the perimeter of SEC/3, because it is unnecessary

SEC/3

SEC/3

(a) (b)

(c)

Fig. 4 a A Half-disk configuration, with the principal line. b Two
robots move to the intersection between the principal line and SEC/3.
c The same two robots move to the non-occupied half-disk

and it may even cause collisions; in this case, they move into
the unoccupied half-disk right away.)

A very specialHalf-disk case is the one in which all robots
lie on the same line. This case is handled like a genericHalf-
disk, with two robots first moving on SEC/3 (if they are
not already on it or in its interior), and then moving away
from the principal line. If they move in opposite directions,
the configuration is no longer Half-disk. If they move in the
same direction, they form a generic Half-disk, which is then
resolved normally.

When analyzing the possible evolutions of a Half-disk
configuration, one has to keep in mind that it transitions into
a different configuration while one or two robots are still
moving. This turns out to be relatively easy, since themoving
robots are inside SEC/3 (like the robots that move laterally
in the Co-radial case) and move in a very predictable and
controlled way. When the configuration ceases to be Half-
disk, the robots will move on SEC as described before, and
they will never form a Half-disk configuration again.

3.5 Identifying targets

Suppose now that all robots are on SEC, and the configu-
ration is not Pre-regular and not Half-disk. In this case we
can define a target set, which represents the final Regular
configuration that the robots are trying to form. Each ele-
ment of the target set is called a target, and corresponds to
some robot’s intended destination. Hence the target set is a
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(a) (b)

(c)

Fig. 5 The outer arrows indicate targets, and the inner arrows indicate
correspondences between robots and targets. a The dark-shaded robot
lies on an axis of symmetry. b There are some axes of symmetry, none
of which contains a robot. c There are no axes of symmetry, and the
dark-shaded robots form the largest concordance class

Regular set of n points, arranged on SEC in such a way that
it can be computed by all robots, regardless of their local
coordinate system (i.e, regardless of the orientation of their
local axes, their handedness, and their unit of distance). Next
we describe how the target set is defined, depending on the
configuration of the robots.

Assume that the configuration has an axis of symmetry
�. Then � must also be an axis of symmetry of the target
set. If one robot r lies on �, then the target of r coincides by
definitionwith r , and the other targets are defined accordingly
(see Fig. 5a). If no robot lies on �, then no target lies on �,
either. The correspondences between robots and targets are
as in Fig. 5b. Note that the targets are uniquely determined
even if the configuration hasmore than one axis of symmetry,
and therefore the same targets are computed by all robots (we
will prove this in Proposition 5 and Remark 3).

Assume now that the configuration has no axes of sym-
metry. In this case we say that two robots are concordant if
their angular distance is of the form 2kπ/n, for some inte-
ger k, and between them there are exactly k − 1 robots. In
other words, two concordant robots have the “correct” angu-
lar distance, and between them there is the “correct” number
of robots. This relation partitions the robots into concordance
classes. The largest concordance class determines the target
set: each robot in this class coincides with its own target,
by definition. Even if the largest concordance class is not

unique, it turns out that there is always a way to choose one
of them unambiguously, in such a way that all robots agree
on it. Once some targets have been fixed, the other targets
and correspondences are determined accordingly, as Fig. 5c
shows.

3.6 Identifying walkers, locked configurations

When the target set has been identified, then the walkers can
be defined. Thewalkers are simply the analogy class of robots
that are going to move next.

Typically, the algorithm will attempt to move an analogy
class of robots to their corresponding targets. The robots that
currently lie on their targets are called satisfied, and these
robots should not move. Moreover, the walkers should be
chosen in such a way that, when they move from their posi-
tions into the interior of SEC, they do not cause SEC to
change.An analogy class of robotswith this property is called
movable. Finally, no new co-radialities should be formed as
the robots move. This means that the walkers should be cho-
sen in such a way that, as they move toward their targets,
they do not become co-radial with other robots. The targets
of such robots are said to be reachable.

Therefore, the walkers are a movable analogy class whose
robots are not satisfied and can reach their targets without
creating co-radialities. If such a class is not unique, one can
always be chosen unambiguously.

There are special cases in which no such an analogy class
or robots exists: these configurations are said to be locked (see
for instance Fig. 6a). In a locked configuration, the walkers
will be an analogy class that is movable and not satisfied, and
that is adjacent to some non-movable analogy class. Such an
analogy class is called unlocking. The goal of these walkers
is not to reach their targets (if they could, the configura-
tion would not be locked), but to move in such a way as
to “unlock” the configuration (as in Fig. 6b), thus allowing
other robots, which were previously non-movable, to reach
their targets (as in Fig. 6c). It can be shown (cf. Proposi-
tion 9) that, in a locked configuration, the robots that cannot
be moved are at most two, and are adjacent on SEC. Also,
in a locked configuration, each analogy class consists of at
most two robots. Hence there are either one or two walkers
in a locked configuration, and they are both adjacent to some
non-movable robot.

3.7 Identifying Valid configurations

Now we describe the journey that the walkers take to reach
their destinations. First they move radially to SEC/3, and
they wait for each other there. Once they are all on SEC/3,
they start moving laterally, remaining within SEC/3 and its
interior, until they reach their finish set. Once they are in their
finish set, they move back to SEC radially.
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(a)

(c)

(b)

Fig. 6 a A locked configuration: the topmost robots are satisfied, the
bottommost robots are non-movable, and all other robots would create
co-radialities in the process of reaching their targets. b A preliminary
move is made to unlock the configuration. c When the configuration is
unlocked, the bottommost robots become movable

The reason why the walkers move to SEC/3 is two-fold.
It makes it easier to foresee and prevent the accidental for-
mation of Pre-regular configurations (see Sect. 3.9), and it
clearly separates the robots that should move from the ones
that should wait, so that no one gets confused as the config-
uration changes.

Note that it is easy to recognize a configuration in which
the walkers are moving radially to SEC/3 or back to SEC,
because analogy classes (and hence thewalkers) depend only
on angular distances between robots. Hence, if all robots
are on SEC, except a few analogous robots that are between
SEC and SEC/3, then the configuration is recognized as a
“consistent”, or Valid one, in which the walkers are either
moving to SEC/3, or are moving back to SEC (see Fig. 7a).

If the walkers have already started moving laterally in
SEC/3, then recognizing the configuration as a Valid one is a
little harder. This can be done by “guessing” where the inter-
nal robots were located when they were still on SEC and
they have been selected as walkers. If there is a way to re-
position the internal robots within their respective “sectors”
of SEC in such a way as to make them become a full anal-
ogy class, then the configuration is considered Valid, and the
internal robots are considered walkers (see Fig. 7b). Other-
wise, it means that the execution is in one of the earlier stages,
and the robots still have to make their preliminary move to
SEC.

(a) (b)

Fig. 7 Two types of Valid configurations. a Some analogous robots lie
between SEC and SEC/3, and all other robots are on SEC. b All robots
are on SEC or on SEC/3, and the distribution of the internal robots is
compatible with a possible initial configuration in which they were all
on SEC, forming an analogy class

3.8 Identifying the finish set

Once the configuration has been recognized as Valid and all
walkers are on SEC/3, they compute their finish set. This is
simply the set of their destinations on SEC/3, which they
want to reach before moving back to SEC.

In order to understand where they should be going, the
walkers have to recompute their targets. Indeed, note that the
original targets have been computed when the walkers were
on SEC. As they are now on SEC/3 and they will soon be
moving laterally insideSEC/3,weneed a robustway to define
targets. By “robust” we mean that different walkers should
compute the same target set, and that the target set should not
change as the walkers move within SEC/3. Of course it may
not be possible to reconstruct the original walkers’ positions
on SEC and recompute the original targets, and therefore
once again the walkers have to “take a guess”. The guess is
that, when they were still on SEC, each walker was equidis-
tant from its two adjacent robots, as in Fig. 8a. This position
of the walkers is referred to as the principal relocation, and
it can be computed unambiguously by all robots.

Now the robots compute the finish set as follows. First of
all, if the principal relocation is not a full analogy class, but
just a subset of one, then the walkers know that it could not
possibly be their initial position on SEC (see Fig. 8b). In this
case, the finish set is the principal relocation itself. The reason
is that, by moving to their principal relocation, the walkers
all join some bigger analogy class. This is a good thing to do,
because it makes progress toward having a unique analogy
class.

If the principal relocation forms in fact an analogy class,
then the walkers assume that to be their original position on
SEC. Hence they compute the new targets based on that con-
figuration, with the usual algorithm (see Fig. 8c). Now, if the
walkers can reach their respective targets from inside SEC/3
(that is, without becoming co-radial with other robots), then
the finish set is the set of their targets. Otherwise, the walkers
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(a)

(c)

(b)

Fig. 8 a The principal relocation of the internal robots. b If the prin-
cipal relocation is a proper subset of an analogy class, it cannot be the
original position of the internal robots, or else a larger set of walkers
would have been selected. c If the principal relocation forms an analogy
class, it is used to determine the target set. Such targets remain fixed as
the internal robots move within their respective sectors

are confused, and by default their finish set is the principal
relocation.

Now that the finish set has been defined, the robots move
there, always remaining within SEC/3, and without becom-
ing co-radial with each other. There is only one exception:
suppose that the walkers reach their finish set and move radi-
ally to SEC: let R be the set of the final positions of the
walkers on SEC. If the new configuration is locked, and the
robots in R happen to form an unlocking analogy class, then
it was not a good idea for the walkers to go to R. Indeed, this
would cause them to become walkers again (unless there are
two unlocking analogy classes and the other one is chosen),
and the execution would enter an infinite loop. In this special
case, the walkers have to do something to unlock the con-
figuration, instead of reaching R. The strategy is simple: if
the walkers are two, they move to two antipodal points (as in
Fig. 6b); if there is a uniquewalker, it becomes antipodal with
some non-movable robot currently located on SEC. In the
resulting configuration, all analogy classes will be movable,
and the configuration will not be locked (cf. Proposition 7).
Note that this type of move would not be possible in a Half-
disk configuration: this is precisely why we made sure to
resolve Half-disk configurations early on.

3.9 Accidental formation of Pre-regular configurations

Our algorithm has still one big unresolved issue. Recall
that, every time a robot computes a new destination, it first
checks if the configuration is Pre-regular. If it is, it exe-
cutes a special protocol; otherwise it proceeds normally.
So, what happens if the swarm is executing the non-Pre-
regular protocol, and suddenly a Pre-regular configuration
is formed “by accident”? If a robot happens to perform a
Look-Compute phase right at that time, it is going to exe-
cute the Pre-regular protocol, while all the other robots are
still executing the other one, and maybe they are in the mid-
dle of a move (see Fig. 9a). This leads to an inconsistent
behavior that will potentially disrupt the “flow” of the entire
algorithm.

To resolve this issue, we have to avoid the unintended for-
mation of Pre-regular configurations whenever possible. If
in some cases it is not easily avoidable, then we have to make
sure that the whole swarm stops moving (or freezes, in the
terminology of Sect. 2) whenever a Pre-regular configura-
tion is formed. This way, all robots will transition into the
new configuration, and all of them will coherently execute
the Pre-regular protocol in the next cycle.

In Sect. 5.2 we thoroughly discuss this topic, and we
show how the robots should behave in every case. Fortu-
nately, certain important configurations are safe: no Central
or Co-radial or Half-disk configuration can be Pre-regular.
So, in these initial phases, no Pre-regular configuration can
be formed accidentally. Also, in a Pre-regular configuration
no robot can be in SEC/3: this explains why we make our
walkers move radially to SEC/3 first, and we allow them to
move laterally only within SEC/3.

Hence, the only “dangerous” moves are the radial ones,
which are performed by the walkers, or by the robots that
are reaching SEC during the preliminary step. We can con-
veniently simplify the problem if we move only one analogy
class of robots at a time.Note that this is already the casewhen
themoving robots are thewalkers, and in the other cases there
is always a way to totally order the analogy classes unam-
biguously. If only one analogy class ismoving radially (either
from SEC to SEC/3 or from SEC/3 to SEC), it is easier to
understand what is going to happen, and to keep everything
under control.

The general protocol that we use for radial moves is called
cautiousmove. In a cautiousmove, the robots compute a set of
critical points, and move in such a way as to freeze whenever
they are all located at a critical point (see for instance Fig. 9b).
Intuitively, the robots “wait for each other”: only the robots
that are farthest from their destinations are allowed to move,
while the others wait. Then, the robots make only moves that
are short enough, and in addition they stop at every criti-
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(a)

(c)

(b)

Fig. 9 (a) As the robot on the right moves to SEC, a Pre-regular con-
figuration is accidentally formed. The robot on the left recognizes a
Pre-regular configuration, and starts executing the corresponding pro-
tocol, which is inconsistent with the other robot’s move. b To prevent
this behavior, enough critical points are added. Now the swarm is guar-
anteed to stop as soon as a Pre-regular configuration is formed. c A
case in which infinitely many Pre-regular configurations are formable.
Still, only the innermost is relevant, because it can be reached before
all the others

cal point that they find on their paths.2 Now, if we use the
potentially formable Pre-regular configurations to generate
the critical points, we can indeed guarantee that the robots
will freeze as soon as they form one. This is still not enough,
because the formablePre-regular configurationsmay be infi-
nitely many (as in Fig. 9c), while the critical points must be
finite, or the cautious move would never end. However, it
can be shown that, in all cases, either there is a finite number
of Pre-regular configurations that will be formed before all
the others, or suitable critical points can be chosen in such
a way as to prevent the formation of Pre-regular configura-
tions altogether. Hence, it turns out that it is always possible
to choose a finite set of critical points for all cautious moves,
and guarantee that the swam is frozen whenever it transitions
into a Pre-regular configuration.

3.10 Proof of correctness: outline

The proof of correctness of this algorithm is necessarily long
and complex. This is partly because the algorithm itself is
complicated and full of subtle details, and partly because the

2 Roughly the same mechanism has been used in [3], with some tech-
nical differences.

analysis must take into account a large number of different
possible configurations and behaviors, and show that all of
them are resolved correctly.

The correctness of the Pre-regular case of the algorithm,
as well as the Central, Co-radial, and Half-disk cases is rel-
atively straightforward, and is proven in the first lemmas of
Sect. 5.3. The difficulty here is to prove that the execution
flows seamlessly from Half-disk to Co-radial, etc.

The other parts of the algorithm need a much more care-
ful analysis. The correctness of the cautious move protocol
is proven in Sect. 5.1. The discussion on the accidental for-
mation of Pre-regular configurations and on how to choose
the critical points of the cautious moves is in Sect. 5.2. Much
different strategies and ideas have to be used, depending on
several properties of the configurations. In Proposition 9 we
give a complete characterization of the locked configurations,
showing where the non-movable and the unlocking analogy
classes are.

With all these tools, we can finally tackle the Valid case,
and so analyze themain “loop” of the algorithm. In themiddle
part of Sect. 5.3 we show that the different phases of the
execution “hinge together” as intended: all the walkers reach
SEC/3 and freeze there (unless a Pre-regular configuration
is formed in the process), then they all move to their finish
set, freeze again, and finally they move back to SEC. As
the execution continues and more iterations of this phase are
made, we have to study how exactly the target set changes,
and we have to make sure that a Pre-regular configuration is
eventually formed.

To this end we prove that, at each iteration, some
“progress” is made toward a Regular or Biangular config-
uration. The progress may be that the walkers join another
analogy class (thus reducing the total number of analogy
classes), or that a new axis of symmetry is acquired, or that
more robots become satisfied.Aprecise statement and a com-
plete proof is given in Lemma 34.Of course the configuration
may also be locked, and this case is analyzed separately, in
Lemma 35: here we prove that, after one iteration, either the
configuration is no longer locked, or some analogy classes
have merged, or a previously non-movable analogy class has
become movable.

Also, by design, the algorithm never allows an analogy
class to split (because the walkers constitute an analogy class
when they are selected, and are again all analogous when
they reach their finish set), and it never causes a symmetric
configuration to become asymmetric from one iteration to
the next. However, it is true that the targets may change, and
thus the number of satisfied robots may actually decrease.
But this can happen only when some analogy classes merge,
orwhen the configuration becomes symmetric. Andwe know
that this can happen only finitely many times.

So, either a Pre-regular configuration is formed by acci-
dent (and we know that this case leads to a quick resolution),
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or eventually there will be only one analogy class left, and
hence the configuration will be Regular or Biangular. This
will conclude the proof.

3.11 Smaller swarms

The algorithm we just outlined works if the robots in the
swarm are n > 5. If n = 3, we have an ad-hoc algorithm
described in Lemma 24. If n = 5, the general algorithm
needs some modifications, because it is no longer true that,
in a locked configuration, there is a non-satisfied unlocking
analogy class. The details of the extended algorithm are given
in Lemma 25.3 Finally, the case n = 4 has recently been
solved in [21].

4 The algorithm: formal description

4.1 Geometric definitions and basic properties

Smallest enclosing disks and circles Given a finite set S ⊂
R
2 of n � 2 points, we define the smallest enclosing disk of

S, or SED(S), to be the (closed) disk of smallest radius such
that every point of S lies in the disk. For any S, SED(S) is
easily proven to exist, to be unique, and to be computable
by algebraic functions. The smallest enclosing circle of S, or
SEC(S), is the boundary of SED(S).

Another disk will play a special role: SED/3(S). This is
concentric with SED(S), and its radius is 1/3 of the radius of
SED(S). The boundary of SED/3(S) is denoted as SEC/3(S).

If S is understood, we may omit it and simply refer to
SED, SEC, SED/3, and SEC/3.

Centrality and co-radiality If one point of S lies at the center
of SED, then S is said to form aCentral configuration. If two
points lie on the same ray emanating from the center of SED,
they are said to be co-radial with each other, and each of
them is a co-radial point. If S has co-radial points, it is said
to form a Co-radial configuration. It follows that a Central
set is also Co-radial.

Antipodal points Two points on SEC(S) that are collinear
with the center of SEC(S) are said to be antipodal to each
other (with respect to SEC(S)).

Observation 1 The center of SED(S) lies in the convex hull
of S ∩ SEC(S). Therefore, every half-circle of SEC(S) con-

3 The results in [19] seem to imply that theUniform Circle Forma-
tion problemcan be solved for any odd number of robots inASYNC. A
proof for theSSYNCmodel is given, but its generalization toASYNC
is missing some crucial parts. No extended version of the paper has been
published, either. Hence, for completeness, we provide our own solu-
tions for the special cases n = 3 and n = 5.

tains at least one point of S. In particular, if just two points
of S lie on SEC(S), they are antipodal.

Pre-regular configurations. S is Pre-regular if there exists a
regular n-gon (called the supporting polygon) such that, for
each pair of adjacent edges, one edge contains exactly two
points of S (possibly on its endpoints), and the other edge’s
relative interior contains no point of S [9]. A Pre-regular
set is shown in Fig. 1c. There is a natural correspondence
between points of S and vertices of the supporting polygon:
the matching vertex v of point p ∈ S is such that v belongs
to the edge containing p, and the segment vp contains no
other point of S. If two points of S lie on a same edge of the
supporting polygon, then they are said to be companions.
Regular configurations. S is Regular if its points are the ver-
tices of a regular n-gon. TheUniform Circle Formation
problem requires n robots to reach a Regular configuration
and never move from there.
Half-disk configurations. Suppose that there exists a line �

through the center of SED, called the principal line, such
that exactly one of the two open half-planes bounded by �

contains no points of S. Then, such an open half-plane is
called empty half-plane, and S is said to be aHalf-disk set. A
Half-disk set is shown in Fig. 4a. The center of SED divides
� into two rays, called principal rays. Note that there must
be two points of S lying at the intersections between � and
SEC.

Angular distance and sectors Let c be the center of SED(S).
The angular distance between two points a and b (distinct
from c) is the measure of the smallest angle between � acb
and � bca, and is denoted by θ(a, b). The sector defined by
two distinct points a and b is the locus of points x such
that θ(a, x) + θ(x, b) = θ(a, b). (In the exceptional case in
which c lies on the segment ab, the points a and b define two
sectors, which are the two half-planes bounded by the line
through a and b).

Angle sequences For the rest of this section we assume S ⊂
R
2 to be a finite set of n > 2 points that is not Co-radial.
Note that the positions of the points of S around the center

of SED, taken clockwise, naturally induce a cyclic order on
S. Let p ∈ S be any point, and let pi ∈ S be the (i + 1)-th
point in the cyclic order, starting from p = p0. Let α

(p)
i =

θ(pi , pi+1), where the indices are taken modulo n. Then,
α(p) = (α

(p)
i )0�i<n is called the clockwise angle sequence

induced by p. Of course, depending on the choice of p ∈ S,
there may be at most n different clockwise angle sequences.

Letting β
(p)
i = α

(p)
n−i , for 0 � i < n, we call β(p) =

(β
(p)
i )0�i<n the counterclockwise angle sequence inducedby

p ∈ S. We let α and β be, respectively, the lexicographically
smallest clockwise angle sequence and the lexicographically
smallest counterclockwise angle sequence of S.
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Fig. 10 a A Uni-periodic set. b A Bi-periodic set. c A Bi-aperiodic
set. d A Double-biangular set

Finally, we denote by μ(p) the lexicographically small-
est between α(p) and β(p), and by μ the lexicographically
smallest between α and β. We call μ(p) the angle sequence
induced by point p. (Sinceμ is a sequence, we denote its i-th
element by μi , and the same goes for μ(p)).

Periods The number of distinct clockwise angle sequences
of S is called the period of S. It is easy to verify that the
period is always a divisor of n. S is said to be Equiangular if
its period is 1,Biangular if its period is 2,Periodic if its period
is greater than 2 and smaller than n, andAperiodic if its period
is n. In a Biangular set, any two points at angular distanceμ0

are called neighbors, and any two points at angular distance
μ1 are called quasi-neighbors. APeriodic set isUni-periodic
if α �= β, and Bi-periodic if α = β. Similarly, an Aperiodic
set is Uni-aperiodic if α �= β, and Bi-aperiodic if α = β

(Fig. 10).

Analogy and strong analogy We say that p ∈ S is analogous
to q ∈ S if μ(p) = μ(q). In particular, if α(p) = α(q), p
and q are said to be strongly analogous. Analogy and strong
analogy are equivalence relations on S, and the equivalence
classes that they induce on S are called analogy classes and
strong analogy classes, respectively.

Observation 2 Let S be a set whose points all lie on SEC(S).

– If S is Equiangular, all points are strongly analogous.

– If S is Biangular, all points are analogous, and there are
exactly two strong analogy classes.

– If S is Uni-periodic with period k � 3, each analogy
class is an Equiangular subset of size n/k.

– If S is Bi-periodic with period k � 3, each analogy class
is either a Biangular set of size 2n/k, or an Equiangular
set of size n/k or 2n/k.

– If S is Uni-aperiodic, each analogy class consists of
exactly one point.

– If S is Bi-aperiodic, each analogy class consists of either
one or two points.

Observation 3 The following statements are equivalent.

– S has a unique analogy class.
– S has period 1 or 2.
– S is Equiangular or Biangular.

Proposition 1 Let S be a set of at least two points, and let
C be an analogy class of S. If � is an axis of symmetry of S,
then � is an axis of symmetry of C. Also, if S has a k-fold
rotational symmetry around the center of SED(S), then C
has a k-fold rotational symmetry with the same center.

Proof Suppose that � is an axis of symmetry of S. Let p ∈ C ,
and let p′ be the symmetric of pwith respect to �. Since p ∈ S
and � is an axis of symmetry of S, it follows that p′ ∈ S. Also,
the clockwise angle sequence induced by p (respectively, p′)
is the same as the counterclockwise angle sequence induced
by p′ (respectively, p). Hence μ(p) = μ(p′), which means
that p and p′ are analogous, and therefore p′ ∈ C .

Suppose that S has a k-fold rotational symmetry with
respect to the center of SED(S). Let p ∈ C , and let p′ be any
point such that θ(p, p′) = 2π/k, and p and p′ are equidis-
tant from the center of SED(S). Since p ∈ S, it follows that
p′ ∈ S. Also, the clockwise (respectively, counterclockwise)
angle sequence induced by p is the same as the clockwise
(respectively, counterclockwise) angle sequence induced by
p′. Hence μ(p) = μ(p′), which means that p and p′ are anal-
ogous, and therefore p′ ∈ C . 	

Double-biangular configurations. S is said to be Double-
biangular if it is Bi-periodic with period 4 and has exactly
two analogy classes.

Concordance Two points p, q ∈ S are concordant if there
exists an integer k such that the angular distance between
p and q is 2kπ/n, and there are exactly k + 1 points of S
in the sector defined by p and q (including p and q them-
selves). Concordance is an equivalence relation on S, and its
equivalence classes are called concordance classes.

Observation 4 In a Uni-periodic or Uni-aperiodic set, any
two analogous points are also concordant. Hence, in such
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a set, each analogy class is a subset of some concordance
class.

Proposition 2 Let S be a set of at least two points, all of
which are on SEC(S). Then, each axis of symmetry of S
passes through the center of SED(S).

Proof If S consists of exactly two points, then such two
pointsmust be antipodal, byObservation 1. In this case, S has
exactly two axes of symmetry, both of which pass through
the center of SEC. Suppose now that S consists of at least
three points, and it has an axis of symmetry �. In this case,
there must be a point p ∈ S that does not lie on �, whose
symmetric point p′ ∈ S does not lie on �, either. Both p
an p′ lie on SEC by assumption, and the axis of the (non-
degenerate) chord pp′ must be �. But the axis of a circle’s
chord passes through the center of the circle, and therefore �

passes through the center of SED. 	


Footprints and anti-footprints We define the footprint
(respectively, anti-footprint) of p ∈ S as the point on SEC(S)

(respectively, SEC/3(S)) that is co-radial with p, and we
denote it by F(p) (respectively, F ′(p)). We also define the
footprint (respectively, anti-footprint) of a subset A ⊆ S,
denoted by F(A) (respectively, F ′(A)), as the set of the
footprints (respectively, anti-footprints) of all the points of
A.

External and internal points We let E(S) = S ∩ SEC(S)

be the set of external points of S. Similarly, we let I(S) =
S \ E(S) be the set of internal points of S.

Main sectors, occupied sectors, and consecutive points Each
sector defined by pairs of distinct points of S whose interior
does not contain any point of S is called main sector of S.
It follows that S has exactly |S| main sectors (recall that we
are assuming S not to be Co-radial). A main sector of E(S)

is an occupied sector of S if it contains some points of I(S).
If two points of S define a main sector, they are said to be
consecutive points of S.

Midpoints We say that p ∈ S is a midpoint in S if α
(p)
0 =

β
(p)
0 .

Relocations and well-occupied configurations If I(S) is not
empty, a relocation of I(S) (with respect to S) is the image
of an injective function f : I(S) → SEC(S) that maps every
internal point of S to some point in the interior of the same
occupied sector of S. The principal relocation is the (unique)
relocation R ⊂ SEC(S) every point of which is a midpoint
in E(S) ∪ R. If there exists a relocation R of I(S) that is an
analogy class of E(S)∪ R, then S is said to be well occupied.

Valid configurations (Ready orWaiting). S is a Valid set if it
consists of at least five points, it is not Co-radial, not Half-
disk, and one of the following conditions holds.

– All the points of S are either on SEC or in SED/3, and S
is well occupied (as in Fig. 7b). In this case, S is said to
be Ready.

– No point of S is in the interior of SED/3, and all the
internal points of S are analogous (as in Fig. 7a). In this
case, S is said to be Waiting.

Remark 1 If S has no internal points, it is Valid andWaiting.
Also, if S is Equiangular or Biangular and none of its points
lies in the interior of SED/3, it is Valid and Waiting.

Remark 2 There exist Valid sets that are both Ready and
Waiting. For instance, if the internal points of a Valid set
constitute an analogy class and they all lie on SEC/3, then
the set is both Ready and Waiting.

Proposition 3 In aValid andReady set, the occupied sectors
either contain exactly one point each, or they contain exactly
two points each.

Proof Let S be a Valid and Ready set. Then I(S) has a relo-
cation R that is an analogy class of S′ = E(S) ∪ R. If S′
has period 1 or 2, by Observation 3 it has a unique analogy
class, and therefore R = S′, meaning that all points of S are
internal, which is impossible. Hence S′ has period at least 2,
and is therefore Periodic or Aperiodic.

Recall that a relocation remaps the internal points within
the same occupied sector. If S′ is Uni-periodic or Uni-
aperiodic, then no two analogous points are consecutive in
S′, and hence each occupied sector of S contains exactly one
point. If S′ is Bi-periodic or Bi-aperiodic, then there can be
no three consecutive analogous points in S′ (i.e., there cannot
be three analogous points a, b, c ∈ S such that b is consecu-
tive to both a and c). Hence, either all occupied sectors of S
contain exactly one point, or all contain exactly two points.

	

Invalid configurations If S consists of at least five points, it
is not Co-radial, not Half-disk, and not Valid, it is said to be
Invalid.

Movable analogy classes An analogy class C of a Valid and
Waiting set S is movable if C �= S and SED(S) = SED(S \
C). For instance, in Fig. 6a, every analogy class is movable,
except the bottom one.

Observation 5 A set C ⊆ S is a non-movable analogy class
of a Valid and Waiting set S if and only if there exists a line
through the center of SED(S) bounding a (closed) half-plane
containing no points of (S ∩ SEC(S)) \ C.
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Proposition 4 Let S be a Valid and Waiting set. If S has a
non-movable analogy class, then S is not Periodic.

Proof Without loss of generality, we assume that all points
of S lie on SEC. If this is not the case, we may equivalently
consider F(S) instead of S.

Suppose for a contradiction that S is Periodic with period
3 � k � n/2, and some analogy class C ⊆ S is not mov-
able.Due toObservation 3, hence S has another analogy class
C ′ ⊆ S \C . By Observation 2,C ′ is either an Equiangular or
a Biangular set of size either n/k or 2n/k, hence |C ′| � 2.
Also, C ′ is rotationally symmetric with respect to the center
of SED(S). Since all points of C ′ lie on SEC(S), by Obser-
vation 5 there exists a closed half-plane bounded by a line
through the center of SED(S) that contains no points of C ′.
But this is impossible, due to the rotational symmetry of C ′.
	

Proposition 5 Let S be a Valid set whose points all lie on
SEC, and suppose that S has at least one axis of symmetry.
If p, q ∈ S are two points that lie on an axis of symmetry
of S (not necessarily on the same axis), then p and q are
concordant. If no points of S lie on any axis of symmetry of
S, then the union of the axes of symmetry partitions the plane
into sectors, all of which contain the same number of points
of S.

Proof By Proposition 2, all axes of symmetry of S pass
through the center of SED.

Suppose first that the set Y of the points of S that lie on
an axis of symmetry of S is not empty. If |Y | = 1 there is
nothing to prove, so let us assume that |Y | � 2. Let p, q ∈ Y
be two points at minimum angular distance (with respect to
the center of SED(S)), and let γ be their angular distance.
If p and q lie on the same axis of symmetry, then γ = π .
In this case, p and q define two sectors, each containing
exactly n/2+1 points, implying that p and q are concordant.
Assume now that p and q do not lie on the same axis of
symmetry, and that therefore γ < π . Since q lies on an
axis of symmetry of S, there is a point p′ ∈ S\{p}, lying
on an axis of symmetry of S, at angular distance γ from q.
Proceeding in this fashion, we construct a sequence of points
around SEC, each of which has angular distance γ from the
next, and each of which lies on an axis of symmetry of S.
The set of points in this sequence has to coincide with Y ,
or else it would contain a point at distance smaller than γ

from p, contradicting the minimality of γ . It follows that
2π/γ is an integer k, and the (closed) sector defined by two
consecutive points in the sequence contains exactly n/k + 1
points. This implies that all the points that are consecutive in
Y are concordant.But concordance is an equivalence relation,
and therefore all points of Y are concordant.

Suppose now that no points of S lie on any axis of
symmetry, and let � and �′ be two axes of symmetry at

minimum angular distance (i.e., whose intersections with
SEC(S) include two points whose angular distance is min-
imum among all pairs of axes of S). Let such a minimum
angular distance be γ . Reasoning as above, we construct a
sequence of axes of symmetry of S, each at angular dis-
tance γ from the next. Again, 2π/γ must be an integer k, or
else γ would not be minimum. The union of the axes in this
sequence partitions the plane into k sectors, each of which
contains exactly n/k points of S (because each sector is a
symmetric copy of the next). 	


Target sets and point-target correspondence If S is a Valid
set, we can define a target set on S, which consists of a
Regular set of n points lying onSEC(S) (refer to Fig. 5). Each
of the n points of the target set is a target. Furthermore, there
is a bijection, called correspondence, mapping each element
of S into its corresponding target in the target set. Such a
bijection preserves the cyclic ordering around the center of
SED, that is, if t is the target corresponding to point p ∈ S,
then the next point p′ ∈ S in the clockwise order around
the center or SED is mapped to the target t ′ that follows t in
the clockwise order around the center of SED. Therefore, in
order to fully define a correspondence between points of S
and targets, it is sufficient to define it on one point.

The targets and the point-target correspondence are iden-
tified as follows. We first define a set S′: if S is Ready, then
S′ = E(S) ∪ R, where R is the principal relocation of I(S);
otherwise, S′ = F(S).

– Suppose that S′ has no axes of symmetry (i.e., it is Uni-
periodic or Uni-aperiodic) and S is not Ready. We let
T be the set of all concordance classes of S′ that have
the greatest number of points. Let T̃ be the subset of
T containing the concordance classes C ∈ T for which
there exists a movable analogy class A of S′, with A ∩
C = ∅, and a relocation RC,A of F ′(A) (with respect to
(S′\A)∪F ′(A)) such thatC∪RC,A is a concordance class
of (S′\A)∪RC,A. If T̃ is empty (respectively, not empty),
we let T be the concordance class of T (respectively, T̃ )
containing the points that induce the lexicographically
smallest angle sequence with respect to S′. By definition,
T is a subset of the target set. Furthermore, each point
p ∈ S such that F(p) ∈ T corresponds to F(p). The
rest of the target set and the other correspondences are
determined accordingly.

– Suppose that S′ has no axes of symmetry (i.e., it is Uni-
periodic or Uni-aperiodic) and S is Ready. We let T
be the set of all concordance classes of S′ that have the
greatest number of points in E(S). Let T̃ be the subset of
T containing the concordance classes C ∈ T for which
there exists a relocation RC of I(S) (with respect to S)
such that (E(S) ∩ C) ∪ RC is a concordance class of
E(S) ∪ RC . If T̃ is empty (respectively, not empty), we
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let T be the concordance class of T (respectively, T̃ )
containing the points that induce the lexicographically
smallest angle sequence with respect to S′. By definition,
T is a subset of the target set. Furthermore, each point
of E(S) that coincides with a point of T corresponds
to that target. The rest of the target set and the other
correspondences are determined accordingly.

– If S′ has some axes of symmetry and a point p ∈ S′
lies on one of them, then p coincides with a target t ,
by definition. Also, if p ∈ S, then t corresponds to p.
Otherwise, t corresponds to the unique point p′ ∈ S
that lies in the occupied sector containing t . The other
targets and correspondences are determined accordingly
(this definition is sound, due to Remark 3 below).

– Finally, suppose that S′ has some axes of symmetry, but
no point of S′ lies on any of them. Then, if � is an axis of
symmetry of S′, the target set is chosen in such a way that
it has � as an axis of symmetry as well, and no target lies
on �. Also, each point p ∈ S′ at minimum distance from
� corresponds to the closest to p among the targets that
haveminimumdistance from �. The other targets and cor-
respondences are determined accordingly (this definition
is sound, due to Remark 3 below).

Remark 3 From Proposition 5 it follows that, even if S has
several axes of symmetry, it has a unique target set, and a
unique point-target correspondence (If S has no axes of sym-
metry, this is true by construction). Also, if S is the set of
locations of the robots in a swarm, the target set of S is cor-
rectly computable by all robots, regardless of their position
and handedness, because so are angle sequences, principal
relocations, and footprints.

Proposition 6 Let S be a Valid set such that each point of
S lies on SEC(S) and no point of S is on its corresponding
target. Then S has an axis of symmetry on which no point of
S lies.

Proof Since S has no internal points, it is Waiting and not
Ready. If S had no axes of symmetry, the points from one
concordance class would lie on their corresponding targets.
Hence S has at least one axis of symmetry �. If a point of S
lay on �, it would coincide with its target. Hence no point of
S lies on �. 	


Reachable points and sets A point q ∈ R
2 is reachable by

point p ∈ S if q and p lie in the interior of the same main
sector of S \ {p}. Equivalently, p can reach q.

Satisfied and improvable analogy classes. A point p of a
Valid and Waiting set S is satisfied if F(p) coincides with
the target of p. An analogy class of S is satisfied if all its
points are satisfied. An analogy class of S is improvable if it

is movable, not satisfied, and each of its points can reach its
corresponding target.

Observation 6 In aValid andWaiting set, all the points that
lie at their respective targets belong to the same concordance
class. Hence, any two points that belong to some satisfied
analogy class are concordant.

Indeed, if two points lie at their targets, they have the cor-
rect number of points between them because the point-target
correspondence preserves the order around SEC. Moreover,
recall that the target set is Regular. Hence, any two points
lying at their targets must be concordant. In particular, if the
two points are in a satisfied analogy class (hence they are at
their targets), they are concordant.

Locked configurations and unlocking analogy classes. A
Valid and Waiting set is said to be locked if it has more than
one analogy class, and no analogy class is improvable (see
Fig. 6). If S is locked, then any movable analogy class of S
that contains points that are consecutive to some point in a
non-movable analogy class of S is said to be an unlocking
analogy class.

Proposition 7 Let S be a lockedValid andWaiting set. Then,
S has at least one non-movable analogy class.

Proof Without loss of generality, we assume that all points
of S lie on SEC. If this is not the case, we may equivalently
consider F(S) instead of S.

Assume for a contradiction that S is locked and all its anal-
ogy classes are movable. By definition of locked, S is neither
Equiangular nor Biangular, and every point of S is either on
its own target, or it cannot reach its target. Suppose first that
there is a point p ∈ S locatedon its own target, and label every
point of S that coincides with its own target as “on”. Then
imagine walking around SEC clockwise starting from p, and
label every unlabeled point q ∈ S that is encountered as
“before” (respectively, “after”) if the target of q has not been
encounteredyet (respectively, has alreadybeen encountered).
The walk starts and ends at p, hence the sequence of labels
starts with an “on” and ends with an “on”. Also, there must
be labels other than “on”, otherwise S would coincide with
its target set and it would be Equiangular. If the sequence of
labels has at least one “before”, then the last “before” in the
sequence must be followed by an “on” or an “after”. But this
means that the last point labeled “before” is not on its target
and it can reach it, which is a contradiction. Otherwise, there
are just “on”s and “after”s in the label sequence. But in this
case the first point in the sequence that is labeled “after” is
not on its target and it can reach it, because it is preceded by
a point labeled “on”. Hence we have a contradiction in both
cases.

Suppose now that no point of S is on its target. Then S
has an axis of symmetry � on which no point of S lies, by
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Proposition 6. Moreover, � is an axis of symmetry of the
target set of S, as well. Let us walk around SEC clockwise
starting from �, and label the points of S as described in
the previous paragraph. By assumption no point is labeled
“on”, hence all points are labeled either “before” or “after”.
Also, a point is labeled “before” if and only if its symmet-
ric point with respect to � is labeled “after”. It follows that
there must be a point labeled “before” followed by a point
labeled “after” (wich may be the last and the first point in the
sequence, respectively). These two points are not on their
targets but they can reach their targets, which is once again
a contradiction. 	

Proposition 8 If a Valid andWaiting and Uni-aperiodic set
S has two non-movable analogy classes {p} and {q}, then p
and q are consecutive points of S.

Proof Since S is Uni-aperiodic, every analogy class of S
consists of a single point, due to Observation 2. By Obser-
vation 5, there exists a closed half-plane bounded by a line
through the center of SEC that contains p and no other points
of S, and there exists a similar half-plane for q. These two
half-planes must have a non-empty intersection, so suppose
that point v ∈ SEC lies in the intersection. This means that
the (shortest) arc

�
vp ⊂ SEC and the (shortest) arc

�
vq ⊂ SEC

are devoid of points of S \ {p, q}. Therefore p and q are con-
secutive in S. 	

Proposition 9 Let S be a lockedValid andWaiting set whose
points all lie on SEC. Then, S is Aperiodic. Moreover, if S is
Uni-aperiodic, then

– S has either one or two non-movable analogy classes,
each consisting of a single point;

– If S has two non-movable analogy classes {p} and {q},
then p and q are consecutive points of S;

– S has exactly two unlocking analogy classes, each con-
sisting of a single point.

Otherwise S is Bi-aperiodic, and

– S has a unique non-movable analogy class, which con-
sists of two consecutive points of S;

– S has a unique unlocking analogy class consisting of two
points.

Also, if n > 5, at least one unlocking analogy class of S is
not satisfied.

Proof Without loss of generality, we assume that all points
of S lie on SEC. If this is not the case, we may equivalently
consider F(S) instead of S.

By Proposition 7, S has at least one non-movable analogy
class. Also, by Proposition 4, S is not Periodic. Since, by

definition of locked, S is neither Equiangular nor Biangular,
it must be Aperiodic.

Suppose that S is Uni-aperiodic. Then, every analogy
class of S consists of a single point, due to Observation 2. If,
by contradiction, S had three non-movable analogy classes,
the three points they involve would have to be mutually con-
secutive, due to Proposition 8. Equivalently, S would consist
of only three points, contradicting the definition of Valid set,
stating that n > 4. Hence S has either one or two non-
movable analogy classes, whose points are consecutive.

Suppose now that S is Bi-aperiodic, and hence it has a
(unique) axis of symmetry �. As already noted, S has at least
one non-movable analogy class. Suppose for a contradiction
that S has two analogy classes C and C ′, each of which, by
Observation 2, consists of either one or two points, and is
symmetric with respect to �. By Observation 5, there exists
a line �′ through the center of SED bounding a closed half-
plane that contains no points of S other than those of C .
Without loss of generality, due to the symmetry of S, we may
assume that �′ is perpendicular to �. By a similar reasoning,
the other closed half-plane bounded by �′ contains no points
of S other than the points ofC ′.We conclude that S = C∪C ′,
and therefore |S| � 4, contradicting the assumption that n >

4. Hence S has exactly one non-movable analogy class C ,
which may consist of either one or two points. Suppose for a
contradiction thatC consists of a single point p. Then pmust
lie on the axis of symmetry �, and the closed half-plane Γ

bounded by �′ that contains p contains no other points of S.
Let C ′′ be the analogy class consisting of the two points that
are consecutive to p. Since p lies on an axis of symmetry
of S, by definition C is satisfied. Also, since n > 4, the
targets of the two points of C ′′ lie in Γ , while the points of
C ′′ do not. It follows that C ′′ is improvable (recall that C is
the only non-movable analogy class), which contradicts the
fact that S is locked. Therefore C must consist of two points,
i.e., C = {p, q}. The fact that p and q must be consecutive
follows from Observation 5 and the fact that S is symmetric
with respect to �.

In all cases, S has either one or two consecutive points
that belong to some non-movable analogy class. Let L be the
set of such points, with 1 � |L| � 2. Hence, because n >

4, there are exactly two points of S\L that are consecutive
to some point of L , and which belong to some unlocking
analogy class. Let U be the set of these points, with |U | =
2. If S is Uni-aperiodic, each analogy class consists of a
single point, and therefore there are exactly two unlocking
analogy classes. If S is Bi-aperiodic, the two points ofU are
symmetric with respect to the axis of symmetry of S, and
hence they belong to the same analogy class. In this case,
there is exactly one unlocking analogy class.

Observe that, in all cases, there exists a line through the
center of SED that leaves all the points of L in one open half-
plane and all the points of S\L in the other open half-plane.
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Therefore all the points of S\L , hence at least n − 2 points,
lie in the sector defined by the two points of U . However, if
n > 5, the two points of U cannot be concordant, because
otherwise their angular distance would be at least 2π(n −
3)/n � π , which is a contradiction. It follows that, if n > 5,
the two points of U do not belong to the same concordance
class, and hence at least one of thembelongs to a non-satisfied
analogy class, due to Observation 6. 	


Walkers Suppose that S is Valid and all points of S are on
SEC. Then we can identify a set of walkers, denoted by
W(S), as follows.

– If S has only one analogy class,W(S) = ∅.
– Otherwise, if S is not locked, W(S) is the improvable
analogy class whose points induce the lexicographically
smallest angle sequence.

– Otherwise, if S is locked andn > 5, thenW(S) is the non-
satisfied unlocking analogy classwhose points induce the
lexicographically smallest angle sequence (by Proposi-
tion 9, such an analogy class exists).

– Otherwise S is locked and n = 5. In this case, the walkers
are the unlocking analogy class whose points induce the
lexicographically smallest angle sequence.

In general, if S is Valid and Waiting, we define the set of
walkers of S asW(S) = {p ∈ S | ∃p′ ∈ W(F(S)), F(p) =
p′}.

Observation 7 Let S be a Valid and Waiting set with more
than one analogy class. Then, W(S) is a movable analogy
class. If n > 5, W(S) is also a non-satisfied analogy class
of S.

Finish set and point-finish-line correspondence Suppose
that S is Valid and Ready. Then we can define the finish
set of I(S), which is the union of |I(S)| finish lines, each of
which is a half-line emanating from the center of SED(S).

We first define the tentative finish set R as follows. Let P
be the principal relocation of I(S).

– If P is a proper subset of an analogy class of E(S) ∪ P
(as in Fig. 8b), we let R = P .

– Otherwise, if the set of targets T of the internal points of
S is a relocation of I(S), we let R = T .

– Otherwise, we let R = P .

Now we define the finish set as follows.

– Suppose that the set S′ = E(S)∪ R is locked and R is an
unlocking analogy class of S′. Then, by Proposition 9, S′
is Aperiodic.

– If S′ is Uni-aperiodic, then R = {r}. Let {r ′} be the
unique non-movable analogy class of S′ such that
r and r ′ are consecutive in S′ (cf. Proposition 9).
Let r ′′ ∈ S′ be the other point that is consecutive to
r ′. Then, the point of SEC(S) that is antipodal to r ′′
belongs by definition to the finish set of I(S) (note
that this implicitly defines the whole finish set).

– If S′ is Bi-aperiodic, then |R| = 2 (cf. Proposition 9).
Let R′ be the relocation of I(S) consisting of two
antipodal points on SEC(S) such that R′ is an analogy
class of E(S) ∪ R′, as shown in Fig. 6b (see Proposi-
tion 10 below for a proof that this definition is sound).
Then, R′ is a subset of the finish set of I(S) (this
implicitly defines the whole finish set).

– Otherwise, R is a subset of the finish set of I(S) (again,
this implicitly defines the whole finish set).

Proposition 10 Let S be a Valid and Ready set. Then there
is a unique bijective function that maps each point p ∈ I(S)

to a finish line � lying in the same occupied sector of S as
p, and that preserves the relative clockwise ordering around
the center of SED (S).

Proof It suffices to show that there is a relocation of I(S)

with one point on each finish line. Then we can construct our
bijective function by simply mapping internal points within
each occupied sector in the right order. But if the tentative
finish set R is a subset of the finish set, then our claim is
obvious, because the tentative finish set is a relocation of
I(S), by construction. Otherwise, it means that S′ = E(S)∪
R is locked and R is an unlocking analogy class of S′, by
definition of finish set.

Suppose that S′ is Uni-aperiodic, and let r , r ′, and r ′′
be as in the definition of finish set. By Observation 1, the

antipodal point of r ′′ must lie on the arc
�

rr ′, or there would
be an empty half-circle between r ′ and r ′′. Moreover, the
antipodal point of r ′′ cannot coincide with r ′, or S′ would be
Half-disk, implying that also S isHalf-disk (because R = {r}
is a relocation of I(S)), which contradicts the fact that S is
Valid. It follows that r can reach the antipodal point of r ′′
and therefore the unique point of I(S) can reach the unique
finish line.

Suppose now that S′ is Bi-aperiodic, and therefore has
an axis of symmetry �. By Proposition 9, S′ has a unique
non-movable analogy class C , which also has � as an axis
of symmetry. Moreoever, by Observation 5, there is a line �′
through the center of SED(S′) bounding a half-plane whose
intersectionwith S′ is preciselyC .Without loss of generality,
we may take �′ to be perpendicular to �. Let R′ = �′ ∩
SEC(S′). As R is the unlocking analogy class of S′, its two
elements are closest to �′ among all the points of S′ \ C . It
follows that R′ is a relocation of I(S), unless R′ = C . But
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R′ = C implies that S′ is Half-disk, which makes S Half-
disk as well, contradicting the fact that S is Valid. Hence
R′ is a relocation of I(S), and is also a subset of the finish
set of I(S′), by definition. This concludes the proof, and
incidentally also proves that the definition of finish set in this
case is sound. 	


The function whose existence and uniqueness is estab-
lished by Proposition 10 is called correspondence. If corre-
spondence maps point p ∈ I(S) to the finish line �, then � is
said to correspond to p.

Proposition 11 Let S be a Valid and Ready set. Then, at
least one internal point of S can reach any point on its cor-
responding finish line.

Proof By Proposition 10, the finish line corresponding to
each point p ∈ I(S) lies in the same occupied sector as
p. Moreover, Proposition 3 states that each occupied sector
contains either one or two internal points. So, if an occupied
sector contains exactly one internal point, it can certainly
reach its corresponding finish line. If an occupied sector con-
tains two internal points, and since correspondence preserves
the relative clockwise ordering around the center of SED, it
is easy to see that at least one of the two internal points
can reach its corresponding finish line. Indeed, if a segment
joining one of these two internal points to its corresponding
finish line contains a point that is co-radial with the other
internal point, it means that the other internal point can reach
its corresponding finish line. 	

Proposition 12 Let S be aValid andReady set. Then, all the
points of the principal relocation P of I(S) are analogous
in S′ = E(S) ∪ P. Also, if L is the relocation of I(S) (with
respect to S) having one point on each finish line of S, then
all the points of L are analogous in S′′ = E(S) ∪ L.

Proof By definition of Ready, there exists a relocation A of
I(S) such that A is an analogy class of S∗ = E(S) ∪ A. It is
clear that SED(S) = SED(S′) = SED(S′′) = SED(S∗). By
definition of analogy class, there exist two constants γ and
γ ′ such the angular distances (with respect to the center of
SED) between any point of A and its two consecutive points
in S∗ are, respectively, γ and γ ′. Recall that, by Proposition 3,
either all occupied sectors of S contain one point, or they all
contain two points. Suppose first that they all contain one
point. Then, each point of P has angular distance (γ +γ ′)/2
from both its consecutive points in S′. Since all the other
angular distances between consecutive points of S′ involve
points of E(S) only, they are the same as in S∗. Therefore all
the points of P are analogous in S′, as the points of A are
analogous in S∗. Now suppose that all the occupied sectors
of S contain two points. Without loss of generality, let γ be
the angular distance between any two consecutive points of A
(with respect to the center of SED). Then, each point of P has

angular distance (γ +2γ ′)/3 fromboth its consecutive points
in S′. Again, this implies that all points of P are analogous
in S′.

Let T be the set of targets of the internal points of S, and
let R be the tentative finish set of S′. By definition, either
R = P or R = T . If R = P and L = R, the points of L
are analogous in S′′ because they are the principal relocation
of I(S). Suppose instead that R = T and L = R. This is
true only if T is a relocation of I(S). If S∗ has an axis of
symmetry �, then, by Proposition 1, A does too. It is easy
to see that also S′ and P have the same axis of symmetry.
But � is also an axis of symmetry of the target set of S∗,
by definition of target set, and also of T , because T is a
subset of the target set that is also a relocation of F ′(A).
Since this holds for every axis of S∗, it easily follows that
all the points of T are analogous in S′′. Suppose now that
S∗ is Uni-periodic with period k � 3. This implies that S∗
has an (n/k)-fold rotational symmetry with respect to the
center of SED. Since A is an analogy class of S∗, it also
has an (n/k)-fold rotational symmetry, by Proposition 1. In
this case, every occupied sector of S contains exactly one
internal point. But also the target set of S∗ has an (n/k)-
fold rotational symmetry, being a Regular set of n points.
Moreover, since the points of A are all concordant, the points
of T must be all concordant, as well. This implies that all
points of T are analogous in S′′. Finally, suppose that S∗ has
no axes of symmetry and it is not Uni-periodic, and hence
it is Uni-aperiodic. In this case, T consists of a single point,
and therefore there is nothing to prove.

The only cases left to consider are those in which L �= R.
By definition of finish set, this only happens when E(S) ∪ R
is locked and R is an unlocking analogy class. If E(S)∪ R is
Uni-aperiodic, then L consists of a single point, and there is
nothing to prove. If E(S)∪ R is Bi-aperiodic, then L consists
of two antipodal points that are symmetric with respect to an
axis of symmetry of S′′. This implies that the two points of
L are analogous in S′′. 	


4.2 Algorithm

The UCF algorithm consists of an ordered set of tests to
determine the class of the current configuration. For each
class, we have a procedure that recognizes it: procedure Is
Regular?(S) determines if S is a Regular configuration,
and so on. The implementation of all these procedures is
straightforward and is therefore omitted, with the exception
of procedure Is Pre- regular?, which will be described in
Sect. 5.2.7, and procedure Is Valid and Ready?, which
will be described in Remark 4. After the configuration class
has been determined, the executing robot takes the appropri-
ate action.
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We stress that some configurations belong to more than
one class, and so the order in which such classes are tested
by the algorithm matters.

Algorithm UCF (S)

Requires: S ⊂ R
2 is a finite set with |S| > 5, and (0, 0) ∈ S.

S represents the set of positions of the robots, as observed by the
executing robot. The executing robot’s position is (0, 0).

If Is Regular?(S) Then Do Nothing
Else If Is Pre- regular?(S) Then Execute Pre- regular(S)

Else If Is Central?(S) Then Execute Central(S)

Else If Is Half- disk?(S) Then Execute Half- disk(S)

Else If Is Co- radial?(S) Then Execute Co- radial(S)

Else If Is Valid and Ready?(S) Then Execute Valid and
Ready(S)

Else If Is Valid and Waiting?(S) Then Execute Valid and
Waiting(S)

Else Execute Invalid(S)

Remark 4 Procedure Is Valid and Ready?(S) should
verify if S is well occupied. To do this, it is not necessary
to check every possible relocation of I(S); it is sufficient
to check only two of them. First construct S′ = E(S) ∪ P ,
where P is the principal relocation of I(S). If some points of
P are not analogous in S′, return “false”; if P is an analogy
class of S′, return “true”. Otherwise, construct a second con-
figuration S′′ = E(S) ∪ P ′, where P ′ is another relocation
of I(S), obtained by moving the points of P symmetrically
within the same principal sectors of E(S) (in such a way as to
keep them analogous) by any angle that is incommensurable
with all the angular distances between pairs of points of S′.
Then return “true” if P ′ is an analogy class of S′′. It is easy to
see that, if P ′ is not, then no other relocation of I(S) can be
an analogy class, and therefore we can safely return “false”.

Before detailing the main procedures, we introduce a few
auxiliary ones, and some terminology.

4.2.1 Auxiliary procedures

Radial and lateral moves Wedistinguish two types ofmoves
that the robots can perform. If the destination point computed
by a robot is co-radial with the current robot’s position (with
respect to the center of the SED of the observed robots’ loca-
tions), then we say that the robot performs a radial move, or
moves radially. If a move is not radial, it is said to be lateral.

Procedure Cautious Move. This procedure makes a sub-
set of robots M execute a cautious move with a given set
of critical points C . All robots of M move radially, either
all from SEC/3 to SEC, or all from SEC to SEC/3. The line
segment connecting the center of SED with a robot in M’s
co-radial point on SEC is called the path of the robot. If a

robot is directed toward SEC (respectively, SEC/3), the point
on SEC (respectively, SEC/3) on the robot’s path is called
the endpoint of the path. The procedure first augments the
set of input critical points C with a set of auxiliary criti-
cal points (which may be final, transposed or intermediate
critical points), and then lets a robot move toward the next
critical point (auxiliary or not) along its path, provided that
some conditions are met. The details are as follows.

– The endpoint of each robot’s path is added to the set of
critical points. This auxiliary critical point is called final.

– For every robot r and every critical point p, a critical point
is added on r ’s path at the same distance from the center
of SED as p. If not already present in the critical point
set, such an auxiliary critical point is called transposed.

– For each pair of critical points on each robot’s path (which
may be critical points of C , or final, or transposed), the
midpoint is added as a critical point. If not already present
in the critical point set, such an auxiliary critical point is
called intermediate.

– The robots that are not farthest from the endpoints of their
respective paths are not allowed to start moving.

– The robots that are farthest from the endpoints of their
respective paths move to the next critical point (auxiliary
or not) along their respective paths.

Procedure Move Walkers to SEC/3. This procedure
assumes the configuration to be Valid and Waiting, and it
assumes all internal robots to bewalkers. It makes all walkers
move radially towardSEC/3, executing theCautious Move
procedure with suitable critical points intercepting the possi-
ble Pre-regular configurations that may be formed (the exact
locations of the critical points will be discussed in Sect. 5.2).

Procedure Move All to SEC. This procedure assumes
the configuration to be not Co-radial. First all robots that
lie in the interior of SED/3 move radially to SEC/3. Then,
the procedure selects a subset C of robots and makes them
move radially toward SEC, executing procedure Cautious
Move with suitable critical points intercepting the possible
Pre-regular configurations that may be formed (the exact
locations of the critical points will be discussed in Sect. 5.2).
The setC is either an analogy class or a strong analogy class,
and it is selected as follows.

– If the robots formaBiangular configuration, all the robots
on SEC belong to the same strong analogy class C ′, and
there are robots of C ′ that are not on SEC, then C = C ′.

– If the robots form a Double-biangular configuration, all
the robots on SEC belong to the same analogy class C ′,
and there are robots of C ′ that are not on SEC, then C =
C ′.
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Procedure Cautious Move (S,M,C, dir)
Requires: S is not Co-radial.M ⊆ S is the set of robots that have to
perform the move. C ⊂ R

2 is a finite set of critical points. dir is the
direction in which the robots of M should move: its value is either
“SEC” or “SEC/3”. If dir = “SEC/3”, then no point of S lies in the
interior of SED/3(S).

If (0, 0) ∈ M Then %I am one of the robots that should do the
cautious move%

c ←− center of SED(S)

P ←− set of points collinear with c and (0, 0)
proceed ←− true
If dir = “SEC” Then

d ←− P ∩ SEC(S)

For All r ∈ M Do
If ‖rc‖ < ‖c‖ Then proceed ←− false

Else
d ←− P ∩ SEC/3(S)

For All r ∈ M Do
If ‖rc‖ > ‖c‖ Then proceed ←− false

If proceed Then %I am farthest from the endpoint%
C ′ ←− C ∪ {d}
For All p ∈ C Do

p′ ←− point on P such that p and p′ are equidistant to c
C ′ ←− C ′ ∪ {p′}

C ′ ←− C ′ ∩ P
C ′′ ←− C ′
For All p, q ∈ C ′ Do

C ′′ ←− C ′′ ∪ {(p + q)/2}
dest ←− d
For All p ∈ C ′′ Do

If ‖pd‖ < ‖d‖ And ‖p‖ < ‖dest‖ Then dest ←− p
Move To dest

– Otherwise, among the least numerous analogy classes
that are not entirely on SEC, C is the one whose robots
induce the lexicographically smallest angle sequence.

Remark 5 The reason why strong analogy classes are con-
sidered in the Biangular case, as opposed to analogy classes,
will be clear in the proof of Theorem 16. Similarly, the reason
why the robots move in this fashion in theDouble-biangular
case will be apparent in the proof of Theorem 17. The fact
that, in all other cases, the least numerous analogy classes
move first, will be used in the proof of Theorem 20.

Procedure Move to Finish Line. This procedure is exe-
cuted when the configuration is Valid and Ready, and all
robots lie either on SEC or on SEC/3. Each internal robot r
makes a lateral move to the intersection q between its corre-
sponding finish line and SEC/3, provided that q is reachable
by r (i.e., if no other robot is co-radial with any point on the
segment from r ’s location to q).

4.2.2 Main procedures

Procedure Pre- regular. Each robotmoves to itsmatching
vertex of the supporting polygon.

Procedure Central. The robot at the center of SED moves
toward any point on SEC/3 that is not co-radial with any
other robot (any deterministic algorithm for choosing this
point works).

Procedure Half- disk. Note that this procedure is executed
only if the configuration is notCentral, hencewemay assume
that no robot lies at the center c of SED.

– Suppose that all robots are collinear and one of the prin-
cipal rays contains fewer than three robots. Let r be the
robot that lies on the other principal ray and that is closest
to c.

– If r does not lie in SED/3, it moves radially toward
SEC/3.

– If r lies in SED/3, it moves to a point on SEC/3 that
has angular distance π/3 from its current position.

– Otherwise, if the intersection betweenoneof the principal
rays � and SED/3 contains no robots, let s be the robot
that lies at the intersection between � and SEC. Then, the
robot distinct from s with smallest angular distance from
s that is closest to c moves to the point of � that lies on
SEC/3.

– Otherwise, both principal rays contain at least two robots,
one of which is in SED/3. In this case, the robot on each
principal ray that is closest to cmoves into an empty half-
plane, to the point on SEC/3 that has angular distanceπ/3
from its current position.

Procedure Co- radial.

– If there are non-co-radial robots that lie in the interior of
SED/3, they move radially to SEC/3.

– Otherwise, if the co-radial robots that are closest to the
center of SED do not lie in SED/3, they moves radially
toward SEC/3.

– Otherwise, each robot r that is closest to the center of
SED moves to a point on SEC/3 whose angular distance
from r ’s current location is 1/3 of the smallest positive
angular distance between two robots.

Procedure Valid and Ready.

– If there are robots in the interior of SED/3, they move
radially to SEC/3.

– Otherwise, if not all the internal robots lie on their corre-
sponding finish lines, procedureMove to Finish Line
is executed.

– Otherwise, procedureValid and Waiting is executed
(indeed, if all the internal robots lie on their corre-
sponding finish lines and on SEC/3, the configuration
isWaiting, due to Proposition 12).
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Procedure Valid and Waiting.

– If all the internal robots are walkers, procedure Move
Walkers to SEC/3 is executed.

– Otherwise, procedureMove All to SEC is executed.

Procedure Invalid. ProcedureMove All to SEC is exe-
cuted.

5 Properties and correctness

To prove the correctness of the algorithm, we need to analyze
the possible transitions between configurations.

In the following, we will closely examine all the possible
flows of the algorithm in the space of robots’ configurations,
paying special attention to the transitions that may arise
as critical points of cautious moves. In Sect. 5.1 we prove
some fundamental results on cautious moves, which show
that robots executing the Cautious Move protocol intro-
duced in Sect. 4.2 indeed behave as intended. In Sect. 5.2
we thoroughly analyze the Pre-regular configurations that
may arise during a cautious move, and we produce critical
points to intercept them. Then, in Sect. 5.3 we conclude the
proof by showing that all the possible flows of the algorithm
eventually reach a Regular configuration.

The diagram in Fig. 11 shows the possible transitions
between configurations.Wewill prove the correctness of this
diagram in Sect. 5.3, culminating with Theorem 23.

In this section, unless stated otherwise, R = {r1, . . . , rn}
will denote a swarm of n > 4 robots. By ri (t) we denote
the location of robot ri at time t � 0, and we let R(t) =
{r1(t), . . . , rn(t)}.
5.1 Correctness of cautious moves

Let a set of robots execute the Cautious Move protocol of
Sect. 4.2, starting from a given frozen configuration I and

Central

Half-disk Co-radial

Invalid Valid

Pre-regular Regular

Fig. 11 Possible transitions between configurations of AlgorithmUCF

using a set of critical points C . We denote by Eδ
I,C the set

of all possible executions of such a robot system (recall the
definition of execution from Sect. 2). Similarly to Sect. 2, we
define EI,C = ⋃

δ>0 Eδ
I,C , and we say that a cautious move

with critical point setC and initial configuration I enjoys the
property P if EI,C enjoys P .

First we show that a cautious move always “terminates”,
that is, if every robot’s path (either toward SEC or toward
SEC/3) contains finitely many critical points, then after
finitely many cycles the robot reaches the endpoint.

Lemma 1 Suppose that a subsetM of a swarmR of robots
keeps executing theCautious Move protocol from a frozen
initial configuration (while the robots ofR\M remain still).
Then, in a finite amount of time, each robot ofMwill be found
at the endpoint of its path, and the swarmwill be frozen again.

Proof We define a round to be a span of time in which every
robot executes at least one complete cycle. Any execution
can be decomposed (not necessarily in a unique way) into
an infinite sequence of rounds. Let L(t) ⊆ M be the set of
robots that are farthest from the endpoints of their respective
paths at time t , and let d(t) be the distance of any robot in
L(t) from the endpoint of its path at time t . Suppose for a
contradiction that d(t) > 0 for every t . Since d(t) can only
decrease in time, it converges to an infimumm. Suppose first
that the infimum is reached, i.e., d(t) = m for some t . Then,
after a round, say at time t ′, all the robots inL(t) havemoved,
and hence d(t ′) < m, which is a contradiction.

Suppose that d(t) > m for every t , and therefore the
infimum is never reached. Let t ′ be such that d(t ′) −m < δ.
Let r ∈ L(t ′) and let pr be the point on r ’s path at distance
m from the endpoint. Since the critical points are finitely
many, we may assume that no critical points (auxiliary or
not) lie on the path of r strictly between r(t ′) and pr . By our
choice of t ′, all the robots that perform a cycle at any time
after t ′ necessarily reach their destination point. Hence, after
a round, each robot rL(t ′) has moved onto pr or past it, and
therefore there exists a time t ′′ > t ′ such that d(t ′′) � m,
which is a contradiction.

It follows that each robot eventually reaches the endpoint
of its path. Since this is also a critical point and the robot is not
moving in the initial configuration, it stops there. Afterwards,
every time the robot performs a Look-Compute phase and
some other robot has not reached the endpoint of its path yet,
it waits. Eventually, when the last robots have reached the
endpoints of their paths and they stop, none of the robots is
moving, and therefore the configuration is frozen. 	


Next we prove that cautious moves are sound, i.e., that
if a configuration of points C is taken as the input set of
critical points of a cautious move, then, whenever the robots
are found in configuration C , they freeze.
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Theorem 8 Let a subsetM of a swarmR of robots execute
the Cautious Move protocol with critical points C, with
|C | = |R| = n, from a frozen initial configuration. Then,
during the cautious move, as soon as the swarm is found in
configuration C, it freezes.

Proof Because the paths of the robots of M are disjoint, C
can be formed only if each path contains exactly one point of
C . Moreover, the other n − |M| points of C must coincide
with the locations of the robots inR\M (which remain still
throughout the execution). By cr we denote the element ofC
that lies on the path of robot r ∈ M. Since a robot can only
move toward the endpoint of its path, we may assume that
each robot r ∈ M is initially located not past cr along its
path, otherwiseC would never be formed during the cautious
move. Let dr be the distance between cr and the endpoint of
r ’s path, and let H be the set of robots r such that dr is
maximum.

Suppose first that each robot r ∈ M \ H initially lies
at cr . According to the Cautious Move protocol, the only
robots that are able to move in this situation are those in
H. By Lemma 1, for every r ∈ H there exists a minimum
time tr such that r(tr ) = cr . Since this is a critical point,
r stops in cr at time tr . Moreover, r waits in cr until time
t∗ = maxr∈H{tr }. Therefore, at time t∗, the robots form
configurationC for the first time, and none of them ismoving.
After that time, as soon as a robot r moves, it passes cr , and
therefore C cannot be formed any more.

Suppose now that some robots inM\H initially lie strictly
before the element of C on their respective path. For every
r ∈ M\H, let fr be the transposed critical point on the path
of r having distance dr ′ from the endpoint, with r ′ ∈ H. Let
H′ be the set of robots r ∈ M\H such that r is initially
located in fr or before fr . LetH′′ = M \ (H ∪H′). By our
assumptions, H′ ∪ H′′ is not empty. For every r ∈ H, we
define tr as in the previous paragraph. For r ′ ∈ H′, we define
tr ′ as theminimum time atwhich r ′ is found in fr ′ . Finally,we
let t∗ = maxr∈H∪H′ {tr }. By the Cautious Move protocol,
for every r ∈ H, r(t∗) = cr and, for every r ′ ∈ H′, r ′(t∗) =
fr ′ . On the other hand, up to time t∗, no robot in H′′ has
moved.

If H′ is empty, then some robot r ∈ H′′ is not located in
cr at time t∗ or before time t∗. Hence, the robots cannot form
configuration C until time t∗. After time t∗, the first robots
that move are those inH. When one of these robots moves, it
goes past the element of C that lies on its path, and therefore
C cannot be formed after time t∗, either.

LetH′ be non-empty. Then, the robots cannot form config-
uration C until time t∗, because each robot r ∈ H′ is located
strictly before cr at all times t � t∗. After time t∗, the first
robots that are allowed to move are those inH∪H′. For each
r ∈ H ∪ H′, let t ′r � t∗ be the first time at which robot r
performs a Look-Compute phase. Because each r ∈ H∪H′

at time t ′r lies at a critical point (possibly a transposed one),
by the Cautious Move protocol its destination is its next
critical point, which is an intermediate one. In particular,
if r ∈ H′, its destination point is strictly before cr . After
such a robot r has moved, it waits at least until after time
maxr∈H∪H′ {t ′r }. Indeed, before r is allowed to move again,
all the robots inH∪H′ must “catch up” with it. However, as
soon as a robot r ′ ∈ H moves after time t∗, it goes past cr ′ ,
and therefore the configuration C is not formable any more.

	

Nowwe show that the cautious move protocol is “robust”,

in that merging two sets of critical points yields a cautious
move that enjoys all the properties that are enjoyed when
either set of critical points is taken individually.

Lemma 2 EI,C∪{p} ⊆ EI,C .

Proof By the Cautious Move protocol, the addition of p
to the set of the input critical points causes the appearance on
the path of each robot of at most one extra transposed critical
point and at most |C | + 1 extra intermediate critical points.
However, by Lemma 1, each robot still reaches the end of
its path within finitely many turns in every execution. Let
E ∈ EI,C∪{p} be an execution. We claim that E ∈ Eδ

I,C , for
a suitable choice of a small-enough δ. Let us order chrono-
logically the (instantaneous) Look-Compute phases of all the
robots in the execution E , resolving ties arbitrarily. We will
prove by induction that, up to the k-th Look-Compute, E
coincides with some execution in EI,C .

Let us assume that our claim holds up to a certain k, and let
us prove that it holds up to k+1. Let r be the robot performing
the k-th Look-Compute, say at time t , and let q = r(t). If this
is r ’s first Look-Compute phase, there is nothing to prove.
Otherwise, let t ′ < t be the last time before t at which r
performed a Look-Compute phase, according to E . Since r
must stop at every critical point on its path, there must be no
critical points in the relative interior of the segment r(t ′)q. By
the inductive hypothesis, E coincides with some execution
in EI,C , and therefore with some execution E ′ ∈ Eδ

I,C , for
some δ > 0. In particular, r performs a Look-Compute at
time t ′ in E ′, as well. We may also assume that the (k + 1)-
th Look-Compute phase in E ′ is performed by r at time t ,
and that E and E ′ coincide at all times in the interval [t ′, t).
Since the critical point set of the cautious move with input C
is a subset of that of the cautious move with input C ∪ {p},
the destination point of r computed in E ′ at time t ′ cannot
be closer to r(t ′) than q. So, r can be stopped in q by the
adversary even if the input critical point set isC , provided that
δ is small enough. Specifically, if d is the distance between
r(t ′) and q, such an execution can be found in Emin{δ,d}

I,C , and
therefore in EI,C . 	

Theorem 9 Let the cautious move from a frozen initial con-
figuration I and critical point set C1 (respectively, C2) enjoy
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property P1 (respectively, P2). Then, the cautious move with
initial configuration I and critical point set C1 ∪ C2 enjoys
both P1 and P2.

Proof The theorem easily follows fromLemma2:we add the
critical points of C2 to the set C1, one by one. Each time we
add a new point, by Lemma 2we have a set of executions that
is a subset of the previous one, and therefore it still enjoys
P1. Hence the cautious move with critical points C1 ∪ C2

enjoys property P1 and, by a symmetric argument, it also
enjoys property P2. 	

Corollary 1 Let a swarm of n robots execute the Cautious
Move protocol with critical point set

⋃k
i=1 Ci , with |Ci | = n

for 1 � i � k, from a frozen initial configuration. Then,
during the cautious move, as soon as the robots are found in
a configuration Ci , they freeze.

Proof By Theorem 8, the cautious move with critical point
set Ci has the property Pi that, as soon as the robots are
found in configuration Ci , they freeze. By repeatedly apply-
ing Theorem 9, we have that the cautious move with critical
point set

⋃k
i=1 Ci enjoys all properties Pi , for every i . 	


5.2 Analysis of Pre-regular configurations

In this section, we prove several properties of Pre-regular
configurations that will be needed in the correctness proof
of Sect. 5.3. First we show that a Pre-regular configuration
cannot be Half-disk (Theorem 10), it cannot be Co-radial
(Theorem 11), and it has no points in SED/3 (Theorem 12).
Then we prove that Pre-regular configurations can effec-
tively be taken as critical points during the execution of the
algorithm, by showing that only finitely many Pre-regular
configurations are formable whenever a cautious move has
to be made, or that the “relevant” Pre-regular configurations
that are formable are only finitely many.

In the following, we assume that S ⊂ R
2 is a finite set

of n > 4 points, none of which lies at the center of SED. In
particular, if S isPre-regular, then n � 6, because in this case
n must be even. Since points model robots’ locations, with
abuse of terminology we will refer to points of S that “slide”
according to some rules. Formally, what we mean is that we
consider S as a function of time, so that S(t) represents a set
of robots’ locations at time t ; likewise a “sliding” point a ∈ S
will formally be a function a(t) representing the trajectory
of a robot.

5.2.1 Half-disk configurations, co-radial points, and points
in SED/3

Lemma 3 If S is Pre-regular, then S is in strictly convex
position, and in particular no three points of S are collinear.
Moreover, the convex hull of S contains the center of the
supporting polygon of S.

Proof Let P be the supporting polygon of S, which is regular
and therefore convex. The fact that S is in strictly convex
position follows directly from the definition of Pre-regular.
Indeed, S is a subset of the boundary of P , and no three points
of S lie on the same edge of P .

Let c be the center of P , and leta andb be any twopoints of
S that lie at adjacent vertices of the convexhull of S. Since S is
in convex position, it is contained in a half-planeH bounded
by the line ab. To prove that c is contained in the convex hull
of S, it is sufficient to show that it lies inH (because a convex
polygon is the intersection of the half-planes determined by
its own edges). If a and b are companions, H contains all
of P , and therefore also its center. Otherwise, H entirely
contains all edges of P , except at most three (i.e., the edges
on which a and b lie, plus the edge between them). Since P
has at least six edges, it easily follows that H must contain
its center. 	

Theorem 10 If S is Pre-regular, then it is not aHalf-disk set.

Proof Suppose by contradiction that S is Pre-regular and
Half-disk, and let � be the principal line. Due to Observa-
tion 1, � ∩ SEC(S) consists of two antipodal points a and b,
both belonging to S.

First assume that a and b belong to the same edge of the
supporting polygon. Recall that the supporting polygon is a
regular polygon, which implies that it has no other intersec-
tions with SED(S) other than a and b, as its edges are at least
as long as the diameter of SEC(S). This means that n = 2,
contradicting our assumption that n > 4.

Hence a and b do not belong to the same edge of the
supporting polygon. However, since every other edge of the
supporting polygon must contain points of S, and the empty
half-plane does not contain any point of S, it follows that a
and b belong to two edges AB and CD of the supporting
polygon, respectively, such that BC is a third edge of the
same polygon. Note that AB does not lie on �, otherwise the
companion of a would be collinear with a and b, contradict-
ing Lemma 3. Similarly, CD does not lie on �. Since n > 4,
the supporting polygon is at least a hexagon, and therefore
the extensions of AB and CD meet in the empty half-plane.
On the other hand, let H be the part of SED(S) that does
not lie in the empty half-plane. Observe that the companion
of a lies in AB ∩ H \ {a}, and the companion of b lies in
CD∩H\{b}. This implies that the extensions of AB andCD
meet in the non-empty half-plane, which is a contradiction.

	

Lemma 4 If S is Pre-regular, then any ray from the center
of SED intersects the perimeter of the supporting polygon in
exactly one point.

Proof Let a ray from the center of SED intersect the perime-
ter of the supporting polygon in exactly two points a and b,
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none of which coincides with the center of SED. Then, by
Lemma 3, the intersection of the line through a and b with
the convex hull of S is exactly the segment ab, and therefore
the center of SED does not belong to the convex hull of S.
This contradicts Observation 1.

Suppose now that an edge of the supporting polygon,
belonging to a line �, is collinear with the center of SED(S).
Due to Lemma 3, either S lies entirely on �, in which case it
cannot be Pre-regular, or it is Half-disk with principal line
�, which is impossible due to Theorem 10. 	

Theorem 11 If S is Pre-regular, then it is not Co-radial.

Proof If two points of a, b ∈ S were co-radial, then the
ray from the center of SED through a and b would intersect
the perimeter of the supporting polygon in at least a and b,
contradicting Lemma 4. 	

Theorem 12 If S is Pre-regular, then no points of S lie in
SED/3.

Proof If S is Pre-regular, all points of S lie on the perime-
ter of the same regular n-gon, with n � 6. Therefore, they
all lie in an annulus A with inner and outer radii r ′ and r ′′
respectively, such that r ′/r ′′ �

√
3/2. Also, since the outer

circle of A encloses S, we have r ′′ � r , where r is the radius
of SED, implying that r ′ � (

√
3/2)r .

Suppose for a contradiction that a point p ∈ S lies in
SED/3. Let d be the distance between the center of SED and
the center of A. Since p must also lie in A, it follows that
d � r ′ − r/3 � (

√
3/2 − 1/3)r > 0. Therefore the set

SED ∪ A has a unique axis of symmetry �. Let �′ be the
axis of A that is orthogonal to �, and let a and b be the two
points of intersection between �′ and the inner circle of A.
The distance between the center of SED and a (or b) is

√
d2 + r ′2 �

√
√
√
√

(√
3

2
− 1

3

)2

+
(√

3

2

)2

· r > r,

which means that a and b lie outside of SED. Since a and b
are antipodal points of the inner circle of A, it follows that at
least a half-annulus of A lies outside SED: precisely, the part
of A that lies on one side of �′. Since this half of A lies outside
SED, it is devoid of points of S. But this is a contradiction,
because every other edge of the supporting polygon of Smust
contain points of S and, since n � 6, every half-annulus of A
contains at least two whole adjacent edges of the supporting
polygon. 	


5.2.2 Cautious moves for Equiangular configurations

Observation 13 If S isPre-regularand x, y are companions,
then xy � xz for every z ∈ S\{x}. In particular, if some

z ∈ S \{x} is such that xy = xz, then xy and xz are adjacent
edges of the supporting polygon. Moreover, if c is the center
of the supporting polygon, then � xcz � � xcy for every z ∈
S\{x}.
Lemma 5 If S is Pre-regular, the cyclic order of S around
the center of SED is the same as the cyclic order of S around
the center of the supporting polygon.

Proof By Lemma 3, S is in convex position, hence any two
points in the convex hull of S induce the same cyclic order
on S. By Observation 1, the center of SED lies in the convex
hull of a subset of S, hence it lies in the convex hull of S.
But due to Lemma 3, the center of the supporting polygon
is contained in the convex hull of S as well, and the claim
follows. 	

Lemma 6 If S is Pre-regular, then every internal angle of
the convex hull of S is greater than π(n − 3)/n.

Proof Let x, y, z, w be four consecutive vertices of the con-
vex hull of S, such that x is the companion of y, and z is the
companion of w. Let ab be the edge of the supporting poly-
gon containing x and y, such that x is closer to a. Similarly,
cd is the edge containing z and w, and z is closer to c. The
infimum of � xyz is reached (in the limit) when y coincides
with b, w coincides with d, and z tends to w. As the limit
angle contains exactly n−3 edges of the supporting polygon,
its size is π(n − 3)/n. 	

Lemma 7 Let abcd be a convex quadrilateral with ab � bc
and cd < da. If � adb � � bdc, then � abc + � cda � π .

Proof LetC be the circumcircle of abc. We will prove that d
does not lie in the interior of C . This will imply that � abc+
� cda � π , since b and d lie on opposite sides of ac (because
abcd is convex).

Suppose by contradiction that d lies in the interior of C .
Let � be the axis of ac, and let b′ be the intersection point
between � and the perimeter of C such that bb′ does not
intersect ac. Let A be the circumcircle of cb′d. Since d lies
inside C , the center of A lies between the center of C and the
midpoint of b′c. Therefore the center of A lies on the same
side of � as c. If B is the symmetric of Awith respect to �, the
center of B lies on the same side of � as a. Since cd < da,
d lies on the arc of A that is external to B. Because A and B
have the same radius, and ab′ = b′c, it follows that � adb′ <
� b′dc. But ab � bc, hence � adb � � adb′ and � b′dc �
� bdc, implying that � adb < � bdc. This contradicts the
hypothesis that � adb � � bdc. 	

Lemma 8 If S is both Pre-regular and Equiangular, then it
is Regular.

Proof Let a ∈ S be a point on SEC, and let b ∈ S be its
companion, which, by Lemma 5, has angular distance 2π/n
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from a. Let c ∈ S \ {a} be the other point of S at angular
distance 2π/n from b. If c lies on SEC as well, then ab = bc
and, by Observation 13, ab and bc are adjacent edges of
the supporting polygon. Because the supporting polygon is
a regular n-gon, � abc = π(n − 2)/n, and hence b lies on
SEC, too. It follows that the supporting polygon is inscribed
in SEC, so all points of S lie on SEC, and the configuration
is Regular.

Suppose now that c does not lie on SEC. If d is the center
of SED, then cd < da, and � adb = � bdc = 2π/n. Also,
by Observation 13, since a and b are companions, ab � bc.
Therefore Lemma 7 applies to abcd, and we get � abc +
� cda � π . But � cda = 4π/n, implying that � abc � π(n−
4)/n < π(n − 3)/n. This contradicts Lemma 6. 	

Theorem 14 Let R be frozen at time t0, let R(t0) be an
Equiangular configuration with no points in the interior of
SED/3, and let the robots execute procedure Move All
to SEC. Then, the robots eventually freeze in a Regular
configuration.

Proof The procedure makes the robots move radially toward
SEC, hence the configuration remains Equiangular. The
robots execute a cautious move with critical points only on
SEC, because no Pre-regular configuration can be formed
until all the robots reach SEC, due to Lemma 8. By Lemma 1,
the robots eventually reach SEC, forming a Regular config-
uration, and they freeze as soon as the reach it. 	


5.2.3 Cautious moves for Biangular configurations

Lemma 9 If some points of S are allowed to “slide” radially
in such a way that SED never changes and there are at least
three consecutive points a, b, c ∈ S (in this order) that do not
slide, with ab = bc, then there is at most one configuration
of the points that could be Pre-regular.

Proof If some configuration isPre-regular, then byLemma5
either a and b are companions, or b and c are. Since ab = bc,
by Observation 13 ab and bc are adjacent edges of the sup-
porting polygon, and therefore thewhole supporting polygon
is fixed, no matter how the points slide. Then, there is only
one possible position in which each sliding point may lie on
the supporting polygon, due to Lemma 4. Hence, if a Pre-
regular configuration is formable, it is unique. 	

Observation 15 For every n � 3, if three straight lines are
given in the plane, there is at most one regular n-gon with
three edges lying on the three lines.

Lemma 10 If some points of S are allowed to “slide” radi-
ally in such a way that SED never changes, and there are at
least three consecutive points a, b, c ∈ S (in this order) that
do not slide, plus at least another non-sliding point d, not
adjacent to a nor c, then there is at most one configuration
of the points that could be Pre-regular.

Proof If some configuration isPre-regular, then byLemma5
either a and b are companions, or b and c are. If ab = bc,
Lemma 9 applies. Otherwise, without loss of generality,
assume that ab < bc, and therefore a and b are compan-
ions, due to Observation 13. Then all the companionships are
fixed, again by Lemma 5. The slope of the edge of the sup-
porting polygon through a and b is fixed, hence all the slopes
of the other edges are fixed, because the supporting polygon
is regular. In particular, the slopes of the edges through c and
d are fixed, and these are two distinct edges because c and
d are not adjacent. Therefore, by Observation 15, the whole
supporting polygon is fixed. It follows that there is at most
one position of the sliding points that could be Pre-regular,
due to Lemma 4. 	


For the rest of this section, we will assume that S is not a
Co-radial set. Recall that, in a Biangular configuration, two
points at angular distance μ0 are called neighbors, and two
points at angular distance μ1 are called quasi-neighbors.

Lemma 11 If S is both Biangular and Pre-regular, then two
points are neighbors if and only if they are companions.

Proof Let a ∈ S be a point on SEC, let b ∈ S be the point
at angular distance μ1 from a, and let c ∈ S be the point
at angular distance μ0 from b. If d is the center of SED, it
follows that � adb > � bdc. By Lemma 5, the companion
of b is either a or c. Assuming by contradiction that b’s
companion is a, Observation 13 implies that ab � bc. Hence
c does not lie on SEC, otherwise ab > bc (recall that a lies
on SEC, as well). It follows that cd < da, and Lemma 7
applies to abcd, yielding � abc+ � cda � π . But, since S is
Biangular, � cda = μ0+μ1 = 4π/n, implying that � abc �
π(n−4)/n < π(n−3)/n, which contradicts Lemma 6. 	

Lemma 12 If S is both Biangular and Pre-regular, and two
companions lie on SEC, then every point of S lies on SEC.

Proof Let a, a′ ∈ S be two companion points that lie on
SEC, which are also neighbors by Lemma 11. Then a and
a′ are not antipodal, and therefore by Observation 1 there
must be another point b ∈ S on SEC which, without loss of
generality, we may assume to be strongly analogous to a. Let
p be the center of SED, and let b′ be the neighbor of b, which
is also its companion. Because the configuration isBiangular
and the supporting polygon must be regular, it follows that
the slope of the line bb′ is equal to the slope of aa′ increased
or decreased by � apb. Hence also b′ lies on SEC.

If the edges of the supporting polygon onwhich a and b lie
are not opposite, then it is easy to see that no twopoints among
a, a′, b, b′ are antipodal (otherwise Swould beEquiangular),
and they belong to the same half of SEC. By Observation 1,
there must be another point c ∈ S on SEC. By the same rea-
soning, the companion of c also belongs to SEC. Hence three
lines containing edges of the supporting polygon are given,
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which means that the whole polygon is fixed (by Observa-
tion 15), and therefore all the points of S lie on SEC.

Otherwise, if the edges of the supporting polygon on
which a and b lie are opposite, the slopes of all other edges
are fixed, and the size of the supporting polygon is also fixed.
If the center of the polygon is not p, then some points of S
must lie outside SED. Hence the center of the supporting
polygon is p, and all the points of S lie on SEC. 	

Lemma 13 If S is bothBiangular and Pre-regular, and there
are two points on SEC that are not strongly analogous, then
every point of S lies on SEC.

Proof If two points on SECare neighbors, byLemma11 they
are also companions, and then Lemma 12 applies. Otherwise,
if no two neighbors lie on SEC, by assumption there exist
two non-neighboring points a, b ∈ S that are not strongly
analogous and lie on SEC (and belong to different edges of
the supporting polygon, by Lemma 11). Let p be the center of
SED. Then, since the supporting polygon is regular, the slope
of the edge through b equals the slope of the edge through a
plus or minus � apb. As a consequence, if the companion of
a lay in the interior of SED, then the companion of b would
lie outside, which would be a contradiction. Therefore, the
companion of a lies on SEC as well, and Lemma 12 applies.

	

Lemma 14 Let S be Biangular, and suppose that all the
points of S that lie on SEC are strongly analogous. If the
points of S that are strongly analogous to those on SEC
are allowed to “slide” radially toward SEC (while the other
points of S do not move), then there is at most one configu-
ration of the points that could be Pre-regular.

Proof By assumption, at least n/2 strongly analogous points
do not slide, hence no two adjacent points are allowed to slide.
Moreover, there is a point a ∈ S already on SEC that does
not slide and, by assumption, neither of its adjacent points is
allowed to slide, because they are not strongly analogous to
a. Hence Lemma 10 applies. 	

Theorem 16 LetR be frozen at time t0, letR(t0) be a Bian-
gular (and not Co-radial) configuration with no points in the
interior of SED/3, let n > 4, and let the robots execute proce-
dureMove All to SECwith suitable critical points. Then,
the robots eventually freeze in a Pre-regular configuration.

Proof IfR(t0) is already aPre-regular configuration, there is
nothing to prove, because the swarm is already frozen at time
t0. If two points that are not strongly analogous lie on SEC
at time t0, then no Pre-regular configuration can be formed,
unless all robots lie on SEC, due to Lemma 13. Hence, in
this case, no critical points are needed. On the other hand,
if all the robots that lie on SEC at time t0 belong to the
same strong analogy class, procedure Move All to SEC

makes the robots of the same strong analogy class move first
toward SEC. By Lemma 14, during this phase at most one
configuration C could be Pre-regular. Therefore, we may
take C as a set of critical points for the cautious move. Note
that this set does not change as the robots perform the cautious
move. By Corollary 1, the robots freeze in configuration C ,
provided that they reach it. If they do not reach it, then by
Lemma 1 they eventually reach SEC and freeze.

Assume now that all the robots of one strong analogy class
are on SEC, forming a Regular set of n/2 points. Let P be
the regular n-gon inscribed in SEC that has these n/2 points
among its vertices. Procedure Move All to SEC makes
the robots of the other strong analogy class move toward
SEC, and the possible Pre-regular configurations in which
the robots can be found are precisely those in which none of
the robots lies strictly in the interior of the area enclosed by
P , and every two strongly analogous robots are equidistant
from the center of SED.

If all the robots at time t0 lie in the interior or on the bound-
ary of P , then we let C be the configuration obtained from
R(t0) by sliding all the robots radially away from the center
of SED, until they reach the boundary of P . In this case, C
will be the input critical point set of the cautious move. Oth-
erwise, let d be the maximum distance of an internal point
ofR(t0) from the center of SED. Let C ′ be the configuration
obtained from R(t0) by sliding the internal robots radially
away from the center of SED, until they reach distance d
from it. In this case, C ′ will be the input critical point set
of the cautious move. In both cases, the cautious move will
make the swarm freeze in configuration C , which is the first
Pre-regular configuration formable. 	


5.2.4 Cautious moves for Double-biangular configurations

Lemma 15 If S is Double-biangular and not Co-radial, and
the points of one analogy class stay still on SEC, while the
other points are allowed to “slide” radially within SED, then
at most one configuration of the points can be a Pre-regular
in which sliding points are not companions.

Proof Let p0 ∈ S be a point belonging to the analogy class
that stays still on SEC, and let pi ∈ S be the (i + 1)-
th point in the cyclic order around the center of SED, c.
We may assume that p1 is analogous to p0, and therefore
that the clockwise angle sequence induced by p0 is of the
form (α, β, γ, β, α, β, γ, β, α, β, γ, β, · · · ). It follows that
the points analogous to p0 are those of the form p4i and
p4i+1.

Suppose that S reaches a Pre-regular configuration in
which no two sliding points are companions. Hence every
other edge of the supporting polygon contains a point of S of
the analogy class that stays still on SEC (cf. Lemma 5). Let
q2i (respectively, q2i+1) be the point at which the extensions

123



440 P. Flocchini et al.

of the edges containing p4i and p4i+1 (respectively, p4i+1

and p4i+4) meet, where indices are taken modulo n. Since
the supporting polygon is regular, then clearly the qi ’s form
a Regular configuration with n/2 elements, and in particu-
lar q0q1 = q1q2 and � p0q0 p1 = � p1q1 p4 = � p4q2 p5 =
π(n − 4)/n. On the other hand, the analogy class of p0 is
a Biangular or Equiangular set of size n/2 lying on SEC,
hence it forms a polygon with equal internal angles, and in
particular � p0 p1 p4 = � p1 p4 p5 = π(n − 4)/n.

Let θ = � p1 p0q0 and θ ′ = � q0 p1 p0. Then

π − θ − θ ′ = � p0q0 p1 = π(n − 4)/n

= � p0 p1 p4 = π − θ ′ − � p4 p1q1,

implying that � p4 p1q1 = θ . Similarly � p5 p4q2 = θ ,
and therefore p0 p1q0 and p1 p4q1 are similar triangles, and
p0 p1q0 and p4 p5q2 are congruent (because p0 p1 = p4 p5).

We have q0 p1 + p1q1 = q0q1 = q1q2 = q1 p4 + p4q2.
Also, p0q0/p1q1 = q0 p1/q1 p4 and p0q0 = p4q2. Hencewe
may substitute q1 p4 with q0 p1 · p1q1/p0q0 and p4q2 with
p0q0, obtaining

q0 p1 + p1q1 = q0 p1 · p1q1
p0q0

+ p0q0.

After rearranging terms and factoring, we get

(p0q0 − p1q1)(p0q0 − q0 p1) = 0,

which implies that either p0q0 = p1q1 or p0q0 = q0 p1.
Assume first that p0q0 = p1q1 and p0q0 �= q0 p1. This

implies that α = 2β + γ = 4π/n and therefore, by observ-
ing that the sum of the internal angles of the quadrilateral
cp1q1 p4 is 2π , we have � cp1q1 = π − � q1 p4c. This means
that the segment p1q1 has some points in the interior of SED
if and only if q1 p4 has none. However, p2 is the companion
of p1 and hence it lies on p1q1, and p3 is the companion of
p4 and hence it lies on q1 p4, which yields a contradiction.
It follows that in this case no Pre-regular configuration is
formable.

Assume now that p0q0 = q0 p1, hence � cp0q0 =
� q0 p1c = π(n + 4)/2n − α/2. Therefore the slopes of the
two edges of the supporting polygon to which p0 and p1
belong are fixed. This also fixes the slope of the edge of the
supporting polygon through p4, andhence thewhole support-
ing polygon is fixed, by Observation 15. Due to Lemma 4,
the trajectory of each sliding point intersects the supporting
polygon in at most one point, and therefore in this case at
most one Pre-regular configuration can be formed. 	

Lemma 16 LetR be frozen at time t0, letR(t0) be aDouble-
biangular (and notCo-radial) configuration with no points in
the interior of SED/3, and let the robots in A ⊂ R, form-
ing one analogy class of R(t0), stay still on SEC, while the

robots in A′ = R \ A execute procedure Move All to
SEC or procedure Move Walkers to SEC/3 with suit-
able critical points. Then, if a Pre-regular configuration in
which analogous robots are companions is ever formed, the
robots freeze as soon as they form one.

Proof Suppose first that n � 12. If R(t) is Pre-regular at
some time t � t0, there are at least three pairs of compan-
ions that stay still on SEC (cf. Lemma 5). These three pairs
determine the slopes of three edges of the supporting poly-
gon, which, due to Observation 15, is fixed. By Lemma 4, the
trajectory of each robot intersects the supporting polygon in
at most one point, and hence there is at most one formable
Pre-regular configuration, which can be chosen as a set of
critical points for the cautious move, due to Theorem 8.

Let n < 12, and hence n = 8. Let R = {a, b, c, d, e, f,
g, h}, whereA = {c, d, g, h} is the set of robots that stay still
on SEC. We seek to characterize the formable Pre-regular
configurations in which c and d are companions. Let � be the
line through c and d, let �′ be the line through g and h, and let
λ be the distance between � and �′. Then, the two edges of the
supporting polygon to which a and b belong must be orthog-
onal to both � and �′, and similarly for the edge towhich e and
f belong. Moreover, the distance between these two edges
must be λ. Let x be the center of SED(S), and let a′ (respec-
tively, b′, e′, f ′) be the point on SEC(S) that is co-radial with
a (respectively, b, e, f ). It is easy to see that the positions of
a that could give rise to a Pre-regular configuration belong
to a (possibly empty) closed segment A, which is a subset
of the segment a′x . Similarly, the positions of b, e, and f
that could give rise to Pre-regular configurations belong to
closed segments B, E , and F , which, together with A, form
a set that is mirror symmetric and centrally symmetric with
respect to x . If A is empty, then no Pre-regular configura-
tion in which moving robots are companions can be formed.
Therefore, let us assume that A is not empty.

Assume now that a, b, e, and f move toward SEC exe-
cuting procedure Move All to SEC. The case in which
they execute procedureMove Walkers to SEC/3 is sym-
metric, and therefore it is omitted. Let a′′ and a′′′ be the
endpoints of A, with a′′ closest to a′, and let a∗ be the
midpoint of A. Similar names are given to the endpoints
and midpoints of B, E , and F . Note that, by construction,
{a′′, b′′, c(t), d(t), e′′′, f ′′′, g(t), h(t)},
{a′′′, b′′′, c(t), d(t), e′′, f ′′, g(t), h(t)}, and
{a∗, b∗, c(t), d(t), e∗, f ∗, g(t), h(t)} are Pre-regular sets at
any time t � t0.

Without loss of generality, let a(t0) be such that the seg-
menta(t0)a′ is not longer thanb(t0)b′, e(t0)e′, and f (t0) f ′. If
a(t0) belongs to the segment a′′a′, open at a′′ and closed at a′,
then no Pre-regular configuration can be formed, regardless
of how the robots move toward SEC. Hence in this case no
critical points are needed. If a(t0) belongs to the (closed) seg-
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ment xa∗, thenwe take {a∗, b∗, c(t), d(t), e∗, f ∗, g(t), h(t)}
as a set of critical points at any time t � t0. Since b(t0) ∈ xb∗,
e(t0) ∈ xe∗, and f (t0) ∈ x f ∗, procedure Cautious Move
will make a, b, e, and f stop at a∗, b∗, e∗, and f ∗, respec-
tively, andwait for each other.When all of them have reached
such critical points, a Pre-regular configuration is reached,
and the swarm is frozen. Also, this is the first Pre-regular
configuration that is reached by the robots.

Finally, let a(t0) belong to the segment a∗a′′, open at
a∗ and closed at a′′. Let b1 and b2 be the two points on
xb′ whose distance from b∗ is the same as the distance
between a(t0) and a∗, with b1 closest to x . Similarly, we
define e1 and e2 on xe′, and f1 and f2 on x f ′. Then, the set
{a(t), b2, c(t), d(t), e1, f1, g(t), h(t)} is Pre-regular at any
time t � t0, and we may take it as a set of critical points. If
e(t0) is past e1, or f (t0) is past f1, then no Pre-regular set
can be formed, regardless of how the robotsmove.Otherwise,
procedure Cautious Movewill make e and f reach e1 and
f1, stop there, and wait for each other (note that the position
of a does not changewhile this happens, hence a(t) = a(t0)).

If b(t0) = b2, then a Pre-regular configuration is reached
for the first time, and none of the robots is moving. Other-
wise, suppose that b(t0) is in the (closed) segment xb1. Then,
eventually, b will stop in b1 while e and f are in e1 and f1.
Note that e and f acquire e2 and f2 as transposed critical
points (because b2 is a critical point of b), and also e∗ and
f ∗ as intermediate critical points (because they are the mid-
points of e1e2 and f1 f2). Similarly, b acquires b∗ as a new
critical point. When all three of them have moved once, they
will be found somewhere in the open segments b1b2, e1e2,
and f1 f2.While they reach this configuration, noPre-regular
configuration is ever formed. Moreover, no Pre-regular con-
figuration can be formed afterwards. Finally, let b(t0) be in
the open segment b1b2. Then, b will stay still and wait for e
and f , which will eventually move and stop somewhere in
the open segments e1e2 and f1 f2. As in the previous case,
no Pre-regular configuration can ever be reached. 	

Theorem 17 Let R be frozen at time t0, let R(t0) be a
Double-biangular (and not Co-radial) configuration with no
points in the interior of SED/3, and let the robots execute pro-
cedureMove All to SEC or procedureMove Walkers
to SEC/3with suitable critical points. Then, if a Pre-regular
configuration is ever formed, the robots freeze as soon as they
form one.

Proof Recall that in aDouble-biangular set there are exactly
two analogy classes of equal size. According to both proce-
dures, only one analogy class of robots is allowed to move
at each time. Indeed, even procedure Move All to SEC
lets the second class move only when the first class has com-
pletely reached SEC, and therefore no robot in that class is
moving. Let A ⊂ R be the analogy class that is allowed to
move at a given time, and let A′ be the other class.

Suppose first that not all the robots of A′ are on SEC.
This means that the procedure being executed isMove All
to SEC, because procedure Move Walkers to SEC/3
assumes the robots of A′ to be all on SEC (recall that the
walkers are all analogous, due to Observation 7). But proce-
dure Move All to SEC allows the robots of A to move
only if some of them are already on SEC (by Observation 1,
some robots must indeed be on SEC). Because all the robots
ofA′ stay still, and at least one robot ofA stays still because
it is already on SEC, this implies the presence of three con-
secutive robots that do not move, and enables the application
of Lemma 10. Hence at most one Pre-regular configuration
is formable, which can be taken as a set of critical points, due
to Theorem 8.

Suppose now that all the robots of A′ are on SEC. By
Lemma 15, at most one Pre-regular configuration C1 is
formable inwhich no two robots in the same analogy class are
companions. Theorem 8 guarantees that the cautious move
with critical point set C1 enjoys property P1 that the robots
freeze as soon as they reach configuration C1. On the other
hand, by Lemma 16, there exists a set of critical points C2

ensuring property P2 that the robots will freeze as soon as
they reach a Pre-regular configuration in which robots in
the same analogy class are companions. Hence, due to The-
orem 9, the cautious move with critical point set C1 ∪ C2

enjoys both properties P1 and P2, and therefore it correctly
handles all formable Pre-regular configurations. 	


5.2.5 Cautious moves for Periodic configurations

If S is notCo-radial and n is even, wewill say that two points
of S have the same parity (respectively, opposite parity) if
there are an odd (respectively, even) number of other points
between them in the cyclic order around the center of SED.

Lemma 17 If some points of S are allowed to “slide” radi-
ally in such a way that SED never changes, and there are at
least four points a, b, c, d ∈ S that do not slide, appearing
in this order around the center of SEC, such that a and b are
consecutive, c and d are consecutive, and b and c have the
same parity, then there are at most two configurations of the
points that could be Pre-regular.

Proof If some configuration isPre-regular, then byLemma5
either a and b are companions and c and d are not, or vice
versa. Assume that a and b are companions, and hence the
line containing the edge of the supporting polygon through
them is fixed. Then the slopes of the two edges through c and
d are fixed as well, and this determines a unique supporting
polygon, by Observation 15. In turn, this may give rise to at
most one possible Pre-regular configuration, by Lemma 4.
Otherwise, if c and d are companions, by a symmetric argu-
ment atmost one otherPre-regular configuration is formable.
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Lemma 18 Suppose that S is Pre-regular, and there is a
concordance class C ⊂ S that lies on SEC(S) and forms
a Regular configuration. If the size of C is even and greater
than 2, then the center of the supporting polygon of S coin-
cides with the center of SED(S).

Proof BecauseC is aRegular set of even size, there exist two
antipodal points points a, a′ ∈ C , both lying on SEC(S).
Since S is a Pre-regular set and C is a concordance class,
Lemma 5 implies that a and a′ belong to opposite and paral-
lel edges � and �′ of the supporting polygon. Therefore, the
center of the supporting polygon belongs to the line parallel
to � and �′ that is equidistant to them. Let r be this line. Since
a and a′ are antipodal points, it follows that r passes through
the center of SED.

Because C has at least four elements, there exist two
antipodal points b, b′ ∈ C , distinct from a and a′. By the
same reasoning, the center of the supporting polygon belongs
to a line r ′ that is parallel to the edges of the supporting poly-
gon through b and b′. Also r ′ passes through the center of
SED and, since r and r ′ are not parallel and they are inci-
dent at the center of SED, it follows that the center of the
supporting polygon coincides with the center of SED. 	

Observation 18 If S is Bi-periodic with period 3 and not
Co-radial, then it has exactly two analogy classes: one
Equiangular with n/3 elements and the other Biangular with
2n/3 elements (where angles are always measured with
respect to the center of SED(S)).

Lemma 19 If S is Bi-periodic with period 3 and not Co-
radial, and the points of the analogy class of size n/3 are on
SEC(S), then S is not Pre-regular.

Proof If, by contradiction, S is aPre-regular set, then nmust
be even, and hence it must be a multiple of 6.

Suppose that n = 6. Let S = {a, b, c, d, e, f }, where the
points appear in this order around the center of SED.Without
loss of generality, the clockwise angle sequence induced by
a is {α, α, β, α, α, β}, with α �= β. Assume by contradic-
tion that S is Pre-regular, let ABCDEF be the supporting
polygon, such that a and b lie on the edge AB. Let x be the
center of SED(S) and let X be the center of the supporting
polygon. Note that e and f must belong to the edge EF
(by definition of Pre-regular), and x lies on the segment be
(because be is an axis of symmetry of S). Therefore, x and
A must lie on the same side of the line through B and E .
Suppose that α < 60◦ < β. Observe that c and d lie on
CD and � cxd > 60◦, implying that x lies strictly inside
the circle through X , C , and D. However, this circle and A
lie on the opposite side of the line though B and E , which
yields a contradiction. Assume now that α > 60◦ > β. Since
� axb > 60◦ and a and b belong to AB, x must lie strictly
inside the circle through X , A, and B. Similarly, x must lie

strictly inside the circle through X , E , and F . But then x
also lies strictly inside the circle through X , F , and A, which
contradicts the fact that a ∈ AB, f ∈ EF , and � ax f < 60◦.

Suppose now that n � 12. Then, the analogy class of
size n/3 � 4 is a Regular set of an even number of points
located on SEC, forming a concordance class. Hence, by
Lemma 18, the center of SEC coincides with the center of the
supporting polygon. One of the angle sequences of S is of the
form (α, α, β, α, α, β, α, α, β, . . .), withα �= β. LetC be the
analogy class of size 2n/3. Observe that, because the period
of S is odd, at least two points of C must be companions,
due to Lemma 5. Hence, Observation 13 implies that α > β,
because the center of the supporting polygon is the center
of SED. It follows that the companion of each point of C
must be another point of C , which contradicts the fact that
the period is odd. 	

Observation 19 If S is Bi-periodic with period 4, S is not
Co-radial, and no analogy class contains consecutive points,
then S has exactly three analogy classes: two Equiangular
with n/4 elements each, and the other Biangular with n/2
elements (where angles are always measured with respect to
the center of SED(S)). Moreover, the two analogy classes of
size n/4 collectively form a Regular set of size n/2 that is
also a concordance class of S.

Lemma 20 Suppose that S is Bi-periodic with period 4, not
Co-radial, and that no analogy class contains consecutive
points. If the points of both analogy classes of size n/4 are
on SEC(S), then S is not Pre-regular.

Proof Suppose by contradiction that S is a Pre-regular set.
By Observation 19, the points of the two analogy classes of
size n/4 collectively form aRegular set of an even number of
points located on SEC, forming a concordance class. Such a
set has size n/2 � 4, because the period of S is 4, and hence
n � 8. Therefore Lemma 18 applies, and the center of SEC
coincides with the center of the supporting polygon.

One of the angle sequences of S is of the form
(α, α, β, β, α, α, β, β, . . .), with α < β. Then, due to
Lemma 5, Observation 13, and the fact that the center of
the supporting polygon is the center of SED, it follows that
each point of S has a companion at angular distance α. But
causes all the points of one analogy class of size n/4 to have
two companions, and leaves the points of the other analogy
class of size n/4 with no companions, which contradicts the
fact that each point of S must have exactly one companion.

	

Theorem 20 LetR be frozen at time t0, letR(t0) be a Peri-
odic (and not Co-radial) configuration with no points in the
interior of SED/3, and let the robots execute procedureMove
All to SEC or procedure Move Walkers to SEC/3
with suitable critical points. Then, if a Pre-regular configu-
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ration is ever formed, the robots freeze as soon as they form
one.

Proof By definition ofPeriodic, the period ofR(t0) is k > 2,
with n � 2k > 4. Recall that, in both procedures, only anal-
ogous robots are allowed to move. In particular, in procedure
Move All to SEC, a new analogy class starts moving
only when the robots of the previous analogy class have
reached SEC and have stopped. As a consequence, at any
time, only one analogy class A ⊂ R of robots is moving.
Let r0 ∈ A, and let ri ∈ R be the (i + 1)-th robot in the
cyclic order around the center of SED. By definition of anal-
ogy class, in every set of k consecutive robots (in their cyclic
order around the center of SED), at most two of them belong
to A.

Suppose first that the size ofA is n/k. If k > 3, then r1, r2,
r3, and rk+1 do not move, and they satisfy the hypotheses of
Lemma 10, implying that no Pre-regular configuration can
be formed. If k = 3, then Lemma 17 applies to r1, r2, r4, and
r5, and at most one configuration C can be Pre-regular. By
Theorem 8, taking C as a set of critical points suffices.

Otherwise the size of A is 2n/k, and therefore the con-
figuration is Bi-periodic. Observe that, according to both
procedure Move All to SEC and procedure Move
Walkers to SEC/3, if an analogy class of size 2n/k is
allowed to move, it means that all classes of size n/k are
located on SEC (recall that the walkers are all analogous,
due to Observation 7). Let ra be a moving robot such that
0 < a < k. Without loss of generality, we may assume that
a � �k/2�. There are several cases to consider.

– Let k = 3. By Observation 18 there are only two analogy
classes, with n/3 and 2n/3 robots, respectively. Since the
analogy class of size n/3 is on SEC, Lemma 19 applies,
and no Pre-regular configuration can be formed.

– Let k = 4 and a = 1. Then the configuration is Double-
biangular, and Theorem 17 applies.

– Let k = 4 and a = 2. Then, no analogy class contains
consecutive points in the cyclic order around the center of
SED. Since the analogy classes of size n/4 are on SEC,
Lemma 20 applies, and no Pre-regular configuration can
be formed.

– Let k = 5. Then Lemma 17 applies, because r3, r4, r8,
and r9 do not move. Hence no Pre-regular configuration
can be formed.

– Let k = 6 and a = 1 or a = 2. Then Lemma 10 applies,
because r3, r4, r5, and r11 do not move. Hence no Pre-
regular configuration can be formed.

– Let k = 6 and a = 3. Then Lemma 17 applies, because
r1, r2, r4, and r5 do not move. Hence at most two
configurations can be Pre-regular. By Corollary 1, tak-
ing the union of these configurations as critical points
suffices.

– Let k > 6. Then Lemma 10 applies, because rk−3, rk−2,
rk−1, and r2k−1 do not move. Hence no Pre-regular con-
figuration can be formed. 	


5.2.6 Cautious moves for Aperiodic configurations

Lemma 21 Let S be not Co-radial with |S| = 6, and sup-
pose that two consecutive points a, b ∈ S are allowed to
“slide” radially without causing SED to change, while the
other points of S stay still. Let L be the locus of positions
of a (within its radius of SED) for which there is a position
of b (within its radius of SED) giving rise to a Pre-regular
configuration in which a and b are companions. Then L is
either the empty set or a topologically closed line segment
(contained in a’s radius of SED).

Proof Let a, b, c, d, e, f be the points of S, appearing around
the center of SED in this order. Since we want a and b to be
be companions, and since the order of the points of S around
the center of SED is preserved as a and b move radially, by
Lemma 5 c and d have to be companions, as well as e and f .

For a Pre-regular configuration to be formed, the lines cd
and e f mustmeet at some point p (at an angle of 60◦), and the
supporting polygons of suchPre-regular configurationsmust
all be contained in the angle � dpe. More precisely, such sup-
porting polygons are regular hexagonswith two non-adjacent
edges lying on the lines cd and e f , and having homothetic
center p. Since all such hexagons are homothetic, their ver-
tices must lie on four distinct lines through p: two such lines
are cd and e f (and they contain four vertices of each of the
hexagons), and let � and �′ be the other two lines (each of
which contains one vertex of each of the hexagons).

Among these “candidate” supporting polygons, we dis-
card the ones that do not contain all of c, d, e, and f . What
is left is a “closed interval” L of supporting polygons: the
smallest one has either d or e as a vertex (whichever is clos-
est to p) and the largest one has either c or f as a vertex
(whichever is farthest from p).

Of course, we must also discard the “candidate” support-
ing polygons that cannot contain both a and b on the edge
opposite to p (even if a and b slide radially), to which we
refer as the far edge. The slope of the far edge is fixed (it is
perpendicular to the bisector of � and �′), and its endpoints
must lie on � and �′. Let ρa (respectively, ρb) be the radius of
SED on which a (respectively, b) is allowed to slide. Deter-
mining the far edges that can contain both a and b boils
down to determining the intersections among �, �′, ρa , and
ρb, and comparing the distances from p of such intersections
with those of the endpoints of ρa and ρb. Since the elements
involved are straight lines and line segments, this leaves us
with a “closed interval” L′ of eligible supporting polygons.

Intersecting L and L′, we obtain a (possibly empty)
“closed interval” of supporting polygons, each of which
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effectively determines a Pre-regular configuration obtained
by suitably sliding a and b. It follows that L must also be
a closed interval of ρa (or the empty set), because ρa is a
straight line segment. 	

Lemma 22 LetR be frozen at time t0, letR(t0) be an Ape-
riodic (and not Co-radial) configuration with no points in the
interior of SED/3, let n = 6, and let the robots execute pro-
cedureMove All to SEC or procedureMove Walkers
to SEC/3with suitable critical points. Then, if a Pre-regular
configuration is ever formed, the robots freeze as soon as they
form one.

Proof Let A ⊂ R be the analogy class of robots that is
allowed to move initially. As the robots of A are required to
reach their destination and stop before any other class can
possibly move, it is sufficient to prove the lemma just forA.
Recall that, in anAperiodic configuration, the analogy classes
have size either one or two. If |A| = 1, then Lemma 10
applies, and at most one Pre-regular configuration C can be
formed. Taking C as a set of critical points suffices, due to
Theorem 8.

Suppose now that |A| = 2, let r0 ∈ A, and let ri be the
i-th robot after r0 in clockwise order around the center of
SEC, with 1 � i � 5. Without loss of generality, either
r1 ∈ A or r2 ∈ A or r3 ∈ A. If r2 ∈ A, then at most one
Pre-regular configuration C is formable, due to Lemma 10.
C can be taken as a set of critical points, due to Theorem 8.
On the other hand, if r3 ∈ A, Lemma 17 applies, and at most
two Pre-regular configurations C1 and C2 can be formed.
Therefore, by Corollary 1, taking C1 ∪C2 as a set of critical
points suffices.

Finally, assume thatA = {r0, r1}. If r0 and r1 are not com-
panions, then by Lemma 5 r3 and r4 are. Hence the slope of
the edge of the supporting polygon through r3 and r4 is fixed,
which implies that also the slopes of the edges through r2 and
r5 are fixed. Hence, by Observation 15, the whole supporting
polygon is fixed, which means that at most one configuration
C of the robots can be Pre-regular, due to Lemma 4. Tak-
ing C as a set of critical points suffices for all Pre-regular
configurations in which r0 and r1 are not companions, due to
Theorem 8.

In the following, we will assume that r0 and r1 are com-
panions. Suppose first that procedureMove All to SEC is
being executed, and hence r0 and r1 are moving toward SEC.
By Lemma 5, r2 and r3 are companions, and they determine
the slope of one edge of the supporting polygon. Therefore,
the slope of the edge containing r0 and r1 is also fixed. Let
x be the center of SED, and let us consider the two rays
from x through r0(0) and r1(0), respectively. Let f0 and f1
be, respectively, the points at which these two rays intersect
SEC. As r0 and r1 move radially between x and SEC, they
can conceivably form infinitely many Pre-regular configu-
rations. However, due to Lemma 21, the positions of r0 on

the segment x f0 that could give rise to Pre-regular config-
urations form a closed interval aa′, with a closest to x (we
assume this interval to be non-empty, otherwise we may take
C ′ = ∅ as a set of critical points). Similarly, the positions
of r1 on x f1 giving rise to Pre-regular configurations deter-
mine a closed interval bb′, with b closest to x .4 Moreover,
the line � through a and b and the line �′ through a′ and b′
are parallel, because the slope of the edge of the supporting
polygon containing r0 and r1 is fixed.

Suppose first that � is parallel to the line through f0 and f1.
Equivalently, xa and xb have the same length. In this case,
we take C ′ = {a, b} as a set of critical points. Indeed, let us
assume without loss of generality that r0(0) f0 is not longer
than r1(0) f1. If r0(0) is past a′, no Pre-regular configuration
can ever be formed, and we may set C ′ = ∅. If r0(0) lies on
the closed segment aa′, the Cautious Move protocol will
make r0 stay still and wait for r1 to reach the same distance
from the endpoint of its respective path, and stop there.When
this happens, say at time t , the line through r0(t) and r1(t) is
parallel to �, and therefore the configuration is Pre-regular.
Moreover, no Pre-regular configuration is reached before
time t . Finally, let r0(0) be before a. Then, the Cautious
Move protocol makes r0 and r1 stop at a and b respectively,
and wait for each other. When the robots reach a and b, the
configuration is the first Pre-regular encountered.

Suppose now that � is not parallel to the line through f0
and f1. Without loss of generality, suppose that xa is longer
than xb. First of all, if r0(0) is located past a′ or r1(0) is
located past b′, no Pre-regular configuration can be formed,
and we set C ′ = ∅. Let r0(0) belong to the closed segment
aa′, and let c be the point on bb′ such that the line through
r0(0) and c is parallel to �. If r1(0) does not lie after c, we
take C ′ = {c} as a set of critical points. Indeed, the cautious
move protocol makes r0 stay still and wait for r1 to reach c
and stop there. When this happens the configuration is Pre-
regular, and no other Pre-regular configuration is reached
before.

Now assume that r1(0) lies after c (as defined above),
or that r0(0) lies before a. We let c0 = b and we let c1
be the intersection between b f1 and the line through a and
parallel to f0 f1. Thenwe inductively define ci+2, with i � 0,
to be the point on b f1 such that the length of xci+1 is the
geometric mean between the lengths of xci and xci+2. Let
k be the largest index such that ck is well defined, and let
ck+1 = f1. For each 0 � i � k + 1, we define �i to be the
line through ci and parallel to f0 f1. Then, we let Li be the
region of the plane that lies between lines �i and �i+1, such
that �i ⊂ Li and Li ∩ �i+1 = ∅ (unless �k = �k+1, in which
case Lk = �k). We argue that taking C ′ = {c0, . . . , ck+1} as

4 The proof of Lemma 21 also provides a way of constructing such
intervals with a compass and a straightedge, and hence by algebraic
functions.
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a set of critical points prevents the robots from reaching any
Pre-regular configuration during the cautious move. Note
that a Pre-regular configuration can be formed at time t only
if r1(t) ∈ Li and r0(t) ∈ Li+1, for some 0 � i � k − 1.
This can be true at time t = 0 but, due to our assumptions, it
implies that r1(0) lies after c, and hence r1 will reach Li+1

while r0 waits, without forming a Pre-regular configuration.
Similarly, if both robots lie initially before L0, theCautious
Move protocol will make them reach L0 and wait for each
other before proceeding. Moreover, if r0(t) ∈ Li and r1(t) ∈
L j with j > i , then r1 waits until r0 reaches L j , and during
this process no Pre-regular configuration is formed.

Therefore we can assume that, at some time t , both r0(t)
and r1(t) belong to Li , for some 0 � i � k, and none of
them is moving. We claim that, if i < k, there is a time
t ′ > t at which the two robots are in Li+1 and none of
them is moving. Moreover, between t and t ′ no Pre-regular
configuration is reached. Indeed, according to the Cautious
Move protocol, the robots stop at �i+1 and wait for each
other before proceeding, and hence at some point they will
clearly be found both in Li+1 and not moving. The only
way they could form a Pre-regular configuration would be
if r0 reached �i+1 when r1 was still at �i . But this cannot
happen because, according to theCautious Move protocol,
r0 stops at least once (at an intermediate critical point) after
�i and before �i+1. When this happens, r0 cannot proceed
any further, and hence it cannot reach �i+1 if r1 is still at �i .
By induction on i , it follows that r0 and r1 eventually reach
f0 and f1, respectively, without ever forming a Pre-regular
configuration.

Finally, let us consider the case in which procedureMove
Walkers to SEC/3 is being executed, and r0 and r1 move
toward SEC/3. If one of the two robots is initially in SED/3,
by Theorem 12 no Pre-regular configuration can ever be
formed, andC ′ = ∅. Hence we may assume that both robots
move radially toward SEC/3, as this is taken as a critical point
in any case. This case is symmetric to the previous one, and
can be treated with a similar reasoning.

To conclude, takingC∪C ′ as a set of critical points yields
a cautious move that makes the robots freeze at every Pre-
regular configuration that is encountered (i.e., whether r0 and
r1 are companions or not), due to Theorem 9. 	

Theorem 21 LetR be frozen at time t0, letR(t0) be anApe-
riodic (and not Co-radial) configuration with no points in the
interior of SED/3, let n > 4, and let the robots execute pro-
cedureMove All to SEC or procedureMove Walkers
to SEC/3with suitable critical points. Then, if a Pre-regular
configuration is ever formed, the robots freeze as soon as they
form one.

Proof Let A ⊂ R be the analogy class of robots that is
allowed to move at time t0. As in Lemma 22, it is sufficient
to prove the theorem assuming that onlyAmoves. Recall that

n must be even for a Pre-regular configuration to be formed.
If n = 6, Lemma 22 applies. Hence, let us assume that n �
8. Since the analogy classes of an Aperiodic configuration
contain either one or two points, it follows that, no matter
how A is chosen, the hypotheses of Lemma 10 are satisfied,
and therefore at most one Pre-regular configuration can be
formed. If such a configuration is taken as a set of critical
points, our claim follows from Theorem 8. 	


5.2.7 Final remarks

It is straightforward to verify the following.

Observation 22 In all the theorems of this section, the
critical points of the cautious moves are computable by
performing finite sequences of algebraic operations (i.e.,
arithmetic operations plus taking roots) on the positions of
the robots.

Also, from our initial observations it follows that a Pre-
regular configuration can easily be recognized by the robots,
and the supporting polygon is always unique.

Lemma 23 By a finite sequence of algebraic operations it
is possible to decide if a given set of n > 4 points is Pre-
regular and, if it is, to compute the vertices of the supporting
polygon, which is unique.

Proof If n is odd or the points are not in a strictly convex
position, then they do not form a Pre-regular configuration,
by Lemma 3. Otherwise, the pairs of “candidate compan-
ions” can be uniquely identified thanks to Observation 13.
Since n > 4, the set of candidate companions determines the
slopes of at least three edges of the “candidate supporting
polygon”. It is now straightforward to check if these slopes
match those of a regular polygon’s edges. If they do not, the
set is not Pre-regular; otherwise, by Observation 15 the can-
didate supporting polygon is uniquely determined and easy
to compute. Now it is sufficient to verify if all the points in
the set lie on the so-computed regular polygon, and if they
are properly distributed among its edges. 	


As a consequence of the previous lemma, the procedure Is
Pre- regular? used by the UCF algorithm is well defined.

5.3 Correctness of the algorithm

Lemma 24 LetR be frozen at time t0, letR(t0) be aRegular
configuration, and let the robots execute the UCF algorithm.
Then, the robots will never move.

Proof By assumption, no robot is moving at time t0. Then,
whenever a robot performs a Look-Compute, it observes a
Regular configuration and remains still, thus keeping the
same configuration. 	
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Lemma 25 Let R be frozen at time t0, let R(t0) be a Pre-
regular configuration with n > 4, and let the robots execute
the UCF algorithm. Then, the robots will freeze in a Regular
configuration without ever colliding.

Proof By Lemma 23, the supporting polygon P of R(t0)
is unique and computable. It is straightforward to prove
by induction that, every time a robot performs a Look-
Compute phase, it observes a Pre-regular configuration with
the same supporting polygon P . This is certainly true the
first time a Look-Compute phase is performed, because R
is frozen at time t0. Then, whenever a robot observes a Pre-
regular configuration with supporting polygon P , it executes
procedure Pre- regular, which makes it move toward its
matching vertex of P . As robots asynchronously approach
their respective matching vertices, the configuration remains
Pre-regular, the supporting polygon remains P , and no two
robots collide, because their trajectories are disjoint. More-
over, each robot approaches its matching vertex by at least
δ > 0 at each cycle, and therefore it reaches it within finitely
many cycles. When a robot reaches its matching vertex, it
stops moving, and hence the swarm eventually freezes in a
Regular configuration that coincides with the vertex set of
P . 	

Lemma 26 LetR be frozen at time t0, letR(t0) be an Invalid
configuration, and let the robots execute the UCF algorithm.
Then, the robots will freeze in a Pre-regular or in a Valid
configuration without ever colliding.

Proof If the robots form a Pre-regular configuration at time
t0, there is nothing to prove. Otherwise, we can prove by
induction that the robots will always be in an Invalid and
not Pre-regular configuration and therefore they will always
execute procedureMove All to SEC, until they freeze in
a Pre-regular or in a Valid configuration. This is true at time
t0, and moreover the swarm is frozen at that time. Subse-
quently, robots keep moving radially toward SEC, thus never
colliding, never forming Half-disk or Co-radial configura-
tions, never altering SEC, and never altering angle sequences
and (strong) analogy classes. Hence, as long as the con-
figuration is not Pre-regular or Valid, the procedure that is
executed is always Move All to SEC. Moreover, if the
configuration is initially Equiangular (respectively, Biangu-
lar, Double-biangular, Periodic, Aperiodic), it remains such
throughout the execution.

If there are robots in the interior of SED/3 at time t0,
they first move onto SEC/3. No Pre-regular configuration
can be formed in this phase, due to Theorem 12. A Valid
configuration could be formed, though.However, sinceR(t0)
is not Valid by assumption, it follows that in this phase no
Valid and Ready configuration can be formed, because at any
time the configuration is well occupied if and only if it is well
occupied at time t0. On the other hand, a Valid and Waiting

configuration can be formed only when no robots lie in the
interior of SED/3. But this happens only at the very end of
the phase, when the configuration is frozen.

Now assume that at time t1 � t0 the robots are frozen
in an Invalid configuration with no points in the interior of
SED/3. Procedure Move All to SEC is executed again,
and the robots move toward SEC, one (possibly strong) anal-
ogy class at a time, performing a cautious move with suitable
critical points. Let the first class C1 ⊆ R cautiously move
toward SEC. It is easy to see that no Valid configuration can
be formed during this motion, except perhaps at the very
end of the cautious move, say at time t2 > t1, when the
robots of C1 finally reach SEC (by Lemma 1), and the swarm
freezes. Indeed, if the period of the configuration is less than
3, then by Observation 3 all robots occupy analogous posi-
tions, and therefore the configuration at time t1 is Valid and
Waiting, which is a contradiction. Hence we may assume C1
to be an analogy class, as opposed to a strong analogy class,
because the configuration is not Biangular (cf. the definition
of procedure Move All to SEC). Since the configura-
tion is not Valid at time t1 and its period is at least 3, it
means that the internal points belong to at least two differ-
ent analogy classes (otherwise the configuration would be
Valid and Waiting), one of which is C1. Therefore, as long
as some points of C1 are still internal, the configuration can-
not be Valid andWaiting. Moreover, the configuration cannot
be Valid and Ready either, because, according to procedure
Cautious Move, only the robots that are farther from SEC
can move. Hence, because each robot located on SEC/3 has
at least one (auxiliary) critical point on its path, after the time
the first robots of C1 start moving and before time t2 there
will always be robots lying neither on SEC/3 nor on SEC. It
follows that a cautiousmovewith the aforementioned critical
points satisfies property P1 that the swarm freezes as soon
as a Valid configuration is formed. On the other hand, by
Theorems 20 and 21, a cautious move with suitable critical
points satisfies propertyP2 that the swarm freezes as soon as
a Pre-regular configuration is formed. By Theorem 9, there
exists a cautious move satisfying both P1 and P2, whose
critical points are computable by algebraic operations, by
Observation 22.

Suppose now that the robots of C1 complete the cautious
move (cf. Lemma 1), reaching SEC at time t2 without ever
forming a Pre-regular or a Valid configuration, and freezing.
Then the next class C2 moves to SEC from a frozen state,
and the previous paragraph’s reasoning applies again. By
induction, either the robots freeze in a Pre-regular or a Valid
configuration during a cautiousmove, or they all finally reach
SEC and freeze. Note that the configuration at this point is
not Half-disk, because it was not at time t0, and robots have
only performed radial moves toward SEC. Hence the con-
figuration must be Valid and Waiting. Also, no two robots
have collided, because the configuration was not Co-radial
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at time t0, and radial moves toward SEC cannot create new
co-radialities. 	


Lemma 27 LetR(t0) be aValid or Invalid configuration, let
all robots’ trajectories at time t0 be disjoint, and suppose that,
if a robot r ∈ R is not frozen at time t0, then the following
conditions hold:

– r(t0) lies in the interior of SED/3;
– The destination point of r at time t0 is on SEC/3;
– r(t0) and r’s destination point at time t0 lie in the interior

of the same main sector of R(t0) \ {r(t0)}.

If the robots execute the UCF algorithm, then they will freeze
in a Valid or in an Invalid configuration without ever collid-
ing.

Proof Recall that a Valid or Invalid configuration is notCen-
tral, not Half-disk, and not Co-radial. Also, since a robot r
and its destination at time t0 lie in the same main sector of
R(t0) \ {r(t0)}, it follows that the center of SED does not lie
on the trajectory of r at time t0 (by definition of SED).

If there is no robot in the interior of SED/3 at time t0, then
by assumption all robots are frozen, and there is nothing to
prove. Otherwise, the configuration is notPre-regular at time
t0, due to Theorem 12. Moreover, it is straightforward to see
that, as the non-frozen robots move toward their destination
points, the configuration remains Valid or Invalid and does
not become Central, Half-disk, Co-radial, or Pre-regular
(recall that the non-frozen robots’ trajectories at time t0 are
within SED/3). Also, no collisions occur because the trajec-
tories are all disjoint, and SED remains unaltered, because
no robot on SECmoves. Therefore, the procedure that is exe-
cuted by the first robots performing a Look-Compute phase
(say, at time t1 � t0) is either Valid and Ready (indeed,
there are robots in the interior of SED/3, hence the configu-
ration cannot beWaiting) or Invalid. Both procedures make
the robots that lie in the interior of SED/3 (which exist, by
assumption) move radially toward SEC/3. Hence, at time t1
the hypotheses of the lemma are still satisfied, and the same
argument can be repeated.

Each moving robot either reaches SEC/3 or moves by at
least δ at each turn; hence, in finite time, there are no robots
left in the interior of SED/3. As soon as this happens, the
swarm is frozen in a Valid or an Invalid configuration, and
no collisions have occurred. 	


Lemma 28 Let R(t0) be a Co-radial, not Central and not
Half-disk configuration with n > 4, and suppose that, if a
robot r ∈ R is not frozen at time t0 and r(t0) does not lie in
SED/3, then the following conditions hold:

– r(t0) is co-radial inR(t0);

– r(t0) is the closest to the center of SED among its co-
radial robots;

– The destination point of r at time t0 is on SEC/3 and
co-radial with r(t0).

Also suppose that, if a non-co-radial robot r ∈ R is not
frozen at time t0 and r(t0) lies in SED/3, then the following
conditions hold:

– r(t0) lies in the interior of SED/3;
– The destination point of r at time t0 is on SEC/3;
– r(t0) and r’s destination point at time t0 lie in the interior
of the same main sector of R(t0) \ {r(t0)}.

Further suppose that all other robots are frozen at time t0,
except perhaps for one robot s ∈ R, for which the following
conditions hold:

– s(t0) lies in SED/3;
– s(t0) is co-radial inR(t0);
– s(t0) is the closest to the center of SED among its co-
radial robots;

– The line through s(t0) and the center of SED bounds two
open half-planes, one of which, Γ , contains exactly one
robot s′ ∈ R at time t0;

– s′(t0) is not co-radial inR(t0);
– The destination point of s and s′ at time t0 is on SEC/3
and in Γ .

Finally, suppose that no two robots’ trajectories at time t0
intersect. If the robots execute the UCF algorithm, then they
will freeze in a Valid or in an Invalid configuration without
ever colliding.

Proof Let M0 ⊂ R be the set of robots outside SED/3 that
are not frozen at time t0. The first robots to execute a Look-
Compute phase execute procedure Co- radial, because the
configuration cannot be Pre-regular, due to Theorem 11. As
long as there are non-co-radial robots in the interior of SED/3,
they move radially toward SEC/3, either radially if they per-
form a Look-Compute phase if they were frozen at time t0, or
laterally if they were not frozen at time t0. Meanwhile, some
robots of M0 perhaps move radially toward SEC/3, and s
perhaps moves and becomes non-co-radial. In this phase no
two robots that were not co-radial with each other at time t0
become co-radial, and in particular no collisions can occur.
Indeed, recall that all trajectories are disjoint at time t0, and
the destination points of non-frozen robots at time t0 are
always on SEC/3. Hence, even if a robot that is moving lat-
erally at t0 stops and starts moving radially, it still does not
collide with other robots. Also, SED is preserved, because no
robot on SECmoves. Therefore, the hypotheses of the lemma
are satisfied throughout this phase, and at some point only
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co-radial robots lie in the interior of SED/3, and all robots
are frozen except perhaps some robots of M0 and s.

At this point, if the co-radial robots closest to the center of
SED lie outside SED/3, some of them move radially toward
SEC/3. Eventually, say at time t1 � t0, some co-radial robots
are found in SED/3. When this happens, all the robots are
frozen, except perhaps s and some robots inM1 ⊂ R, which
lie outside SED/3 and are still moving radially toward SEC/3.
Now the co-radial robots that are closest to the center of SED
are allowed to move laterally, and let C ⊂ R be the non-
empty set of robots that actually move laterally in this phase
(s may or may not be in C). As soon as a robot in C starts
moving, it becomes a non-co-radial robot lying in the interior
of SED/3, and therefore it prevents other robots frommaking
lateral moves. It follows that all the robots in C \ {s}, during
the Look-Compute phase before moving laterally, observe
the same smallest positive angular distanceα between robots,
and they all move in such a way that their destination point
has angular distance α/3 from their location at time t1. In
particular, α is not greater than the angular distance of two
robots of C at time t1, and hence the trajectories of all these
robots are disjoint. Moreover, if s ∈ C and therefore s moves
laterally, it enters the half-plane Γ , approaching s′, which is
now frozen on SEC/3 because it is not co-radial. In addition,
s does not collide with another robot, because it moves into
the interior of the sector determined by s(t1) and s′(t1), which
contains the trajectory of no robot other than s.

Since C is not empty, when the robots of C start moving,
the number of co-radial robots strictly decreases. Let t2 > t1
be the first time at which a robot performs a Look-Compute
phase after all the robots of C have started moving. It is easy
to see that the configuration is notCentral orHalf-disk at time
t2, or two non-co-radial robots would have become co-radial
at some point. Suppose first that the configuration is still
Co-radial at time t2. Then, the hypotheses of the lemma are
satisfied again, but there are fewer co-radial robots. Hencewe
can repeat the previous argument until no co-radial robots are
left. Without loss of generality, suppose that, after the robots
in the set C defined above have started moving, the configu-
ration is not Co-radial any more, and let t3 be the first time
at which a robot performs a Look-Compute phase and does
not see a Co-radial configuration. Then, the configuration
cannot be Central or Half-disk either, and hence it is Valid
or Invalid. Also note that all the robots outside SED/3 are
frozen, because the only such robots that could be moving
must be co-radial. It follows that the hypotheses of Lemma27
are satisfied, and therefore the robots will finally freeze in a
Valid or Invalid configuration without colliding. 	

Lemma 29 LetR be frozen at time t0, letR(t0) be aCentral
or Half-disk configuration with n > 4, and let the robots
execute the UCF algorithm. Then, the robots will freeze in a
Valid or in an Invalid configuration without ever colliding.

Proof The configuration at time t0 is not Valid, by definition.
Also, by Theorems 10 and 11, a Half-disk or Central (hence
Co-radial) set cannot be Pre-regular. Suppose that R(t0) is
Central. Then, according to the algorithm, procedure Cen-
tral is executed, and no robot moves until the robot r lying
at the center of SED performs a Look-Compute phase and
moves toward a point on SEC/3 that is not co-radial with any
robot other than r . Let t1 > t0 be the first time at which a
robot performs a Look-Compute phase and it does not see
r at the center of SED. On the other hand, if R(t0) is not
Central, we just take t1 = t0. In both cases, at time t1 the
swarm is in a configuration that is not Central and may be
Half-disk, or Co-radial, or Valid, or Invalid, and no robot is
moving, except perhaps one non-co-radial robot r in SED/3
that is moving radially toward SEC/3.

Suppose that R(t1) is Half-disk and not Central. Then,
procedure Half- disk is executed by the first robots that
perform a Look-Compute phase, because the configuration
cannot be Pre-regular, due to Theorem 10. Assume first that
the robots are all collinear, and one principal ray contains
exactly two robots. Because n > 4, the other principal ray
� contains at least three robots. Note that the configuration
is frozen at time t1, because we are assuming that the only
moving robot must be non-co-radial, and here all robots are
co-radial. The closest to the center of SED among the robots
lying on � moves radially to SED/3, and then it moves later-
ally within SED/3. At this point, there is at most one robot
moving (within SED/3), and the configuration is Half-disk
with only one empty half-plane. Let t2 � t1 be the first time at
which a robot performs a Look-Compute phase and observes
such a configuration.

Suppose now that the robots at time t1 are all collinear,
and one principal ray contains only one robot s (which lies on
SEC). Then the swarm is frozen, because r would have to be
non-co-radial and in SED/3, but the only non-co-radial robot
is s, which is not in SED/3. From this configuration, the robot
that is closest to the center of SED, s′, first reaches SED/3 by
moving radially, and then it moves laterally within SED/3. At
this point, s′′, the robot lying on the principal line that is now
closest to the center of SED, moves radially to reach SEC/3,
while s′ moves again within SED/3 to become co-radial with
s. If s′ and s′′ stop before reaching their destinations, they
move again toward them. Upon reaching their destinations,
theywait for each other. Hence, eventually, the swarm freezes
in a configuration in which all robots are collinear and one
principal ray contains exactly two robots. From this con-
figuration, as detailed in the previous paragraph, the swarm
reaches at time t2 a Half-disk configuration with only one
empty half-plane, in which only one robot is moving (within
SED/3).

Now, let the configuration at time t2 � t1 beHalf-disk and
assume that, if all robots are collinear, then both principal rays
contain at least three robots. Also, theremay be a unique non-

123



Distributed computing by mobile robots: uniform circle formation 449

frozen robot r , which is not co-radial and located in SED/3
at time t2. The destination point of r is on SEC/3, and the
trajectory of r at time t2 lies in the interior of one main sector
ofR(t2)\{r(t2)}. Note that this could even be the situation at
time t1 = t2. Once again, procedureHalf- disk is executed.
If a principal ray � has no robots in SED/3, a unique robot
s moves to reach this area. This robot is chosen in such a
way that its angular distance from � is minimum, and it is the
closest to the center of SED of such robots. In particular, s
could lie on �, and move radially. Note that, if s is not on � at
time t2, and even if s = r , it does not become co-radial until
it actually reaches �, and even if another robot s′ is moving
to the other principal ray, s and s′ never collide. In particular,
if at time t2 the principal line contains only two robots (on
SEC), and all other robots are co-radial with each other, then
the robot closest to the center of SED, s, first moves toward
one of the principal rays. When it stops being co-radial, the
second closest robot s′ moves to the other principal ray. In
all cases, while this happens, the configuration remainsHalf-
disk, hence it never becomes Pre-regular by Theorem 10,
and procedureHalf- disk keeps being executed. Eventually
s reaches � and, if there is an s′ moving toward �′, s waits for
it (and vice versa).

At some point, say at time t3 � t2, the configuration is
either frozen with all robots collinear and at least three robots
on each principal ray, or the robots are not all collinear and
the only robot that may be not frozen is r (as defined in the
previous paragraph). In both cases, each principal ray has
at least one robot in SED/3. Let s and s′ be the robots on
the two principal rays that are closest to the center of SED.
According to procedure Half- disk, at least one between
s and s′ moves to an empty half-plane, within SED/3, and
without causing collisions. We claim that, at some point
after time t3, the configuration stops begin Half-disk. In
particular, if at time t3 the robots are collinear and both
s and s′ move to the same empty half-plane, another pair
of robots on the principal line will move into SED/3 and
then at least one one them will move into the other empty
half-plane.

Let t4 � t3 be the first time at which a robot performs
a Look-Compute phase and does not observe a Half-disk
configuration. Note that this could also happen at time
t1 = t4. If R(t4) is Co-radial, then the hypotheses of
Lemma 28 are satisfied at time t4, and hence the swarm
eventually freezes in a Valid or Invalid configuration, and
no collisions occur. If R(t4) is Valid or Invalid, then the
hypotheses of Lemma 27 are satisfied at t4. In particu-
lar, if the configuration has evolved from a Half-disk, the
only robots left on the former principal line are the two
lying on SEC, because otherwise the configuration would
be Co-radial. Therefore Lemma 27 applies, the swarm
freezes in a Valid or Invalid configuration, and no collisions
occur. 	


Lemma 30 Let S be a Valid and Waiting set whose points
all lie on SEC, and let W be the set of its walkers. Let S′ =
(S \ W ) ∪ W ′, where W ′ = F ′(W ). Then, S′ is Valid and
Ready.

Proof Note that SED(S) = SED(S′), because W is a mov-
able analogy class, by Observation 7. Also observe that S′ is
not Co-radial and notHalf-disk, because S is not. Moreover,
W is a relocation of W ′ = I(S′), hence S′ is well occupied,
and therefore it is Valid and Ready. 	

Lemma 31 LetR be frozen at time t0, and suppose that the
following conditions hold:

– R(t0) is Valid and Waiting;
– IfR(t0) is Valid and Ready, all the internal robots lie on
their respective finish lines;

– At time t0, all the internal robots are walkers.

Then, if the robots execute theUCF algorithm, they will freeze
either in a Pre-regular configuration, or in the Valid and
Ready configuration (R(t0) \ W(R(t0))) ∪ F ′(W(R(t0))).
During the process, no two robots collide.

Proof If R(t0) is Equiangular or Biangular, then it has no
walkers. It follows that all the robots are on SEC, and hence
they form a frozen Pre-regular configuration. In this case,
there is nothing to prove.

Now assume that R(t0) is Periodic or Aperiodic. Since
the robots are frozen at time t0, the first robots that perform a
Look-Compute phase agree on a target set, a point-target cor-
respondence, and a set of walkers, which is an analogy class
to which all the internal robots belong. According to proce-
duresValid and Ready andValid and Waiting, in all
cases procedure Move Walkers to SEC/3 is executed.
Indeed, recall that in a Valid andWaiting configuration there
are no robots in the interior of SED/3, and therefore Valid
and Waiting is executed in any case. Then, as soon as
the walkers are activated, they start moving radially toward
SEC/3 following the Cautious Move protocol, and while
this happens the footprint of the configuration remains the
same, and so does the set of walkers (indeed, the walkers
form a movable analogy class, due to Observation 7, hence
SED is preserved). In this phase the configuration remains
Valid andWaiting, and it may become Pre-regular, in which
case the robots freeze, due to Theorems 20 and 21 (note that,
as the robots move radially, the period of the configuration
does not change).

Also, as soon as some walkers start moving after time t0,
and as long as some walkers are not on SEC/3, the configu-
ration cannot be Valid and Ready. This is because, due to the
Cautious Move protocol, only the walkers that are farthest
from SEC/3 are allowed to move at any given time. More-
over, the walkers that are initially on SEC have to stop at least
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at one (auxiliary) critical point before reaching SEC/3. It fol-
lows that, unless the walkers are all on SEC/3, and except
perhaps when the configuration is R(t0), there are always
walkers located in the annulus strictly between SEC and
SEC/3. While this is true, the configuration is never recog-
nized as Valid and Ready.

Therefore, if the configuration does not become Pre-
regular, procedure Valid and Waiting keeps being
executed, and the walkers keepmoving toward SEC/3. Even-
tually all the walkers freeze on SEC/3, due to Lemma 1.
When this happens, the configuration finally becomes Valid
and Ready, due to Lemma 30. Note that, in the above, all
robots either stay still or move radially between SEC and
SEC/3, and the configuration is not Co-radial. Hence no two
robots collide. 	

Lemma 32 LetR be frozen at time t0, and suppose that the
following conditions hold:

– R(t0) is Valid and Waiting;
– IfR(t0) is Valid and Ready, all the internal robots lie on
their respective finish lines;

– At time t0, some internal robots are not walkers.

Then, if the robots execute theUCF algorithm, they will freeze
either in a Pre-regular configuration, or in the Valid and
Waiting configurationF(R(t0)). During the process, no two
robots collide.

Proof According to procedures Valid and Ready and
Valid and Waiting, in all cases procedure Move All
to SEC is executed. Indeed, recall that in a Valid and Wait-
ing configuration there are no robots in the interior of SED/3,
and therefore procedureValid and Waiting is executed in
any case. By definition ofWaiting, the internal robots are all
analogous. Hence, whenever an internal robot is activated,
performs a cautious move toward SEC that, due to Theo-
rems 14–21, makes all robots freeze as soon as a Pre-regular
configuration is reached.As the robotsmove radially, the con-
figuration remains Valid andWaiting. Moreover, as soon as a
robot startsmoving, the configuration ceases to beReady, and
cannot becomeReady throughout the cautious move. Indeed,
due to the Cautious Move protocol, only the walkers that
are farthest from SEC are allowed to move at any given time.
Moreover, the robots that are initially onSEC/3have to stop at
least at one (auxiliary) critical point before reaching SEC. It
follows that, except perhaps when the configuration isR(t0),
there are always robots located in the annulus strictly between
SEC and SEC/3. While this is true, the configuration is never
recognized as Valid and Ready. Moreover, the set of walkers
remains the same throughout the motion, and so the same
procedure keeps being executed as the robots move. Due
to Lemma 1, the robots either reach SEC and freeze on it
(forming a Valid and Waiting configuration) or they freeze

in a Pre-regular configuration. Note that, in the above, all
robots either stay still or move radially toward SEC, and the
configuration is not Co-radial. Hence no two robots collide.

	

Lemma 33 Let R be frozen at time t0, let R(t0) be a Valid
and Ready configuration, and let the robots execute the UCF
algorithm. Then, the robots will freeze in a Valid and Wait-
ing and Ready configuration in which all internal robots lie
on their respective finish lines. During the process, the con-
figuration remains Valid and Ready, the finish set does not
change, and no two robots collide.

Proof According to procedure Valid and Ready, if ini-
tially there are internal robots that lie strictly inside SED/3,
theymove radially toward SEC/3. During this phase, the con-
figuration remains Valid and Ready, and therefore the same
procedure keeps being executed by all robots that perform a
Look-Compute after time t0. Hence, at some time t1 � t0, all
internal robots are frozen on SEC/3, and the finish lines and
correspondences at time t0 and at time t1 are the same.

Now, as soon as an internal robot performs a Look-
Compute phase, it executes procedure Move to Finish
Line, which makes it move toward its corresponding finish
line, provided that no other robot is co-radial with some point
on the trajectory. By Proposition 11, at least one robot can
reach its corresponding finish line, and so eventually at least
one robot moves laterally. As soon as a robot starts moving,
it stops being on SEC/3, and therefore any robot that per-
forms a Look-Compute afterwards and lies on SEC/3 does
not move.Whenever a moving robot stops because it is inter-
rupted by the adversary, it moves radially to SEC/3 during
its next cycles.

Therefore the internal robots alternate betweenmoving all
to SEC/3 and toward their finish lines.Observe that no robot’s
angular distance to a point on its corresponding finish line is
π , and recall that no robot can be stopped by the scheduler
before moving by δ at each turn. Hence, for each robot r ,
there is an angle θ̄ (θ0, δ) > 0, depending only on δ and on
r ’s angular distance to (a point on) its corresponding finish
line at time t0, such that, whenever r moves toward its finish
line, it either reaches it or its angular distance to it decreases
by at least θ̄ (θ0, δ). By Proposition 11, at any time there is
always a robot whose corresponding finish line is reachable,
and therefore eventually all robots get on their finish lines.
At this point, the internal robots move radially to SEC/3,
and they freeze. When this happens, the configuration is still
Valid and Ready, but it is alsoWaiting, due to Proposition 12.

Note that, in the above paragraphs, we assumed that
the internal robots keep executing procedure Valid and
Ready. To prove that this is indeed the case, we show that the
configuration remains Valid and Ready, and it never becomes
Pre-regular, Central, Co-radial, or Half-disk. Indeed, note
that the internal robots can never get out of SED/3 or of the
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occupied sectors in which they lie initially. Hence the con-
figuration cannot become Pre-regular, due to Theorem 12,
because there are robots in SED/3 at all times. It is easy to see
that the configuration cannot becomeCentral either, because
no robot’s angular distance to (a point on) its corresponding
finish line is π , and therefore the robot never has to cross
the center of SED to reach it. Also, recall that a robot moves
toward its corresponding finish line only if it can reach it;
all other moves are radial, and therefore they do not affect
angular distances between robots. Moreover, the correspon-
dence between robots and finish lines preserves their cyclic
order around the center of SED. It follows that, if a robot can
reach its corresponding finish line at some point and starts
moving toward it, no other robot can get between them and
cause the formation of a co-radiality. Hence the configura-
tion never becomes Co-radial, and in particular no collisions
occur. Finally, the formation of a Half-disk configuration is
prevented by the fact that the configuration is notHalf-disk at
time t0 and the internal robots remain in the interior of their
initial occupied sectors at all times. 	

Lemma 34 Let S be aValid set of n > 5 points, all of which
lie on SEC. Suppose that W = W(S) is not empty, and let
S′ = (S \W )∪F ′(W ). Let L be the relocation of I(S′) (with
respect to S′) having one point on each finish line of S′, and
let S′′ = E(S′) ∪ L. Then, the following statements hold.

– S does not have fewer analogy classes than S′′.
– If S has an axis of symmetry, then S′′ has the same axis
of symmetry and the same target set. Also, each point of
E(S′) has the same target in both S and S′′.

Moreover, at least one of the following statements holds.

– S has strictly more analogy classes than S′′, or
– S has no axes of symmetry and S′′ has some axes of

symmetry, or
– S is locked and it does not have more satisfied points than

S′′, or
– S is not locked and it has strictly fewer satisfied points
than S′′.

Proof Note that W(S) is a movable analogy class of S, by
Observation 7. Hence SED(S) = SED(S′) = SED(S′′).
Also, S′ is Valid andWaiting and Ready, and soW = W(S′),
and L is well defined.Moreover, the points of L are all analo-
gous in S′′, due to Proposition 12. Therefore, if two points of
S \W are analogous in S, then they are analogous also in S′′.
As a consequence, the number of analogy classes in S′′ does
not exceed the number of analogy classes in S. Specifically,
S′′ has strictly fewer analogy classes than S if and only if L
is a proper subset of an analogy class of S′′. In the following
we denote by P the principal relocation of I(S′)with respect
to S′, and we let S∗ = E(S′) ∪ P .

Suppose that S has an axis of symmetry �. Since W is an
analogy class of S, it has � as an axis of symmetry as well,
due to Proposition 1. But then � is also an axis of symmetry
of F ′(W ), and therefore of S′. Moreover, � is an axis of
symmetry of P (cf. Proposition 12), and hence of S∗, and of
the target set of S∗. Similarly, � is an axis of symmetry of L ,
and therefore of S′′.

If a point p ∈ S lies on �, then p is satisfied in S (by
definition of target set), and hence p /∈ W , by Observation 7.
Then p belongs also to S′, S∗, and S′′.Moreover, p is satisfied
in S′, S∗, and S′′, and therefore the target sets of S, S′, S∗,
and S′′ are the same. Similarly, if no point of S lies on �,
then no point of S′, S∗, and S′′ does. Indeed, even if S and
S∗ are locked, L consists of two antipodal points of SEC that
are symmetric with respect to �, and none of them lies on �

(cf. the definition of finish line and Proposition 9). It follows
that, in all cases, the target sets of S, S′, S∗, and S′′ are the
same, and the points of S \ W that are satisfied in S are also
satisfied in S′, S∗, and S′′ (cf. Proposition 5).

If S does not have an axis of symmetry and S′′ does, there
is nothing to prove. So, in the following we will assume
that S and S′′ are either both asymmetric or both symmetric.
We will also assume that S and S′′ have the same number
of analogy classes, and hence that L is an analogy class
of S′′.

Let S be symmetric and locked. By Observation 7, W is
a movable and non-satisfied analogy class of S. Moreover,
since S is symmetric, we already proved that S′′ has the same
target set of S, and that all the points of S\W that are satisfied
in S are also satisfied in S′′. Therefore, S′′ has at least asmany
satisfied points as S.

Let S be symmetric and not locked. Then the points of W
are not satisfied and can reach their targets in S. Recall that
targets and correspondences are preserved from S to S′ to S∗
to S′′, because S is symmetric. Therefore S∗ is not locked,
because P is improvable in S∗, as W is improvable in S. Let
R be the tentative finish set of S′. By definition, R is the set of
targets T of the points of I(S′), unless P is a proper subset of
an analogy class of E(S′) ∪ P . However, in this case R = P
and, by definition of finish set, R = L . This implies that L is
a proper subset of an analogy class of S′′, which contradicts
our previous assumptions. Hence R = T and, since S∗ is not
locked, R = L . It follows that the points of L are satisfied in
S′′. Recalling that the points of S \ W that are satisfied in S
are also satisfied in S′′, we conclude that S′′ has strictly more
satisfied points than S.

Suppose that neither S nor S′′ have an axis of symmetry.
LetC be the set of satisfied points of S. By definition of target,
C is a concordance class ofmaximumsize. ByObservation 7,
W is a non-satisfied analogy class of S, and therefore no point
of W is in C . Since L is a relocation of I(S), there are some
concordance classes in S′′ with |C | points on SEC: indeed,
C must be a subset of one of such classes. Considering that
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S′′ is not symmetric by assumption, this implies that it has at
least |C | satisfied points, as well. Hence, if S is locked, there
is nothing to prove, because it does not have more satisfied
points than S′′.

Let therefore S be not locked. We claim that S∗ cannot
be symmetric. Assume for a contradiction that � is an axis
of symmetry of S∗. Suppose that P is an analogy class of
S∗. Then, by Proposition 1, � is an axis of symmetry of P , as
well. Hence, as argued above, � is an axis of symmetry of S′′,
contradicting our assumptions. If P is not an analogy class
of S∗, then it must be a proper subset of an analogy class,
because all the points of P are analogous (by Proposition 12).
Then, by definition of tentative finish set, R = P . Hence R is
not an analogy class of S∗, and in particular it cannot possibly
be an unlocking analogy class of S∗, implying that R = L , by
definition of finish set. As a consequence, S′′ = S∗, meaning
that S′′ is symmetric, which contradicts our assumptions.
Hence S∗ is not symmetric.

As a consequence, by definition of target, S′ has at least |C |
satisfied points. Moreover, since the points of W can reach
their targets in S, it follows that there is a concordance class in
C ′ in S∗ with |C | points in E(S′) such that some relocation R′
ofF ′(W )with respect to S′ belongs to the same concordance
class as C ′ in E(S′) ∪ R′. In particular, one of such concor-
dance classesC ′ defines the set of targets in S′, and therefore
the tentative finish set R coincides with the set of targets T of
the points of I(S′) with respect to S′. Indeed, if this was not
true, then P would be a proper subset of some analogy class
of S∗, and R = P . Hence R is not an analogy class in S∗,
and R = L . Moreover, by Proposition 12, the points of L are
all analogous in S′′. Hence L is a proper subset of an analogy
class of S ′′, contradicting our previous assumption. We con-
clude that R must coincide with T . Hence E(S′) ∪ R has a
unique concordance class with strictly more than |C | points,
which therefore define the targets, and are all satisfied. Such
a concordance class contains R, and hence R cannot possibly
be a non-satisfied unlocking analogy class. Then, by defin-
ition of finish line, R = L . It follows that S′′ has a unique
concordance class with more than |C | points, which are sat-
isfied. This means that S′′ has strictly more satisfied points
than S. 	

Lemma 35 Let S be a locked Valid set of n > 5 points, all
of which lie on SEC. Let W = W(S), and let S′ = (S \
W ) ∪ F ′(W ). Let L be the relocation of I(S′) (with respect
to S′) having one point on each finish line of S′, and let
S′′ = E(S′)∪L. Then, at least one of the following statements
holds.

– S′′ is not locked.
– S′′ has fewer analogy classes than S.
– S′′ has fewer non-movable analogy classes than S.

Proof Since S is locked, by Proposition 9 it isAperiodic, and
hence its period is n. Therefore, byObservation 3, S hasmore
than one analogy class, and, by definition of walker,W(S) is
not empty, and it is a non-satisfied unlocking analogy class of
S. By definition of unlocking analogy class, W is movable,
and hence SED(S) = SED(S′) = SED(S′′). Note also that
S′ is Valid and Ready, hence L is well defined. Now, let P
be the principal relocation of I(S′) with respect to S′, let
S∗ = E(S′) ∪ P , and let R be the tentative finish set of S′.

Suppose first that P is a proper subset of an analogy class
of S∗. Then, by definition of tentative finish set, R = P . Also,
since R is not an analogy class of S∗, then, by definition of
finish set, R = L , and therefore S′′ = S∗. Since W(S) is an
analogy class of S, and L is a proper subset of an analogy class
of S′′, it follows that S′′ has strictly fewer analogy classes
than S.

Now suppose that P is an analogy class of S∗. Suppose
also that S is Uni-aperiodic and S∗ is not Uni-aperiodic.
Then, by Observation 2, W consists of a single point, and
therefore so does P . But P is an analogy class of S∗, and so
S∗ must be Bi-aperiodic, again by Observation 2. Moreover,
the unique point p ∈ P lies on the unique axis of symmetry of
S∗ and, by definition of target, it is satisfied in S∗. Therefore,
p is the target corresponding to the unique point of I(S′)
and, by definition of tentative finish line, R = P . Note that,
if E(S′) ∪ R = S∗ is locked, then R cannot be an unlocking
analogy class of it. Indeed, due to Proposition 9, since S∗ is
Bi-aperiodic, its unique analogy class consists of two points.
Hence, by definition of finish set, R = L , and therefore
S′′ = S∗. This implies that S′′ is Bi-aperiodic, and as such it
has fewer analogy classes than S, as required.

So, in the following, we assume that P is an analogy class
of S∗ and that, if S is Uni-aperiodic, then also S∗ is Uni-
aperiodic. Let T be the set of targets of the internal points
of S∗. We claim that T is not a relocation of I(S∗), so let us
assume the opposite. We distinguish two cases.

– Let S have an axis of symmetry. Then S∗ has the same
axis of symmetry, and the same target set as S, with the
same correspondences for points in E(S′) (cf. the proof of
Lemma34). So, if T is a relocation ofI(S∗), it means that
the points ofW can reach their targets in S, contradicting
the fact that W is a non-satisfied analogy class of S, and
S is locked.

– Let S have no axes of symmetry. By Proposition 9, S
is Uni-aperiodic, and W consists of a single point p.
By our assumption, S∗ is also Uni-aperiodic. Then, by
definition of target in a Valid and Ready set, relocating
F ′(p)makes it join a concordance class ofmaximumsize
(more specifically, a concordance class whose number of
points on SEC(S′) = S\{p} is maximum). Therefore, by
definition of target in a Valid and not Ready set, p can
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reach its own target in S, which again contradicts the fact
that W is non-satisfied and S is locked.

It follows that T is not a relocation ofI(S∗) and, by definition
of tentative finish set, R = P .

Suppose that S∗ is not locked. Then, by definition of finish
set, R = L , and hence S′′ = S∗. This implies that S′′ is not
locked, as required. Suppose now that S∗ is locked. Since S
is also locked, then, by Proposition 9, there are two cases to
consider.

– Let S be Bi-aperiodic. Then S has exactly one non-
movable analogy class U = {p, q}, where p and q are
consecutive. Let {p′, q ′} = W be the unique unlocking
analogy class of S, such that p and p′ are consecutive.
Let � be the unique axis of symmetry of S, and let �′ be
the line orthogonal to � and passing through the center of
SED(S). Then, by Observation 5 and by the symmetry of
S, there is a half-plane bounded by �′ containing p and
q, and no other point of S. Recall that S∗ has � as an axis
of symmetry as well, and hence it is Bi-aperiodic. Since
S∗ is locked too, and it is obtained from S by relocating
F ′(W ), it is easy to see that either U is the non-movable
analogy class of S∗, orW and its relocation L lie on oppo-
site sides of �′, and n = 6. However, in the latter case, the
targets of p′ and q ′ in S lie on �′, implying that p′ and q ′
can reach their targets, and therefore that either W is not
a movable non-satisfied analogy class, or S is not locked.
This is a contradiction, and hence U is the non-movable
analogy class of S∗. It follows that P is the unlocking
analogy class of S∗. Because R = P (as argued above)
and by definition of finish set, L consists of two antipodal
points lying on �′. But then S′′ cannot be locked, because
it has � as an axis of symmetry (by Lemma 34), and no
analogy class of S′′ could be alone one side of �′, because
L ⊂ �′.

– Let S be Uni-aperiodic. Then S has at least one non-
movable analogy class {p} and,without loss of generality,
p is consecutive to q, where W = {q}. Let r ∈ S be
the other consecutive point of p (note that {r} is either
a non-movable analogy class or an unlocking analogy
class), and let p′ ∈ S be the other consecutive point of
q. Recall that, since S is Uni-aperiodic, then S∗ is Uni-
aperiodic, as well. By Observation 5, an analogy class
{c} of S (respectively, S∗) is non-movable if and only if
the sum of the angular distances between c and its two
consecutive points in S (respectively, S∗) is greater than
π . Note that this sum, computed on q with respect to S, is
the same as the sum computed on the unique point of P
with respect to S∗. Also, since |S∩ S∗| = n−1, the only
points of S∩S∗ for which such a sumof angular distances
may not be preserved in S∗ are p and p′, because they are
consecutive to q. It follows that the only possible non-

movable analogy classes of S∗ are {p}, {p′}, and {r} (the
latter is non-movable in S∗ if and only if it is non-movable
in S). Suppose that P is not an unlocking analogy class of
S∗. Therefore, by definition of unlocking analogy class,
neither {p} nor {p′} is a non-movable analogy class of
S∗. Also, since R = P , then, by definition of finish set,
R = L , implying that S′′ = S∗. So, in this case, S′′ is
locked and it has fewer non-movable analogy classes than
S. Suppose now that P (and therefore R) is an unlocking
analogy class of S∗. By definition of finish set, L = {r ′},
where r ′ is the antipodal of r with respect to SEC(S).
So, S′′ contains two antipodal points, r and r ′. If S′′ is
notUni-aperiodic, then it has fewer analogy classes than
S, and we are done. So, let S′′ be Uni-aperiodic. Note
that, by Proposition 11, r ′ is indeed reachable by q, and
therefore the two consecutive points of r ′ in S′′ are p
and p′. So, by the previous argument on angular distance
sums, it follows that, once again, the only analogy classes
of S′′ that could possibly be non-movable are {p}, {p′},
and {r} (the latter if and only if it is non-movable also
in S). But, since r and r ′ are antipodal, no analogy class
of S′′ other than {r} can be non-movable (again, by the
angular distance sum argument). Hence, S′′ has fewer
non-movable analogy classes than S. 	


Lemma 36 Let R be frozen at time t0, let R(t0) be a Valid
configuration with n > 5, and let the robots execute the UCF
algorithm. Then, the robots will eventually freeze in a Pre-
regular configuration without ever colliding.

Proof Suppose for a contradiction that the robots never
freeze in a Pre-regular configuration. Then, we claim that
there is a time t1 � t0 at which the swarm is frozen in a Valid
and Waiting and Ready configuration in which all the walk-
ers are on SEC/3 and the other robots are on SEC. Indeed,
if R(t0) is Valid and Ready, by Lemma 33 there is a time
t ′0 � t0 at which the robots are frozen in a Valid andWaiting
andReady configuration inwhich all the internal robots are on
their finish lines. This configuration satisfies the hypotheses
of either Lemmas 31 or 32. One of these two lemmas applies
also if the configuration at time t0 is not Ready. Hence, with-
out loss of generality, we may assume that either Lemmas 31
or 32 applies at time t ′0. If Lemma 32 applies, then there is a
time t ′′0 � t ′0 atwhich the all the robots are frozen onSEC, and
therefore they satisfy the hypotheses of Lemma 31. Hence,
without loss of generality, at time t ′′0 Lemma 31 applies. As
a consequence, there is a time t1 � t ′′0 at which all the walk-
ers are on SEC/3, and all the other robots are on SEC. This
configuration is Valid andWaiting and Ready, due to Obser-
vation 7.

Subsequently, by Lemma 33, all the internal robots of
R(t1)move to their corresponding finish lines (which remain
unchanged during the movements) and freeze on SEC/3 at
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time t ′1 � t1.At this point, the configuration isValid andWait-
ing and Ready, due to Proposition 12, and either Lemmas 31
or 32 applies, depending if the internal robots are all walk-
ers or not. If the internal robots are walkers, then Lemma 31
applies, and all the walkers freeze on SEC/3 at time t2 � t ′1.
Otherwise, first the internal robots freeze on SEC at time
t ′′1 � t ′1, due to Lemma 32. Afterwards, Lemma 31 applies,
and all the walkers of R(t ′′1 ) move onto SEC/3, and freeze
at time t2 � t ′′1 . Hence, in all cases, at time t2 � t1 the new
walkers are on SEC/3, and all the other robots are on SEC.

Note that at time t2 the set of internal robots is not empty,
because otherwiseR(t ′′1 ) would be an Equiangular or Bian-
gular configuration (by definition of walker) with all robots
of SEC. Hence it would be Pre-regular, contradicting our
assumptions. Also, R(t1) and R(t2) cannot be Equiangular
or Biangular, otherwise they would not be Valid and Ready,
due to Observation 3.

By repeating the previous argument, we infer that there
exists a monotone sequence of time instants (ti )i>0 with the
following properties, for all i > 0.

– At time ti , the configuration is Valid and Waiting and
Ready (hence not Equiangular and not Biangular), all
walkers are frozen on SEC/3, and all other robots are
frozen on SEC.

– R(ti+1) is obtained from R(ti ) by first moving all the
internal robots to their corresponding finish lines, and
then sending all the non-walkers to SEC and all the walk-
ers to SEC/3.

Let Si = F(R(ti )), for all i > 0. Observe that Si
and Si+1 satisfy the hypotheses of Lemma 34, if we set
S := Si and S′′ := Si+1. Indeed, by definition of walker,
W(F(R(ti ))) = F(W(R(ti ))). Also, sinceR(ti ) cannot be
Equiangular or Biangular, the set of walkers of Si is not
empty. We are going to repeatedly apply Lemma 34 to derive
a contradiction, by arguing that either the number of analogy
classes of the Si ’s decreases indefinitely as i grows, or the
number of their satisfied points grows indefinitely.

According to Lemma 34, the number of analogy classes
of Si never increases as i grows. Since this number cannot
be smaller than 1, there must be an index a > 0 such that Si
and Si+1 have the same number of analogy classes, whenever
i � a.

Let us choose an index s as follows. If Si has an axis
of symmetry for some i � a, then we let s be any such i .
Otherwise, we let s = a. Then, because axes of symmetry are
preserved from Si to Si+1 (by Lemma 34), it follows that, for
all i � s, either both Si and Si+1 are symmetric, or neither
of them is.

Therefore, starting at index s, the Si ’s never go from asym-
metric to symmetric, and the number of their analogy classes
stays constant. As a consequence, Lemma 34 implies that,

for all i � s, Si+1 has at least as many satisfied points as Si .
But the number of satisfied points of Si is bounded by the
number of robots in the swarm, n, and so there must be an
index m � s such that Si and Si+1 have the same number of
satisfied points, whenever i � m.

We claim that there is an index u � m such that Su is not
locked. Assume the opposite. Then we can apply Lemma 35,
with S := Sm+i and S′′ := Sm+i+1, for all i � 0. So, either
Sm+i+1 is not locked (which contradicts our assumption), or
it has strictly fewer analogy classes than Sm+i (which con-
tradicts the fact thatm+ i � a), or it has fewer non-movable
analogy classes than Sm+i . Hence there must be some i � 0
such that Sm+i has no non-movable analogy classes. But,
by Proposition 7, such an Sm+i is not locked, contradict-
ing our assumption again. Therefore Su is not locked for
some u � m, and Lemma 34 states that Su+1 has strictly
more satisfied points than Su , contradicting the definition
of m. 	

Theorem 23 The Uniform Circle Formation problem
is solvable by n > 5 robots in ASYNC.

Proof We apply the UCF algorithm of Sect. 4.2. Recall that
the initial configuration is frozen. If the robots are frozen in a
Co-radial or Central or Half-disk configuration, they freeze
in a Valid or Invalid configuration, due to Lemmas 28 and 29.
If the robots are frozen in a Valid or Invalid configuration,
they freeze in aPre-regular configuration, due to Lemmas 26
and 36. If the robots are frozen in aPre-regular configuration,
they freeze in a Regular configuration, due to Lemma 25.
Finally, if the robots are frozen in a Regular configuration,
they remain still forever, due to Lemma 24. Therefore the
Uniform Circle Formation is solvable for n > 5. 	


5.4 Small swarms

We have just shown how theUniform Circle Formation
can be solved by n > 5 robots. We now consider the cases
of small swarms.

Theorem 24 The Uniform Circle Formation problem
is solvable by n = 3 robots in ASYNC.

Proof We use the following algorithm:

– If the three distances between pairs of robots are all dis-
tinct and robots r1 and r2 are farthest apart, then robot r3
moves parallel to r1r2 toward the axis of r1r2;

– Otherwise, if r1r3 = r2r3, then r3 moves to the closest
point that forms an equilateral triangle with r1 and r2 (in
case there are two such points, one is chosen arbitrarily).

In the first case, robot r3 moves orthogonally to the axis
of r1r2. While this happens, r1 and r2 remain the farthest-
apart robots, and r3 keeps being the robot that has to move.
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Eventually r3 reaches the axis of r1r2, it freezes, and the
configuration transitions to the second case,with r1r3 = r2r3.

If the robots are frozen and r1r3 = r2r3, then robot r3
moves orthogonally to r1r2. While this happens, r3 remains
equidistant from r1 and r2 and keeps being the robot that has
to move. When r3 reaches the point that forms a Regular set
with the other two robots, it freezes. 	

Lemma 37 Let S be a Uni-aperiodic set of n = 5 points, all
of which lie on SEC, and no two of which are antipodal. Then
there exists a movable point of S that can reach the antipodal
of another point of S.

Proof By Observation 2, every analogy class of S consists
of a single point, and therefore, with a slight abuse of termi-
nology, wemay refer to movable and non-movable points (as
opposed to analogy classes). By Proposition 8, if there are
two non-movable points in S, they are consecutive, and hence
there are at most two non-movable points. Let p1, p2, p3, p4,
p5 be the points of S, appearing in this order around the center
of SED. Without loss of generality, we may assume that p2
and p4 are movable. Suppose for a contradiction that neither
of these two points can reach the antipodal of another point
of S. Let p′

i be the antipodal of pi with respect to SEC, for
1 � i � 5, and let S′ = {p′

i | 1 � i � 5}. Since p2 cannot

reach any p′
i , the arc

�
p1 p3 is devoid of points of S′. Simi-

larly, since p4 cannot reach any p′
i , the arc

�
p3 p5 is devoid of

points of S′. Because no two points of S are antipodal, the
endpoints of these arcs cannot be in S′, either. It follows that
the whole closed arc

�
p1 p5 is devoid of points of S′. Note

that the arc
�

p5 p1 is strictly shorter than a half-circle, due to
Observation 1 (it cannot be a half-circle, otherwise p1 and
p5 would be antipodal). Therefore the arc

�
p1 p5 is strictly

longer than a half-circle, and hence it contains both p′
1 and

p′
5, which is a contradiction. 	


Theorem 25 The Uniform Circle Formation problem
is solvable by n = 5 robots in ASYNC.

Proof We use a modified version of the general algorithm
of Sect. 4.2. Note that the proof of correctness holds for the
case n = 5 as well, except for Lemmas 34, 35, and 36,
which all assume that n > 5. This is due essentially to the
last sentence of Proposition 9, which express a property of
locked configurations of n > 5 points. The core problem is
that, if n = 5, there are locked configurations in which all
the robots that belong to unlocking analogy classes happen
to be satisfied. Recall that, for n = 5, the definition of walker
allows the selection of a satisfied unlocking analogy class
as the set of walkers. On one hand, this prevents us from
arguing that the number of satisfied robots cannot decrease
after a certain point, as we did in Lemmas 34 and 36. On the
other hand, the current definition of finish set will allow such
walkers to go back into their targets right away. This causes

the same locked configuration to be formed infinitely many
times, rendering the statement of Lemma 35 false, and giving
rise to an infinite loop in the execution.

We can fix the algorithm as follows: if n = 5, we retain
all the definitions as they are, except for the definition of
walker and the definition of finish set. Assuming that the
configuration S is a Valid set with all n = 5 points on SEC,
the walkers are selected as usual, except in the following
cases.

– Let S beUni-aperiodicwith no pairs of antipodal points.
Then, among the movable points of S that can reach
the antipodal point of another point of S, the walker is
the one that induces the lexicographically smallest angle
sequence (such a point exists due to Lemma 37).

– Let S beUni-aperiodicwith exactly one pair of antipodal
points. Then, the walker is the unique point that is con-
secutive to the two antipodal points (such a point exists
because a Valid set is not Half-disk).

– Let S beUni-aperiodicwith two pairs of antipodal points.
Then, thewalker is the unique point of S that is not antipo-
dal to any other point of S.

– Let S beBi-aperiodicwith exactly one satisfied point, and
having two antipodal analogous points. Then, thewalkers
are the two analogous points that are not antipodal.

Note that in every case thewalkers constitute amovable anal-
ogy class, in accordance with Observation 7.

Now to the definition of finish set. Suppose that the set S
is Valid and Ready and has n = 5 points. Let S′ = E(S)∪ P ,
where P is the principal relocation of I(S). Then, the finish
set is defined as usual, except in the following cases.

– Let S′ be Uni-aperiodic, and suppose that there exists
at least one point of S′ whose antipodal point can be
reached by the unique point of P . Then, let p ∈ S′ be the
one among such points that induces the lexicographically
smallest angle sequence with respect to S′. By definition,
the finish line corresponding to the internal point of S
contains the antipodal point of p.

– Let S′ be Bi-aperiodic, let P consist of two non-
consecutive points, and let the two consecutive analogous
points of S′ be non-satisfied. Then, let R be the reloca-
tion ofI(S) consisting of two antipodal points onSEC(S)

such that R is an analogy class of E(S)∪R. By definition,
R is a subset of the finish set of I(S).

Note that in both cases each finish line is reachable by exactly
one internal point (cf. Proposition 11).

Let us prove that the above modifications to the general
algorithm are sufficient to solve theUniform Circle For-
mation problem for n = 5 robots. Note that, if the robots
ever freeze in a Pre-regular configuration, they also freeze
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in a Regular configuration, due to Lemma 25, and then they
remain still forever, due to Lemma 24. So, suppose for a
contradiction that they never freeze in a Pre-regular config-
uration. If the robots are frozen in a Co-radial or Central
or Half-disk configuration, they freeze in a Valid or Invalid
configuration, due to Lemmas 28 and 29. If they are frozen in
an Invalid configuration, they freeze in a Valid configuration,
by Lemma 26. Hence, assume that the robots are frozen in a
Valid configuration at time t0, and assume for a contradiction
that they never form a Regular configuration. So, as in the
proof of Lemma 36, we can construct a monotone sequence
of time instants (ti )i>0 with the same properties (note that
only Lemmas 30–33 are used to prove this part, and they hold
also for n = 5). Again, let Si = F(R(ti )).

Suppose that there exists an index s such that Ss has an axis
of symmetry. Following the proof of Lemma 34, we argue
that Ss+i , for all i � 0, has the same axis of symmetry and
the same target set. Let m � s be such that the number of
satisfied points in Sm is maximum. Suppose first that Sm is
not locked. In all non-locked Bi-aperiodic cases, including
the newly added one, the walkers are non-satisfied points that
can reach their corresponding targets. Since Sm is symmetric
and the unique point on the axis of symmetry is satisfied,
it follows that there are exactly two walkers in Sm . If the
two walkers are non-consecutive, so are the elements of their
principal relocation (of their anti-footprints). In this case, if
the two other analogous points of Sm are non-satisfied, the
new definition of finish set applies. Therefore, in Sm+1 there
is exactly one satisfied point and two antipodal analogous
points. Now, according to the new algorithm, the walkers are
the two analogous points that are not antipodal. In Sm+2 these
two points are moved to their targets. Then the two antipodal
points are selected as walkers, and are moved to their targets
in Sm+3, thus forming aRegular configuration, which contra-
dicts our assumptions. In all other non-locked Bi-aperiodic
cases, the walkers cannot give rise to a locked configuration
by moving to their targets, nor can their principal relocation
be a proper subset of an analogy class, because n = 5 and
analogy classes can have at most two points each. Therefore,
in all these cases, the walkers of Sm choose finish lines that
contain their targets. Hence the number of satisfied points in
Sm+1 increases, which contradicts the definition of m. If, on
the other hand, Sm is locked, the two points of the unlock-
ing analogy class are selected as walkers (indeed, the new
Bi-aperiodic rule does not apply to this case, because if two
points of Sm are antipodal, then Sm cannot be locked). These
two points are non-consecutive, and perhaps are satisfied.
Note that the other two analogous points of Sm are not satis-
fied, otherwise the configuration would not be locked. Here
the new definition of finish lines applies; arguing as above,
we conclude that Sm+3 is Regular, which is a contradiction.

Suppose now that Si has no axis of symmetry for any
i > 0. Assume that, for some index a, there are two pairs

of antipodal points in Sa . According to the new algorithm,
the walker is the point that is not antipodal to any other. The
principal relocation {p} of the anti-footprint of the walker
gives rise to a symmetric configuration, and the chosen fin-
ish line contains p. Therefore, Sa+1 has an axis of symmetry,
which contradicts our assumptions. Suppose now that in Sa
there is exactly one pair of antipodal points. According to
the new algorithm, the walker is the point that is consecutive
to both antipodal points. The principal relocation {p} of the
anti-footprint of the walker gives rise to a configuration S′.
If S′ is symmetric and p lies on the axis of symmetry, then
that is the walker’s target, which is also chosen as a finish
line (note that S′ cannot be locked, due to the two antipodal
points). Hence Sa+1 is symmetric, which is a contradiction.
Now let S′ be symmetric, and suppose that p does not lie
on the axis of symmetry. Then, {p} must be a proper subset
of an analogy class of S′, and therefore the tentative finish
set of S′ is {p}. Also note that, if S′ is locked, {p} cannot
be an unlocking analogy class of S′, because it contains only
one point (cf. Proposition 9). Therefore p lies on the fin-
ish line, by definition. Hence Sa+1 is symmetric, which is
again a contradiction. Suppose now that S′ is not symmetric,
and therefore it is Uni-aperiodic. Note that p can reach the
antipodal of another point of S′, and hence it is moved to such
a point, according to the new definition of finish set. Then in
Sa+1 there are two pairs of antipodal points, and we already
proved that this leads to a contradiction. Finally, assume that
in S1 there are no pairs of antipodal points. By the new algo-
rithm, the walker is a single movable point that can reach the
antipodal of another point of S1. The principal relocation {p}
of the anti-footprint of thewalker gives rise to configuration a
S′. If S′ isUni-aperiodic, the new algorithm chooses a finish
line containing the antipodal of some point. Hence in S2 there
are exactly two antipodal points, and the previous argument
applies. Suppose then that S′ is Bi-aperiodic. If p lies on the
axis of symmetry of S′, then it is satisfied, and the tentative
finish set is {p}. Note that, if S′ is locked, then {p} can-
not be the unlocking analogy class, because it only has one
point (cf. Proposition 9). Therefore, the finish line contains
p, by the usual definition. Hence S2 is symmetric, which is a
contradiction. Suppose now that p does not lie on the axis of
symmetry of S′. So, {p} is a proper subset of an analogy class,
and hence the tentative finish set is {p}. Once again, if S′ is
locked, {p} cannot be an unlocking analogy class, and hence
the finish line contains p. Then S2 is symmetric, which is a
contradiction. 	


6 Conclusions

By Theorems 23–25 and by the result in [21], which deals
with the special case of n = 4 robots, it follows that
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Theorem 26 The Uniform Circle Formation problem
is solvable in ASYNC. 	


Recall that no pattern other than Point and Uniform
Circle can be formed fromevery initial configuration, even
if the system is fully synchronous, the robots are provided
with chirality, and the adversarial scheduler does not have
the power of interrupting the robots’ movements (rigidity).
In light of the result of [3] for Point, Theorem 26 implies
that asynchrony is not a computational handicap, and that
additional powers such as chirality and rigidity are compu-
tationally irrelevant.
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