
Distrib. Comput. (2017) 30:391–412
DOI 10.1007/s00446-016-0290-y

A theoretical and empirical evaluation of an algorithm
for self-healing computation

George Saad1 · Jared Saia1

Received: 28 October 2014 / Accepted: 15 November 2016 / Published online: 3 December 2016
© Springer-Verlag Berlin Heidelberg 2016

Abstract In the problem of reliable multiparty computation
(RMC), there are n parties, eachwith an individual input, and
the partieswant to jointly compute a function f over n inputs;
note that it is not required to keep the inputs private. The
problem is complicated by the fact that an omniscient adver-
sary controls a hidden fraction of the parties. We describe
a self-healing algorithm for this problem. In particular, for
a fixed function f , with n parties and m gates, we describe
how to perform RMC repeatedly as the inputs to f change.
Our algorithmmaintains the following properties, evenwhen
an adversary controls up to t ≤ (14 − ε)n parties, for any
constant ε > 0. First, our algorithm performs each reliable
computation with the following amortized resource costs:
O(m + n log n) messages, O(m + n log n) computational
operations, and O(�) latency, where � is the depth of the
circuit that computes f . Second, the expected total number
of corruptions is O(t (log∗ m)2), after which the adversari-
ally controlled parties are effectively quarantined so that they
cause no more corruptions. Empirical results show that our
algorithm can reduce message cost by a factor of 432 when
compared with algorithms that are not self-healing.

Keywords Self-healing algorithms · Threshold cryptogra-
phy · Leader election

This research is partially supported by NSF Award SATC 1318880.

B George Saad
saad@cs.unm.edu

Jared Saia
saia@cs.unm.edu

1 Department of Computer Science, University of New Mexico,
Albuquerque, NM, USA

1 Introduction

How can we protect a network against adversarial attack? A
traditional approach provides robustness through redundant
components. If one component is attacked, the remain-
ing components maintain functionality. Unfortunately, this
approach incurs significant resource cost, even when the net-
work is not under attack.

An alternative approach is self-healing, where a network
detects the damage made by attacks, inspects the corruption
situation and automatically recovers. Self-healing algorithms
expend additional resources only when it is necessary to
repair from attacks.

In this paper, we describe self-healing algorithms for the
problem of reliable multiparty computation (RMC). In the
RMC problem, there are n parties, each with an individual
input, and the parties want to jointly compute a function f
over n inputs. A hidden 1/4-fraction of the parties are con-
trolled by an omniscient Byzantine adversary. A party that is
controlled by the adversary is said to be bad, and the remain-
ing parties are said to be good. Our goal is to ensure that all
good parties learn the output of f .1

RMC abstracts many problems that may occur in high-
performance computing, sensor networks, and peer-to-peer
networks. For example, we can use RMC to enable per-
formance profiling and system monitoring, compute order
statistics, and enable public voting.

Our main result is an algorithm for RMC that (1) is
asymptotically optimal in terms of total messages and total
computational operations; and (2) limits the expected total
number of corruptions. Ideally, each bad party would cause

1 Note that RMC differs from secure multiparty computation (MPC)
only in that there is no requirement to keep inputs private.

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s00446-016-0290-y&domain=pdf

392 G. Saad, J. Saia

O(1) corruptions; in our algorithm, each bad party causes an
expected O((log∗ m)2) corruptions.

This paper is organized as follows. In Sect. 2, we describe
our model. Our main theorem is given in Sect. 3, and we
provide a technical overview in Sect. 4. The related work
is discussed in Sect. 5. Section 6 describes our algorithms.
The analysis of our algorithms is shown in Sect. 7. Section 8
gives empirical results showing how our algorithms improve
the efficiency of the butterfly networks of [1]. Finally, we
conclude and describe problems for future work in Sect. 9.

The theoretical result of this paper was first presented as
an extended abstract in [2]. This paper is the full version of
that extended abstract.

2 Our model

We assume a static Byzantine adversary that takes over t ≤
(14 −ε)n parties before the algorithm begins, for any constant
ε > 0. As mentioned previously, parties that are compro-
mised by the adversary are called bad, and the remaining
parties are good. The bad parties may arbitrarily deviate from
the protocol, by sending no messages, excessive numbers of
messages, incorrect messages, or any combination of these.
The good parties follow the protocol. We assume that the
adversary knows our protocol, but is unaware of the ran-
dom bits of the good nodes. We make use of a public key
cryptography scheme, and thus assume that the adversary is
computationally bounded.

Weassumeapartially synchronous communicationmodel,
where any message sent from one good node to another good
node requires atmost h time steps to be sent and received, and
the value h is known to all nodes. Note that we assume partial
synchronous communication, but with a rushing adversary.
The adversary is rushing in the sense that the bad nodes can
wait to receive all messages in a round, before they need to
send out their own messages for that round.

We further assume that each party has a unique ID.We say
that party p has a link to party q if p knows q’s ID and can
directly communicate with node q in the overlay network.

In the reliable multiparty computation problem, we
assume that the function f can be implemented with an arith-
metic circuit over m gates, where each gate has two inputs
and at most two outputs.2 For simplicity of presentation, we
focus on computing a single function multiple times (with
changing inputs). However, we can also compute multiple
functions with our algorithm.

2 We note that any gate of any fixed in-degree and out-degree can be
converted into a fixed number of gates with in-degree 2 and out-degree
at most 2.

3 Our result

We describe an algorithm, COMPUTE, to efficiently solve
reliable multiparty computation. Our main result is summa-
rized in the following theorem.

Theorem 1 Assume we have n parties providing inputs to
a function f that can be computed by an arithmetic circuit
with depth � and containingm gates. ThenCOMPUTE solves
RMC and has the following properties.

(1) In an amortized sense,3 any execution of COMPUTE
requires O(m + n log n) messages sent by all parties,
O(m + n log n) computational operations performed by
all parties, and O(�) latency.

(2) The expected total number of times COMPUTE returns
a corrupted output is O(t (log∗ m)2).

Our experimental results in Sect. 8 show that our algo-
rithms (Sect. 6) reduce the message cost, compared to the
naive algorithm (Sect. 4.3), by a factor of 432 for n = 8191.

4 Technical overview

In this section, we briefly describe a quorum graph as well
as a naive (no self-healing) computation algorithm and our
self-healing approach.

4.1 Quorums and Quorum graph

Our algorithms make critical use of quorums and a quorum
graph. We define a quorum to be a set of Θ(log n) parties,
of which at most 1/4 are bad. Many results show how to
create and maintain a network of quorums [1,3–8]. All of
these results maintain what we will call a quorum graph in
which each vertex represents a quorum. The properties of the
quorum graph are:

(1) each party is in Θ(log n) quorums;
(2) for any quorum Q, any party in Q can communicate

directly to any other party in Q; and
(3) for any quorums Q and Q′ that are directly connected

in the quorum graph, any party in Q can communicate
directly with any party in Q′ and vice versa.

Moreover, we assume that for any two parties x and y in a
quorum, x knows all quorums that y is in.

3 In particular, if we call COMPUTE L times, then the expected total
number ofmessages sentwill be O(L(m+n log n)+t (m log2 n)). Since
t is fixed, for largeL, the expected number of messages perCOMPUTE
is O(m + n log n). Similar for the cost of computational operations.

123

A theoretical and empirical evaluation of an algorithm for self-healing computation 393

Fig. 1 Quorum Graph

a1

a2

an

s1

s2

sn

Input Quorum Output Quorum

4.2 Computing with Quorums

Wemaintain a quorum graph withm + n nodes: m nodes for
the gates of the circuit and n nodes for the inputs of the par-
ties. The input nodes are connected to the gates using these
inputs, and the gate nodes are connected as in the circuit.Quo-
rums are mapped to nodes in this quorum graph as described
above.

Figure 1 shows the quorum graph in which the compu-
tation is performed from the left to the right. In particular,
the input quorums are the leftmost quorums and the output
quorum is the rightmost quorum in the quorum graph. Note
that si is the i th party that seeds an input ai to the quorum
network, for 1 ≤ i ≤ n.

4.3 Naive computation

A correct but inefficient way to solve RMC is as follows.
Each party si sends its input to all parties of the appropri-
ate input quorum. Then the computation is performed from
left to right. All parties in each quorum compute the appro-
priate gate operation on their inputs, and send their outputs
to all parties in the right neighboring quorums via all-to-all
communication. At the next level, all parties in each quo-
rum take the majority of the received messages in order to
determine the correct input for their gate. At the end, the par-
ties in the rightmost quorum will compute the correct output
of the circuit (See Fig. 2). They then forward this output

back from right to left through the quorum graph using the
same all-to-all communication and majority filtering (See
Fig. 3).

Unfortunately, this naive algorithm requires O((m +
n) log2 n) messages and O(m log n) computational opera-
tions. Our main goal is to remove the logarithmic factors.4

4.4 Our approach

Amore efficient approach is for each quorum to have a leader,
and for this leader to receive inputs, perform gate computa-
tions, and send off the output. Unfortunately, a single bad
leader can corrupt the entire computation.

To address this issue, we provideCHECK (Sect. 6.3). This
algorithm determines if there has been a corruption, and if so,
it calls RECOVER (Sect. 6.4), which identifies at least one
pair of parties that are in conflict. Informally, we say that a
pair of parties are in conflict if they each accuse the other of
malicious behavior. In such a situation, we know that at least
one party in the pair is bad. Our approach is to mark both
parties in each conflicting pair, and these marked parties are
prohibited from participating in future computation but they
still can provide the inputs of the circuit.5

4 We note that such asymptotic improvements can be significant for
large networks. For example, if n = 4095, then our algorithm reduces
message cost by a factor of O(log2 n) = 336.
5 A technical point is thatwemayneed to unmark all parties in a quorum
if toomany parties in that quorum becomemarked. However, a potential

123

394 G. Saad, J. Saia

a1

a2

an

s1

s2

sn

bm+n

Fig. 2 The parties provide n inputs to a circuit of quorums via all-to-all communication in the Naive Algorithm

bm+n

bm+n

bm+n

s1

s2

sn

bm+n

bm+n

Fig. 3 The output quorum sends back the result, bm+n , to the n parties through a circuit of quorums via all-to-all-communication in the Naive
Algorithm

The basic idea of CHECK is to redo the computation
through subsets of parties; one subset for each gate. CHECK
runs inmultiple rounds. Initially, all subsets are empty; and in
each round, a new party is selected uniformly at random from
each quorum to be added to each subset.We call these parties

Footnote 5 continued
function argument (Lemma 9) shows that after O(t) markings, all bad
parties will be marked.

the checkers. For convenience of presentation, we will refer
to the leaders as the checkers for round 0. For each round
i ≥ 1, all i checkers at gate g: (1) receive inputs to g from
the checkers at each input gate for g; (2) compute the gate
output for g based on these inputs; and (3) send this output
to the checkers at each output gate for g. If a good checker
ever receives inconsistent inputs, it calls RECOVER. Unfor-
tunately, waiting until a round where each gate has had at
least one good checker would require O(log n) rounds.

123

A theoretical and empirical evaluation of an algorithm for self-healing computation 395

To do better, we use the following approach. Let G be
the quorum graph as defined above and let the checkers be
selected as above. Call a subgraph of G bad in a given round
if all checkers in the nodes of that subgraph are bad; note that
such a subgraph consists of the new checkers that are added
to the subsets in that round.

When the adversary corrupts an output of a bad subgraph
of G in one round, it has to keep corrupting this output by
nesting levels of bad subgraphs ofG in all subsequent rounds.

Recall that in each round, new checkers are selected uni-
formly at random.When CHECK selects a good checker at a
quorum, it is as removing the node associated with this quo-
rum from the quorum graph. Thus, we can view CHECK as
repeatedly removing nodes from increasingly smaller sub-
graphs of G until no nodes remain, at which the corruption is
detected. A key lemma (Lemma 3) shows that for any rooted
directed acyclic graph (DAG), with m nodes and maximum
indegree 2, when each node is deleted independently with
probability at least 1/2 + ε, for any constant ε > 0, the
probability of having a connected DAG, rooted at one node,
with surviving nodes of size �(logm), is at most 1/2. By
this lemma, we show that CHECK requires only O(log∗ m)

rounds to detect a corruption with constant probability.6

CHECK requires O((m + n log n)(log∗ m)2) messages.
Then, we can call it with probability 1/(log∗ m)2 and obtain
asymptotically optimal resource costs for the RMC problem,
while incurring an expected O(t (log∗ m)2) corruptions.

5 Related work

Our results are inspired by recent work on self-healing algo-
rithms. Early work of [9–13] discusses different restoration
mechanisms to preserve network performance by adding
capacity and rerouting traffic streams in the presence of node
or link failures. This work presents mathematical models
to determine global optimal restoration paths, and provides
methods for capacity optimization of path-restorable net-
works.

More recent work [14–19] considers models where the
following process repeats indefinitely: an adversary deletes
some nodes in the network, and the algorithm adds edges.
The algorithm is constrained to never increase the degree
of any node by more than a logarithmic factor from its
original degree. In this model, researchers have presented
algorithms that ensure the following properties: the net-
work stays connected and the diameter does not increase by
much [14–16]; the shortest path between any pair of nodes
does not increase by much [17]; expansion properties of the

6 This probability can be made arbitrarily close to 1 by adjusting the
hidden constant in the O(log∗ m) rounds.

network are approximately preserved [18]; and keeping net-
work backbones densely connected [19].

This paper particularly builds on [20].That paper describes
self-healing algorithms that provide reliable communication,
with a minimum of corruptions, even when a Byzantine
adversary can take over a constant fraction of the nodes in a
network. While our attack model is similar to [20], reliable
computation is more challenging than reliable communica-
tion, and hence this paper requires a significantly different
technical approach. Additionally, we improve the fraction of
bad parties that can be tolerated from 1/8 to 1/4.

Reliable multiparty computation (RMC) is closely related
to the problem of secure multiparty computation (MPC)
which has been studied extensively for several decades (see
e.g. [21–25] or the recent book [26]). RMC is simpler than
MPC in that it does not require inputs of the parties to remain
private.Our algorithm forRMC is significantlymore efficient
than current algorithms forMPC, which require at least poly-
logarithmic blowup in communication and computational
costs in order to tolerate a Byzantine adversary. We reduce
these costs through our self-healing approach,which expends
additional resources only when corruptions occur, and is able
to “quarantine” bad parties after O(t (log∗ m)2) corruptions.

6 Our algorithms

In this section, we describe our algorithms: COMPUTE,
EVALUATE, CHECK and RECOVER.

Our algorithms aim at detecting corruptions and marking
the bad parties. Note that the parties that are marked are not
allowed to participate in the computation; but they still can
provide inputs to the circuit. Note further that all parties are
initially unmarked.

Recall that there are n parties, each provides an input to an
input quorum, Qi , for 1 ≤ i ≤ n; and then the computation is
performed throughm quorums, Q j ’s, for n+1 ≤ j ≤ m+n.
The result is produced at an output quorum Qm+n , and it is
sent back to the senders through the m quorums.

Before discussing our main COMPUTE algorithm, we
describe that when a party x broadcasts a message msg,
signed by the private key of a quorum Q, to a set of par-
ties S, it calls BROADCAST(msg, Q, S).

6.1 BROADCAST

In BROADCAST (Algorithm 1), we use threshold cryptog-
raphy to avoid the overhead of Byzantine Agreement. In a
(η, η′)-threshold cryptographic scheme, a private key is dis-
tributed among η parties in such a way that (1) any subset of
more thanη′ parties can jointly reassemble the key; and (2) no
subset of at most η′ parties can recover the key. The private

123

396 G. Saad, J. Saia

key can be distributed using a Distributed Key Generation
(DKG) protocol [27].

In particular, we use (|Q|, 3|Q|
4 − 1)-DKG to generate for

each quorum Q the following: (1) a (distributed) private key
of Q, where a private key share is generated for each party
in Q; (2) a public key of Q to verify each message signed by
the (distributed) private key of Q; and (3) a public key share
for each party in Q in order to verify any message signed by
the private key share of this party.

Note that for each quorum, Q, the public key of Q and the
public key share of each party in Q are known to all parties
in Q and all parties in the neighboring quorums.

Recall that a party x calls BROADCAST(msg, Q, S) in
order to send a message msg to all parties in S after signing
msg by the private key of quorum Q. Signing amessagemsg,
by the private key of Q, is formally stated in SIGN (msg, Q)
(Algorithm 6.1). Note that we let the messagemsg be signed
by the private key of Q in order to fulfill the following: (1) at
least 3/4-fraction of the parties in quorum Q have received
the same message msg; (2) they agree upon the content of
msg; and (3) they give permission to x to broadcast this
message.

Algorithm 1 BROADCAST (msg, Q, S) � A party x sends
messagemsg to a set of parties S after signing it by the private
key of quorum Q.
1: Party x calls SIGN (msg, Q). � signs msg by the private key of

quorum Q.
2: Party x sends this signed message to all parties in S.

Lemma 1 Any call to BROADCAST has O(log n+|S|)mes-
sages and O(log n) computational operations for signing the
message msg by O(log n) parties in Q, with latency O(1).

Proof The proof is immediate from the algorithmdescription
of BROADCAST and SIGN. ��

Algorithm 2 SIGN (msg, Q) � Signs message msg by the
private key of quorum Q.
1: Party x sends message msg to all parties in Q.
2: Each party in Q signs msg by its private key share to obtain its

message share.
3: Each party in Q sends its message share back to party x .
4: Party x interpolates at least 3|Q|

4 message shares to obtain a signed-
message of Q.

6.2 COMPUTE

Now we describe our main algorithm, COMPUTE (Algo-
rithm 3), which calls EVALUATE (Algorithm 4). In EVALU-
ATE, the n parties broadcast their inputs to the input quorums;
note that we assume that all parties provide their inputs to the
circuit in the same round. The input quorums forward these
inputs to a circuit of m leaders in order to perform the com-
putation and provide the result to the output quorum (See
Fig. 4). Then this result is sent back to all senders (all par-
ties) through the same circuit (See Fig. 5). Note thatwe define
a leader of a quorum as a representative party of all parties
in this quorum, and its leadership is known to all parties in
this quorum and the neighboring quorums.

Algorithm 3 COMPUTE � performs a reliable computation
and sends the result reliably to all parties.
1: EVALUATE � computes and sends back the result through a circuit

of leaders.
2: TRIGGER-CHECK � The output quorum triggers CHECK with

probability 1/(log∗ m)2.

a1

a2

an

s1

s2

sn

bm+n

Fig. 4 The senders provide the network with the inputs to perform the computation through a circuit of leaders

123

A theoretical and empirical evaluation of an algorithm for self-healing computation 397

bm+n

bm+n

bm+n

s1

s2

sn

bm+n

bm+n

Fig. 5 The output quorum sends back the result of the computation to the senders through the same circuit of leaders

In the presence of an adversary, EVALUATE is vulnerable
to corruptions. Thus, COMPUTE calls TRIGGER-CHECK
(Algorithm 5), in which the parties of the output quorum
decide together, to trigger CHECK (Algorithm 7) with prob-
ability 1/(log∗ m)2, using secure multiparty computation
(MPC) [23–25]. Note that we assume the standard RAM
model of computation: the number of bits in the real number
chosen, in step 1 of Algorithm 5, is logarithmic in m + n.
CHECK is triggered in order to detect with probability at
least 1/2 if a computation was corrupted in the last call to
EVALUATE.

Unfortunately, while CHECK can determine if a cor-
ruption occurred, it does not locate where the corruption
originally occurred. Thus, when CHECK detects a corrup-
tion, RECOVER (Algorithm 11) is called. In each call to
RECOVER, two neighboring quorums in the circuit are iden-
tified such that at least one pair of parties in these quorums
is in conflict and at least one party in this pair is bad. Then
the parties that are in conflict are marked in all quorums they
are in, and in their neighboring quorums. Moreover, for each
pair of leaders that are in conflict, their quorums elect a new
pair of unmarked leaders uniformly at random. Note that if at
least (1/2 − γ)-fraction of parties in any quorum have been
marked, for any constant γ > 0, e.g., γ = 0.01, they are set
unmarked in all their quorums and in all their neighboring
quorums.

Moreover, we use BROADCAST in EVALUATE and
CHECK in order to handle any accusation issued inRECOVER
against the parties that provide the inputs to the input quo-
rums, or those that receive the result in the output quorum.

Our model does not directly consider concurrency. In a
real system, concurrent executions of COMPUTE that over-

Algorithm 4 EVALUATE � performs a computation
through a circuit of leaders producing a result at the output
quorum; then the result is sent back through same circuit to
all senders.
1: for i = 1, . . . , n do � provides the inputs to the circuit.
2: Party si calls BROADCAST (ai , Qi , Qi). � si broadcasts its

input ai to all parties in Qi .
3: All parties in Qi send ai to the leaders of the right neighboring

quorums of Qi .
4: end for
5: for i = n + 1, . . . ,m + n − 1 do � performs the computation.
6: Let Qi ′ and Qi ′′ be the right neighboring quorums of Qi in the

circuit.
7: if leader qi ∈ Qi receives all its inputs then
8: qi performs an operation on its inputs producing an output,

bi .
9: qi sends bi to leader qi ′ ∈ Qi ′ and to leader qi ′′ ∈ Qi ′′ .
10: end if
11: end for
12: if leader qm+n ∈ Qm+n receives all its inputs then
13: qm+n performs an operation on its inputs producing an output,

bm+n .
14: qm+n broadcasts bm+n to all parties in Qm+n .
15: end if
16: for i = m + n, . . . , n + 1 do � sends back the result to the

leftmost leaders.
17: Let Qi ′ and Qi ′′ be the left neighboring quorums of Qi in the

circuit, for n + 1 ≤ i ′, i ′′ ≤ m + n. *
18: Leader qi ∈ Qi sends bm+n to leader qi ′ ∈ Qi ′ and to leader

qi ′′ ∈ Qi ′′ .
19: end for
20: for i = 1, . . . , n do � sends result to all parties after broadcasting

it to the input quorums.
21: The leaders of Qi ’s right neighboring quorums call

BROADCAST(bm+n, Qi , Qi).
22: All parties in Qi send bm+n to sender si .
23: end for

* Recall that there are no leaders in the input quorums.

123

398 G. Saad, J. Saia

Algorithm 5 TRIGGER-CHECK � The parties of
the output quorum Qm+n trigger CHECK with probability
1/(log∗ m)2.
1: Each party in Qm+n chooses an input: a real number uniformly

distributed between 0 and 1.
2: The parties of Qm+n perform MPC to find the output, prob, which

is the sum of all their inputs modulo 1. � prob is the fractional
part of the sum of their inputs.

3: if prob ≤ 1/(log∗ m)2 then
4: CHECK
5: end if

lap at a single quorum may allow the adversary to achieve
multiple corruptions at the cost of a single marked bad party.
However, this does not effect correctness, and, in practice,
this issue can be avoided by serializing concurrent execu-
tions ofCOMPUTE. For simplicity of presentation, we leave
the concurrency aspect out of this paper.

6.3 CHECK

In this section, we describe the CHECK algorithm, which
is stated formally as Algorithm 7. In this algorithm, we
make use of subquorums, where a subquorum is a subset
of unmarked parties in a quorum. Let Uk be the set of all
unmarked parties in quorum Qk , for 1 ≤ k ≤ m + n.

Algorithm 6 ELECT (Q) � Parties in Q elect an unmarked
party in Q using MPC.
1: Let each party in the set of unmarked parties,U ⊂ Q, be assigned a

unique integer from 0 to |U |−1. Note that these unique integers
are assigned in ascending order to the unmarked parties as their
IDs are ascendingly ordered.

2: Each party in Q chooses an input: an integer uniformly distributed
between 0 and |U | − 1.

3: The parties of Q performMPC to find the output: the sum of all their
inputs modulo |U |.

4: The party in U associated with this output number is the elected
party.

CHECK runs for O(log∗ m) rounds. For each round i , the
parties of the output quorum Qm+n elect an unmarked party
r from Qm+n to be in charge of the recomputation in round i .
The election process is stated formally inELECT (Algorithm
6).

The elected party r selects u.a.r. a set of unmarked par-
ties to participate in round i . It may not know how many
unmarked parties in each quorum, but we assume that it
knows m′, which is the maximum number of parties in any
quorum. Party r constructs an m by m′ array of random
integers, Ai , selected uniformly at random. Ai represents
a selection to a set of unmarked parties to be added to a DAG
of subquorums, SA

j ’s, for n + 1 ≤ j ≤ m + n, in round i .

Note that Ai [k, k′] refers to an unmarked party in a quorum

Algorithm 7 CHECK � Party r calls CHECK to check for
corruptions.
Declaration: Let Uk be the set of all unmarked parties in quorum Qk ,
for 1 ≤ k ≤ m + n. Also let m′ be the maximum number of parties
in any quorum. Further, let subquorum, SA

j , be initially empty, for all
n + 1 ≤ j ≤ m + n.

1: for i ← 1, . . . , 8(log∗ m + 2(log c + 1))* do
2: ELECT (Qm+n) � elects an unmarked party r ∈ Qm+n .
3: Party r constructs an array of m by m′ random integers, Ai .**
4: REQUEST (i, Ai) � r requests all senders to recompute.
5: RECOMPUTE � recomputes, producing the result, bim+n , at r.
6: RESEND (i, Ai , bim+n) � r sends back bim+n to all parties.
7: end for

* c = 2(1+2p)
log e(1−2p)2

; note that for any quorum Qk , p ≤ 1/2 − ε, is the
probability of selecting a bad party u.a.r. from Uk , for any constant
ε > 0.
** Ai [k, k′] is a uniformly random integer between 1 and k′, for 1 ≤
k ≤ m and 1 ≤ k′ ≤ m′.

Note that: if a party has previously received kp , then it verifies each
subsequent message with it; also if a party receives inconsistent mes-
sages or fails to receive and verify an expected message, then it initiates
a call to RECOVER.

Qk , of size |Qk | = k′, for 1 ≤ k ≤ m and 1 ≤ k′ ≤ m′. Note
further that Ai has a size of O(m log n log log n) bits.

After r constructs Ai , it calls REQUEST to send a request
through the DAG of subquorums, to the n senders in order to
recompute (See Fig. 6).

The recomputation process is stated formally as RECOM-
PUTE (Algorithm 9) and is shown in Fig. 7. In this process,
each sender that receives this request provides its input to
redo the computation through a DAG of subquorums, SA

j ’s,
producing the result at the output quorum. When r receives
this result, it calls RESEND (Algorithm 10) in order to send
the result back to the senders through a DAG of subquorums
SA
j ’s, for n + 1 ≤ j ≤ m + n (See Fig. 8).
Note that in ELECT (Q), the parties of quorum Q per-

form MPC [23–25] to elect an unmarked party uniformly at
random from Q. We know that at least half of the unmarked
parties in Q are good. Thus, the elected party is good with
probability at least 1/2. MPC requires a message cost and a
number of computational operations that are polylogarithmic
functions in n, and it runs in O(1) time.

Note further that during CHECK, if any party receives
inconsistent messages or fails to receive and verify any
expectedmessage in any round, it initiates a call toRECOVER.

CHECK detects message corruptions with probability at
least 1/2. It requires O((m+n log n)(log∗ n)2)message cost
and O(� log∗ n) latency. But since CHECK is triggered with
probability 1/(log∗ m)2, it has expectedmessage cost O(m+
n log n)) with expected latency O(�/ log∗ n).

An example run ofCHECK is illustrated in Figs. 9 and 10.
These figures show that in each round, a circuit of parties is
formed, where one party is selected u.a.r. from each quo-

123

A theoretical and empirical evaluation of an algorithm for self-healing computation 399

s1

s2

sn

REQ

REQ

REQ

REQ

REQ

Fig. 6 The output quorum sends a request to the senders to provide the circuit with the inputs in order to redo the computation through a circuit
of unmarked parties selected u.a.r.

a1

a2

an

s1

s2

sn

bm+n

Fig. 7 The n parties provide n inputs to a circuit of unmarked parties selected u.a.r. to redo the computation producing the result at the output
quorum

bm+n

bm+n

bm+n

s1

s2

sn

bm+n

bm+n

Fig. 8 The output quorum sends back the result of the computation to the senders through a circuit of unmarked parties selected u.a.r.

123

400 G. Saad, J. Saia

Algorithm 8 REQUEST (i, Ai) � r
requests n senders through a DAG of subquoums, SA

j ’s, for
n + 1 ≤ j ≤ m + n, to redo the computation.

1: Party r calls SIGN([i, Ai , r], Qm+n). � signs [i, Ai , r] by Qm+n’s
private key

2: Party r sets REQi = ([i, Ai , r]ks , kp). � (kp, ks) : public/private
key pair of Qm+n

3: Party r sends REQi to all parties of quorum Qm+n .
4: All parties in Qm+n calculate party, qim+n ∈ Um+n , of index Ai

m+n

to be added to SA
m+n .*

5: for j ← m + n, . . . , n + 1 do � sends REQi through a DAG of
subquorums.

6: Let Q j ′ and Q j ′′ be the left neighboring quorums of Q j in the
circuit, for n + 1 ≤ j ′, j ′′ ≤ m + n. **

7: All i parties in SA
j calculate parties, qij ′ and qij ′′ , of indices Ai

j ′
and Ai

j ′′ , to be added to SA
j ′ and SA

j ′′ respectively.

8: Party qij calculates all parties in SA
j ′ and SA

j ′′ using A1
j ′ , . . . , A

i
j ′

and A1
j ′′ , . . . , A

i
j ′′ .

9: for k ← 1, . . . , i do � k refers to the rounds prior to round i .
10: Party qkj sends REQk to parties qij ′ and q

i
j ′′ .

11: Party qij sends REQi to parties qkj ′ and q
k
j ′′ .

12: end for
13: end for
14: for k ← n, . . . , 1 do � The input quorums forward REQi to all

senders.
15: Let Qk′ and Qk′′ be the right neighboring quorums of Qk in the

circuit.
16: All i parties in Sk′ and all parties in Sk′′ call

BROADCAST(REQi , Qk , Qk).
17: All parties in Qk send REQi to sender sk .
18: end for

* Ai
j = Ai [j − n, |Uj |] is the index of the party, qij , which is selected

u.a.r. from the parties inUj in round i of REQUEST; note that all parties
in Uj are sorted by their IDs, for n + 1 ≤ j ≤ m + n.
** Recall that there are no subquorums for the input quorums.

rum in the quorum graph. Each of these parties performs the
appropriate gate operation on its inputs providing an output
which is an input for the next gate in the circuit.

For a given circuit of parties and a given round, there is a
white or black node depending on whether the party selected
in that particular round and that particular gate (quorum) is
good (white) or bad (black).

Informally, we define a deception DAG, Di , in a round, i ,
as a rooted DAG of bad nodes that are selected in this round
to be added to the subquorums in the quorum graph.

In Fig. 9, we show the deception DAGs that are chosen
by the adversary to corrupt the computation over rounds. In
particular, the adversary’s strategy is (1) to corrupt the out-
put of the maximum deception DAG in the first round; and
(2) to keep corrupting this output by nesting levels of decep-
tion DAGs in all subsequent rounds. These nesting levels of
deception DAGs are outlined in this figure.

There are two key points by which CHECK detects cor-
ruptions: (1) any deception DAG in any round never extends
in any subsequent round; and (2) any deception DAG is

Algorithm 9 RECOMPUTE � n senders provide inputs
to a DAG of subquorums, SA

j ’s, for n + 1 ≤ j ≤ m + n, to

recompute, producing a result, bim+n , at r.

1: for each sender s j that receives REQi , for 1 ≤ j ≤ n and n + 1 ≤
j ′, j ′′ ≤ m + n do

2: s j sets RECi to be a message consisting of its input a j and
REQi .

3: s j broadcasts RECi to all parties in Q j .
4: Let Q j ′ and Q j ′′ be the right neighboring quorums of Q j in the

circuit.
5: All parties in Q j recalculate parties, qij ′ and qij ′′ , of indices A

i
j ′

and Ai
j ′′ , and make sure that they are already added to SA

j ′ and

SA
j ′′ respectively, in REQUEST.

6: All parties in Q j send RECi to all parties in SA
j ′ and to all parties

in SA
j ′′ .

7: All parties in Q j send REC1, . . . , RECi−1 to qij ′ and q
i
j ′′ .

8: end for
9: for j ← n + 1, . . . ,m + n − 1 do � recomputes
10: Let Q j ′ and Q j ′′ be the right neighboring quorums of Q j in the

circuit.
11: All i parties in SA

j recalculate parties, qij ′ and qij ′′ , of indices

Ai
j ′ and Ai

j ′′ , and make sure that they are already added to

SA
j ′ and SA

j ′′ respectively, in REQUEST.

12: Partyqij recalculates all parties in S
A
j ′ and S

A
j ′′ using A

1
j ′ , . . . , A

i
j ′

and A1
j ′′ , . . . , A

i
j ′′ .

13: for all 1 ≤ k ≤ i , qkj performs its operation on its inputs pro-

ducing an output, bkj .
14: for k ← 1, . . . , i do
15: qkj sends b

k
j and RECk to parties qij ′ and q

i
j ′′ .

16: qij sends b
i
j and RECi to parties qkj ′ and q

k
j ′′ .

17: end for
18: end for
19: All i parties in Sm+n broadcast bim+n and RECi to all parties in

Qm+n .
20: All parties in Qm+n send bim+n and RECi to party r. � r receives

the result.

expected to shrink logarithmically in size from round to
round. This will imply that any deception DAG shrinks to
size zero after O(log∗ n) rounds, at which the corruption is
detected.

Deception DAGs never extend We know that each good
party that receives an input message in any round has to
receive the same input message in all subsequent rounds;
otherwise, it will call RECOVER. Moreover, for each round,
we know that all parties in each subquorum send their output
message to the new party that is added in this round to the
next subquorum in the circuit. Thus, those good parties that
provide their output message to the deception DAG of this
roundwill provide the same outputmessage to all subsequent
deception DAGs.

Recall that in each round, every party that is added to
each subquorum, S, sends its output message to all parties
in the next subquorum, S′, in the quorum graph. Thus, all
good parties in S′ that receive an input message through a

123

A theoretical and empirical evaluation of an algorithm for self-healing computation 401

D1

D3

D2

D4 shrinks to size zero

Bad node Good node

Fig. 9 Example run of CHECK

deception DAG in any round expect to receive the same input
message in all subsequent rounds. Also, each good party that
did not receive the correct input message in any round must
not receive this message in all subsequent rounds; otherwise,
it will initiate a call to RECOVER.

Deception DAGs shrink logarithmically A key lemma
(Lemma 3) shows that given a rooted DAG of size m, in
which each bad node is selected u.a.r. with probability atmost
1/2, the probability of having a rooted subgraph of�(logm)

bad nodes is at most 1/2. Intuitively, we could expect that
O(log∗ m) rounds will suffice to shrink any deception DAG
to size zero in a quorum graph of m gates.

When any deception DAG shrinks to size zero, the cor-
ruption is detected Figure 10 shows that when the deception

Node x computes
a correct partial result, b',

and sends it to Node y.

Node y did not
receive b' previously.

Bad party in a subquorum having only bad partiesBad node Good node

Fig. 10 A corruption is detected after the deception DAG shrinks to
size zero

DAG shrinks over rounds to size zero, node x in the last
round receives correct input messages. Then node x com-
putes a correct output and sends it to node y; however, node
y has not previously received it as an input in this call to
CHECK. As a result, node y calls RECOVER declaring that
it has received inconsistent input messages.

Even if all parties in some subquorums are bad,CHECKis
still being able to detect corruptions

Recall that CHECK runs in O(log∗ m) rounds. In each
round, new parties are selected u.a.r. to be added to the sub-
quorums. This limits the adversary to know, before all rounds
finish, if all parties of any particular subquorum are bad.
Thus, the adversary would rather corrupt the output of the
maximum deception DAG in the first round and keeps cor-
rupting this output over all subsequent deceptionDAGs.Note
that if the adversary corrupts more than one output in the
same round, it will increase the chance of detecting corrup-

123

402 G. Saad, J. Saia

Algorithm 10 RESEND (i, Ai , bim+n) � Party r sends back
the result, bim+n , through a DAG of subquorums, SA

j ’s, to n
senders, for n + 1 ≤ j ≤ m + n.

1: Party r calls SIGN([i, Ai , bim+n, r], Qm+n). � signs it by Qm+n’s
private key.

2: Party r sets RESi = ([i, Ai , bim+n, r]ks , kp). � (kp, ks) :
public/private key pair of Qm+n .

3: Party r sends RESi to all parties of quorum Qm+n .
4: All parties in Qm+n recalculate party,qim+n ∈ Um+n , of index Ai

m+n ,
and make sure that it is already added to SA

m+n , in REQUEST.
5: for j ← m + n, . . . , n + 1 do � sends back the result through a

DAG of subquorums.
6: Let Q j ′ and Q j ′′ be the left neighboring quorums of Q j in the

circuit, for n + 1 ≤ j ′, j ′′ ≤ m + n. *
7: All i parties in SA

j recalculate parties, qij ′ and q
i
j ′′ , of indices A

i
j ′

and Ai
j ′′ , and make sure that they are already added to SA

j ′ and

AC
j ′′ respectively, in REQUEST.

8: Party qij recalculates all parties in S
A
j ′ and S

A
j ′′ using A1

j ′ , . . . , A
i
j ′

and A1
j ′′ , . . . , A

i
j ′′ .

9: for k ← 1, . . . , i do � k refers to the rounds prior to round i .
10: Party qkj sends RESk to parties qij ′ and q

i
j ′′ .

11: Party qij sends RESi to parties qkj ′ and q
k
j ′′ .

12: end for
13: end for
14: for k ← n, . . . , 1 do � The input quorums forward RESi to all

senders.
15: Let Qk′ and Qk′′ be the right neighboring quorums of Qk in the

circuit.
16: All i parties in Sk′ and all parties in Sk′′ call

BROADCAST(RESi , Qk , Qk).
17: All parties in Qk send RESi to sender sk .
18: end for

* Recall that there are no subquorums for the input quorums.

tions. Figure 10 shows that even though all parties in some
subquorum are bad, some of these parties behave as good
parties since they are out of the deception DAGs selected by
the adversary.

6.4 RECOVER

When a computation is corrupted and CHECK detects this
corruption, RECOVER is called. The RECOVER algorithm is
described formally as Algorithm 11.WhenRECOVER starts,
all parties in each quorum in the circuit are notified.

The main purpose of RECOVER is to (1) determine the
location in which the corruption occurred; and (2) mark the
parties that are in conflict.

Todetermine the location inwhich the corruptionoccurred,
RECOVER calls INVESTIGATE (Algorithm 12) to investi-
gate the corruption situation by letting each party involved
in EVALUATE or CHECK broadcast all messages they
have received or sent. Note that the message size that
each participating party broadcasts is O((m log n log log n+

Algorithm 11 RECOVER � Party q ′ ∈ Q′ calls RECOVER
after it detects a corruption.
1: q ′ broadcasts to all parties in Q′ the fact that it callsRECOVER along

with the messages it has received in this call to COMPUTE.
2: The parties in Q′ verify thatq ′ received inconsistentmessages before

proceeding.
3: Q′ notifies all quorums in the circuit via all-to-all communication

that RECOVER is called.
4: INVESTIGATE � investigates all participants to determine

corruption locations.
5: MARK-IN-CONFLICTS � marks the parties that are in conflict.

Algorithm 12 INVESTIGATE � investigates the parties that
have participated.
1: for each party, q, involved in the last call to EVALUATE or CHECK

do
2: Party q compiles all messages it has received (and from whom)

and has sent (and to whom) in the last call to EVALUATE or
CHECK.

3: Party q broadcasts these messages to all parties in its quorum
and neighboring quorums.

4: end for

b)(log∗ m)2) bits, given that any input message ai that is
provided by sender si has a size of O(b) bits.

Then, RECOVER calls MARK-IN-CONFLICTS (Algo-
rithm 13) in order to mark the parties that are in conflict,
where a pair of parties is in conflict if at least one of these
parties broadcasted messages that conflict with the messages
broadcasted by the other party in this pair. Note that each pair
of parties that are in conflict has at least one bad party. Recall
that if at least (1/2 − γ)-fraction of parties in any quorum
are marked, for any constant γ > 0, e.g., γ = 0.01, they are
set unmarked. Also, for each pair of leaders that get marked,
their quorums elect another pair of unmarked leaders.

7 Analysis

In this section, we prove the lemmas required for Theorem 1.
Throughout this section, all logarithms are base 2.

Recall that in each round of CHECK, a new unmarked
party is selected u.a.r. from each quorum in the circuit form-
ing a new DAG of unmarked parties.

Definition 1 A Deception DAG, Di , is the maximal sub-
graph of the new DAG of unmarked parties that are selected
u.a.r. in round i , with the following properties: (1) it has only
bad parties; (2) it receives all its inputs, and each input is
provided correct by at least one good party; (3) it is rooted
at one party, which does not provide a correct output to at
least one good party; and (4) all other outputs of this DAG
are provided correct.

If the adversary corrupts the output of the root party in a
deception DAG in any round, then it has to keep corrupting

123

A theoretical and empirical evaluation of an algorithm for self-healing computation 403

Algorithm 13 MARK-IN-CONFLICTS � marks the parties
that are in conflict.
1: for each pair of parties, (qx , qy), that is in conflict*, in quorums

(Qx , Qy) do
2: party qy broadcasts a conflict message, {qx , qy}, to all parties in

Qy .
3: each party in Qy forwards {qx , qy} to all parties in Qx .
4: all parties in Qx (or Qy) send {qx , qy} to the other quorums that

have qx (or qy).
5: each quorum that has qx or qy sends {qx , qy} to its neighboring

quorums.
6: end for
7: for each party q that receives conflict message {qx , qy} do
8: q marks qx and qy in its marking table.
9: end for
10: if a (1/2 − γ)-fraction of parties in any quorum has been marked,

for γ = 0.01 then
11: each of these parties is set unmarked in all its quorums.
12: each of these parties is set unmarked in all its neighboring quo-

rums.
13: end if
14: for each pair of leaders, (qx , qy), that is in conflict, in quorums

(Qx , Qy) do
15: ELECT(Qx) and ELECT(Qy) to elect a pair of unmarked lead-

ers, (q ′
x , q

′
y).

16: Qx and Qy notify their neighboring quorums with (q ′
x , q

′
y).

17: end for

* A pair of parties, (qx , qy), is in conflict if: 1) qx was scheduled to
send an output to qy at some point in the last call to EVALUATE or
CHECK; and 2) qy does not receive an expected message from qx
in INVESTIGATE, or qy receives a message in INVESTIGATE that is
different than the message that it has received from qx in the last call to
EVALUATE or CHECK.

this output by a deception DAG in each subsequent round;
otherwise, the good parties that expect to receive this output
in each round will call RECOVER due to receiving inconsis-
tent output messages.

We say that a deception DAG, Di , in round i extends in
round i + 1 if there exists a deception DAG, Di+1, in round
i + 1 such that (1) there is at least one subquorum that has a
party in Di and a party in Di+1; and (2) there is at least one
subquorum that has a party in Di+1 but has no party in Di .

Also, we say that a deception DAG, Di , in round i shrinks
in round i+1 if there exists a deception DAG, Di+1, in round
i + 1 such that (1) each subquorum that has a party in Di+1

has a party in Di ; and (2) there is at least one subquorum that
has a party in Di but has no party in Di+1.

Further, we say that a deception DAG, Di , shrinks log-
arithmically from round i to round i + 1 if |Di+1| =
O(log |Di |).

7.1 CHECK

In the following lemmas, we first show that any deception
DAG in any round never extends in any subsequent round.
Then we show that with probability at least 1/2, any decep-
tion DAG shrinks logarithmically from round to round. This

will imply that the expected number of rounds to shrink any
deception DAG to size zero is O(log∗ m).

Note that in any round i , if a deception DAG, Di , shrinks
to a deception DAG, Di+1, of size zero in round i + 1, then
the good party that did not receive the correct output from Di

in round i will receive the correct output in round i + 1. As
a result, this good party will call RECOVER declaring that it
has received inconsistent output messages.

Lemma 2 Any deception DAG in any round never extends.

Proof We know by definition that any deception DAG is
confined by (1) the good parties that provide the inputs to
this deception DAG; and (2) the good parties that receive the
outputs from it.

In each round i , all i parties in each subquorum send their
outputs to the new party that is added to the next subquorum
in this round. Thus, the good parties that provide the cor-
rect inputs to a deception DAG in round i , will provide the
correct inputs to all nesting levels of deception DAGs in all
subsequent rounds.

Moreover, in each round i , each new party that is added
to a subquorum in this round sends its output to all i parties
in the next subquorum. Thus, the good parties that receive
an output from a deception DAG in round i , must receive the
same output from all nesting levels of deception DAGs in all
subsequent rounds. Similarly, the good parties that did not
receive the correct output from a deception DAG in round i
must not receive this output from any nesting level of decep-
tion DAG in any subsequent round; otherwise, they will call
RECOVER.

Further, if a good party has previously received kp (the
public key of Qm+n), then it verifies each subsequent mes-
sage with it; also if a party receives inconsistent messages
or fails to receive and verify an expected message, then it
initiates a call to RECOVER.

Therefore, all good parties that confine a deception DAG
in any round will restrict all subsequent deception DAGs. ��

Now we show that any deception DAG shrinks logarith-
mically from round to round with probability at least 1/2.

Definition 2 Rooted Directed Acyclic Graph (R-DAG) is a
DAG in which, for a vertex u called the root and any other
node v, there is at least one directed path from v to u.

Lemma 3 Given any R-DAG, of size n, in which each node
has indegree of at most d and survives independently with
probability at most p such that 0 < p ≤ 1

d − ε, for any
constant ε > 0, then the probability of having a subgraph,
rooted at somenode,with surviving nodes, of size�(

log n
(1−pd)2

)

is at most 1/2.

Proof The basic ideas of this proof come from [28–30]. This
proof makes use of the following three propositions, but first
we define some notations.

123

404 G. Saad, J. Saia

Given an R-DAG, D(V, E), with size n and maximum
indegreed, after eachnode survives independentlywith prob-
ability at most p such that 0 < p ≤ 1

d − ε, for any constant
ε > 0, we explore D to find a subgraph with only surviv-
ing nodes, of size more than k, rooted at an arbitrary node v

(assuming that node v survives).
Each node in D has a status. The node status is either

inactive, active or neutral. A node x is inactive if node x and
its children are explored. Note that a node is explored when it
is determined whether this node survives or dies. A node x is
active if node x is explored but its children are not explored
yet. A node x is neutral if it is neither active nor inactive, i.e.,
node x and its children are not explored yet.

The exploration process runs in at most k > 0 steps. Ini-
tially, all nodes are set neutral, and we pick an arbitrary node,
v ∈ D, and set it active (assuming that node v survives).

In each exploration step i , we pick an active node, wi , in
an arbitrary way, and we explore all its children as follows.
For all (wi , w

′
i) ∈ E , if w′

i survives and is neutral, we set
it active; otherwise w′

i remains as it is. After all children
of wi are explored, we set wi as inactive. Note that in any
exploration step, if there is no active node, the exploration
process terminates.

Now we define a list of notations to be used in the follow-
ing propositions. Let di be the maximum number of children
of node wi for 1 ≤ i ≤ k, i.e.,

di =
{
deg(wi) − 1 if wi ∈ V − root (D),

deg(wi) otherwise.

where deg(wi) is the degree of node wi and root (D) is the
root node of D. For 1 ≤ i ≤ k, let Xi be a randomvariable for
the number of surviving neutral children of wi , and let Yi be
a non-negative random variable for the number of surviving
non-neutral children of wi . Note that Y1 = 0. So Xi follows
a binomial distribution with parameters (di −Yi) and p, i.e.,
Xi ∼ Bin(di − Yi , p). Let Ai be a non-negative random
variable for the total number of active nodes after i steps, for
1 ≤ i ≤ k. ��

Proposition 1 For 1 ≤ i ≤ k, Ai ={∑i
j=1 X j − (i − 1) if Ai−1 > 0,

0 otherwise.

Proof Since the process starts initially with one active node
v, A0 = 1. Now we have two cases of Ai−1 to compute Ai ,
1 ≤ i ≤ k:

Case 1 (process terminates before i steps): If Ai−1 = 0,
then A j = 0 for i ≤ j ≤ k.

Case 2 (otherwise): If Ai−1 > 0, then Ai = Ai−1 +
Xi − 1, where after exploring wi , the total number of active
nodes is the number of new active nodes (Xi) due to the
exploration of wi in addition to the total number of active

nodes of previous steps (Ai−1) excluding wi that becomes
inactive at the end of step i . ��

Let D′(v) be the maximal subgraph of surviving nodes,
rooted at node v. Also let |D′(v)| be the number of nodes in
D′(v).

Proposition 2 Pr(|D′(v)| > k) ≤ Pr
(∑k

i=1 Xi ≥ k
)
.

Proof To prove this proposition, we first prove that
Pr(|D′(v)| > k) ≤ Pr(Ak > 0).

In order to do that, we prove that |D′(v)| > k
⇒ Ak >

0. If |D′(v)| > k, then the exploration process does not
terminate before k steps. This implies that after k steps, there
are k inactive nodes and at least one active node remains.
This follows that Ak > 0. Thus, we have

Pr(|D′(v)| > k) ≤ Pr(Ak > 0). (1)

Now we prove that Pr(Ak > 0) ≤ Pr
(∑k

i=1 Xi − (k −
1) > 0

)
. To do that, we prove that Ak > 0
⇒ ∑k

i=1 Xi −
(k − 1) > 0. If Ak > 0, then A j > 0 for all 1 ≤ j ≤ k. By

Proposition 1, we obtain that
∑ j

i=1 Xi − (j − 1) > 0 for all
1 ≤ j ≤ k. This follows that

Pr(Ak > 0) ≤ Pr

(
k∑

i=1

Xi − (k − 1) > 0

)
. (2)

By Inequalities 1 and 2, we obtain

Pr(|D′(v)| > k) ≤ Pr

(
k∑

i=1

Xi − (k − 1) > 0

)
,

or equivalently,

Pr(|D′(v)| > k) ≤ Pr

(
k∑

i=1

Xi > k − 1

)
.

Since k is a positive integer, we have

Pr(|D′(v)| > k) ≤ Pr

(
k∑

i=1

Xi ≥ k

)
.

��

Proposition 3 Pr(
∑k

i=1 Xi ≥ k) ≤ e− (1−pd)2k
1+pd .

Proof Toprove this proposition,wefirstmake use of stochas-
tic dominance [31,32]. For 1 ≤ i ≤ k, let X+

i ∼ Bin(d, p),
and let X+

1 , . . . , X+
k be independent random variables. We

know that Yi ≥ 0 and di ≤ d for 1 ≤ i ≤ k.

123

A theoretical and empirical evaluation of an algorithm for self-healing computation 405

By Theorem (1.1) part (a) of [33], for all 1 ≤ i ≤ k, X+
i

first-order stochastically dominates Xi , i.e., X
+
i is stochasti-

cally larger than Xi . Hence,
∑k

i=1 X
+
i is stochastically larger

than
∑k

i=1 Xi . Thus, we have

Pr

(
k∑

i=1

Xi ≥ k

)
≤ Pr

(
k∑

i=1

X+
i ≥ k

)
.

Now let Sk = ∑k
i=1 X

+
i . By Chernoff bounds, for δ > 0,

we obtain

Pr(Sk ≥ (1 + δ)E(Sk)) ≤
(

eδ

(1 + δ)(1+δ)

)E(Sk)

≤ e−
δ2
2+δ

E(Sk).

Weknow that Sk ∼ Bin(kd, p). Thus, E(Sk) = pdk. There-
fore, we have

Pr(Sk ≥ (1 + δ)pdk) ≤ e− δ2
2+δ

pdk .

For δ = 1−pd
pd , we obtain

Pr(Sk ≥ k) ≤ e− (1−pd)2k
1+pd .

��
Now by Propositions 2 and 3, we have

Pr(|D′(v)| > k) ≤ e− (1−pd)2k
1+pd .

Note that we initially assumed that node v survives. How-
ever, node v surviveswith probability atmost p. By definition
if node v does not survive, |D′(v)| = 0. Note further that
k > 0. Thus, we obtain

Pr(|D′(v)| > k) ≤ pe− (1−pd)2k
1+pd .

Union bound over n nodes, we have

nPr(|D′(v)| > k) ≤ npe− (1−pd)2k
1+pd .

Note that npe− (1−pd)2k
1+pd ≤ 1/2 when k ≥ 1+pd

(1−pd)2 log e
log(2pn). Thus, the probability of having such a subgraph
of size more than 1+pd

(1−pd)2 log e
log(2pn), or equivalently,

�
(

log n
(1−pd)2

)
, is at most 1/2.

Corollary 1 For any R-DAG, of size n, the probability of
having a subgraph, rooted at one node, with surviving nodes,
of size at least n/2 is at most 1/2.

Now, if a deception DAG shrinks logarithmically in a suc-
cessful step, then how many successful steps to shrink this
deception DAG to a deception DAG of size zero or even of
a constant size?

Let g(n) = c log n, and let g(i)(n)be the functionof apply-
ing function g, i times, over n. Also, we let log(i)(n) be the
function of applying logarithm i times over n.

Fact 1 ∀i ≥ 1 : log(i)(n) ≥ log c + 1, g(i)(n) ≤
2c log(i)(n).

Proof We prove by induction over i ≥ 1 that for log(i)(n) ≥
log c + 1,

g(i)(n) ≤ 2c log(i)(n).

Base case: for i = 1, by definition, g(n) = c log n ≤
2c log n.

Induction hypothesis: for log(j)(n) ≥ log c + 1, ∀ j <

i, g(j)(n) ≤ 2c log(j)(n).

Induction step: by definition, g(i)(n) = g(g(i−1)(n)).

By induction hypothesis, for log(i−1)(n) ≥ log c + 1,
g(i−1)(n) ≤ 2c log(i−1)(n). Then, we have

g(i)(n) ≤ g(2c log(i−1)(n)) = c log(2c log(i−1)(n)),

or equivalently,

g(i)(n) ≤ c(1 + log c + log(i)(n)) ≤ 2c log(i)(n),

for log(i)(n) ≥ log c + 1. ��
Now let g∗(n) be the smallest value i such that g(i)(n) ≤

c(2c + log c + 1).

Fact 2 ∀n > c(2c+log c+1), g∗(n) ≤ log∗ n−log∗(log c+
1).

Proof Let k = log∗ n− log∗ (log c + 1)−1. Then, log(k)(n)

≥ log c + 1. By Fact 1,

g(k)(n) ≤ 2c log(k)(n).

With a further application of g to g(k)(n), we have

g(k+1)(n) ≤ c log(2c log(k)(n)) = c(1 + log c + log(k+1)(n)).

Weknow that log(k+1)(n) ≤ 2c. Thus,we obtain g(k+1)(n) ≤
c(1+ log c+2c). Therefore, by definition, g∗(n) ≤ k +1 =
log∗ n − log∗ (log c + 1). ��
Lemma 4 Assume that any deception DAG of size n′ shrinks
to a deceptionDAGof size c log n′ in a successful step, for any
constant c ≥ 1. Then, for a deceptionDAGof size n > c(2c+
log c+ 1), after log∗ n − log∗ (log c + 1) successful steps, it
shrinks to a deception DAG of size at most c(2c+ log c+1).

123

406 G. Saad, J. Saia

Proof Fact 2 proves this lemma. ��
Let p be the probability of selecting an unmarked bad

party uniformly at random in any quorum. Recall that the
fraction of bad parties in any quorum is at most 1/4, and at
any time the fraction of unmarked parties in any quorum is
at least 1/2 + γ , for any constant γ > 0. Thus, p ≤ 1/2

1+2γ .
Now we show the expected number of rounds to shrink

any deception DAG to size zero.

Lemma 5 With probability at least 1/2, any deception DAG
of size m shrinks to size zero in 8(log∗ m + 2(log c + 1))
rounds, where c = 2(1+2p)

log e(1−2p)2
and p ≤ 1/2

1+2γ , for any con-
stant γ > 0.

Proof Given a deception DAG, of size m. By Lemma 2, the
deception DAG never extends over rounds. For shrinking
deception DAGs over rounds, we make use of Lemma 3 to
shrink logarithmically any deception DAG of size more than
c(2c + log c + 1); otherwise, deception DAGs shrink geo-
metrically using Corollary 1.

Let Xi be an indicator randomvariable that is equal 1 if the
deception DAG in round i shrinks logarithmically in round
i + 1; and 0 otherwise.

By Lemma 4, after having at most log∗ m−1 of Xi ’s equal
1, the deception DAG of size at most m shrinks to a size of
at most c(2c + log c + 1).

Also let Y j be an indicator random variable that is equal 1
if the deception DAG of size at most c(2c+ log c+1) ≤ 4c2

in round j shrinks geometrically by at most half the size in
round j + 1; and 0 otherwise.

Thus, in order to shrink the deception DAG of size n to 0,
we require at most log∗ m − 1 of Xi ’s equal 1 and at most
2 log c + 3 of Y j ’s equal 1.

Note that in each round, the receiver that is elected by the
output quorum is good with probability at least 1/2. Then,
by Lemma 3, Xi = 1 with probability at least 1/4; and by
Corollary 1, Y j = 1 with probability at least 1/4.

Now let

X =
8(log∗ m−1)∑

i=1

Xi

and

Y =
8(log∗ m+2(log c+1))∑
j=8(log∗ m−1)+1

Y j .

Also let Zk be an indicator random variable that is 1 with
probability 1/4; and 0 otherwise, for 1 ≤ k ≤ 8(log∗ m +
2(log c + 1)); and let

Z =
8(log∗ m+2(log c+1))∑

k=1

Zk .

We know that for all i, j, k, both Xi and Y j are stochas-
tically larger than Zk . Thus, X + Y is stochastically larger
than Z . Therefore,

Pr
(
X + Y ≥ log∗ m + 2(log c + 1)

)
≥ Pr

(
Z ≥ log∗ m + 2(log c + 1)

)
,

or equivalently,

1 − Pr
(
X + Y < log∗ m + 2(log c + 1)

)
≥ 1 − Pr

(
Z < log∗ m + 2(log c + 1)

)
.

Thus, we obtain

Pr
(
X + Y < log∗ m + 2(log c + 1)

)
≤ Pr

(
Z < log∗ m + 2(log c + 1)

)
.

Note that E(Z) = 2(log∗ m + 2(log c + 1)). Since the Zk’s
are independent random variables, by Chernoff bounds,

Pr
(
Z < 2(1 − δ)(log∗ m + 2(log c + 1))

)

≤
(

eδ

(1 + δ)1+δ

)2(log∗ m+2(log c+1))

.

For δ = 1
2 and m ≥ 3,

Pr
(
Z < log∗ m + 2(log c + 1)

)
<

1

2
.

Thus, the probability that CHECK succeeds in finding a
corruption and calling RECOVER is at least 1/2. ��

Nowwe show that for the adversary tomaximize the num-
ber of rounds in which no corruption is detected, is to select
the maximum deception DAG of the first round.

Lemma 6 The best strategy to maximize the expected num-
ber of rounds in which no corruption is detected, is for the
adversary to select the largest deception DAG present in the
first round.

Proof Let Dm be the maximum deception DAG in the first
round, and let dm be the expected number of rounds that Dm

shrinks to size zero.
For any deception DAG, D, that the adversary selects in

the first round, by Lemma 5, D shrinks to size zero in an
expected number of rounds that is atmost dm . If the adversary
selects two or more deception DAGs in the first round, then
each of these deception DAGs shrinks in an expected number
of rounds that is at most dm .

Therefore, for the adversary to maximize the expected
number of rounds inwhich no corruption detected, is to select
the maximum deception DAG in the first round of CHECK.

��

123

A theoretical and empirical evaluation of an algorithm for self-healing computation 407

The next lemma shows that CHECK catches corruptions
with probability ≥ 1/2.

Lemma 7 Assume some party selected uniformly at random
in the last call to EVALUATE has corrupted a computation.
Then when the algorithm CHECK is called, with probability
at least 1/2, some party will call RECOVER.

Proof Recall that the number of gates in the circuit is m.

Case 1: REQUEST has corruptions:
When a corruption occurs in any round of REQUEST, by
Lemmas 5 and 6, this corruption is detected with probability
at least 1/2.

Recall that in REQUEST, for each round j , REQ j that
has ([j, A j , r]ks , kp) is sent from the output quorum to the
senders through a graph of subquorums. If any good party
in any subquorum receives REQ j and has not received all
REQi , for 1 ≤ i < j , then it will call RECOVER.

Case 2: REQUEST has no corruptions and RECOMPUTE
has corruptions:
When no corruption occurs in any round of REQUEST, all
request messages REQs are correctly received at the input
quorums in all O(log∗ m) rounds and RECOMPUTE must
be called O(log∗ m) times by all input quorums.

When a corruption occurs in any round of RECOMPUTE,
by Lemmas 5 and 6, this corruption is detected with proba-
bility at least 1/2.

Recall that in RECOMPUTE, for every round j , REC j

that has ([j, A j , r]ks , kp) is propagatedwith the computation
result from the senders to the output quorum through a graph
of subquorums. If any good party in any subquorum receives
a computation result with REC j and has not received (j −
1) results with all RECi , for 1 ≤ i < j , then it will call
RECOVER.

Case 3: REQUEST has no corruptions, RECOMPUTE has
no corruptions and RESEND has corruptions:
When no corruption occurs in any round of REQUEST and
RECOMPUTE, all parties in the output quorum receive all
computation results correctly in all O(log∗ m) rounds and
RESENDmust be called O(log∗ m) times by the output quo-
rum.

When a corruption occurs in any round of RESEND, by
Lemmas 5 and 6, this corruption is detected with probability
at least 1/2.

Recall that in RESEND, for each round j , RES j that has
([j, A j , b j

m+n, r]ks , kp) is sent from the output quorum to the
senders through a graph of subquorums. If any good party
in any subquorum receives RES j and has not received all
RESi , for 1 ≤ i < j , then it will call RECOVER.

Otherwise: no corruption occurs.
Therefore, the probability that CHECK succeeds in find-

ing a corruption and calling RECOVER is at least 1/2. ��

7.2 RECOVER

Lemma 8 If some party selected uniformly at random in the
last call to EVALUATE or CHECK has corrupted a compu-
tation, then RECOVER will identify a pair of neighboring
quorums Q and Q′ such that at least one pair of parties in
these quorums is in conflict and at least one party in such
pair is bad.

Proof First, we show that if a pair of parties x and y is in
conflict, then at least one of them is bad. Assume not. Then
both x and y are good. This implies that party x would have
truthfully reported what it received and sent; any result that
x has computed would have been sent directly to y; and y
would have truthfully reported what it received from x . But
this is a contradiction, since for x and y to be in conflict, y
must have reported that it received from x somethingdifferent
than what x reported sending.

Now consider the case where a selected unmarked bad
leader corrupted the computation in the last call to EVAL-
UATE. By Lemma 7, with probability at least 1/2, some
party, q ′ ∈ Q′, will callRECOVER. Recall that inRECOVER
q ′ broadcasts all messages it has received to all parties in
Q′. These parties verify if q ′ received inconsistent messages
before proceeding.

In RECOVER, we know that each party, q ∈ Q, partic-
ipated in the last call to COMPUTE broadcasts what it has
received and sent to all parties in Q. Thus, all parties of Q
verify the correctness of q’s computation. Thus, if the cor-
ruption occurs due to an incorrect computation made by a
bad party, this corruption will be detected and all parties will
know that this party is bad.

Now if all parties compute correctly and CHECK detects
a corruption, then we show that there is some pair of par-
ties that will be in conflict. Assume this is not the case.
Thus, by the definition of corruption, there must be a decep-
tion DAG, in which all inputs are provided correct and an
output is corrupted at party q ′. Then each pair of parties,
(q j , qk) ∈ (Q j , Qk), in the deception DAG that is rooted at
q ′, is not in conflict, for n + 1 ≤ j < k ≤ m + n. Thus,
we have that (1) this DAG received all its inputs correct; (2)
all parties compute correctly; and (3) no pair of parties is in
conflict. This implies that it must be the case that q ′ received
the correct output. But if this is the case, then q ′ that initially
called RECOVER would have received no inconsistent mes-
sages. This is a contradiction since in such a case, this party
would have been unsuccessful in trying to initiate a call to
RECOVER. Thus, RECOVERwill find two parties that are in
conflict, and at least one of them will be bad. ��

The next lemma bounds the number of calls to RECOVER
before all bad parties are marked.

Lemma 9 RECOVER is called O(t) times before all bad
parties are marked.

123

408 G. Saad, J. Saia

Proof By Lemma 8, if a corruption occurred in the last call
to EVALUATE, and it is caught by CHECK, then RECOVER
is called. RECOVER identifies at least one pair of parties that
is in conflict, and each of such pairs has at least one bad party.

Recall that p is the probability of selecting an unmarked
bad party uniformly at random in a quorum. Now let b be
the number of marked bad parties; and let g be the number
of marked good parties. Also, let

f (b, g) = b −
(

p

1 − p

)
g.

Note that at least (1/2+γ)-fraction of parties is unmarked
in any quorum at any time, for any constant γ > 0. Note
further that t ≤ (14 − ε)n parties, for any constant ε > 0.
Thus, for any constant δ > 0,

0 < p ≤ 1/2 − δ.

This implies that

0 <
p

1 − p
< 1.

Now we show that for any corruption detected, f (b, g)
monotonically increases, i.e., Δ f (b, g) > 0. For each cor-
ruption caught, at least one bad party and at most one good
party are marked. Thus, b increases by at least 1, and g
increases by at most 1. This implies that

Δ f (b, g) ≥ 1 − p

1 − p
=

(
1 − 2p

1 − p

)
> 0.

After the corruption is detected and the in-conflict parties
are marked, if the fraction of marked parties in any quo-
rum Q reaches or exceeds (1/2 − γ), then these parties
are set unmarked. This implies that b decreases by at most
p|Q|(1/2−γ) and g decreases by at least (1− p)|Q|(1/2−
γ), or equivalently, f (b, g) increases further by at least 0.

Hence, for each corruption caught,

Δ f (b, g) ≥
(
1 − 2p

1 − p

)
> 0.

Since 0 ≤ b ≤ t and g ≥ 0, f (b, g) never exceeds t ; and
when all bad parties are marked, f (b, g) is at most t . There-
fore, all bad parties are marked after RECOVER is called at

most
(

1−p
1−2p

)
t times, or equivalently, at most

(1+2δ
4δ

)
t times,

for any constant δ > 0. ��

7.3 Proof of Theorem 1

We first show the message cost, the number of operations
and the latency of our algorithms. By Lemma 9, the number

of calls to RECOVER is at most O(t). Thus, the resource
cost of all calls to RECOVER is bounded as the number of
calls toCOMPUTE grows large. Therefore, for the amortized
cost, we consider only the cost of the calls toEVALUATE and
CHECK.

When a computation is performed through a circuit of
m gates with a circuit depth �, EVALUATE has message
cost O(m + n log n), number of operations O(m + n log n)

and latency O(�). CHECK has message cost O((m +
n log n)(log∗ m)2), number of operations O((m + n log n)

log∗ m) and latency O(� log∗ m), but CHECK is called only
with probability 1/(log∗ m)2. Hence, the call to CHECK
has an amortized expected message cost O(m + n log n),
amortized computational operations O(

m+n log n
log∗ m) and an

amortized expected latency O(�/ log∗ m).
In particular, if we call COMPUTE L times, then the

expected total number of messages sent will be O(L(m +
n log n) + t (m log2 n)) with expected total number of com-
putational operations O(L(m+n log n)+ t (m log n log∗ m))

and latency O(�(L + t)). This is true since RECOVER
is called O(t) times and each call to RECOVER has
message cost O(m log2 n) with computational operations
O(m log n log∗ m) and latency O(�).

Recall that by Lemma 9, the number of times CHECK
must catch corruptions before all bad parties are marked is
O(t). In addition, if a bad party caused a corruption dur-
ing a call to EVALUATE, then by Lemmas 7 and 8, with
probability at least 1/2, CHECK will catch it. As a con-
sequence, it will call RECOVER, which marks the parties
that are in conflict. RECOVER is thus called with probability
1/(log∗ m)2, so the expected total number of corruptions is
O(t (log∗ m)2).

8 Empirical results

8.1 Setup

In this section, we empirically compare two algorithms via
simulation.We evaluate the following resource costs of these
algorithms: message cost, latency, probability of computa-
tion corruption and expected total number of corruptions.

The first algorithm we simulate is no-self-healing (Sect.
4.3). This algorithm simply computes via all-to-all commu-
nication between quorums that are connected in binary-tree
circuits. The second algorithm is self-healing, wherein we
apply our self-healing algorithm in binary-tree circuits (Sect.
6).

In our experiments, we consider two quorum graphs. The
first quorum graph has a number of parties n = 4095 with a
number of gatesm = 4095; and the second quorumgraph has
n = 8191 with m = 8191. The two quorum graphs are per-

123

A theoretical and empirical evaluation of an algorithm for self-healing computation 409

fect binary-tree of depth � = �log n�. We let the quorum be
of size �4 log n� and the subquorum be of size �2 log∗ n�.
Also, we let COMPUTE call CHECK with probability
1/(log∗ n)2. Moreover, we do our experiments for several

fractions of bad parties such as f =
{
1
8 ,

1
16 ,

1
32 ,

1
64

}
, where

f = t/n.
Our simulations consist of a sequence of calls to COM-

PUTE over the network. Note that in each call, we let the
output quorum request that the n input quorums provide
inputs to a circuit of m gates in the same round.

We simulate an adversary who at the beginning of each
simulation chooses uniformly at random without replace-
ment a fixed number of nodes to control. Our adversary
attempts to corrupt computations, where it dropsmessages or
it changes the bits ofmessages sent between partieswhenever

possible. Aside from attempting to corrupt computations, the
adversary performs no other attacks.

8.2 Results

The results of our experiments are shown in Figs. 11, 12 and
13. Our results highlight two strengths of our self-healing
algorithms (self-healing) when compared to algorithmswith-
out self-healing (no-self-healing). First, the message cost
per COMPUTE decreases as the total number of calls to
COMPUTE increases. Second, for a fixed number of calls
to COMPUTE, the message cost per COMPUTE decreases
as the total number of bad parties decreases. In particular,
when there are no bad nodes, self-healing has dramatically
less message cost than no-self-healing.

Fig. 11 Number of messages per call to COMPUTE versus number of calls to COMPUTE, for n = 4095 and n = 8191

Fig. 12 Latency per call to COMPUTE versus number of calls to COMPUTE, for n = 4095 and n = 8191

123

410 G. Saad, J. Saia

Fig. 13 The probability that the computation is corrupted versus number of calls to COMPUTE, for n = 4095 and n = 8191

Table 1 Expected number of messages per call to COMPUTE in self-
healing and no-self-healing for n = 4095 and n = 8191

n self-healing no-self-healing Improvement Factor

4095 84, 072 28, 297, 456 336

8191 153, 744 66, 435, 642 432

8.2.1 Expected number of messages

Figure 11 shows that before all bad parties are marked or all
selected leaders are good: (1) the expected number of mes-
sages per call to COMPUTE decreases as the total number
of calls to COMPUTE increases; and (2) for a fixed number
of calls toCOMPUTE, the expected number of messages per
call to COMPUTE decreases as f decreases.

Table 1 shows that when all selected leaders are good, self-
healing has dramatically less expected number of messages
per call to COMPUTE than no-self-healing. Also it shows
the improvement factor of the number of messages for our
self-healing algorithm compared to the naive algorithm.

8.2.2 Expected latency

Figure 12 shows that the latency of self-healing is less than
the latency of no-self-healing due to the expected latency of
CHECK. Note that in any call to CHECK, if a corruption
is detected at any round, then CHECK is terminated in this
round and RECOVER is called. This figure shows that when
all bad parties are marked (no more corruptions occur), each
call to CHECK will run all O(log∗ n) rounds.

Table 2 shows that for n = 4095 and n = 8191, self-
healing has latency that is at most twofold the latency of
no-self-healing.

Table 2 Expected latency per call to COMPUTE in self-healing and in
no-self-healing for n = 4095 and n = 8191

n self-healing no-self-healing

4095 58 33

8191 62 36

8.2.3 Probability of computation corrupted

Figure 13 shows that the probability of computation cor-
rupted per a call toCOMPUTE decreases as the total number
of calls to COMPUTE increases. Also, for a fixed number
of calls to COMPUTE, this probability decreases as the total
number of bad nodes decreases.

Even though our self-healing algorithm has a probability
of corrupted computation that declines over the number of
calls to COMPUTE, it always sends fewer messages than the
naive algorithm.

8.2.4 Expected total number of corruptions

In Fig. 13, for each network given the number of parties and
the fraction of bad parties, if we integrate the corresponding
curve, then we obtain
(n), which is the experimental total
number of corruptions occurred in a network of n parties.

Now we calculate the theoretical total number of corrup-
tions, σ(n), given the parameters of our experiments. Then,
we compare between
(n) and σ(n), for different fractions
of bad parties, f . Recall that p is the probability of selecting
an unmarked bad party u.a.r. in a quorum. We know that at
least 1/2-fraction of parties is unmarked in any quorum at
any time. Thus, p ≤ 2t/n = 2 f . By Lemma 9, the total

123

A theoretical and empirical evaluation of an algorithm for self-healing computation 411

Table 3 Expected total number of corruptions for n = 4095 and n =
8191

f
(4095) σ (4095)
(8191) σ (8191)

1/64 1024 2116 2065 4232

1/32 2102 4388 4209 8777

1/16 4367 9557 8771 19,114

1/8 9440 24,576 18,920 49,152

number of calls to RECOVER is at most
(

1−p
1−2p

)
t . Note

that in our experiments, CHECK is triggered with proba-
bility 1/(log∗ n)2, and it detects corruptions with probability
at least 1/2. Therefore, the theoretical total number of cor-
ruptions is at most

σ(n) = 2

(
1 − 2 f

1 − 4 f

)
t (log∗ n)2.

Table 3 shows a comparison between the theoretical and
experimental results of the expected total number of corrup-
tions. It shows that
(n) ≤ σ(n) for n = {4095, 8191} and
f =

{
1
8 ,

1
16 ,

1
32 ,

1
64

}
.

9 Conclusion and future work

Wehave presented algorithms for reliable multiparty compu-
tations. These algorithms can significantly reduce message
cost and number of computational operations to be close to
asymptotically optimal. The price we pay for this improve-
ment is the possibility of computation corruption. In partic-
ular, if there are t ≤ (14 − ε)n bad parties, for any constant
ε > 0, our algorithm allows O(t (log∗ m)2) computations to
be corrupted in expectation.

Several open problems remain. It seems unlikely that
the smallest number of corruptions allowable by an attack-
resistant algorithm with optimal message complexity is
O(t (log∗ m)2). Can we improve this to O(t) or else prove a
non-trivial lower bound?

In CHECK, we provide an array of random integers
in each round to select parties uniformly at random in
order to participate for detecting corruptions. Each array has
O(m log n log log n) bits. If the input message has O(b) bits,
then the communication complexity per call toCOMPUTE is
O((m+n log n)(m log n log log n+b)) and the communica-
tion complexity of the naive algorithm isO((m+n) log2 n·b).
Can we reduce the number of bits required to represent these
arrays to O(m log log n) in order to improve the communi-
cation complexity of our algorithms?

Moreover, in INVESTIGATE, each party that has partici-
pated in COMPUTE broadcasts a message of size

O((m log n log log n + b)(log∗ m)2) bits, how can we opti-
mize the message size?

We allow the inputs of parties to be revealed. Can we
enhance our algorithms to maintain the privacy of these
inputs? If we could, we would have a self-healing algorithm
for reliable multiparty computation.

Also, we assume partially synchronous communication,
which is crucial for our CHECK algorithm to detect compu-
tation corruptions over rounds. Can we extend this algorithm
to fit for asynchronous computations?

Finally, we assume the presence of a static adversary. How
can we change our algorithms to self-heal computation in the
presence of churn or an adaptive adversary?

References

1. Fiat, A., Saia, J.: Censorship resistant peer-to-peer networks. The-
ory Comput. 3(1), 1–23 (2007)

2. Saad, G., Saia, J.: Self-healing Computation. SSS’14, pp. 195–210
(2014)

3. Hildrum, K., Kubiatowicz, J.: Asymptotically efficient approaches
to fault-tolerance in peer-to-peer networks. Distrib. Comput. 2848,
321–336 (2003)

4. Naor, M., Wieder, U.: A Simple Fault Tolerant Distributed Hash
Table. IPTPS’03, pp. 88–97 (2003)

5. Scheideler, C.: How to Spread Adversarial Nodes? Rotate!
STOC’05, pp. 704–713 (2005)

6. Fiat, A., Saia, J., Young, M.: Making Chord Robust to Byzantine
Attacks. ESA’05, pp. 803–814 (2005)

7. Awerbuch, B., Scheideler, C.: Towards a scalable and robust DHT.
Theory Comput. Syst. 45(2), 234–260 (2009)

8. King, V., Lonargan, S., Saia, J., Trehan, A.: Load Balanced Scal-
able Byzantine Agreement Through Quorum Building, with Full
Information. ICDCN’11, pp. 203–214 (2011)

9. Frisanco, T.: Optimal SpareCapacityDesign forVarious Protection
Switching Methods in ATM Networks, Vol. 1 of ICC’97, pp. 293–
298 (1997)

10. Iraschko, R.R., MacGregor, M.H., Grover, W.D.: Optimal capacity
placement for path restoration in STM or ATM mesh-survivable
networks. IEEE/ACM Trans. Netw. 6(3), 325–336 (1998)

11. Murakami, K., Kim, H.S.: Comparative Study on Restoration
Schemes of Survivable ATM Networks, Vol 1 of INFOCOM’97,
pp. 345–352 (1997)

12. Van Caenegem, B., Wauters, N., Demeester, P.: Spare Capacity
Assignment for Different Restoration Strategies in Mesh Surviv-
able Networks, Vol. 1 of ICC’97, pp. 288–292 (1997)

13. Xiong, Y., Mason, L.G.: Restoration strategies and spare capacity
requirements in self-healing ATM networks. IEEE/ACM Trans.
Netw. 7(1), 98–110 (1999)

14. Boman, I., Saia, J., Abdallah, C., Schamiloglu, E.: BriefAnnounce-
ment: Self-healing Algorithms for Reconfigurable Networks, Vol.
4280 of SSS’06, pp. 563–565 (2006)

15. Saia, J., Trehan, A.: Picking Up the Pieces: Self-healing in Recon-
figurable Networks. IPDPS’08, pp. 1–12 (2008)

16. Hayes, T., Rustagi, N., Saia, J., Trehan, A.: The Forgiving Tree:
A Self-healing Distributed Data Structure. PODC’08, pp. 203–212
(2008)

17. Hayes, T.P., Saia, J., Trehan, A.: The Forgiving Graph: A Distrib-
uted Data Structure for Low Stretch Under Adversarial Attack.
PODC’09, pp. 121–130 (2009)

123

412 G. Saad, J. Saia

18. Pandurangan, G., Trehan, A.: Xheal: localized self-healing using
expanders. Distrib. Comput. 27(1), 39–54 (2014)

19. Sarma, A.D., Trehan, A.: Edge-preserving self-healing: keeping
network backbones densely connected. In: IEEE Conference on
Computer Communications Workshops (INFOCOM WKSHPS),
pp. 226–231 (2012)

20. Knockel, J., Saad, G., Saia, J.: Self-healing of Byzantine Faults.
SSS’13, pp. 98–112 (2013)

21. Yao, A.C.: Protocols for Secure Computations. SFCS’82, pp. 160–
164 (1982)

22. Beaver, D.: Efficient Multiparty Protocols Using Circuit Random-
ization. CRYPTO’91, pp. 420–432 (1992)

23. Ben-Or, M., Goldwasser, S., Wigderson, A.: Completeness Theo-
rems for Non-cryptographic Fault-tolerant Distributed Computa-
tion. STOC’88, pp. 1–10 (1988)

24. Rabin, T., Ben-Or, M.: Verifiable Secret Sharing and Multiparty
Protocols with Honest Majority. STOC’89, pp. 73–85 (1989)

25. Asharov, G., Lindell, Y.: A full proof of the BGW protocol for
perfectly-secure multiparty computation. Electron. Colloq. Com-
put. Complex. 18, 36 (2011)

26. Prabhakaran, M., Sahai, A.: Secure Multi-Party Computation, vol.
10. IOS Press, Amsterdam (2013)

27. Kate, A., Goldberg, I.: Distributed Key Generation for the Internet.
ICDCS’09 pp. 119–128 (2009)

28. Moore, C., Mertens, S.: The Nature of Computation. Oxford Uni-
versity Press Inc, New York, NY (2011)

29. Van Der Hofstad, R.: Random Graphs and Complex Net-
works. Available on http://www.win.tue.nl/rhofstad/NotesRGCN.
pdf (2009)

30. Janson, S., Luczak, T., Rucinski, A.: Random Graphs. Wiley
Series inDiscreteMathematics andOptimization.Wiley,NewYork
(2011)

31. Hadar, J., Russell, W.R.: Rules for ordering uncertain prospects.
Am. Econ. Rev. 59(1), 25–34 (1969)

32. Bawa, V.S.: Optimal rules for ordering uncertain prospects. J.
Financ. Econ. 2(1), 95–121 (1975)

33. Klenke, A., Mattner, L.: Stochastic ordering of classical discrete
distributions. Adv. Appl. Probab. 42(2), 392–410 (2010)

123

http://www.win.tue.nl/rhofstad/NotesRGCN.pdf
http://www.win.tue.nl/rhofstad/NotesRGCN.pdf

	A theoretical and empirical evaluation of an algorithm for self-healing computation
	Abstract
	1 Introduction
	2 Our model
	3 Our result
	4 Technical overview
	4.1 Quorums and Quorum graph
	4.2 Computing with Quorums
	4.3 Naive computation
	4.4 Our approach

	5 Related work
	6 Our algorithms
	6.1 BROADCAST
	6.2 COMPUTE
	6.3 CHECK
	6.4 RECOVER

	7 Analysis
	7.1 CHECK
	7.2 RECOVER
	7.3 Proof of Theorem 1

	8 Empirical results
	8.1 Setup
	8.2 Results
	8.2.1 Expected number of messages
	8.2.2 Expected latency
	8.2.3 Probability of computation corrupted
	8.2.4 Expected total number of corruptions

	9 Conclusion and future work
	References

