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Abstract Wepresent a collection of upper and lower bounds
on the complexity of asynchronous, wait-free, linearizable,
single-scanner snapshot implementations from read–write
registers. We argue that at least m registers are needed to
implement a single-scanner snapshotwithm components and
we prove that, in space-optimal implementations, SCANS
execute Ω(m2) steps. We present an algorithm that runs in
O(m2) steps and uses m + 1 registers. We also present three
implementations (namely, T-Opt, RT and RT-Opt) that beat
the Ω(m2) lower bound by using more registers. Specif-
ically, T-Opt has step complexity O(1) for UPDATE and
O(m) for SCAN. This step complexity is optimal, but the
number of registers that T-Opt uses is unbounded. We then
present interesting recycling techniques to bound the number
and the size of registers used, resulting in RT and RT-Opt.
Specifically, RT-Opt, which has optimal step complexity,
uses O(mn) bounded-size registers, where n is the total num-
ber of processes. Our implementations are the first with step
complexities that are (linear or quadratic) functions only of
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m (and not of n). Moreover, T-Opt and RT-Opt are the first
implementations with optimal step complexity.
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1 Introduction

A fundamental problem in asynchronous, shared-memory
systems is to obtain an instantaneous view of a block of
shared memory while processes may be concurrently updat-
ing its cells. Snapshots are shared objects that provide such
consistent views. Specifically, a snapshot object consists of
an array of m components and supports two operations,
UPDATE that changes the value of a component, and SCAN,
which returns an instantaneous view of all components.
Snapshots can be used to record the state of a system as
it is changing, so they facilitate the solution of problems
that have to perform an action whenever the global state
of the system satisfies some condition [25]. Snapshots have
been extensively used for the design and verification of dis-
tributed algorithms, e.g., for the construction of concurrent
timestamps [17], approximate agreement [7], check-pointing
and restarting [25], randomized consensus [4], and the design
of complex distributed data structures [5].

A multi-writer snapshot allows each process to UPDATE
any component. It can be implemented from read–write reg-
isters [3,12–14,21,22]. A single-writer snapshot [1,2,8,19,
20] is a restricted version, where each component has only
one process that can UPDATE it. A snapshot implementa-
tion from read–write registers uses the registers to store the
state of the snapshot components and provides an algorithm,
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for each process, to execute SCAN and UPDATE. A snapshot
implementation is evaluated in terms of its space complexity,
which is expressed in terms of the number (and the size) of
registers it uses, and its step complexity, which is the maxi-
mum number of steps taken by a process in every execution
to perform a SCAN or an UPDATE. The advantages of snap-
shots can be exploited only if it is possible to implement them
efficiently.

Ideally, we would like to be able to design multi-writer
snapshot implementations, which have step complexity that
is independent of n, the total number of processes. (Usually,
n ismuch larger than the numberm of snapshot components.)
However, it has been proved [14] that, in any implementa-
tion of multi-writer snapshot objects from a fixed number
of read–write registers, the step complexity of SCAN grows
without bound as n increases. Current snapshot implemen-
tations [1–3,8,12–14,19,20] from read–write registers have
step complexity at least linear in n.

In this paper, we show that the dependence of step
complexity on n can be beaten, if we restrict attention to
single-scanner snapshots [22,24,27]. A single-scanner snap-
shot is an interesting variant of a general snapshot object in
which only one process, called the scanner, performs SCAN
operations at any point in time.

Single-scanner snapshots have several applications and
therefore studying their complexity is of interest.Many of the
contemporary programming environments support garbage
collection for reclaiming memory. In such environments, a
process, known as a garbage collector, is periodically exe-
cuted to reclaim the unused memory. Backup is another
classical application of a single-scanner snapshot algorithm.
In such systems, a single process is responsible for peri-
odically taking snapshots of a system’s critical data. As a
last example, consider a debugging environment for paral-
lel applications. In all these environments, it is important
to take snapshots without interfering with the execution of
the running application. The design of efficient wait-free
single-scanner snapshot algorithms is therefore an interesting
problem.

We study single-scanner, multi-writer snapshot imple-
mentations and present a collection of upper and lower
bounds for their complexity. It turns out that single-scanner
multi-writer snapshot implementations from read–write reg-
isters require at least m registers, even if the registers are of
unbounded size. Jayanti et al. [23] have presented a lower
bound of Ω(n) on the step complexity of implementations
of perturbable objects from read–write registers. They prove
that single-writer snapshots are perturbable [23]. Their proof
applies to the single-scanner case. A multi-writer snapshot
trivially implements a single-writer snapshot form processes.
This implies a lower bound of Ω(m) on the step complexity
of SCAN for single-scanner, multi-writer snapshots.

We present a lower bound of Ω(m2) on the step complex-
ity of SCAN for space-optimal single-scanner multi-writer
snapshot implementations for n > m + 1 processes. This
lower bound holds even if each of the snapshot compo-
nents can store only three different values. Additionally,
we present a single-scanner multi-writer snapshot imple-
mentation, called Checkmarking, which has O(m2) step
complexity and usesm+1 registers of unbounded size. Thus,
Checkmarking uses just one more register than a space
optimal implementation and its step complexity matches the
lower bound we proved for such implementations to within
a constant factor.

We also present the Time-efficient family of single scan-
ner, multi-writer m-component snapshot implementations
from read–write registers. It contains the first step-optimal
implementations. These implementations have step com-
plexity O(m) for SCAN and O(1) for UPDATE and use
bounded-size registers. The first implementation, called T-
Opt, is the simplest, but (in systems with no garbage
collector) the number of registers it uses depends on the num-
ber of SCAN operations executed (that might be unbounded).

To improve space efficiency, we first present a relatively
simple recycling technique that results in an implementation,
called RT, that uses O(mn) bounded-size registers, and has
step complexityO(1) forUPDATE andO(n) forSCAN. Thus,
RT sacrifices the step optimality of T-Opt for less space.
We then introduce a more interesting recycling technique
to get an implementation, called RT-Opt, that uses O(mn)

bounded-size read–write registers and achieves optimal step
complexity, that is, step complexity O(1) for UPDATE and
O(m) for SCAN. RT is a middle ground between T-Opt and
RT-Opt; its design provides intuition for RT-Opt and sim-
plifies its presentation. RT-Opt sacrifices space for better
step complexity. We believe that it could be used to reduce
the space complexity of other interesting distributed prob-
lems.

A practical snapshot implementation should ensure that
the performance of UPDATE is within a small constant of
that of a write. (It is usually not desirable to significantly
increase the cost of updating shared memory.) The Time-
efficient family ensures this property by having UPDATES
perform a small number of accesses in shared memory.

We remark that T-Opt works even if processes do not
have unique identifiers. Moreover, T-Opt and Checkmark-
ing work even if the number of participating processes is
unbounded. All our single-scanner implementations work
even if several processes perform SCANS, although not
simultaneously. T-Opt and RT do not require any changes.
In order thatRT-Optworks, some of the scanner’s persistent
(static) variables must be accessed by each process perform-
ing a SCAN, although these variables will never be accessed
concurrently.
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Table 1 Summary of known single-scanner snapshot implementations

Implementation SW/MW Regs type Regs number Regs size SCAN UPDATE

Checkmarking, this paper MW MW r/w m + 1 Unbounded O(m2) O(m2)

T-Opt, this paper MW MW r/w Unbounded Unbounded O(m) O(1)

RT, this paper MW MW r/w O(mn) O(log n) O(n) O(1)

RT-Opt, this paper MW MW r/w O(mn) O(log n) O(m) O(1)

Kirousis et al. [24] MW MW r/w O(mn) O(mn log n) O(mn) O(1)

Riany et al. [27] SW SW r/w n + 1 Unbounded O(n) O(1)

Jayanti [22] SW SW r/w O(n) O(1) O(n) O(1)

Jayanti [22] MW LL/SC and r/w O(m) O(1) O(m) O(1)

Table 1 summarizes known single-scanner snapshot
implementations from registers.

The rest of the paper is organized as follows. In Sect. 2,
we discuss related work. Our model is presented in Sect. 3.
In Sect. 4, we present the Ω(m2) lower bound on the step
complexity of space-optimal, single-scanner multi-writer
snapshots.Checkmarking is presented in Sect. 5, andT-Opt,
RT and RT-Opt are presented in Sects. 6, 7, and 8, respec-
tively. A discussion and some open problems are provided in
Sect. 9.

2 Related work

Fatourou, Fich, and Ruppert have proved in [11,13] that
multi-scanner multi-writer m-component snapshot imple-
mentations from read–write registers require at least m
registers. Moreover, they have presented a lower bound of
Ω(mn) on the step complexity ofSCANS for such implemen-
tations that are space optimal. Covering arguments [9] were
used to prove these lower bounds; first, a number of struc-
tural properties for these implementations were presented
and then, these properties were used to construct an execu-
tionwhere a troublesomeSCAN takesmany steps.We employ
similar arguments in order to prove our lower bounds. It is
not difficult to observe that the structural properties proved
in [13] also hold for the case of single-scanner implementa-
tions. This leads to the observation that the space lower bound
ofΩ(m) proved in [13] also holds for the single-scanner case.
However, to prove the lower bound on the step complexity,
wehad to copewith several complications. Toprove the lower
bound of Ω(mn), it is essential that, in the execution con-
structed in [13], a number of SCANS take place concurrently
with the troublesome SCAN in order to prove that the trou-
blesome SCAN needs to take more and more steps. In the
single-scanner case, it is not possible to have more than one
concurrent SCAN active at each point in time, so it is only the
troublesome SCAN, which is allowed to be active during the
execution. This makes our construction more difficult and
delicate and differentiates it from that presented in [13].

Attiya et al. [6] proved a lower bound of Ω(m) on the
step complexity of UPDATE for partitioned implementa-
tions of multi-scanner, multi-writer snapshots from base
objects of any type. An implementation is partitioned if each
base object can only be modified by processes performing
UPDATES to one specific component. T-Opt is a partitioned
implementation of single-scannermulti-writer snapshots and
has step complexity O(1) for UPDATE. So, the lower bound
in [6] can be beaten if we restrict attention to the single-
scanner case.

The first single-scanner, multi-writer snapshot implemen-
tations from read–write registers were presented by Kirousis
et al. [24]. Their first implementation uses an unbounded
number of registers and has unbounded step complexity for
SCAN. A register recycling technique, which leads to an
implementation that uses O(mn) bounded-size registers and
has step complexity O(mn) forSCAN and O(1) forUPDATE,
is also presented in [24]. As in the recycled implementation
in [24], RT-Opt uses a two dimensional array of registers
with O(n) rows of m registers each. However, the recycling
technique employed by RT-Opt is much simpler than that
proposed in [24], since RT-Opt recycles rows of this array
and not a single element of an appropriate row for each com-
ponent, as done in the implementation in [24]. Remarkably,
our implementations significantly improve upon the imple-
mentations in [24] in terms of their step complexity. This is
accomplished by employing different techniques to achieve
fast termination.

For single-writer snapshots, a simplified version of the
implementation in [24] that uses n + 1 single-writer reg-
isters of unbounded size and has step complexity O(n) for
SCAN andO(1) forUPDATE is presented in [27]. Jayanti [22]
has presented a simple, single-scanner, single-writer snap-
shot implementation from O(n) bounded-size single-writer
registers that has step complexity O(n) for SCAN and O(1)
for UPDATE.

Recall that Table 1 summarizes known single-scanner
snapshot implementations from registers. It is remarkable
that the step complexity of all previously presented single-
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scanner snapshot implementations from read–write registers
is a function of n. In [22], Jayanti has also presented a single-
scanner snapshot implementation,which has step complexity
O(m) for SCAN and O(1) for UPDATE. However, that
implementation uses stronger base objects such as LL/SC
registers.

Our implementations are the first asynchronous snapshot
implementations, which have step complexity that is lin-
ear (or quadratic) in the number of snapshot components.
Snapshot implementations that are partially synchronous are
provided in [24], but the correctness of these implementa-
tions is heavily based on the timing assumptions. Moreover,
these assumptions simplify their design significantly. A snap-
shot algorithm for a system in which the number of processes
may be infinite is presented in [16].

3 Model

We consider a system in which a set P of n processes run
concurrently and asynchronously. The processes communi-
cate by accessing shared objects and may fail by crashing. If
a process crashes, it takes no more steps.

A read–write register R is a base object that stores a value
from a set and supports the atomic primitives write(R, v)

that changes the value of R to v and returns an acknowl-
edgment ack, and read(R), which returns the value of R
without any change. All processes may perform write to a
multi-writer register, whereas only one process may perform
write to a single-writer register.

A (multi-writer) snapshot object A consists of m compo-
nents A1, . . . , Am , each capable of storing a value at a time;
processes can perform two kinds of operations on the object:
UPDATE(i, v), which updates component Ai with value v

and returns ack, and SCAN, which returns a vector of m
values, one for each component of the snapshot object.

We study implementations ofmulti-writer snapshot objects
from read–write registers. An implementation uses the reg-
isters to simulate the state of the snapshot components and
provides an algorithm, for each process, to implement each
simulated operation (i.e., SCAN and UPDATE).

A configuration C is a vector consisting of the states of the
processes and the states of the registers used by the imple-
mentation. A configuration describes the system at some
point in time. In an initial configuration, all processes are
in initial states and all registers contain initial values. We
say that a process takes a step whenever it performs a sin-
gle access (read or write) to some register. A step might
as well contain the execution of local computation by the
process that takes the step; this computation may cause a
change to the state of the process. Each step is executed atom-
ically.

An execution is an alternating sequence of configurations
and steps starting with a configuration. An execution α is
legal, starting from a configurationC , if the sequence of steps
performed by each process follows the algorithm for that
process (starting from its state in C) and for each register,
the responses to the operations performed on the register
are in accordance with its specification and the value stored
in the register at configuration C . The schedule π(α) of an
execution α is the subsequence of α consisting of the steps of
α. A schedule π is legal from some configuration C if there
is a legal execution α starting from C for which π = π(α).

A configurationC is reachable if there is a legal execution
α starting from an initial configuration that results in C . A
process is poised to perform a primitive on a register in a
configuration C if it performs that primitive on the register
when it is next allocated a step. A process covers a register
R in a configuration C if it is poised to perform a write
primitive to R at C . A set of processes P ′ covers a set of
registers R′ if |P ′| = |R′|, each process in P ′ covers a register
in R′ and each register in R′ is covered by a process in P ′.
Two executions α and α′ are indistinguishable to some set
of processes P ′, denoted by α ≈P ′ α′, if the sequence of
steps performed by each process p in P ′ and the responses
p received are the same in α and α′. In a solo execution, all
steps are performed by the same process.

Let op be some SCAN or UPDATE operation in α. The
execution interval of op is the subsequence of α that starts
with the configuration that precedes the invocation (i.e., the
first step) of op and endswhen op responds. If the response of
op precedes the invocation of some otherSCAN (orUPDATE)
op′, then op precedes op′. We say that op is pending at some
configurationC if the process p executing op, has performed
at least one step of the algorithm of op at C but has not
yet completed executing op. If a process p has a pending
operation at C , p is called active; otherwise, p is inactive
at C . In a sequential execution, only one process is active at
each configuration of the execution.

A snapshot implementation is single-scanner if in each
execution produced by the implementation, there is only one
process, called the scanner, that performs SCANS at each
point in time.We remark that the implementationswe present
work correctly even if several scanners perform SCANS pro-
vided that the execution intervals of SCANS do not overlap
with one another. Our lower bounds are also true in this case.

We study implementations that are linearizable [18]. An
execution α starting from an initial configuration is lineariz-
able if for every completed SCAN or UPDATE operation op
in α (and for some of those that are not completed), we can
choose a point in its execution interval, called linearization
point, such that the response returned by op in α is the same
as the response op would return if these operations were
executed sequentially in the order determined by their lin-
earization points. The sequence of these linearization points
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is called a linearization of the execution. An implementation
is linearizable if all its executions are linearizable. If L is
a linearization of α, we say that the response of op is con-
sistent in α with respect to L (for simplicity, we sometimes
omit reference to α and L whenever they are clear from the
context).

Additionally, our implementations are wait-free. Wait-
freedom requires that every non-faulty process should com-
plete the execution of every SCAN or UPDATE it initiates
within a finite number of steps, independently of whether
other processes crash or run at arbitrary speeds.

The step complexity of SCAN (UPDATE) for a snapshot
implementation I is the maximum number of steps executed
by a process to perform SCAN (UPDATE, respectively) in
any execution produced by I . The step complexity of I is the
maximum between the step complexity of SCAN and the step
complexity of UPDATE for I . The space complexity of I is
determined by the maximum number of registers (and their
sizes) used in any execution produced by I .

4 Lower bound

In this section, we present lower bounds for single-scanner
snapshot implementations. First, we argue that in a single-
scanner implementation of an m-component multi-writer
snapshot object for n > m+1 processes using onlym multi-
writer registers, processes must access the registers in a very
constrained way.

In multi-scanner (multi-writer) m-component snapshot
implementations that use only m registers, Fatourou, Fich
and Ruppert have proved in [12] that (1) SCANS do not write
(Lemma 1), (2) unless every process has taken steps, each
UPDATE operation writes to only one register (Lemma 2),
and (3) processes that perform UPDATE operations to dif-
ferent snapshot components must write to different registers
(Lemma 3). It is easy to verify that the proofs of these lem-
mas for the single-scanner case are similar to those presented
in [12] formulti-scanner snapshots. For the sake of complete-
ness, the proofs of Lemmas 1–3 (as well as of others that they
depend on) are provided in the “Appendix”.

Let m, n be integers such that m < n − 1 and fix any
execution α of an n-process single-scanner, multi-writer,
m-component snapshot implementation from m registers
starting from an initial configuration, C0.

Lemma 1 (Fatourou, Fich and Ruppert) No SCAN opera-
tion ever performs writes in α.

Consider any process pi , 1 ≤ i ≤ n, other than the scan-
ner, and any component A j , 1 ≤ j ≤ m. For any value v

different from the initial value of A j , consider an execution
where pi runs solo from C0 to perform an UPDATE on A j

with value v. It has been proved in [12] (see appendix) that

this execution contains at least one write to some register
and the first such write is performed to the same register
independently of the process that executes the UPDATE and
the value used. Denote this register by R j .

Lemma 2 (Fatourou, Fich andRuppert) If there is a process,
other than the scanner, that takes no steps in α, then for each
j ∈ {1, . . . ,m}, UPDATE operations to component A j write
only to R j .

Lemma 3 (Fatourou, Fich andRuppert) Fordistinct j1, j2 ∈
{1, . . . ,m}, R j1 �= R j2 .

Lemma 3 implies the following lower bound on the space
complexity of single-scanner, multi-writer implementations
of snapshot objects.

Theorem 1 Any n-process implementation of amulti-writer,
single-scanner snapshot object with m < n − 1 components
from multi-writer registers requires at least m registers.

We next employ Lemmas 1–3 to prove our lower bound
on step complexity. To do so, we construct an execution in
which the scanner, ps , takesΩ(m2) steps to perform a single
SCAN operation S. The construction is inductive, construct-
ing executionsα0, α1, . . . , αm−2, inwhich ps takesmore and
more steps to complete S. The key part of the induction step
is to show that, for each index i , 0 ≤ i < m−2, ps must read
at least (m− i) registers after αi to complete S. We prove that
if ps completes S without executing that many steps, then ps
returns an incorrect response. Thus, in αm−2, ps performs at
least Ω(m2) steps to execute S.

Theorem 2 Any n-process implementation of amulti-writer,
single-scanner snapshot object with m < n − 1 components
using m multi-writer registers has step complexity Ω(m2).

Proof Let ps, pu ∈ P , ps �= pu , be any two processes; ps
will play the role of the scanner. We assume that the initial
value of every component is ⊥. Let B0 be the empty set, let
π0 be the empty sequence, and let α0 be the empty execution.
For 0 < i < m − 2, we inductively construct a sequence of
indices �i , where 1 ≤ �i ≤ m, a sequence of sets of registers
Bi , a sequence of processes pi , and a sequence of schedules:

πi = ρ(�i , 0) · . . . · ρ(�1, 0) ·
σ1 · w1 · r1 ·
σ2 · w2 · r2 ·
...

σi · wi · ri ,

where for each 1 ≤ j ≤ i :

– p j is a process not in {ps, pu} that does not take any step
in π j−1,
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– ρ(� j , 0) is the schedule of the biggest prefix of the solo
execution of UPDATE(� j , 0) by p j starting from C0 that
does not contain any write,

– w j is the write that p j is poised to perform after
ρ(� j , 0),

– σ j is a sequence of read steps by ps , and
– r j is a single read step of R� j by ps .

The construction is done in such a way that, for each 0 ≤
i < m − 2, the following claims hold:

1. if i > 0, R�i /∈ Bi−1, Bi = Bi−1 ∪ {R�i }, and |Bi | = i ,
2. if i > 0, for every register R, if R is not in Bi−1 ∪ {R�i },

then σi contains a read of R,
3. σi does not contain writes to any register, nor does it

contain any reads of register R�i ,
4. πi is legal starting from C0,
5. if αi is the execution we get when we apply πi from C0,

all steps by ps in αi are part of a single SCAN operation
S, and

6. in a solo execution by ps starting from the final config-
uration Ci of αi , all registers apart from those in Bi are
read.

The proof is by induction on i . For the base case, where
i = 0, Claims 1–5 hold vacuously. We prove claim 6. Let γ
be the execution where ps executes a SCAN operation solo
starting from C0. We prove that in γ all m registers are read.
To derive a contradiction, assume that there is an integer �,
1 ≤ � ≤ m, such that R� is not read by ps during γ . Let
p ∈ P − {ps, pu} be any process and let γ ′ be the execution
where p performs an UPDATE on component A� solo with
the value 1 starting from C0. Let γ ′′ be the execution we get
when π(γ ′) · π(γ ) is applied starting from C0. Execution
γ ′′ is legal because Lemma 2 implies that all writes in γ ′
are on register R� and by assumption, register R� is not read
during γ . Thus, γ ′′ is indistinguishable from γ to process
ps . Therefore, ps returns the same vector of values in both
executions. Since ps’s SCAN starts after p’s UPDATE has
terminated in γ ′′, process ps must return the value 1 for
component A� in γ ′′. Thus, ps must return 1 for A� in γ .
However, no UPDATE with value 1 is executed in γ . This
contradicts linearizability for γ .
Induction Hypothesis: Fix any integer i , 0 < i < m − 2.
Assume that we have defined �i−1, and we have constructed
Bi−1 and πi−1 so that the claims hold; let αi−1 be the execu-
tion we get when πi−1 is applied starting from C0.
Induction Step: We choose �i and we show how to construct
Bi and πi so that the claims hold.

By induction hypothesis (claim 6), in a solo execution by
ps from the final configuration Ci−1 of αi−1, all registers
apart from those in Bi−1 are read. By induction hypothesis
(claim 1), |Bi−1| = (i − 1). Since i < m − 2, it follows

that there is more than one register that does not belong to
Bi−1. Let σi be the sequence of steps performed by ps when
it runs solo from Ci−1 until it has read all but one register
outside Bi−1 and it is poised to read this last register for the
first time. Let R�i be this register and let Bi = Bi−1 ∪ {R�i }.
By definition of Bi , it follows that |Bi | = i . Thus, claim 1
holds. By definition of σi and R�i and by Lemma 1, claims 2
and 3 also hold.

Let pi be a process not in {ps, pu}, which has not taken
any steps during αi−1. Let

πi = ρ(�i , 0) ·
πi−1 ·
σi · wi · ri ,

where:

– ρ(�i , 0) is the schedule of the biggest prefix of the solo
execution of UPDATE(�i , 0) by pi from C0 that does not
contain any write primitive,

– wi is the write primitive that pi is poised to perform
after ρ(�i , 0) has been applied starting from C0 (recall
that the solo execution of UPDATE(�i ,−) starting from
C0 contains at least one write, and all writes con-
tained in it are to register R�i by Lemma 2), and

– ri is the read of register R�i that process ps is poised
to perform after ρ(�i , 0) · πi−1 · σi · wi has been applied
starting from C0.

Let αi be the execution we get when πi is applied starting
from C0. Since ρ(�i , 0) does not contain any write primi-
tives, ρ(�i , 0) · πi−1 · σi is legal starting from C0. Moreover,
wi and ri are just the steps that processes pi and ps , respec-
tively, are poised to perform after ρ(�i , 0) ·πi−1 ·σi has been
applied starting from C0. Thus, αi is legal starting from C0,
and claim 4 holds.

By definition of σi and ri , claim 5 holds. We next prove
claim 6. To derive a contradiction, assume that in a solo exe-
cution by ps starting from the final configuration Ci of αi ,
there exists some register R� /∈ Bi that is not read. Denote by
σ the sequence of steps performed by ps when it runs solo
to complete its active SCAN starting from Ci . Let p be any
process not in {ps, pu} that does not take any step in αi , and
let

τ = ρ(�, 0) ·
πi ·
σ · w · S′

= ρ(�, 0) ·
ρ(�i , 0) · . . . · ρ(�1, 0) ·
σ1 · w1 · r1 ·

123



Lower and upper bounds for single-scanner snapshot implementations 237

σ2 · w2 · r2 ·
...

σi · wi · ri ·
σ · w · S′ ,

where:

– ρ(�, 0) is the schedule of the biggest prefix of the solo
execution of UPDATE(�, 0) by p from C0 that does not
contain any write primitive,

– w is the write primitive that process p is poised to
perform after ρ(�, 0) has been applied starting from C0,
and

– S′ is the sequence of steps by process ps for executing one
more SCAN operation (other than S) solo starting from
the configuration that we get when ρ(�, 0) · πi · σ · w is
applied starting from C0.

Let γ be the execution we get when τ is applied starting
from C0. We argue that γ is legal. By definition, ρ(�, 0)
contains no write primitives, so the execution we get when
ρ(�, 0) ·πi ·σ is applied starting from C0 is legal. Since w is
the step p is poised to perform after ρ(�, 0) has been applied
starting from C0, γ is legal.

We aim at constructing another execution γ ′ such that γ ′
is indistinguishable from γ to process ps and still ps must
return different vectors of values in these two executions.

Execution γ ′ is constructed by adding a number of
UPDATES, each with value 1, executed by process pu . More
specifically, an UPDATE operation U (�1, 1) by process pu
on component �1 with value 1 is executed before σ1. For
each 1 ≤ j < i , a sequence of two UPDATES U (� j+1, 1) ·
U ′(� j , 1) by process pu on components � j+1 and � j with
value 1 is executed after σ j . A sequence of two UPDATES
U (�, 1)·U ′(�i , 1) by process pu on components � and �i with
value 1 is executed after σi . An UPDATE operation U ′(�, 1)
with value 1 by process pu is executed after σ . Let

τ ′ = ρ(�, 0) · ρ(�i , 0) · . . . · ρ(�1, 0) ·
U (�1, 1) ·
σ1 ·U (�2, 1) ·U ′(�1, 1) · w1 · r1 ·
σ2 ·U (�3, 1) ·U ′(�2, 1) · w2 · r2 ·
...

σi−1 ·U (�i , 1) ·U ′(�i−1, 1) · wi−1 · ri−1 ·
σi ·U (�, 1) ·U ′(�i , 1) · wi · ri ·
σ ·U ′(�, 1) · w · S′ .

Let γ ′ be the execution we get when τ ′ is applied starting
from C0. We first prove that γ ′ is legal. After the beginning
of the execution ofU (�1, 1) (that is the first UPDATE by pu),

each of the processes p1, . . . , pi , p executes just the write
primitive that it is poised to perform. By Lemma 2, for each
1 ≤ j ≤ i , all writes contained in U (� j , 1) are to register
R� j . By induction hypothesis (claim 3), register R� j is not
read during σ j . Moreover, w j overwrites any value that was
written to R� j during U (� j , 1). By Lemma 2, all writes
contained in U ′(� j , 1) are to register R� j . Register R� j is
overwritten by w j before ps executes any read primitive.
By Lemma 2, all writes contained inU (�, 1) andU ′(�, 1)
are to register R�. By assumption, register R� is not read
during σ ; moreover, register R� is overwritten by w. Thus,
none of the values written to a register by pu is ever read by
ps . It follows that γ ′ is legal starting from C0. Notice that
γ ′ is indistinguishable from γ to all processes other than pu .
(We remark that for defining τ ′ we abuse notation and use
U and U ′ to denote both the UPDATE operations and the
sequence of steps these UPDATES perform in γ ′.)

From now on we call process pu invisible, while the
rest of the processes that perform UPDATES are visible.
UPDATES performed by visible processes are called visible
UPDATES, whereas those performed by pu are called invisi-
ble UPDATES. We remark that all visible UPDATES use the
value 0, whereas all invisible UPDATES use the value 1.

The operations by pu and the final SCAN S′ are executed
serially in γ ′, so they are linearized according to the order of
their execution:

U (�1, 1),

U (�2, 1),U
′(�1, 1),

U (�3, 1),U
′(�2, 1),

...

U (�i , 1),U
′(�i−1, 1)

U (�, 1),U ′(�i , 1)
U ′(�, 1), S′.

We next argue about the order in which visible UPDATES
are linearized. By claim 1, for all j, k, 1 ≤ j, k ≤ i , j �= k,
� j �= �k . Moreover, � �= � j and � �= �k since R� /∈ Bi . Thus,
every visible UPDATE is executed on a different component
from any other visible UPDATE in γ and γ ′.

Since γ is indistinguishable from γ ′ to process ps , S′
returns the same vector of values in γ and γ ′. In the partial
linearization order presented above, no invisible UPDATE on
A� j is linearized between U ′(� j , 1) and S′. Thus, for each
1 ≤ j ≤ i , S′ returns either 1 for component A� j or the value
0 of some visible UPDATE that is linearized after U ′(� j , 1).
However, S′ cannot return 1 for A� j because S′ returns the
same vector of values in γ and γ ′, and no UPDATE with
value 1 is executed in γ . Thus, U (� j , 0) (the unique visible
UPDATE on A� j ) must be linearized between U ′(� j , 1) and
S′ (see Fig. 1).
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Fig. 1 Proof of Theorem 2:
Linearization points for SCANS
and UPDATES in γ ′

We next prove that in any linearization order of γ ′, the
snapshot object always contains the value 1 in at least one
of its components after the execution of U (�1, 1). For each
1 ≤ j ≤ i , the value 1, written by U (l j , 1), is in A� j from
the execution of U (� j , 1) until the execution of U ′(� j , 1).
Moreover, the value 1 is in A� from the execution ofU (�, 1)
until the execution of U ′(�, 1). Notice that S, the first SCAN
by ps , starts its execution in γ ′ afterU (l1, 1) and terminates
before U ′(�, 1). Thus, its linearization point must be placed
between U (l1, 1) and U ′(�, 1) (see Fig. 1). It follows that
S must return the value 1 for at least one component in γ ′
(independently of where exactly it is linearized). However,
ps must return the same vector of values in executions γ

and γ ′, and no UPDATE with value 1 is executed in γ . This
contradicts the fact that γ is linearizable.

We conclude that claim 6 holds. The proof of the induction
step is now complete.

Claims 1 and 2 imply that for each i , 1 ≤ i < m − 2, ps
performs m − i read primitives during σi and ri . Thus, in
αm−1, ps performs at least (m+ (m−1)+· · ·+3) ∈ Ω(m2)

read primitives. 	


5 The Checkmarking algorithm

In this section, we presentCheckmarking, a single-scanner,
multi-writer m-component snapshot implementation from
m + 1 registers. Checkmarking is linearizable and has step
complexity O(m2).

A description of Checkmarking is provided in Sect. 5.1.
In Sect. 5.2, we prove that Checkmarking is linearizable,
and in Sect. 5.3, we study its space complexity and its step
complexity.

5.1 Description

Checkmarking usesm+1 registers, denoted R1, . . ., Rm+1;
these are the only shared variables used by the algorithm.
Each component Ai , 1 ≤ i ≤ m, is associated with a regis-
ter Ri and processes updating Ai write only to Ri . Register
Rm+1 is written when some SCAN takes place (i.e., it is writ-
ten by the process executing the SCAN). Notice that if we
assume that all SCANS are performed by a single process
(that is, there is a single scanner in the system), then Rm+1

is a single-writer register. We remark that the algorithm is
correct even if SCAN operations are executed by different
processes provided that no pair of SCANS overlaps.

Checkmarking is based on the well-known technique [1]
inwhich a scanner repeatedly reads them registers written by
the updaters until it sees the same values in all registers in two
consecutive sets of reads. To achieve wait-freedom, a process
executing UPDATE helps SCAN by calculating a vector of
values and storing it in the appropriate register together with
the new value. In contrast to what happens in [1], Check-
marking avoids paying a step complexity cost of Ω(n) by
introducing a newefficient termination technique forSCANS,
which takes into consideration the fact that Checkmarking
is single-scanner.

For each 1 ≤ i ≤ m, register Ri stores the following
information: (1) the value of component Ai , (2) the identifier
id of the process p that performed the last write to Ri ,(3) a
timestamp, which is used by p to distinguish its UPDATES,
(4) a sequence number, curr_seq, that p read in Rm+1 at the
beginning of the execution of the UPDATE operation that last
wrote in Ri , and (5) a vector view containing a value for each
of the m components. Register Rm+1 stores only an integer,
curr_seq, which has the initial value 1 and is increased by
one each time a new SCAN operation starts executing.

Each SCAN and UPDATE operation tries to obtain a con-
sistent vector by executing GetVector. Each time a SCAN
S is executed by some process p, the following actions take
place. Process p increases by one the curr_seq field of reg-
ister Rm+1. Then, p executes GetVector and returns the
vector calculated by it.

Each process has a local variable ts, with initial value
0, which is incremented every time the process executes an
UPDATE operation. During the execution of an UPDATE
on some component Ai by some process p, the follow-
ing actions take place. Process p first reads the value of
curr_seq from register Rm+1. To help SCANS complete, the
UPDATE then tries to obtain a consistent vector by executing
GetVector. Finally, p writes the new value of Ai , its iden-
tifier, its increased timestamp, the value of curr_seq it read
in Rm+1, and the vector of values calculated byGetVector
to register Ri . The pseudocode forSCAN andUPDATE is pre-
sented in Algorithm 1. For ease of presentation, we assume
that Rm+1 has the same structure as the rest of the registers
and all its fields other than curr_seq are unused.
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Algorithm 1 Pseudocode for UPDATE and SCAN. (We
assume that components store values of type data.)

struct register {
data value;
int id;
int timestamp;
int curr_seq;
data view[1..m];

}

shared struct register R1, R2 . . . , Rm+1;
// initially, Rm+1.curr_seq = 1

void UPDATE(int i, data value, int id, int ts) {
1 data view[1..m];
2 int curr_seq;

3 curr_seq = Rm+1.curr_seq;
4 view = GetVector(curr_seq);
5 Ri = <value, id, ts, curr_seq, view>;

}

data *SCAN(void) {
6 data view[1..m];
7 int curr_seq;

8 curr_seq = Rm+1.curr_seq + 1;
9 Rm+1.curr_seq = curr_seq;
10 view = GetVector(curr_seq);
11 return view;

}

Any instance g ofGetVector performs consecutive sets
of reads of R1, . . . , Rm until one of the following conditions
is satisfied:

1. If the curr_seq field of some register Ri has a value
larger than or equal to the curr_seq parameter of g, then
the UPDATE operation that wrote this value to Ri started
its execution after the beginning of the operation that
invoked g and finished it before the completion of g. In
this case, g returns the vector of values read in the view
field of Ri .

2. Assume that there exist integers � > 1 and j ≥ �, for
which the following hold: there exists an integer d ≥
0, such that (a) during the �th set of reads, d registers
Rx1, . . . , Rxd (and no others) have different values than
those read during the (�−1)st set of reads, (b) g has seen
each of these d registers change at least once between the
�th set of reads and the j th set of reads, and (c) j is the
smallest and � is the largest integer for which conditions
(a) and (b) hold. Then, g responds by returning the value
fields of R1, . . . , Rm read during the �th set of reads. We
remark that if d = 0, then g terminates by observing, for
each register, the same values in two consecutive sets of
reads, namely the (� − 1)-st and the �th set of reads; we
remark that in this case, j = �.

A1 A2 A3 A4

1
2
3
4
5
6

Fig. 2 An example of an execution of an instance of GetVector in
Checkmarking that terminates by evaluating the second termination
condition to true

Each of the processes maintains a local array of two
dimensions, called history; for each j , 1 ≤ j ≤ m + 2,
the process stores in the j-th row of history the values it
read during the j-th set of reads. To better illustrate the sec-
ond termination condition, Fig. 2 shows array history for
a snapshot object of four components in an execution of a
SCAN S where six sets of reads take place before the sec-
ond termination condition becomes true and S terminates.
A � appears in those elements of the array whose value has
changed from the ( j−1)-st set of reads to the j th set of reads.
Termination condition (2) is satisfied for the first time when
j = 6 and � = 3 because components A1 and A3, which
are seen by S to have changed from the 2nd to the 3rd set of
reads, have changed once more between the 3rd set of reads
and the 6th set of reads. Notice that, for all smaller values of
j , there is no value of � that satisfies the required property.
The pseudocode for GetVector is presented in Algo-

rithm 2. Row 1 of history stores the information that is read
during the initial set of reads (line 18 of the pseudocode).
Specifically, for each i , 1 ≤ i ≤ m, each element of
history[1][i] has two fields; these are r , which stores the
value read in Ri during the first set of reads, and a boolean
variable change, which is equal tofalse. For each 1 < j ≤
m + 2, row j of history stores the information that is read
during the j th set of reads. We will prove in Sect. 5.3 that at
most m + 2 sets of reads may take place in any execution of
GetVector.Moreover, history[ j][i].change, 1 ≤ i ≤ m,
is a boolean variable that indicates whether register Ri has
been found to have a different value when it was read during
the j th set of reads from the value read in it during the ( j−1)-
st set of reads. The number of registers that have been found
to indeed have a different value is stored in checkmarks[ j].
Specifically, checkmarks[ j] stores a counter of the number
of checkmarks in row j that have no later checkmark in the
same column (see Fig. 2).

To check whether condition (2) is satisfied, each time a
checkmark is added in history[ j][i], where 2 ≤ j ≤ m+2,
1 ≤ i ≤ m, the algorithm walks up column i starting from
row j − 1 until it reaches an earlier checkmark in column i
(or the beginning of the column). If an earlier checkmark is
reached on row � of history, checkmarks[�] is decreased
by one and that checkmark is removed. If a row’s counter
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Algorithm 2 Pseudocode for GetVector.

struct info {
12 struct register r ;
13 boolean change;

}

data *GetVector(int curr_seq) {
14 struct info history[1..m + 2][1..m];
15 int epoch = 1, i, �, k, checkmarks[1..m + 2] = {0, . . . , 0};
16 data view[1..m];
17 struct register mp;

// initial set of reads
18 for (i = 1; i ≤ m; i++) history[epoch][i] = 〈read(Ri ), false〉;
19 epoch = epoch + 1;

20 while (true) {
// perform the next set of reads checking if condition 1 is satisfied

21 for (i = 1; i ≤ m; i++) {
22 mp = read(Ri );
23 history[epoch][i] = 〈mp, false〉;
24 if (mp.curr_seq ≥ curr_seq)
25 return mp.view;
26 if (history[epoch-1][i].r �= history[epoch][i].r) {
27 history[epoch][i].change = true;

checkmarks[epoch]++;

28 for (� = epoch-1; � ≥ 2; �−−) {
29 if (history[�][i].change == true) {
30 (checkmarks[�])−−;
31 history[�][i].change = false;
32 if (checkmarks[�] == 0) {
33 for (k =1; k ≤ m; k++)

view[k] = history[�][k].r.value ;
34 return view;

} // if
35 break; // stop executing the for loop of line 28

} // if
} // for

} // if
} // for

36 if (checkmarks[epoch] == 0) {
37 for (k = 1; k ≤ m; k++)

view[k] = history[epoch][k].r.value;
38 return view;

} // if
39 epoch = epoch + 1;

} //while
}

becomes equal to zero, condition (2) is satisfied and the algo-
rithm terminates and returns the vector of values stored in that
row.

Consider any SCAN S and let U be an UPDATE that per-
forms its write primitive in the execution interval of S.
Notice that ifU starts its execution after S writes into Rm+1,
then the execution interval ofU is contained in the execution
interval of S. A SCAN that sees such an UPDATE borrows
the vector written by it. Condition (2) guarantees that S ter-
minates even if it does not ever see such an UPDATE.

5.2 Linearizability

Consider any execution α of Checkmarking. By inspection
of the pseudocode (lines 1–5), it follows that no UPDATE
ever writes into register Rm+1. Thus, Rm+1 is written only
bySCANS. Moreover, the integers stored in Rm+1 (lines 8–9)
are strictly increasing.

Observation 3 The following hold:

1. no UPDATE ever writes to register Rm+1, and
2. the values written into Rm+1 are strictly increasing.

Let S be any SCAN executed in α and denote by g the
instance of GetVector executed by S.

Lemma 4 Suppose that g terminates after epoch iterations
of the while loop of line 20. For each integer �, 1 ≤ � ≤
epoch, at the beginning of the �th iteration, it holds that for
each integer i , 1 < i < �, checkmarks[i] > 0.

Proof The proof is a direct induction on �. The claim holds
vacuously when � = 1. Fix any �, 1 ≤ � < epoch and
suppose that the claim is true for �. We prove that the claim
holds for � + 1.

Since � < epoch, it follows that g does not terminate
during the �th iteration of thewhile loop. By inspection of the
pseudocode, it follows that the condition of the if statement of
line 26 evaluates totrue at least once during the executionof
the �th iteration (otherwise, g would return on line 38 before
the end of the �th iteration). It follows that checkmarks[�] >

0 at the end of the �th iteration.
The induction hypothesis implies that at the begin-

ning of the �th iteration, for each j , 2 ≤ j < �,
checkmarks[ j] > 0. By inspection of the pseudocode, it fol-
lows that checkmarks[ j] is reduced only whenever line 30
is executed. However, the if statement of line 32 implies that
the first time that checkmarks[ j] becomes equal to zero for
some j , g terminates. Since � < epoch, this does not occur
during the �th iteration of the while loop. It follows that at
the beginning of the (�+1)-st iteration, it holds that for each
j , 2 ≤ j < � + 1, checkmarks[ j] > 0. 	

By inspection of the pseudocode (lines 34 and 38) and by

Lemma 4, we get the following observation.

Observation 4 Suppose that g returns on line 34 or 38.
Then, the following hold:

1. at the point that g returns, there is an integer �, 1 <

� ≤ epoch, such that checkmarks[�] = 0, and for each
integer j , 1 < j ≤ epoch, j �= �, checkmarks[ j] �= 0,

2. g returns the values read during the �th iteration of the
while loop of line 20.

We split the execution interval of g into epochs as follows.
Epoch 1 starts with the first and ends with the last read
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Table 2 Notation used in the proof of Checkmarking

Notation Description

Ai , 1 ≤ i ≤ m The i th component of the snapshot object

Ri , 1 ≤ i ≤ m Register that is associated with
component Ai ; UPDATES to component
Ai write only to Ri

Rm+1 Register that is written by SCANS

α An execution of Checkmarking

S A SCAN operation in α

g The instance of GetVector executed by
S

Ukg The UPDATE that writes the vector of
values returned by g (if g returns on line
25)

SU (g) = U1, . . . ,Ukg The instance g�, 1 < � ≤ kg , of
GetVector executed by Ul terminates
on line 25 and returns the vector of
values written by Ul−1; kg ≥ 0 is the
length of this sequence

SG(g) = g1 . . . , gkg The sequence of instances of
GetVector that are invoked by
U1, . . . ,Ukg , respectively

λ The empty sequence

g(S) g(S) = g1 if SU (g) �= λ, g(S) = g
otherwise

primitive of the initial set of reads. Similarly, for each i > 1,
the i th epoch (or epoch i) starts with the first and ends with
the last read primitive of the i th set of reads.

Assume that g completes on line 25 of the pseudocode.
We denote by kg the largest integer for which the following
holds: there exists a sequenceU1, . . . ,Ukg ofUPDATES such
that:

– Ukg is the UPDATE operation that writes the vector of
values returned by g, and

– for each �, 1 < � ≤ kg , the instance g� of GetVector
that is executed by U� returns (on line 25) the vector of
values written by U�−1.

Let SU (g) = U1, . . . ,Ukg and let SG(g) = g1, . . . , gkg .
In case g does not terminate on line 25, SU (g) = SG(g) = λ

(where λ is the empty sequence). Notice that g and each of
the g1, . . . , gkg ∈ SG(g) return the same vector of values.
Moreover, g1 returns by executing line 34 or line 38 of the
pseudocode,while g2, . . . , gkg , g return by executing line 25.
Let g(S) = g1 if SG(g) �= λ, and let g(S) = g otherwise.
For clarity of presentation, Table 2 summarizes the notation
used in this section.

The following observation is a consequence of the above
definitions.

Observation 5 For any SCAN operation S in α, the follow-
ing hold:

1. g(S) returns on line 34 or line 38,
2. S returns the same vector of values as g(S), and
3. if g is the instance of GetVector invoked by S and

SG(g) �= λ, then g returns by executing line 25. More-
over, for each instance g′ ofGetVector in SG(g) other
than g(S), g′ returns by executing line 25.

We next assign linearization points to SCANS that com-
plete in α and to UPDATES that perform the write of line 5
in α.

Consider any SCAN operation S that completes in α. We
find it helpful to assign a linearization point not only to S but
also to g(S). Assume that g(S) returns after having executed
epoch ≥ 1 iterations of the while loop of line 20. By Obser-
vation 5 (claim 1), g(S) terminates by executing line 34 or
line 38. By Observation 4, at the point that g(S) terminates,
there is a unique integer �, 1 < � ≤ epoch, for which it holds
that checkmarks[�] = 0; moreover, g(S) returns the values
it read during its �th epoch. We insert the linearization point
for g(S) immediately before the point that performs the first
read primitive of the �th epoch. The linearization point for
S is inserted at the same place as that for g(S).

Let d ≥ 0 be the number of registers whose values have
changed from the (�−1)-st to the �th epoch of g(S). Denote
by Rx1, . . . , Rxd these registers, denote by vx1 , . . . , vxd the
values read by g(S) in Rx1 , . . . , Rxd , respectively, dur-
ing the �th epoch, and let Ux1 , . . . ,Uxd be the UPDATES
that wrote the values vx1 , . . . , vxd to Rx1, . . . , Rxd . Notice
that Ux1, . . . ,Uxd update different components. For those
UPDATES of the Ux1, . . . ,Uxd that performed their write
primitives after the firstread primitive r1 of the �th epoch of
g(S), we insert their linearization points immediately before
the linearization point of g(S) (in any order since they all
update different components). After we have assigned lin-
earization points to all SCANS (and to some UPDATES)
according to the rules described above, we linearize each
UPDATE that has not yet been assigned a linearizationpoint at
the point where its write occurs. Let L be the linearization
of α determined by assigning linearization points to opera-
tions as described above.

Intuitively, it turns out that all values readby g(S) in the �th
epoch have been written by UPDATES that have started their
execution before S writes to Rm+1. Some of them perform
theirwrite before r1 (where S is linearized),whereas others
after it. Let U be such an UPDATE that performs its write
before r1. Let A j be the component thatU updates.We argue
that U is linearized at its write and no other UPDATE has
written to R j between U ’s write and r1. This implies the
consistency of the value returned for A j by g(S) (as well as
by S).
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Fig. 3 An example of an execution of Checkmarking

To guarantee the consistency of those values returned
by S that have been written by UPDATES, which perform
their writes after r1, we have to move the linearization
points of these UPDATES immediately before r1 (that is ear-
lier than the points where their write primitives occur).
Let U be an UPDATE whose linearization point has been
placed immediately before r1. Assume that U updates com-
ponent A j and let w be the write primitive performed by
U . Notice that w may obliterate the evidence of some other
UPDATE U ′ on A j that performs its write between r1 and
r j . Since S does not see the value that U ′ writes for A j ,
U ′ is linearized at its write primitive and therefore after
the linearization point of U . This might cause problems to
the consistency of SCANS that follow S (see Fig. 3). For
this reason, termination condition (2) requires that S sees
the value written by one more UPDATE on A j (let it be
U ′′) after the �th epoch of its execution; we argue that U ′′
is linearized at its write primitive, which occurs after r j
and before the end of S, and therefore U ′′ is linearized after
U and U ′. Thus, in order to be consistent, SCANS that are
subsequent to S must return the value of U ′′ or some later
UPDATE (and not that of U ′, which they cannot be aware
of).

By the way linearization points are assigned, each SCAN
and each UPDATE that is linearized at the write primitive
it performs on line 5 is assigned a unique linearization point.
Consider an UPDATE U that is not linearized at the write
primitive it performs on line 5; let w be this primitive. By
the way linearization points are assigned, there is a SCAN S
such that w is performed within the execution interval of S.
Since there is a single active SCAN at each point in time, it
follows that the linearization point of U is unique.

To argue that for each SCAN and UPDATE, its lineariza-
tion point is within its execution interval, we first prove the
following technical lemma.

Lemma 5 Consider any SCAN operation S in α and denote
by g the instance of GetVector that is executed by S. Let
SU (g) = U1, . . . ,Ukg �= λ and let SG(g) = g1, . . . , gkg .
Then, for each 1 ≤ j ≤ kg, it holds that:

1. if j > 1, U j−1 performs its write primitive before the
write primitive of U j ,

2. the value of curr_seq read in Rm+1 by U j is the value
written there by S, and

3. the execution interval of U j (and therefore also of g j ) is
within the execution interval of S and starts after S has
written to Rm+1.

Proof We start by proving claim 1. By definition of SU (g)
and SG(g), for each 1 < j ≤ kg , g j (that is invoked by Uj )
returns the vector of values written by Uj−1. Thus, Uj−1

executes its (unique) write primitive before the end of g j

and therefore before the write primitive of Uj .
Next, we prove claim 2. Let gkg+1 = g. Consider any

j , 1 < j ≤ kg + 1. Observation 5 (claim 3) implies that g j

terminates by executing line 25of the pseudocode.Therefore,
the condition of the if statement on line 24 is evaluated to
true by g j . Since (1) g j returns mp.view, (2) mp is the
value written by Uj−1, and (3) mp.curr_seq is greater than
or equal to the curr_seq parameter of g j , it follows that
Uj−1 has read a value for curr_seq in Rm+1 that is greater
than or equal to that read by Uj (if j ≤ kg), or to the value
written there by S (if j = kg + 1). (Notice that the value
written to Rm+1 by S is equal to the curr_seq parameter of
g = gkg+1.)

By definition of SU (g), g returns the vector of values
written by Ukg . Thus, Ukg terminates before the end of g
(and therefore also before the end of S). By claim 1, for
each 1 ≤ j < kg , Uj terminates before Ukg . Therefore,
Uj also terminates before the end of S. Since there is just a
single active SCAN in the system at each point in time and
for each j , 1 ≤ j ≤ kg , S terminates after the end of Uj ,
Observation 3 (claim 1) implies that Uj cannot read a value
for curr_seq in Rm+1 greater than that written there by S.
Thus,Uj reads the value written to Rm+1 by S for curr_seq.

We next prove claim 3. It suffices to prove that Uj (and
therefore also g j , which is invoked byUj ) starts its execution
after S has written to Rm+1. This is so because Uj starts its
execution by reading Rm+1 and reads there the value written
by S. 	
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The next lemma is a consequence of Lemma 5 and the
definition of g(S).

Lemma 6 Consider any SCAN operation S in α. Then, the
following hold:

1. the execution interval of g(S) is contained in the execu-
tion interval of S and starts after S has written to Rm+1,
and

2. the curr_seq parameter of g(S) has the value written to
Rm+1 by S.

Proof Let g be the instance of GetVector executed by S.
Consider first the case where SG(g) = λ. Then, g(S) =
g (by definition). Obviously, the execution interval of g is
contained in the execution interval of S (since g is executedby
S). By inspection of the pseudocode (lines 8–10), S invokes
g after it writes to Rm+1. Also, notice that the curr_seq
parameter of g has the value written to Rm+1 by S (because
g is called by S with this parameter).

Consider now the case where SG(g) �= λ. Then, g(S) =
g1 (by definition). By Lemma 5 (claim 3), it follows that the
execution interval of the first instance g1 of GetVector in
SG(g) is within the execution interval of S and starts after
S has written to Rm+1. Lemma 5 (claim 2) implies that the
curr_seq parameter of g1 has the value written to Rm+1 by
S. 	


We next prove that the linearization point of any SCAN
that terminates in α is within its execution interval.

Lemma 7 For each SCAN operation S that terminates in α,
the following hold:

1. the linearization point of g(S) is within its execution
interval, and

2. the linearization point of S iswithin its execution interval.

Proof Consider any SCAN S that terminates in α. By Obser-
vation 5 (claim 1), g(S) returns by executing line 34 or
line 38. By the way linearization points are assigned, it fol-
lows that the linearization point of g(S) iswithin its execution
interval.Moreover, the linearization point of S is placed at the
same point as that of g(S). By Lemma 6 (claim 1), the exe-
cution interval of g(S) is within the execution interval of S.
Therefore, the linearization point of S is within its execution
interval. 	


Next, we study properties of an UPDATE operation whose
linearization point has not been inserted at its write prim-
itive.

Lemma 8 Consider any UPDATE operation U on a compo-
nent A j such that the linearization point of U is not at the
point that it performs its write primitive. Then, there exists
a SCAN operation S such that:

1. the linearization point of U is contained in the execution
interval of S,

2. S returns the value v written by U for component A j ,
and

3. the write primitive of U follows the linearization point
of g(S) and precedes the end of S.

Proof We start by proving claim 1. Since the linearization
point ofU has not been inserted at the point thatU performs
itswrite, by theway linearization points are assigned, there
is some SCAN operation S such thatU is linearized immedi-
ately before g(S). The linearization point of S is placed at the
same point as the linearization point of g(S). By Lemma 7
(claim 2), the linearization point of S is within its execution
interval. It follows that the linearization point of U is within
the execution interval of S.

Next, we prove claim 2. Assume that g(S) returns after
epoch iterations of the while loop of line 20. By Observa-
tion 5 (claim 1), g(S) terminates by executing line 34 or
line 38. By Observation 4, at the point that g(S) terminates,
there is a unique integer �, 1 < � ≤ epoch, for which
it holds that checkmarks[�] = 0; moreover, g(S) returns
the values it read during its �th epoch. Let d ≥ 0 be the
number of registers whose values have changed from the
(� − 1)-st to the �th epoch of g(S). Denote by Rx1 , . . . , Rxd
these registers, denote by vx1 , . . . , vxd the values read by
g(S) in Rx1 , . . . , Rxd , respectively, during the �th epoch,
and let Ux1 , . . . ,Uxd be the UPDATES that wrote the val-
ues vx1 , . . . , vxd to Rx1 , . . . , Rxd . By the way linearization
points are assigned,U must be one of theUx1 , . . . ,Uxd . Thus,
in the �th epoch, g(S) reads the value written by U for A j .
Since g(S) returns the vector of values read in the �th epoch,
it follows that g(S) returns the value written byU for A j . By
Observation 5 (claim 2), S returns the same vector of values
as g(S). Thus, S returns the value written by U for A j .

We next prove claim 3. Let r1 be the first read primitive
executed by g(S) at the �th epoch, and let r j be the read
primitive executed by g(S) on register R j (that corresponds
to component A j ) during the �th epoch. By theway lineariza-
tion points are assigned, thewrite primitivew ofU follows
r1. Since g(S) is linearized immediately before r1, it follows
that the write primitive ofU follows the linearization point
of g(S). Since S returns the value v written by U for A j , it
follows that w is performed before the end of S. 	


Wenext prove that the linearization point of eachUPDATE
operation is within its execution interval.

Lemma 9 For each UPDATE operation U that performs its
write in α, the linearization point of U is within its execu-
tion interval.

Proof If the linearization point ofU has been inserted at the
point where its write occurs, then it is obviously within its
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execution interval. Assume that this is not the case. Then,
there exists a SCAN operation S such that the lineariza-
tion point of U has been inserted immediately before the
linearization point of g(S). By Lemma 7 (claim 1), the lin-
earization point of g(S) is within its execution interval. By
Lemma 8 (claim 3), U has performed its write primitive
after the linearization point of g(S).

By Lemma 6 (claim 1), the execution interval of g(S)

starts after S has written to Rm+1. It suffices to prove that
U has started its execution before the write of S to Rm+1.
Suppose not. By Lemma 8 (claim 2), S returns the value
written byU . By Observation 5 (claim 2), S returns the same
vector of values as g(S). It follows that g(S) reads the value
written byU . By inspection of the pseudocode (lines 22–25),
it follows that if U reads a value for curr_seq greater than
or equal to that written to Rm+1 by S, g(S) will terminate by
executing line 25 returning the vector of values written byU .
This contradicts Observation 5 (claim 1). Thus, U reads in
Rm+1 a value for curr_seq less than that written there by S.
Therefore, Observation 3 implies that U starts its execution
before S writes to Rm+1. 	


Consider any UPDATE operation U on a component A j

such that the linearization point ofU has not been inserted at
the point that it performs its write primitive. By Lemma 8,
there exists aSCAN operation,whichwewill denote by S(U ),
such that the linearization point ofU has been inserted imme-
diately before the linearization point of g(S(U )). To prove
consistency of SCANS (with respect to L), we first prove the
following technical lemma.

Lemma 10 Consider any UPDATE operation U on a com-
ponent A j such that the linearization point of U has not been
inserted at the point that it performs its write primitive.
Then, there exists an UPDATE operation U ′ such that:

1. the write primitive w of U precedes the write prim-
itive w′ of U ′,

2. w′ precedes the end of S(U ), and
3. the linearization point of U ′ follows the linearization

point of S(U ).

Proof Assume that g(S(U )) returns after epoch iterations of
thewhile loop (line 20). ByObservation 5 (claim 1), g(S(U ))

terminates by executing line 34 or line 38. By Observation 4,
at the point that g(S(U )) terminates, there is a unique integer
�, 1 < � ≤ epoch, for which it holds that checkmarks[�] =
0; moreover, g(S(U )) returns the values it read during its �th
epoch. By theway linearization points are assigned, g(S(U ))

reads the value written by U for A j during the �th epoch.
Let r1 be the first read executed by g(S(U )) at the

�th epoch, and let r j be the read of g(S(U )) on regis-
ter R j in the �th epoch. By the way linearization points

are assigned, g(S(U )) is linearized before r1, U is lin-
earized before g(S(U )), and U ’s write is performed
after r1 and before r j . Therefore, the first time g(S(U ))

reads the value written to R j by U is by executing r j
(i.e., in the �th epoch). By the pseudocode, it follows that
history[�][ j].change == true at the point that r j is exe-
cuted and therefore checkmarks[�] is greater than zero at
that point. By definition of �, it follows that checkmarks[�]
is equal to zero at the point that g(S(U )) terminates. By
inspection of the pseudocode, it follows that there is some
integer �′ > � such that history[�′][ j].change == true.
Therefore, R j that has changed from the (� − 1)-st to the
�th epoch of g(S(U )) changes again from the (�′ − 1)-st
to the �′th epoch. So, there exists some UPDATE operation
U ′, which performs its write primitive w′ after the write
primitivew ofU and before the end of the execution interval
of g(S(U )) (and therefore also of S(U )). So, claims 1 and 2
hold.

Next, we prove claim 3. We argue that the linearization
point of U ′ is inserted at its write primitive and therefore
it follows the linearization point of g(S(U )) and S(U ). Sup-
pose not. Then, by the way linearization points are assigned,
there exists someSCAN operation S′ such that S′ returnsU ′’s
value for A j and the linearization point ofU ′ is placed imme-
diately before that of g(S′) (and S′). Since S(U ) returnsU ’s
value and notU ′’s value for A j , S′ is different from S. Since,
by claim 2, w′ is performed before the end of the execution
interval of S(U ), Lemma9 implies that the linearization point
of U ′ is placed before the end of S(U ). Thus, U ′ and there-
fore also S′ is linearized before S(U ). Lemma 7 (claim 1),
Lemma 6 (claim 1), and Lemma 8 (claim 3) imply that w′
occurs in the execution interval of S′. Since w occurs in the
execution interval of S(U ) (between r1 and r j ), it follows
that w′ precedes w. This contradicts claim 1 proved above.

	

We are now ready to prove that SCANS return consistent

vectors with respect to L .

Lemma 11 For eachSCAN operation S that terminates inα,
the vector of values returned by S is consistent with respect
to L.

Proof By the way linearization points are assigned, S is lin-
earized at the same place as g(S). ByObservation 5 (claim 2),
S returns the same vector of values as g(S). Thus, it suffices
to prove that g(S) returns a consistent vector of values with
respect to L . Assume that view = 〈v1, . . . , vm〉 is the vector
of values returned by g(S). To derive a contradiction, assume
that there is some integer j ∈ {1, . . . ,m} such that the value
parameter of the last UPDATE U on A j , which is linearized
before g(S) is not v j . Assume that the value of U is v and
let Uj be the UPDATE operation, which writes the value v j

read by g(S) to R j .
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Fig. 4 Case 2 of Lemma 11

By Observation 5 (claim 1), g(S) returns by executing
line 34 or line 38 of the pseudocode.Assume that g(S) returns
after having executed epoch iterations of the while loop. By
Observation 4, at the point that g(S) terminates, there is a
unique integer �, 1 < � ≤ epoch, for which it holds that
checkmarks[�] = 0; moreover, g(S) returns the values it
read during its �th epoch. Let r1 be the first read of g(S)

in the �th epoch and let r j be the read of g(S) on register
R j (that corresponds to component A j ) in the �th epoch. We
proceed by case analysis.

1. Assume first that Uj performs its write primitive w j

after r1. Since g(S) returns v j , it follows thatUj performs
its write primitive between r1 and r j . By the way lin-
earization points are assigned, the linearization point of
Uj is inserted immediately before the linearization point
of g(S) and no other UPDATE operation on A j is lin-
earized between Uj and S. (Recall that all UPDATES
that are linearized immediately before g(S) are on dis-
tinct components.) This contradicts our assumption that
U is linearized between Uj and g(S).

2. Assume now that w j precedes r1. Assume first that U ’s
write primitive w follows w j . Since g(S) returns v j

for A j , the last write primitive to R j that precedes r j
is w j . Since w follows w j , it follows that w follows r j
(see Fig. 4). Since g(S) is linearized immediately before
r1, the linearization point of g(S) precedes w. SinceU is
linearized before S (and therefore before g(S)), it follows
that U is not linearized at w. By the way linearization
points are assigned, there exists some SCAN operation S′
such that S′ returns v and the linearization point of U is
placed immediately before that of g(S′). Since S returns
v j and not v for A j , S′ is different from S. Lemma 8
(claim 3) implies thatw precedes the end of the execution
interval of S′. Becausew follows r1 (and precedes the end
of the execution interval of S′), and there is just a single
SCAN operation active at each point in time, it follows
that S′ follows S.
By Lemma 7 (claim 2), the linearization point of S is
within its execution interval. By Lemma 8 (claim 1), the
linearization point of U is within the execution interval
of S′. It follows that the linearization point of U follows
the linearization point of S. This is a contradiction.
Assume next that w precedes w j (see Fig. 5). By
Lemma 9,U is linearized within its own execution inter-
val. Thus, the latest point at which U can be linearized
is at its write primitive w. Since w precedes w j and
U is linearized between Uj and S (and therefore after

Fig. 5 Case 3 of Lemma 11

Uj ), it follows that Uj is not linearized at its write
primitive. Lemma 8 implies that there exists some SCAN
operation S′′ such thatUj is linearized within the execu-
tion interval of S′′. If S = S′′, by the way linearization
points are assigned, the linearization point ofUj is placed
immediately before that of S and no other UPDATE on
component A j can be linearized in between. Since U is
linearized between Uj and S, it follows that S �= S′′.
By Lemma 9, Uj is linearized within its own execu-
tion interval. Since w j is the last instruction executed
by Uj and w j precedes r1, it follows that S′′ precedes
S. Lemma 10 (claims 1 and 2) implies that there exists
some UPDATE operation U ′ whose write primitive w′
followsw j and precedes the end of the execution interval
of S′′. It follows that S does not read the value written by
Uj in R j , so it does not return v j for A j . A contradiction.

	


The following theorem is an immediate consequence of
Lemmas 7, 9 and 11.

Theorem 6 Checkmarking is linearizable.

5.3 Space and step complexity

In this section, we study the step complexity of Check-
marking. By inspection of the pseudocode, each SCAN
and UPDATE operation performs only a constant num-
ber of shared memory accesses in addition to executing
GetVector. Therefore, it suffices to prove that the step
complexity of GetVector is O(m2).

Consider any execution α of Checkmarking and let g
be any instance of GetVector executed in α. We prove
that g does not execute more than m + 1 iterations of the
while loop of line 20. To derive a contradiction, assume that
g executes m + 1 iterations of the while loop without having
terminated. By the pseudocode, it follows that for each i ,
2 ≤ i ≤ m + 2, there is an integer ji , 1 ≤ ji ≤ m, such
that history[i][ ji ].change =true and no other change has
beenobservedoncolumn ji ofhistory after row i . Therefore,
ji must be distinct for each i . Since the snapshot object has
onlym components, this is a contradiction.Thus, after atmost
m+1 iterations of the while loop, g completes its execution.

In each iteration of the while loop, m registers are read.
GetVector additionally executes a set of m reads at the
beginning of its execution. Thus, the step complexity of
GetVector is O(m2). We remark that the number of
instructions executed by each instance of GetVector as
local computation is also in O(m2).
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Algorithm 3 Pseudo-code for T-Opt. (We assume that com-
ponents store values of type data.)

shared int seq = 1;
shared data preVal[1..κ][1..m] =

{{⊥, . . . , ⊥}, . . . , {⊥, . . . ,⊥}};
// κ is the number of executed SCANS
shared data Val[1..m] = {⊥, . . . ,⊥};

void UPDATE(data value, int i) {
int curr_seq;
data v1, v2;

1 curr_seq = seq;
2 v1 = Val[i];
3 v2 = preVal[curr_seq][i];
4 if (v2 == ⊥)
5 preVal[curr_seq][i] = v1;
6 Val[i] = value;

}

data *SCAN(void) {
data view[1..m], v1, v2;
int i;

7 seq = seq+1;
8 for (i = 1; i ≤ m; i++) {
9 v1 = Val[i];
10 v2 = preVal[seq][i];
11 if(v2 == ⊥) view[i] = v1;
12 else view[i] = v2;

}
return view;

}

Theorem 7 Checkmarking uses m + 1 registers and has
step complexity O(m2).

6 The T-Opt algorithm

In this section, we present T-Opt, the first of the implemen-
tations of the Time-efficient family of algorithms. T-Opt
is optimal in terms of its step complexity, i.e., it has step
complexity O(m) for SCANS and O(1) for UPDATES. The
number of registers that T-Opt uses is linear in the number
of SCANS it performs in each execution and therefore it is
unbounded.

The pseudocode for T-Opt is given in Algorithm 3. T-Opt
is described in Sect. 6.1. Its correctness proof is provided
in Sect. 6.2 and its space and step complexity are studied in
Sect. 6.3

6.1 Description

Each time a SCAN starts its execution, the scanner stores a
new sequence number in a register seq (line 7). In addition,

T-Opt uses an array Val ofm registers, one for each compo-
nent.

AnyUPDATEU on a component Ai , 1 ≤ i ≤ m, writes its
value into Val[i] (line 6). Before doing so, it stores (line 5)
the current value of Val[i] in some appropriate element of
an array of registers, called preVal, to help SCANS be con-
sistent. Array preVal is a two-dimensional array with each
row having m registers; the number of its rows depends on
the maximum number of SCANS performed in an execution.
Specifically, U starts by reading seq (line 1) and uses the
sequence number that it reads there to determine the row of
preVal in the i th entry of which it stores the value of Val[i]
(line 5) before it overwrites it (line 6).

We will place the linearization point of each SCAN oper-
ation, S, at line 7. To ensure consistency, S must ignore the
values written by UPDATES that start their execution after
the beginning of S. To achieve this, S reads allm registers of
Val (line 9) and the m registers of preVal[seq] (line 10),
where seq contains the value written to it by S. We remark
thatUPDATES, which start their execution after S haswritten
to seq and before the end of S, write to some register of row
seq of preVal. Therefore, if preVal[seq][i] �= ⊥ for some
i , 1 ≤ i ≤ m, S should return the old value of Val[i] for
component Ai , which is stored in preVal[seq][i] (line 12).
UPDATES that write to smaller rows of preVal have started
their execution before S, so if S reads in Val the valuewritten
by such an UPDATE, it can include it to the vector it returns
(line 11).

6.2 Linearizability

Let α be any execution of T-Opt and let S be any SCAN
performed inα.We start by introducing someuseful notation.
Let wS

seq be the write to seq performed by S (line 7) and
let seqS be the value written to seq by S. Since there is a
single-scanner active at each point in time, by inspection of
the pseudocode (lines 7-12), we get the following:

Observation 8 The initial value of seq is 1 and seq’s value
is incremented each time a SCAN executes line 7.

For each i ∈ {1, . . . ,m}, denote by r Si the read of Val[i]
by S (line 9), and by r̃ Si the read of preVal[seqS][i] by S
(line 10).

Observation 9 For each i ∈ {1, . . . ,m}, wS
seq precedes r Si ,

which precedes r̃ Si .

Let vi be the value that S returns for component Ai . In case
S reads⊥ in preVal[seqS][i], we denote byUS

i theUPDATE
such that US

i writes vi to Val[i] and this write is the last
to Val[i] that precedes r Si . If S reads vi in preVal[seqS][i],
we introduce the following notation. We denote by V S

i the
UPDATE such that V S

i writes vi to register preVal[seqS][i]
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Fig. 6 V S
i writes vi to register preVal[seqS][i] and this write is the

last to preVal[seqS][i] that precedes r̃ Si

Table 3 Notation used in the proof of T-Opt

Notation Description

α An execution of T-Opt

L The linearization of α

S A SCAN that terminates in α

wS
seq The write to register seq (line 7) performed by S

seqS The value written to register seq by S

vi The value that S returns for component Ai

r Si The read of Val[i] performed by S (line 9)

r̃ Si The read of preVal[seqS][i] performed by S (line
10)

V S
i The UPDATE that writes vi to preVal[seqS][i]; this

write is the last to preVal[seqS][i] that
precedes r̃ Si .

US
i The UPDATE that writes vi to Val[i].

wS
i The write to Val[i] performed by US

i (line 6)

and this write is the last to preVal[seqS][i] that precedes
r̃ Si (see Fig. 6). By inspection of the pseudocode (lines 2-
5), V S

i reads the value vi in Val[i]. We denote by US
i the

UPDATE on Ai such that US
i writes vi to Val[i] and this

write is the last write to Val[i] before V S
i reads Val[i].

In either case, letwS
i be the write to Val[i] byUS

i (line 6).
For clarity of presentation, Table 3 summarizes the notation
used in this section.

By definition of V S
i , V S

i writes into preVal[seqS]
[i]. By inspection of the pseudocode (lines 1, 4-5), it follows
that it reads a value equal to ⊥ in preVal[seqS][i] (line 3)
and seqS in register seq (line 1). Moreover, by definition of
V S
i andUS

i , the read of Val[i] by V S
i follows wS

i since V S
i

reads in Val[i] the value written there by wS
i ; additionally,

r̃ Si reads in preVal[seqS][i] the value written there by V S
i ,

so r̃ Si follows the write to preVal[seqS][i] by V S
i .

Observation 10 For every i ∈ {1, . . . ,m}, if S reads vi in
preVal[seqS][i], the following hold:

1. V S
i reads the value seqS in register seq and the value ⊥

in preVal[seqS][i],
2. the read of Val[i] by V S

i follows wS
i , and

3. r̃ Si follows the write to preVal[seqS][i] by V S
i .

We now assign linearization points. Each SCAN S that ter-
minates in α is linearized at wS

seq . For each i ∈ {1, . . . ,m},

Fig. 7 Proof of Lemma 12, wS
i precedes wS

seq

Fig. 8 Proof of Lemma 12, S reads ⊥ in preVal[seqS][i]

if wS
i (performed by US

i ) follows wS
seq , we place the lin-

earization point of US
i immediately before wS

seq . We also
place the linearization point of each UPDATE on Ai that
performs its write to Val[i] between wS

seq and wS
i imme-

diately before wS
seq ; ties are broken by the order that the

writes to register Val[i] occur. After assigning lineariza-
tion points to all SCANS and to some UPDATES (following
the rules just described), we linearize each of the rest of the
UPDATES that performs the write to Val[i] (line 6) in α,
at this write. Let L be the linearization of α determined
by assigning linearization points to operations as described
above.

We remark that US
i uses as a parameter the value vi

returned by S for Ai . Notice that in case wS
i is executed

after wS
seq , we assign linearization points to UPDATES in

such a way that US
i is the last UPDATE on Ai that is lin-

earized before S. We later prove (in Lemma 14) thatUS
i and

all UPDATES that perform their writes between wS
seq and

wS
i start their execution beforewS

seq . In caseU
S
i executeswS

i

before wS
seq , we argue thatU

S
i is the last UPDATE on Ai that

is linearized before S. Intuitively, this is so for the following
reasons: (1) by the way linearization points are assigned, for
each i , 1 ≤ i ≤ m, the linearization order of UPDATES on
Ai respects the order in which the writes to Val[i] of those
UPDATES have been performed, and (2) by definition ofUS

i ,
no other UPDATE on Ai writes to Val[i] between wS

i and
wS
seq . Thus, S returns a consistent vector with respect to L .
We start by proving two simple technical lemmas.

Lemma 12 For each i ∈ {1, . . . ,m}, wS
i precedes r̃ Si .

Proof If wS
i precedes wS

seq (see Fig. 7), the claim holds

because, by Observation 9, wS
seq precedes r̃ Si . So, assume

that wS
i follows wS

seq . Assume first that S reads ⊥ in

preVal[seqS][i] and vi in Val[i]. By definition of US
i , w

S
i

writes the value vi to Val[i], which is read by S. So, wS
i

precedes r Si (see Fig. 8). By Observation 9, r Si precedes r̃ Si .
So, wS

i precedes r̃ Si .
Assume now that S reads vi in preVal[seqS][i]. Then,

V S
i is well-defined. Observation 10 (claims 2 and 3) implies

that the read of Val[i] by V S
i follows wS

i and r̃ Si follows
the write primitive to preVal[seqS][i] by V S

i (see Fig. 9).
By inspection of the pseudocode (lines 2, 5), the write
primitive to preVal[seqS][i] by V S

i follows its read of
Val[i]. Therefore, wS

i precedes r̃ Si . 	


123



248 P. Fatourou, N. D. Kallimanis

Fig. 9 Proof of Lemma 12, wS
i precedes r Si and S reads vi in Val[i]

Fig. 10 U starts its execution after wS
seq

Lemma 13 Fix any i ∈ {1, . . . ,m} such that S reads vi in
preVal[seqS][i]. If rv is the read of Val[i] by V S

i , then rv
is executed after wS

seq .

Proof To derive a contradiction, assume that rv is executed
beforewS

seq . By inspection of the pseudocode (lines 1-2), the

read rs of seq by V S
i precedes rv . It follows that rs precedes

wS
seq . Since there is only one SCAN active at each point in

time, Observation 8 implies that rs reads a value t < seqS .
This contradicts Observation 10 (claim 1). 	


Lemma 14 For each i ∈ {1, . . . ,m} such that wS
i follows

wS
seq , it holds that any UPDATE on Ai that performs its

write to Val[i] between wS
seq and wS

i (including U S
i )

begins its execution before wS
seq .

Proof To derive a contradiction, assume that there is an
UPDATEU on Ai that starts its execution afterwS

seq and per-

forms its write w to Val[i] at or before wS
i (see Fig. 10).

By Lemma 12, wS
i precedes r̃ Si and thereforeU ends its exe-

cution before the end of S. Since U starts its execution after
wS
seq , Observation 8 implies that U reads seqS in seq. By

inspectionof the pseudocode (lines 2- 3),U first reads register
Val[i] and then register preVal[seqS][i]. Moreover, in case
U reads ⊥ in preVal[seqs][i], it writes in preVal[seqS][i]
the value it read in Val[i].

By inspection of the pseudocode, lines 4-5 are executed by
U beforew and therefore beforewS

i . SincewS
i precedes r̃

S
i , it

follows that the execution of lines 4-5 precedes r̃ Si . Thus, r̃
S
i

reads a value other than⊥ in preVal[seqS][i], so V S
i is well-

defined. By Observation 10 (claim 2), the read of Val[i] by
V S
i followswS

i . It follows that the read of preVal[seqS][i]
by V S

i , which (by inspection of the pseudocode) follows its
read to Val[i], comes after U ’s execution of lines 4-5 and
the possible write to preVal[seqS][i] by U . Thus, V S

i
reads a value other than ⊥ in preVal[seqS][i]. This contra-
dicts Observation 10 (claim 1). 	


UsingLemma14, it can be easily proved that the lineariza-
tion point of each operation is within its execution interval.

Lemma 15 The linearization point of each SCAN that ter-
minates in α and each UPDATE that executes the write of
line 6 is within its execution interval.

Proof By the way that linearization points are assigned to
SCANS, a SCAN is linearized within its execution interval.
The same is true for each UPDATE that is linearized at its
write primitive to Val.

Let U be an UPDATE on Ai , which is not linearized at its
write to Val[i]. By the way that linearization points are
assigned, there is a SCAN S′ such that (1) wS′

i of US′
i is exe-

cuted after wS′
seq , (2) the write to Val[i] by U is executed

between wS′
seq and wS′

i , and (3) U is linearized immediately

before wS′
seq . Obviously, the execution of U ends after wS′

seq .

Lemma 14 implies that U begins its execution before wS′
seq .

Thus, U is linearized within its execution interval. 	

To prove that SCANS return consistent vectors with

respect to L , we first prove that the linearization order of
the UPDATES on any component Ai respects the order in
which these UPDATES perform their writes to Val[i].
Lemma 16 Let U1, U2 be two UPDATE operations on some
component Ai , 1 ≤ i ≤ m. Denote by w1 the write to
Val[i] by U1 and by w2 the write to Val[i] by U2. If
w1 precedes w2, the linearization point of U1 precedes the
linearization point of U2.

Proof We consider the following cases.

1. U2 is linearized at w2. Lemma 15 implies that U1 is lin-
earized within its execution interval, so U1 is linearized
at or before w1. Since w1 precedes w2, U1 is linearized
before U2.

2. U1 is linearized at w1 and U2 is not linearized at w2 (see
Fig. 11). By the way linearization points are assigned,
there is a SCAN S′ such that w2 has been performed
between wS′

seq and wS′
i . Since w1 precedes w2, w1 has

been executed before wS′
i . Since U1 is linearized at w1,

it follows that wS′
seq follows w1 (see Fig. 12), since other-

wise U1 would be linearized at wS′
seq . Lemma 15 implies

thatU1 is linearized the latest atw1. By theway lineariza-
tion points are assigned, U2 is linearized immediately
before wS′

seq . Thus, U1 is linearized before U2.
3. Neither U1 nor U2 is linearized at its write to Val[i].

By the way linearization points are assigned, there are
two SCAN operations S1 and S2 such that w1 has been

Fig. 11 Case 2 of Proof of Lemma 16
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Fig. 12 Case 2 of Proof of Lemma 16

performed between w
S1
seq and w

S1
i , and w2 has been per-

formed betweenw
S2
seq andw

S2
i . Sincew1 precedesw2 and

there is just a single SCAN active at each point in time, it
follows that either S1 = S2 or S1 precedes S2.
If S1 = S2, both U1 and U2 are linearized immedi-
ately before w

S1
seq = w

S2
seq in the order they perform their

writes to Val[i]. So, U1 is linearized before U2.
If S1 precedes S2, the linearization point of U1, which is
placed immediately before w

S1
seq , precedes the lineariza-

tion point of U2, which is placed immediately before
w

S2
seq . 	


We finally use Lemma 16 to prove consistency.

Lemma 17 Every SCAN operation that terminates in α

returns a consistent vector with respect to L.

Proof Consider any SCAN operation S that terminates in α.
Assume that S returns view = 〈v1, ..., vm〉. By definition,
for each i ∈ {1, . . . ,m}, US

i writes vi to Val[i] and there-
fore it uses vi as a parameter. In case wS

i precedes wS
seq ,

Lemma 15 implies thatUS
i is linearized before S. In casewS

i
follows wS

seq , by the way linearization points are assigned,

the linearization point ofUS
i precedes the linearization point

of S. Thus, in either case, the linearization point of US
i pre-

cedes the linearization point of S. We prove that there is no
UPDATE on component Ai that is linearized betweenUS

i and
S. This implies that S returns a consistent value for Ai with
respect to L .

To derive a contradiction, assume that there is an integer
i ∈ {1, . . . ,m} such that the last UPDATE on Ai linearized
before S is notUS

i . Denote byU thisUPDATE and letw be the
write to Val[i] by U . In case w precedes wS

i , Lemma 16
implies thatU is linearized beforeUS

i . This is a contradiction.
Thus, assume that w follows wS

i . We argue that w follows
wS
seq by considering the following cases.

1. Assume first that S reads a value equal to ⊥ in register
preVal[seqS][i]. By the definition of wS

i , r
S
i reads the

value that wS
i writes to register Val[i]. Since w follows

wS
i , it follows that w follows r Si and therefore also wS

seq
(see Fig. 13).

2. Assume next that S reads vi in preVal[seqS][i]. In this
case,V S

i iswell-defined and let rv be the read ofVal[i]by
V S
i . By the definitions ofU

S
i and V S

i , rv returns the value
written by wS

i and therefore rv follows wS
i . Since w fol-

lowswS
i , it follows thatw must follow rv . By Lemma 13,

rv followswS
seq (see Fig. 14). Therefore,w followswS

seq .

Fig. 13 Case 1 of Proof of Lemma 17

Fig. 14 Case 2 of Proof of Lemma 17

SinceU is linearized before S and S is linearized at wS
seq ,

U cannot be linearized at w. Thus, there is a SCAN S′ such
that wS′

i follows wS′
seq , w is performed between wS′

seq and

wS′
i , and U is linearized immediately before wS′

seq . Since w

is performed after wS
i , S

′ �= S. Because (1) w is performed

between wS′
seq and wS′

i , (2) w follows wS
seq , and (3) there is

just a single SCAN active at each point in time, it follows
that S′ follows S. Thus, the linearization point of U , which
is placed at wS′

seq , follows the linearization point of S, which
is placed at wS

seq . This is a contradiction. We conclude that

no UPDATE on component Ai is linearized between US
i and

S. Thus, S returns a consistent vector with respect to L . 	


Theorem 11 T-Opt is linearizable.

6.3 Step and Space Complexity

By inspection of the pseudocode, it follows that the step com-
plexity ofUPDATE is O(1), and the step complexity ofSCAN
is O(m). Thus, T-Opt is an optimal implementation in terms
of its step complexity.

Every register used by T-Opt, other than seq, stores just
a single value and seq stores an integer (that is incremented
each time a SCAN takes place). The number of registers used
by T-Opt is linear in the maximum number of SCANS per-
formed in any execution and it is therefore unbounded. Thus,
in a first glance, T-Opt does not seem to be space-efficient.

Theorem 12 T-Opt has optimal step complexity, O(1) for
UPDATE and O(m) for SCAN.

We remark that it is easy to implement T-Opt in a more
space efficient way as follows. Each time a SCAN S starts
executing, the scanner dynamically allocates a new block of
m positions in shared memory and sets a pointer sptr to
point to this block of memory. An UPDATE on Ai starts by
reading sptr (that plays the role of seq); it then saves the
value it read in Val[i] in the i th entry of the block of shared
memory pointed to by the pointer read in sptr . In order to
compute the vector to return, S reads the m positions of the
block pointed to by sptr in addition to the m registers of
Val. The pseudocode for the improved version of T-Opt is
presented in Algorithm 4.
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Algorithm 4 Pseudocode for improved version of T-Opt.

// initially all m elements are equal to ⊥
shared pointer sptr[]=new data[m];
shared data Val[1..m] = {⊥, . . . ,⊥};

void UPDATE(data value, int i) {

data *lptr;
data v1, v2;

1 lptr = sptr;
2 v1 = Val[i];
3 v2 = lptr[i];
4 if (v2 == ⊥)
5 lptr[i] = v1;
6 Val[i] = value;

}

data *SCAN(void) {
data view[1..m], v1, v2;
int i;

7 sptr = new data[m];
8 for (i = 1; i ≤ m; i++) {
9 v1 = Val[i];
10 v2 = sptr[i];
11 if (v2 == ⊥) view[i] = v1;
12 else view[i] = v2;

}
return view;

}

In Algorithm 4, seq has been replaced by a memory
pointer and a garbage collector can be used to de-allocate
blocks of memory that are not referenced to by the processes.
We remark that the total number of allocated blocks that are
referenced by all processes at each point in time is at most n.
For systems with no garbage collector, more space efficient
implementations are presented in later sections.

7 The RT algorithm

In this section, we present RT, the second implementation
of the Time-efficient family. (RT stands for Time-efficient
algorithm with Recycling.) RT makes an attempt to reduce
the number of registers used by T-Opt. In RT, array preVal
has onlyn+2 rows.To achieve this,RT employs an additional
array SeqNums, of n single-writer registers, one for each
process, which are written when UPDATES are performed.
The pseudocode for RT is presented in Algorithm 5.

An UPDATE by some process p records the value it read
in seq into register SeqNums[p] (line 2). A SCAN S reads
all n registers of SeqNums and chooses as its sequence num-
ber, seqS , some index not appearing in any of these registers

Algorithm 5 Pseudocode for RT (process p, 1 ≤ p ≤ n).

shared int seq = 1;
shared int SeqNums[1..n] = {1,..,1};
shared data preVal[1..n+2][1..m] = {⊥, . . . ,⊥};
shared data Val[1..m] = {⊥, . . . ,⊥};

void UPDATE(data value, int i){
int curr_seq1, curr_seq2;
data v1, v2;

1 curr_seq1 = seq;
2 SeqNums[p] = curr_seq1;
3 curr_seq2 = seq;
4 v1 = Val[i];
5 v2 = preVal[curr_seq1][i];
6 if (v2 == ⊥ AND curr_seq1 == curr_seq2)
7 preVal[curr_seq1][i] = v1;
8 Val[i] = value;

}

data *SCAN(void) {
data view[1..m], v1, v2;
set seq_nums;
int curr_seq, i;

9 seq_nums = {seq};
10 for (i = 1; i ≤ n; i++)
11 seq_nums = seq_nums ∪ {SeqNums[i]};
12 curr_seq = any int in set ({1,..,n+2} - seq_nums);
13 for (i = 1; i ≤ m; i++) preVal[curr_seq][i] = ⊥;
14 seq = curr_seq;
15 for (i = 1; i ≤ m; i++) {
16 v1 = Val[i];
17 v2 = preVal[seq][i];
18 if(v2 == ⊥) view[i] = v1;
19 else view[i] = v2;

}
return view;

}

(lines 10-12). Thus,RT trades the step complexity of SCANS
(that is now not optimal) for better space complexity.

The main goal of the implementation is to guarantee that
only those UPDATES that perform the biggest part of their
execution after the write primitive, wS

seq , to seq by S
(line 14), write to registers of row seqS of preVal. This
is achieved by employing a technique that resembles hand-
shaking between the scanner and each of the updaters. Each
time some process p performs an UPDATE operation U , it
uses SeqNums[p] to inform the scanner of the value it read
in seq (lines 1-2). Then, it reads seq again (line 3) and only
if it sees the same value in seq (line 6), does it attempt to
write to preVal (line 7).

If U performs its write to SeqNums[p] before S reads
SeqNums[p], S will choose a sequence number other than
that read by U in seq. If U writes to SeqNums[p] after
S has read it and performs its second read of seq before
wS
seq , then the second read of seq byU reads the sequence
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number of the SCAN that precedes S (or the initial value of
seq if such a SCAN does not exist).

RT guarantees that S chooses a sequence number different
from the n numbers that S read in SeqNums, and from that
chosen by the previous SCAN to S, as well as from the initial
value of seq. It follows that the number of different values
that may be stored into seq is n + 2 and, therefore, preVal
now has n + 2 different rows.

7.1 Linearizability

Letα be an execution ofRT and let S be anySCAN performed
in α. LetwS

seq be the write to seq performed by S (line 14)
and let seqS be the value written to seq by wS

seq . For each

i ∈ {1, . . . ,m}, we introduce the notation r Si , r̃
S
i , vi , US

i ,
V S
i and wS

i , and assign linearization points to SCANS and
UPDATES in exactly the same way as we did for T-Opt. Let
L be the resulting linearization of α.

The proof of the linearizability of RT is, in its biggest
part, similar to the proof of T-Opt (Sect. 6.2). Specifically,
the following two observations, which are similar to Obser-
vations 9 and 10, also hold for RT. Lemma 18, which is
similar to Lemma 12 from Sect. 6, also holds for RT.

Observation 13 For each i ∈ {1, . . . ,m}, wS
seq precedes r

S
i

and r Si precedes r̃ Si .

Observation 14 For every i ∈ {1, . . . ,m} such that S reads
vi in preVal[seqS][i], the following hold:

1. V S
i reads the value seqS in register seq and the value ⊥

in preVal[seqS][i],
2. the read of Val[i] by V S

i follows wS
i , and

3. r̃ Si follows the write to preVal[seqS][i] by V S
i .

Lemma 18 For each i ∈ {1, . . . ,m}, wS
i precedes r̃ Si .

Lines 9-12 and 14 of the pseudocode imply the following
observation.

Observation 15 Let S and S′ be two consecutive SCANS in
α, it holds that seqS′ �= seqS.

The statement of the following lemma is similar to that of
Lemma 13 but its proof is different than that of Lemma 13,
so we present it below.

Lemma 19 Fix any i ∈ {1, . . . ,m} such that S reads vi in
preVal[seqS][i]. If rv is the read of Val[i] by V S

i , then rv
is executed after wS

seq .

Proof To derive a contradiction, assume that rv is executed
before wS

seq (see Fig. 15). Denote by rseq the first read of

seq by V S
i (line 1) and by r ′

seq the second read of seq by

V S
i (line 3). Let p be the process that executes V S

i , let wp

Fig. 15 Lemma 19. rv is executed before wS
seq

Fig. 16 Lemma 19. r ′
seq precedes rp

be the write to SeqNums[p] by V S
i (line 2), and let rp be

the read of SeqNums[p] by S (line 11). Since rv precedes
wS
seq , the same is true for rseq , wp and r ′

seq (sinceV
S
i executes

these instructions before rv).
Assume first that r ′

seq follows rp (see Fig. 15). Since r ′
seq

precedes rv , r ′
seq precedeswS

seq . Let S
′ be the SCAN executed

immediately before S in α (or a fictitious SCAN that writes
the initial value to seq if no such SCAN exists). By Obser-
vation 15, it follows that seqS′ �= seqS . Since rp and wS

seq

are executed by S and r ′
seq follows rp and precedes wS

seq ,
it follows that r ′

seq reads seqS′ in seq. By inspection of the

pseudocode (lines 1-3, 7), it follows that V S
i does not write

to preVal[seqS][i]. This contradicts the definition of V S
i .

Assume now that r ′
seq precedes rp (Fig. 16). By defini-

tion, V S
i writes to preVal[seqS][i] the value vi that is read

from there by S. After rp, S initiates preVal[seqS][i] to
⊥ (line 13). Thus, the write to preVal[seqS][i] by V S

i
occurs after rp. Since wp precedes r ′

seq , it follows that wp

precedes rp. Since V S
i executes wp before rp and its write

to preVal[seqS][i] after rp, it follows that the value t written
to SeqNums[p] bywp (line 2) is the value read by rp. By the
pseudocode (lines 11, 12 and 14), it follows that seqS �= t .
By inspection of the pseudocode (lines 1-3, 7), it follows that
V S
i writes to register preVal[t][i] �= preVal[seqS][i]. This

contradicts the definition of V S
i . 	


A big part of the proof of the next lemma follows similar
arguments as the proof of Lemma 14.

Lemma 20 For each i ∈ {1, . . . ,m} such that wS
i follows

wS
seq , it holds that any UPDATE on Ai that performs its

write to Val[i] between wS
seq and wS

i (including U S
i )

begins its execution before wS
seq .

Proof To derive a contradiction, assume that there is an
UPDATE U on Ai that starts its execution after wS

seq and

performs its write w to Val[i] before wS
i (see Fig. 17).

By Lemma 18, wS
i precedes r̃ Si and therefore U ends its

execution before the end of S. Since U starts its execution
after wS

seq and ends before the end of S, by inspection of
the pseudocode, it follows that U reads seqS in seq both
times (on lines 1 and 3). So, the second condition of the if
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Fig. 17 U starts its execution after wS
seq and finishes before wS

i

statement of line 6 is evaluated to true. By inspection of
the pseudocode (lines 4-5), U first reads register Val[i] and
then register preVal[seqS][i]. Moreover, in caseU reads ⊥
in preVal[seqs][i], it writes the value it read in Val[i] to
preVal[seqS][i].

By inspection of the pseudocode (line 13), S initializes
the m registers of row seqS of preVal to the value ⊥ before
wS
seq . SinceU starts afterwS

seq , the execution of lines 6-7 (i.e.,
the if statement and the possible write to preVal[seqs][i])
by U follows the initialization of preVal[seqS][i] to ⊥ by
S. By inspection of the pseudocode, lines 6-7 are executed
by U before w and therefore before wS

i . By Lemma 18,
wS
i precedes r̃ Si . Thus, r̃

S
i reads a value other than ⊥ in

preVal[seqS][i], so V S
i is well-defined. By Observation 14

(claim 2), the read of Val[i] by V S
i follows wS

i . It follows
that the read of preVal[seqS][i] by V S

i , which (by inspec-
tion of the pseudocode) follows its read to Val[i], comes
after U ’s execution of lines 6-7 and the possible write to
preVal[seqS][i] byU . Thus, V S

i reads a value other than ⊥
in preVal[seqS][i]. This contradicts Observation 14 (claim
1). 	


Lemmas 15–17, which we have proved in Sect. 6 for
T-Opt, hold also for RT without any modification to their
proofs.

Lemma 21 The linearization point of each SCAN that ter-
minates in α and each UPDATE that executes the write of
line 8 in α is within its execution interval.

Lemma 22 Let U1, U2 be two UPDATES on some compo-
nent Ai , 1 ≤ i ≤ m. Denote by w1 the write to Val[i] by
U1 and by w2 the write to Val[i] by U2. If w1 precedes
w2, the linearization point of U1 precedes the linearization
point of U2.

Lemma 23 Every SCAN operation that terminates in α

returns a consistent vector with respect to L.

Lemma 23 implies that the following theorem holds for
RT.

Theorem 16 RT is linearizable.

7.2 Step and space complexity

By inspection of the pseudocode, it is obvious that the step
complexity of UPDATE is O(1) and the step complexity of
SCAN is O(n).

RT uses (n+3)m+n+1 registers; (n+3)m out of these
registers (namely, the registers of arrays Val and preVal)
store just a single value, while the remaining n + 1 regis-
ters (namely, seq and the registers of array SeqNums) store
O(log n) bits each (since each of them stores values from the
set {1, . . . , n + 2}).
Theorem 17 RT uses (n+3)m+n+1 registers of bounded
size and has step complexity O(n) for SCAN and O(1) for
UPDATE.

8 The RT-Opt algorithm

In this section, we present RT-Opt, the last implementation
of the Time-efficient family of single-scanner, multi-writer
snapshots. RT-Opt has step complexity O(m) for SCAN,
O(1) forUPDATE and uses O(mn) registers of bounded size.
Thus, RT-Opt improves upon T-Opt in terms of its space
complexity. It also improves upon RT in terms of its step
complexity.

The pseudocode for RT-Opt is presented in Algorithm 6.
RT-Opt is described in Sect. 8.1. The correctness proof ofRT-
Opt is provided in Sect. 8.2 and its space and step complexity
are studied in Sect. 8.3

8.1 Description

The UPDATE in RT-Opt is exactly the same as in RT. The
major goal of any SCAN operation, S, for both RT and RT-
Opt is to keep track of the different rows of preVal where
old UPDATES (i.e., those that have performed some part of
their execution before the write primitive, wS

seq , of S to
seq) may write. S must choose a row of preVal where no
such UPDATE could possibly write, in order to ensure that
all values other than ⊥ that it reads in preVal have been
written by UPDATES that have performed the biggest part of
their execution after wS

seq .
In RT, this is achieved by having each SCAN S read all n

registers of SeqNums and choose some value to write into
seq other than those read in these registers. Unfortunately,
this results in someoverhead on the step complexity ofSCAN.
To keep the step complexity of SCAN optimal, each SCAN in
RT-Opt reads only m of the n registers of array SeqNums.
So, �n/m� consecutive SCANS are required to read all n
registers of SeqNums. We remark that sequence numbers in
RT-Opt are chosen from the set {1, . . . , n + 2�n/m� + 1},
which is larger than the set {1, . . . , n + 2} used in RT.

We partition each execution α of RT-Opt into execution
fragments, called epochs, each containing �n/m� consecu-
tive SCANS. The scanner keeps track of the values that can
be used, as sequence numbers, by SCANS of each epoch, in
a persistent local variable, called f ree, which implements a
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set. All sequence numbers chosen by the SCANS of an epoch
E j , j ≥ 1, are distinct (line 25). For the first epoch E1, all
these values are additionally different from the initial value of
seq (see initialization of seq and f ree on lines 3 and 19–21).
Consider a later epoch E j , j > 1. Recall that all registers of
array SeqNums have been read once during E j−1. All the
values read in these registers index rows of preVal where
old UPDATESmay write. So, none of these values should be
chosen, as a sequence number, by any SCAN of epoch E j .
However, excluding only these values from the set of avail-
able sequence numbers for epoch E j is not sufficient, since
some of these values may be already obsolete. This occurs
if some process p has started a new UPDATE and has writ-
ten (again) to SeqNums[p] after the read of SeqNums[p]
during E j−1. Notice that such an UPDATE will read in seq
the valuewritten there by someSCAN of epoch E j−1. So, val-
ues chosen as sequence numbers by SCANS of epoch E j−1

may also index rows of preVal that can be written by old
UPDATES, and should be excluded from the set of available
sequence numbers for the SCANS of epoch E j .

Set candidates keeps track of all the values that are
allowed to be chosen as sequence numbers by SCANS of
the next epoch. Notice that at the beginning of each epoch,
candidates is initialized to contain all possible sequence
numbers (line 22). Then, during the execution of the �n/m�
SCANS of the epoch, all values read in registers of array
SeqNums, as well as those chosen as sequence numbers
by the SCANS of the epoch, are removed from candidates
(lines 26 and 29–30). At the beginning of the next epoch,
the values remaining in candidates can be moved to the set
f ree of available sequence numbers for the epoch (line 21).
We remark that no other element is added to f ree during the
epoch.

At thebeginningof an executionα ofRT-Opt, candidates
contains n + 2 ∗ ScansPer Epoch different sequence num-
bers, where ScansPer Epoch = �n/m�. During E1, at
most n + ScansPer Epoch sequence numbers are removed
from candidates. This is so because the ScansPer Epoch
SCAN operations that are executed during E1, read the
n sequence numbers recorded in SeqNums and remove
them from candidates. The ScansPer Epoch sequence
numbers chosen by these SCANS are also removed from
candidates. So, at the end of epoch E1, candidates con-
tains ScansPer Epoch values, which are added to f ree at
the beginning of E2. So, f ree contains enough sequence
numbers for the ScansPer Epoch SCANS that are executed
during E2. Consider now any epoch E j , j > 1. At the
beginning of E j (specifically, after line 21 has been exe-
cuted by the first SCAN of the epoch), candidates contains
n + 2 ∗ ScansPer Epoch + 1 different sequence num-
bers. During E j , at most n + ScansPer Epoch sequence
numbers are removed from candidates. Thus, at least
ScansPer Epoch + 1 sequence numbers are added to f ree

at the beginning of E j+1, which are enough for the SCANS
of epoch E j+1. We remark that when line 21 is executed,
f ree and candidates may contain elements that are com-
mon to both sets. For instance, at the end of E1, candidates
is a subset of f ree. From this discussion, it follows that
n + 2 ∗ �n/m� + 1 different sequence numbers are required
in order for RT-Opt to be correct.

8.2 Linearizability

Let α be an execution of RT-Opt and let S be any SCAN
performed in α. LetwS

seq be the write to seq performed by
S (line 28), and let seqS be the value written to seq by wS

seq .

For each i ∈ {1, . . . ,m}, we introduce the notation r Si , r̃
S
i ,

vi ,US
i , V

S
i andwS

i , and assign linearization points to SCANS
and UPDATES in exactly the same way as we did for T-Opt.
Let L be the resulting linearization of α.

The proof of the linearizability of RT-Opt is in its biggest
part similar to the proof of T-Opt. Specifically, the following
two observations, which are similar to Observations 9 and 10
fromSect. 6, hold forRT-Opt. The sameholds for Lemma24,
which is similar to Lemma 12 (from Sect. 6) and Lemma 18
(from Sect. 7).

Observation 18 For each i ∈ {1, . . . ,m}, wS
seq precedes r

S
i

and r Si precedes r̃ Si .

Observation 19 For every i ∈ {1, . . . ,m} such that S reads
vi in preVal[seqS][i], the following hold:

1. V S
i reads the value seqS in register seq (lines 7 and 9)

and the value ⊥ in preVal[seqS][i] on line 11,
2. the read of Val[i] by V S

i follows wS
i , and

3. r̃ Si follows the write to preVal[seqS][i] by V S
i .

Lemma 24 For each i ∈ {1, . . . ,m}, wS
i precedes r̃ Si .

As in the correctness proof of RT, the main difficulty in
proving that RT-Opt is linearizable is to prove that, for any
SCAN S, the UPDATES that write values to row seqS of
preVal have executed the biggest part of their execution
after the write wS

seq to seq by S. To prove this we need to
introduce the following notation.

We split α into epochs so that each epoch contains exactly
�n/m� SCANS. Denote by E j the j th epoch of α, j ≥ 1.
Epoch E1 starts with the first instruction of the execution
and ends with the last instruction of the �n/m�th SCAN (or
E1 = α if fewer than �n/m� SCANS occur in α). For each
j > 1, epoch E j starts at the point that the execution of
the (( j − 1)�n/m�)th SCAN ends and finishes with the last
instruction executed by the ( j�n/m�)th SCAN (or E j is the
suffix of α, which starts at the point that the execution of
the (( j − 1)�n/m�)th SCAN ends, if fewer than ( j�n/m�)
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Algorithm 6 Pseudocode for RT-Opt (process p).

1 constant ReadsPerScan = m;
2 constant ScansPerEpoch = �n/ReadsPerScan�;

3 shared int seq = 1;
4 shared int SeqNums[1..ScansPerEpoch*m]={1,..,1};
5 shared data Val[1..m]={⊥,..,⊥};
6 shared data preVal[1..n+2*ScansPerEpoch+1][1..m]={⊥,..,⊥};

void UPDATE(data value, int i){
int curr_seq1, curr_seq2;
data v1, v2;

7 curr_seq1 = seq;
8 SeqNums[p] = curr_seq1;
9 curr_seq2 = seq;
10 v1 = Val[i];
11 v2 = preVal[curr_seq1][i];
12 if(v2 == ⊥ && curr_seq1 == curr_seq2)
13 preVal[curr_seq1][i] = v1;
14 Val[i] = value;

}

data *SCAN(void){
15 data view[1..m], v1, v2;
16 int curr_seq, i;
17 static int cur_period = 0; // variables that are declared as static
18 static set free = ∅; // are not re-initialized each time SCAN is called
19 static set candidates = {2, . . ., n+2*ScansPerEpoch+1;}

20 if (cur_period == 0) {
21 free = free ∪ candidates;
22 candidates = {1, . . ., n+2*ScansPerEpoch+1};

}
23 curr_seq = any element of set free;
24 for (i = 1; i≤m; i++) preVal[curr_seq][i] = ⊥;
25 free = free - {curr_seq};
26 candidates = candidates - {curr_seq};
27 cur_period = (cur_period+1) mod ScansPerEpoch;

28 seq = curr_seq;
29 for (j = 1; j ≤ ReadsPerScan; j++)
30 candidates = candidates - { SeqNums[cur_period*ReadsPerScan+j] };
31 for (i = 1; i ≤ m; i++) {
32 v1 = Val[i];
33 v2 = preVal[seq][i];
34 if (v2 == ⊥) view[i] = v1;
35 else view[i] = v2;

}
return view;

}

SCANS occur in α). Notice that if α contains (c1�n/m�+c2)
SCANS, where c1 ≥ 0 and 0 ≤ c2 < �n/m� are constants,
then α contains c1 + 1 epochs, where the (c1 + 1)-st epoch
contains c2 < �n/m� SCANS. We remark that the (c1 + 1)-
st epoch may contain only steps by UPDATE operations (if
c2 = 0) or may be empty. Let k be the number of epochs in
α. (We remark that if α is infinite, the number of epochs in it
may be infinite.) For each j ∈ {1, . . . , k}, denote by SN j the

set of values written in register seq by any SCAN of epoch
E j and by f ree j the set f ree at the end of E j . Denote by
candidates j the set candidates at the end of E j .

Next, we prove four simple technical lemmas that are basi-
cally direct consequences of the pseudocode.

Lemma 25 For each j ∈ {1, . . . , k − 1} and for each
p ∈ {1, . . . , n}, there is a unique SCAN that reads register
SeqNums[p] during E j .
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Proof By definition of E j , exactly �n/m� SCANS are per-
formed during E j . Each of these SCANS reads m distinct
registers of SeqNums (lines 27, 29, 30). Thus, each of the n
registers of SeqNums is read exactly once during E j . 	

Lemma 26 For each j ∈ {1, . . . , k}, it holds that (1)
f ree j ∩ SN j = ∅, and (2) candidates j ∩ SN j = ∅.
Proof By inspection of the pseudocode (line 25), each value
chosen as the sequence number of some SCAN during
E j is removed from f ree (line 25); the same is true for
candidates (line 26). Thus, at the end of epoch E j it holds
that f ree j ∩ SN j = ∅, and candidates j ∩ SN j = ∅. 	


By inspection of the pseudocode (lines 20–22 and 27),
lines 21–22 are executed only by the 1-st, (�n/m�+1)-st,…,
((k − 1)�n/m� + 1)-stSCAN of α, as stated by the following
lemma.

Lemma 27 For each j ∈ {1, . . . , k}, the following hold for
the first SCAN S executed during E j :

1. S is the only SCAN in E j that adds elements to f ree, and
2. S is the onlySCAN in E j that executes line 22 to initialize

candidates.

The next lemma states that each SCAN operation S writes
to seq a value different from the values written to seq by the
other SCANS of the epoch to which S belongs.

Lemma 28 For each j ∈ {1, . . . , k}, each SCAN of epoch
E j writes a distinct value to seq.

Proof Fix any j ∈ {1, . . . , k}. Lemma 27 implies that ele-
ments are added into f ree only by the first SCAN of epoch
E j . By inspection of the pseudocode (line 23), each SCAN S
of epoch E j chooses as its sequence number some element of
f ree. This element is removed from f ree when S executes
line 25. Thus, SCANS of E j that are executed after S choose
to write different values into seq. 	


Thenext lemmaproves that theSCANSof an epoch choose
different sequence numbers than the SCANS of the previous
epoch.

Lemma 29 For each j ∈ {2, . . . , k}, it holds that SN j−1 ∩
SN j = ∅.
Proof Fix any j ∈ {2, . . . , k}. By Lemma 27, the only
SCAN of E j that adds elements to f ree is the first SCAN
S of E j . Specifically, S adds the elements of candidates j−1

to f ree j−1 by executing line 21. Denote by f reesj the
set f ree after line 21 has been executed by S. Clearly,
f reesj = f ree j−1∪candidates j−1. Lemma 26 implies that
f ree j−1 ∩ SN j−1 = ∅, and candidates j−1 ∩ SN j−1 = ∅.
It follows that f reesj ∩ SN j−1 = ∅. By inspection of

the pseudocode (line 23), all elements of SN j are chosen by
f reesj . Thus, SN j ∩ SN j−1 = ∅. 	


Fig. 18 Case 2 in Proof of Lemma 30

We are now ready to prove a lemma similar to Lemma 19.

Lemma 30 Fix any i ∈ {1, . . . ,m} such that S reads vi in
preVal[seqS][i]. If rv is the read of Val[i] by V S

i , then rv
is executed after wS

seq .

Proof To derive a contradiction, assume that rv is executed
before wS

seq . Denote by rseq the first read of seq by V S
i

(line 7), and by r ′
seq the second read of seq by V S

i (line 9).

Let p be the process that executes V S
i and let wp be the

write to SeqNums[p] by V S
i (line 8). Since rv precedes

wS
seq , the same is true for r ′

seq (that is executed by V
S
i before

rv). Assume that S is executed in epoch E j , j ≥ 1. We
proceed by case analysis.

1. Assume first that j = 1. By inspection of the pseudocode
(line 21), by the way f ree and candidates are initial-
ized (lines 18, 19), and by Lemma 27 (claim 1), it follows
that f ree does not contain the initial value of seq during
the first epoch. Since SCANS of each epoch choose ele-
ments from f ree as their sequence numbers, S chooses a
sequence number different from the initial value of seq.
Lemma 28 implies that no SCAN that precedes S chooses
the same sequence number as S. By definition, V S

i writes
in row seqS of preVal. By inspection of the pseudocode
(lines 12–13), this write is performed only if both rseq
and r ′

seq read seqS in seq. It follows that rseq and r ′
seq

are both performed after wS
seq . Since rv follows r ′

seq , rv
follows wS

seq . This contradicts our assumption that rv
precedes wS

seq .
2. Assume now that j > 1. By inspection of the pseudocode

(line 24), S initializes all m registers of preVal[seqS]
to ⊥. By definition of V S

i , S reads the value that V S
i

writes to register preVal[seqS][i]. Thus, V S
i writes

to register preVal[seqS][i] after the initialization of
preVal[seqS][i] to ⊥ by S. Since SeqNums[p] is writ-
ten only by p and V S

i does not terminate before the
initialization of preVal[seqS][i] by S, it follows that
SeqNums[p] contains the value seqS written byV S

i from
wp until (at least) the initialization of preVal[seqS][i]
by S. By Lemma 25, there is a unique SCAN operation S′
that reads SeqNums[p] during E j−1. Denote by rp the
read of SeqNums[p] by S′ (see Fig. 18). We consider
the following cases.

(a) r ′
seq follows rp (see Fig. 19). By Observation 19
(claim 1), r ′

seq reads seqS in seq. Since r ′
seq follows

rp and rp is executed by a SCAN of epoch E j−1,
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Fig. 19 Case 2a in Proof of Lemma 30

Fig. 20 Case 2b in Proof of Lemma 30

it follows that r ′
seq is executed after the beginning of

epoch E j−1. ByLemma29, SN j−1∩SN j = ∅. Thus,
since seqS ∈ SN j , seqS /∈ SN j−1, that is, no SCAN
of epoch E j−1 writes seqS to seq. By Lemma 28,
each SCAN of epoch E j writes a distinct value to
seq. So, no SCAN of epoch E j other than S writes
seqS to seq. It follows that the only way for r ′

seq to
read seqS is if it occurs after wS

seq . Since rv follows
r ′
seq , it follows that rv follows wS

seq . This contradicts
our assumption that rv precedes wS

seq .
(b) r ′

seq precedes rp (Fig. 20). Observation 19 (claim 1)
implies that r ′

seq reads seqS in seq. Assume that S�

is the SCAN that writes the value seqS read by r ′
seq

to seq and let E�, � ≥ 1, be the epoch in which S�

is executed. If no such SCAN exists, then r ′
seq reads

the initial value of seq, so it holds that seqS = 1;
moreover, r ′

seq is executed before the write to seq
by the first SCAN of epoch E1. In this case, let
� = 0, let f ree0 = ∅, and let candidates0 =
{2, . . . , n+2∗ScansPer Epoch+1} (i.e., sets f ree0
and candidates0 are the initial values of sets f ree
and candidates, respectively). Since seqS ∈ SN j ,
Lemma 29 implies that seqS /∈ SN j−1. Thus, 0 ≤
� < j − 1.
If � > 0, let wS�

seq be the write to seq by S�. Since

r ′
seq reads the valuewritten byw

S�
seq , r ′

seq is performed

betweenw
S�
seq and thewrite to seq by thenextSCAN

after S� (since l < j − 1, such a SCAN exists). So,
r ′
seq is executed either during E� or at the beginning
of epoch E�+1, before the write to seq by the first
SCAN of E�+1 (this situation may occur if S� is the
last SCAN of E�). (Notice that since � < j − 1, E�+1

is either E j−1 or an earlier epoch.)
We prove the following claims. Claim 1 For each
f ∈ {�, . . . , j − 1}, seqS /∈ candidates f .
Proof Assume first that f = �. In case � = 0, recall
that seqS = 1 and candidates0 = {2, . . . , n + 2 ∗
ScansPer Epoch + 1}. So, seqS /∈ candidates0.
Assume now that � > 0. Since S� is executed in

epoch E� and chooses seqS as its sequence number,
seqS ∈ SN�. By Lemma 29, candidates� ∩ SN� =
∅. Thus, it holds that seqS /∈ candidates�.
Assumenow that f > �. ByLemma25, SeqNums[p]
is read by a unique SCAN S f of E f . Recall that
SeqNums[p] stores the value seqS from wp until at
least the beginning of S; moreover, r ′

seq (and there-

fore also wp, which is performed by V S
i before

r ′
seq ) is executed before the write to seq by the
first SCAN of epoch E�+1. By inspection of the
pseudocode (lines 28–30), a SCAN first writes to
seq and then reads some of the registers of array
SeqNums. Since � < f ≤ j − 1 and S occurs in
epoch E j , it follows that SeqNums[p] contains the
value seqS when S f reads SeqNums[p]. By inspec-
tion of the pseudocode (line 30), it follows that seqS is
removed from candidates during E f . By Lemma 27
(claim 1), no elements are added in candidates after
the execution of line 22 by the first SCAN of epoch
E f . Since line 30 follows line 22, it follows that
seqS /∈ candidates f .

Claim 2 For each f ∈ {�, . . . , j−1}, seqS /∈ f ree f .
Proof We first prove the claim for f = �. In case
� = 0, f ree0 = ∅, so seqS /∈ f ree0. Assume that
� > 0. Since S� chooses seqS as its sequence number,
seqS ∈ SN�. Lemma 26 implies that f ree� ∩ SN� =
∅. Thus, seqS /∈ f ree�.
To derive a contradiction, assume that f , where
� < f ≤ j − 1, is the smallest integer for which
the claim does not hold, i.e., seqS ∈ f ree f . Since the
claimholds for f −1, it follows that seqS /∈ f ree f −1.
By Claim 1, it follows that seqS /∈ candidates f −1.
Let f reesf denote set f ree after the execution of
line 21 by the first SCAN of epoch E f . By inspection
of the pseudocode (line 21), f reesf = f ree f −1 ∪
candidates f −1. It follows that seqS /∈ f reesf .
Lemma 27 (claim 1) implies that no elements are
added to f ree after the execution of line 21 and until
the end of E f . Thus, seqS /∈ f ree f . This is a con-
tradiction.
For f = j − 1, Claim 1 implies that seqS /∈
candidates j−1, and Claim 2 implies that seqS /∈
f ree j−1. ByLemma 27, only the firstSCAN of epoch
E j adds elements to f ree by executing line 21 of the
pseudocode. Let f reesj denote set f ree after the exe-
cution of this line. By the pseudocode, it follows that
f reesj = f ree j−1 ∪ candidates j−1. It follows that
seqS /∈ f reesj . All SCANS of epoch E j (including
S) choose their sequence numbers from f reesj . Since
seqS does not exist in f reesj , it follows that S can-
not choose seqS as its sequence number. This is a
contradiction. 	
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The statement (and the proof) of the following lemma is
the same as that of Lemma 20.

Lemma 31 For each i ∈ {1, . . . ,m} such that wS
i follows

wS
seq , it holds that any UPDATE on Ai that performs its

write to Val[i] between wS
seq and wS

i (including U S
i )

begins its execution before wS
seq .

Lemmas 15–17, which we have proved in Sect. 6 for T-
Opt, hold also forRT-Optwithout requiring anymodification
in their proofs:

Lemma 32 The linearization point of each SCAN that ter-
minates in α and each UPDATE that executes the write of
line 14 in α is within its execution interval.

Lemma 33 Let U1, U2 be two UPDATES on some compo-
nent Ai , 1 ≤ i ≤ m. Denote by w1 the write to Val[i] by
U1 and by w2 the write to Val[i] by U2. If w1 precedes
w2, the linearization point of U1 precedes the linearization
point of U2.

Lemma 34 Every SCAN operation that terminates in α

returns a consistent vector with respect to L.

Lemma 34 implies that the following theorem holds for
RT-Opt.

Theorem 20 RT-Opt is linearizable.

8.3 Step and space complexity

By inspection of the pseudocode, it is obvious that the step
complexity of UPDATE in RT-Opt is O(1). If in each exe-
cution α of RT-Opt, just a single process (always the same)
performs the SCANS in α, then RT-Opt’s step complexity
for SCAN is O(m). Specifically, each SCAN reads 3m shared
registers, namely, m registers of SeqNums (since it holds
that ReadsPer Scan = m), m registers of preVal, and m
registers of Val; the rest of the SCAN computation is on local
variables.

Remarkably, the value of ReadsPer Scan can be chosen
to be any value between 1 and n. If ReadsPer Scan = n,RT-
Optworks in the sameway and has the same step complexity
for SCAN and UPDATE as RT. If ReadsPer Scan = m and
a single process plays the role of the scanner in the system,
RT-Opt achieves optimal step complexity.

RT-Opt uses O(mn) registers. Most of these registers
(e.g., the registers of Val and preVal) store just one value.
The size of each of the rest of the registers is O(log n) bits.

Theorem 21 RT-Opt uses O(mn) registers that have
bounded size and has step complexity O(m) for SCAN and
O(1) for UPDATE.

9 Discussion

This paper presents a collection of lower and upper bounds
for single-scanner multi-writer snapshot implementations
from registers, including the first such implementations that
are optimal in terms of step complexity.

An object is called historyless if the current state of the
object depends only on the last nontrivial primitive that was
performed on the object [15]; nontrivial is a primitive that
can change the state of the object. An example of a histo-
ryless object is a swap object. A swap object supports, in
addition to read, the primitive swap(v) that changes the
state of the object to v and returns the previous value stored
in the object. It was proved in [14] that any type of histo-
ryless object can be implemented by a swap object with
the same set of possible states. Moreover, each operation of
the historyless object can be simulated by a single access
to the swap object. As a consequence, proving a complexity
lower bound for implementations from swap objects implies
the same lower bound for implementations from history-
less objects. It is easy to verify that the proof of our lower
bound holds for implementations from swap objects. Thus,
our lower bound holds for implementations from historyless
objects as well.

Dwork andWaarts [10], have proposed a primitive, called
a traceable register, which provides the capability of tracing
the values that are still active (i.e., those that are currently
stored in the shared variables of the system or the local
variables of the processes) among those that have been writ-
ten in the traceable register. A traceable register stores a
value and supports the operations tread, twrite, and
garbage-collect; tread and twrite are used for
reading andwriting the register, whilegarbage-collect
allows a process to find out which values that have been
written into the traceable register are still active. The first
traceable register implementation [10] uses O(n) registers
and employs handshaking techniques [26] to have processes
notify others when they access the register. Specifically, each
time twrite is invoked by a writer to store a new value
into the traceable register, the writer handshakes with all the
readers and sets aside (i.e., stores in some of the O(n) reg-
isters) the old value of the traceable register for each one of
them with which handshaking succeeds. Readers handshake
with the writer and depending on whether the handshaking
succeeds, they decide whether to return the current value of
the register or one of the old values set aside for them. A
garbage-collect reads all the registers and returns a
set of all the values stored in them. This implementation has
step complexity O(n) for twrite.

Traceable registers could be employed to design a ver-
sion of T-Opt that is space-bounded. In this version, a SCAN
would write into traceable registers in order to specify into
which registers UPDATES may write their values. These
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traceable registers are tread by UPDATE. Then, the scan-
ner would be able to find out which of the values ever
written in the traceable register are still active by perform-
ing garbage-collect. However, this would lead to an
implementation where the step complexity of SCAN is O(n)

(due to the handshaking). RT-Opt uses a much simpler recy-
cling technique that is based on the standard read–write–read
approach. This avoids handshaking and leads to optimal
SCAN complexity.

Garbage collection in [10] is an expensive task because
there are many processes that can perform twrite; so a
value that appears for the first time in a traceable regis-
ter may be later written to some other traceable register
and be read from there (i.e., the degree of indirection can
be greater than one). Dwork and Waarts [10] remark that
garbage-collect can be executed more efficiently if
values that are supposed to be active are gradually collected
during the execution of more than one twrite. In a space
bounded version of T-Opt using a traceable register, the
degree of indirection is one. As a consequence of this, all
the information collected during a garbage-collect is
local toSCAN, so that the execution ofgarbage-collect
has no influence on the step complexity of SCAN even if it
is not performed gradually (despite this, the step complexity
of SCAN is linear in n due to handshaking). However, the
technique of gradually collecting information about values
written bySCANS thatmay still be active is useful inRT-Opt,
which owes its good step complexity mainly to such a tech-
nique.However, space bounded versions ofT-Opt employing
this implementation do not achieve step complexity less than
�(n) for SCAN.

An interesting problem left open by our work is to derive
a lower bound on the number of read–write registers that
are needed to design an implementation that ensures step
complexity O(m) for SCAN and O(1) for UPDATE. Is there
an algorithm with this step complexity that uses less than
�(mn) registers?

Checkmarking has the same step complexity as a space-
optimal single-scanner snapshot implementation. However,
in contrast to such an implementation, it uses an additional
single-writer register and allows SCANS to write to this reg-
ister. It is interesting to investigate whether theΩ(m2) lower
bound still holds on the step complexity of SCAN, for single-
scanner implementations in which SCAN is allowed to write
to a single-writer register.
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Appendix: Proofs of Lemmas 1, 2, and 3

Consider any implementation of an m-component multi-
writer snapshot object shared by n > m + 1 processes
from a set of m multi-writer read/write registers. The state-
ments of Lemmas 35 and 36 and their proofs are slightly
modifiedversions of similar lemmas that appear in [12]. Lem-
mas 37, 38, 39 and 40 and their proofs are exactly the same
as their analogs from [12]. For the shake of simplicity, our
proofs below assume that there is a unique process ps that
performs SCAN operations in the system. (We remark that
the lemmas hold even if SCAN operations are executed by
different processes provided that no pair of SCANS overlap.)

For the shake of simplicity, in this section, we assume
that an execution is a sequence of steps. Fix any execution
α of a single-scanner, multi-writer, m-component snapshot
implementation from m registers starting from C0.

Lemma 35 Suppose that, in configuration C, a set PO of
at most n − 2 processes covers a set of registers O, and all
processes not in PO are inactive. Furthermore, suppose there
is some component Ai such that no process has a pending
UPDATE to Ai in configuration C. Consider an execution
starting from C in which the processes in PO execute a step
each to perform their writes and, immediately afterwards,
the scanner ps performs a solo execution in which it finishes
its pending operation (if it has one) and then performs a
complete SCAN. Let v be the value that this SCAN returns
for component Ai . Then, for all p /∈ PO ∪ {ps} and all
v′ �= v, the solo execution by p of UPDATE(i, v′) starting
from C must perform a write to a register outside O.

Proof Suppose not. Let C ′ be the configuration obtained
from C when the processes in PO perform one step each and
let β be the solo execution by ps starting from C ′. Let C ′′ be
the configuration obtained when p performs a solo execution
of UPDATE(i, v′) starting from C and then the processes in
PO execute a step each to perform their writes. By our
assumption, p does not write to any register outside O , so
each register has the same value in C ′′ that it has in C ′. Fur-
thermore, ps is in the same state in C ′ and C ′′. Therefore,
the solo execution β by ps starting from C ′′ is legal and ps’s
SCAN returns the value v for component Ai . However, the
execution β starting fromC ′′ must return the value v′ �= v for
component Ai , since p completed its UPDATE(i, v′) before
the SCAN began and no process has a pending UPDATE to
Ai at C . This is a contradiction. 	
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For any configuration C and for any set of processes P ′,
the set of components with a pending UPDATE in C by a
process in P ′ is denoted CPU (C, P ′).

Definition 1 Consider any integer �, where 1 ≤ � ≤ m < n.
A configuration C is �-fatal if there exists a subset O of �

registers and a set PO of � processes such that PO covers O
in C and |CPU (C, PO)| < �.

Lemma 36 No implementation for n processes of an m-
component snapshot object from m registers has a reachable
�-fatal configuration, for 1 ≤ � ≤ m < n − 1.

Proof Suppose the lemma is false. Let � be the largest inte-
ger such that there is a reachable �-fatal configuration, C1.
Then there is a set O of � registers and a set PO of �

processes such that PO covers O and |CPU (C1, PO)| < �.
Let C be the configuration obtained from C1 by running all
processes not in PO until they are inactive. Since it holds that
|CPU (C, PO)| = |CPU (C1, PO)| < � ≤ m, there exists a
component Ai /∈ CPU (C, PO).

Let p /∈ PO be any process other than ps . This process
exists because |PO | = � and 1 ≤ � < n − 1. Consider the
execution starting from C in which the processes in PO exe-
cute a step each to perform their writes, ps finishes its
pending operation (if any), and then ps performs a complete
SCAN. Let v be the value that this SCAN returns for compo-
nent Ai . By Lemma 35, for all v′ �= v, the solo execution of
UPDATE(i, v′) to Ai by p starting fromC contains a write
to a register R /∈ O .

If � = m, then we have a contradiction, since all reg-
isters are in O . Otherwise, l < m. In this case, let C2 be
the reachable configuration obtained by performing p’s solo
execution of UPDATE(i, v′) starting from C until just before
p writes to R for the first time. Let O ′ = O ∪ {R} and let
P ′
O = PO ∪ {p}. Then |O ′| = |P ′

O | = � + 1, P ′
O covers

O ′ in C2, and CPU (C2, P ′
O) = CPU (C, PO) ∪ {Ai }, so

|CPU (C2, P ′
O)| < � + 1. Thus, C2 is a reachable (� + 1)-

fatal configuration, contradicting the maximality of �. 	

Lemma 37 SCAN operations never perform writes.

Proof Suppose there is an execution of a SCAN operation by
process ps that contains a write to a register R. Consider
the configuration C that occurs just before this write is
performed. Since {q} covers {R} andCPU (C, {q}) is empty,
this configuration is 1-fatal, contradicting Lemma 36. 	


A solo SCAN starting fromC0 returns⊥ for every compo-
nent. For each process pi other than ps , each component A j ,
and each possible value v �= ⊥, consider the solo execution
of an UPDATE of component A j with value v by process pi
starting from C0. Since all processes are inactive in C0, we
can apply Lemma 35 with O = PO = ∅ to see that this
execution by pi contains at least one write to a register.

Denote by Ri ( j, v) the first register written by pi and denote
byρi ( j, v) the prefix of this execution up to, but not including
this first write. (The sequence ρi ( j, v) may be empty.)

Lemma 38 Consider any component A j . For any processes
pi1 and pi2 other than ps, and for any non-⊥ values v1 and
v2, Ri1( j, v1) = Ri2( j, v2).

Proof Assume first that pi1 �= pi2 . Consider the execution
ρi1( j, v1) ·ρi2( j, v2) starting fromC0 and letC be the result-
ing configuration. This execution is legal since pi1 performs
no writes during ρi1( j, v1). Note that {pi1, pi2} cov-
ers {Ri1( j, v1), Ri2( j, v2)} in C and CPU (C, {pi1 , pi2}) =
{A j }. If Ri1( j, v1) �= Ri2( j, v2), then C is 2-fatal. This con-
tradicts Lemma 36. Hence Ri1( j, v1) = Ri2( j, v2).

Assume now that pi1 = pi2 . Let pi be any other
process. By the argument above, Ri ( j, v1) = Ri1( j, v1) and
Ri ( j, v1) = Ri2( j, v2). Hence Ri1( j, v1) = Ri2( j, v2). 	


Lemma38 allows us to define R j to be the register Ri ( j, v)

covered by each process pi other than ps , immediately after
it executes ρi ( j, v) starting from C0, for any value v �= ⊥.
That is, every process (other than ps) does its first write to
R j when it performs any solo UPDATE to A j (with a non-⊥
value) starting from C0.

Lemma 39 Let α be an execution starting from C0 in which
some process other than ps takes no steps. Then, for each
j ∈ {1, . . . ,m}, UPDATE operations to component A j in α

write only to R j .

Proof Suppose there is a process pi other than ps that per-
forms a write to a register R �= R j during the execution of
an UPDATE to component A j in α. Let α′ denote the prefix
of α up to, but not including this write by pi to register
R.

Let pk be a process other than ps that takes no steps in α

and letv be a non-⊥value.Consider the executionρk( j, v)·α′
and let C ′ be the resulting configuration. This execution is
legal since pk performs no writes during ρk( j, v). Note
that {pi , pk} covers {R, R j } in C ′ and since it holds that
CPU (C ′, {pi , pk}) = {A j }, it follows that C ′ is 2-fatal.
This contradicts Lemma 36. 	


The next result shows that processes, which perform
UPDATE operations to different snapshot components must
write to different registers.

Lemma 40 R j1 �= R j2 for distinct j1, j2 ∈ {1, . . . ,m}.
Proof Toderive a contradiction, suppose R j1 = R j2 for some
j1 �= j2. Let pk1 and pk2 be two distinct processes other than
ps . Let v be some non-⊥ value. Let C be the configuration
that results when ρk2( j2, v) is performed by pk2 starting from
C0. In configurationC , {pk2} covers {R j2}, all other processes
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are inactive, and no process has a pending UPDATE to A j1 .
Let C ′ be the configuration obtained from C by allowing pk2
to do its pendingwrite. A soloSCAN by process ps starting
from C ′ returns⊥ for component A j1 , since no UPDATES to
A j1 have been started in this execution. Let α be the solo exe-
cution of UPDATE( j1, v) by pk1 starting fromC . By Lemma
35, pk1 must write to some register other than R j1 = R j2
during α.

Since pk2 performs no writes during ρk2( j2, v), it is
also the case that α is a legal execution starting from C0.
Process pk2 takes no steps during α, so Lemma 39 implies
that pk1 writes only to R j1 during α. This is a contradiction.
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