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Abstract We study the Reliable Broadcast problem in
incomplete networks against a Byzantine adversary. We
examine the problem under the locally bounded adversary
model of Koo (Proceedings of the 23rd annual ACM sympo-
sium on principles of distributed computing, PODC ’04, St.
John’s, Newfoundland, Canada, 25–28 July 2004, ACM New
York pp 275–282, 2004) and the general adversary model of
Hirt and Maurer (Proceedings of the 16th annual ACM sym-
posium on principles of distributed computing, PODC ’97,
Santa Barbara, California, USA, August 21–24, 1997 ACM,
New York pp 25–34, 1997) and explore the tradeoff between
the level of topology knowledge and the solvability of the
problem. In order to explore this tradeoff we introduce the
partial knowledge model which captures the situation where
each player has arbitrary topology knowledge. We refine the
local pair-cut technique of Pelc and Peleg (Inf Process Lett
93(3):109–115, 2005) in order to obtain impossibility results
for every level of topology knowledge and any type of cor-
ruption distribution. On the positive side we devise protocols
that match the obtained bounds, and thus, exactly charac-
terize the classes of graphs in which Reliable Broadcast is
possible. Among others, we show that Koo’s Certified Prop-
agation Algorithm (CPA) is unique, against locally bounded
adversaries in ad hoc networks, among all safe algorithms,
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i.e., algorithms which never cause a node to decide on an
incorrect value. This means that CPA can tolerate as many
local corruptions as any other safe algorithm; this settles an
open question posed by Pelc and Peleg. We also provide an
adaptation of CPA achieving reliable broadcast against gen-
eral adversaries and prove that this algorithm too is unique
under this model. To the best of our knowledge this is the first
optimal algorithm for Reliable Broadcast in generic topology
ad hoc networks against general adversaries.

Keywords Partial knowledge · Reliable broadcast ·
Byzantine adversary · Locally bounded adversary · General
adversary

1 Introduction

A fundamental problem in distributed networks is Reliable
Broadcast (Byzantine Generals), in which the goal is to dis-
tribute a message correctly despite the presence of Byzantine
faults. That is, an adversary may control several nodes and
be able to make them deviate from the protocol arbitrarily
by blocking, rerouting, or even altering a message that they
should normally relay intact to specific nodes. Even in this
case, a Reliable Broadcast protocol must guarantee that all
non-corrupted (honest) nodes decide on the correct value.
The decision of a player can be typically modeled as the out-
put of this player by the end of the execution. In general,
agreement problems have been primarily studied under the
threshold adversary model, where a fixed upper bound t is
set for the number of corrupted players and broadcast can be
achieved if and only if t < n/3, where n is the total number of
players. The Broadcast problem has been extensively studied
in complete networks under the threshold adversary model
mainly in the period from 1982, when it was introduced by
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Lamport, Shostak and Pease [11], to 1998, when Garay and
Moses [5] presented the first fully polynomial Broadcast pro-
tocol optimal in resilience and round complexity.

The case of Reliable Broadcast under a threshold adver-
sary in incomplete networks has been studied to a much lesser
extent, in a study initiated in [1,2,10], mostly through proto-
cols for Secure Message Transmission which, combined with
a Broadcast protocol for complete networks, yield Broadcast
protocols for incomplete networks. Naturally, connectivity
constraints are required to hold in addition to the n/3 bound.
Namely, at most t < c/2 corruptions can be tolerated, where
c is the network connectivity, and this bound is tight [1].

In the case of an honest dealer, particularly meaningful in
wireless networks, the impossibility threshold of n/3 does
not hold; for example, in complete networks with an honest
dealer the problem becomes trivial regardless of the number
of corrupted players. However, in incomplete networks the
situation is different. A small number of corrupted players
may manage to block the entire protocol if they control a
critical part of the network, e.g. if they form a separator of
the graph. It therefore makes sense to define criteria (or para-
meters) depending on the structure of the graph, in order to
bound the number or restrict the distribution of corruptions
that can be tolerated.

An approach in this direction is to consider topological
restrictions on the adversary’s corruption capacity. We will
first focus on local restrictions, the importance of which
comes, among others, from the fact that they may be used
to derive criteria which can be employed in ad hoc networks.
Such a paradigm is the t-locally bounded adversary model,
introduced in [9], in which at most a certain number t of
corruptions are allowed in the neighborhood of every node.

The locally bounded adversarial model is particularly
meaningful in real-life applications and systems. For exam-
ple, in social networks it is more likely for an agent to have a
quite accurate estimation of the maximum number of mali-
cious agents that may appear in its neighborhood, than having
such information, as well as knowledge of connectivity, for
the whole network. In fact, this scenario applies to all kinds
of networks, where each node is assumed to be able to esti-
mate the number of traitors in its close neighborhood. It is
also natural for these traitor bounds to vary among different
parts of the network. Motivated by such considerations, in
this work we will introduce a generalization of the t-locally
bounded model.

1.1 Related work

Considering t-locally bounded adversaries, Koo [9] proposed
a simple, yet powerful protocol, namely the Certified Prop-
agation Algorithm (CPA) (a name coined by Pelc and Peleg
in [15]), and applied it to networks of specific topology. CPA
is based on the idea that a set of t + 1 neighbors of a node

always contain an honest one. Pelc and Peleg [15] consid-
ered the t-locally bounded model in generic graphs and gave
a sufficient topological condition for CPA to achieve Broad-
cast. They also provided an upper bound on the number of
corrupted players t that can be locally tolerated in order to
achieve Broadcast by any protocol, in terms of an appropri-
ate graph parameter; they left the deduction of tighter bounds
as an open problem. To this end, Ichimura and Shigeno [8]
proposed an efficiently computable graph parameter which
implies a more tight, but not exact, characterization of the
class of graphs on which CPA achieves Broadcast. It had
remained open until very recently to derive a tight parame-
ter revealing the maximum number of traitors that can be
locally tolerated by CPA in a graph G with dealer D. Such
a parameter is implicit in the work of Tseng et al. [16], who
gave a necessary and sufficient condition for CPA Broadcast.
Finally, in [12] such a graph parameter was presented explic-
itly, together with an efficient 2-approximation algorithm for
computing its value.

A more general approach regarding the adversary struc-
ture was initiated by Hirt and Maurer in [7] where they studied
the security of multiparty computation protocols with respect
to an adversary structure, i.e. a family of sets of players,
such that the adversary may entirely corrupt any set in the
family. This line of work has yielded results on Broadcast
against a general adversary in complete networks [4] but, to
the best of our knowledge, the case of Broadcast against gen-
eral adversaries in incomplete networks has not been studied
as such.1 A study on the related problem of Iterative Approx-
imate Byzantine Consensus against general adversaries can
be seen in [17] where a similar model for the ad hoc case is
considered.

1.2 Our Results

In this work we study the tradeoff between the level of topol-
ogy knowledge and the solvability of the problem, under
various adversary models. In the course of this study we
consider the natural class of safe Broadcast algorithms, i.e.,
algorithms that never cause a player to decide on an incor-
rect value. The importance of safeness is pointed out in [15],
where it is regarded as a basic requirement of a Broadcast
algorithm; it guarantees that even if all players do not have
sufficient information to decide on the dealer’s value, no one
will eventually decide on an incorrect value or accept false
data.

We first consider a natural generalization of the t-locally
bounded model, namely the non-uniform t-locally bounded
model which subsumes the (uniform) model studied so far.

1 Some related results are implicit in [10], but in the problem stud-
ied there, namely Secure Message Transmission, additional secrecy
requirements are set which are out of the scope of our study.
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The new model allows for a varying bound on the number of
corruptions in each player’s neighborhood. We address the
issue of locally resilient Broadcast in the non-uniform model.
We present a new necessary and sufficient condition for CPA
to be t-locally resilient by extending the notion of local pair
cut of Pelc and Peleg [15] to the notion of partial local pair
cut. Note that although equivalent conditions exist [12,16],
the simplicity of the new condition allows to settle the open
question of CPA Uniqueness [15] in the affirmative: we show
that if any safe algorithm achieves Broadcast in an ad hoc
network then so does CPA. We next prove that computing
the validity of the condition is NP-hard and observe that the
latter negative result also has a positive aspect, namely that
a polynomially bounded adversary is unable to design an
optimal attack unless P = NP.

We next shift focus on networks of known topology and
devise an optimal resilience protocol, which we call Path
Propagation Algorithm (PPA). Using PPA we prove that a
topological condition which was shown in [15] to be nec-
essary for the existence of a Broadcast algorithm is also
sufficient. Thus, we manage to exactly characterize the class
of networks for which there exists a solution to the Broad-
cast problem. On the downside, we prove that it is NP-hard
to compute an essential decision rule of PPA, rendering
the algorithm impractical. However, we are able to provide
an indication that probably no efficient protocol of optimal
resilience exists, by showing that efficient algorithms through
which players always take the same decisions as they would
if they ran PPA do not exist if P �= NP.

We then take one step further, by considering a hybrid
between ad hoc and known topology networks: each node
knows a part of the network, namely a connected subgraph
containing itself. We propose a protocol for this setting as
well, namely the Generalized Path Propagation Algorithm
(GPPA). We use GPPA to show that this partial knowl-
edge model allows for Broadcast algorithms of increased
resilience.

Finally, we study the general adversary model and show
that an appropriate adaptation of CPA is unique against
general adversaries in ad hoc networks. To the best of our
knowledge this is the first algorithm for Reliable Broad-
cast in generic topology ad hoc networks against a general
adversary. We show an analogous result for known topol-
ogy networks, which however can be obtained implicitly
from [10] as mentioned above.

We conclude by discussing how to extend our results to the
case of a corrupted dealer by simulating Broadcast protocols
for complete networks.

A central tool in our work is a refinement of the local
pair-cut technique of Pelc and Peleg [15] which proves to be
adequate for the exact (in most cases) characterization of the
class of graphs for which Broadcast is possible for any level
of topology knowledge and type of corruption distribution.

A useful by-product of practical interest is that the refined
cuts can be used to determine the exact subgraph in which
Broadcast is possible.

For clarity we have chosen to present our results for the
t-local model first (Sects. 3, 4, 5), for which proofs and pro-
tocols are somewhat simpler and more intuitive, and then for
the more involved general adversary model (Sect. 6).

2 Problem and model definition

As we previously mentioned, the goal of Reliable Broadcast
is to have some designated player, called the dealer, consis-
tently send an input value to all other players of the network
even in the presence of a central adversary which corrupts
some players and controls them in some extend. Therefore
the effectiveness of a Reliable Broadcast protocol should be
considered w.r.t. the capacity of the adversary, i.e. the adver-
sary model.

Adversary model T An adversary model T defines the sets
of players that can be corrupted by the T -adversary (pos-
sible/admissible corruption sets) as well as the possible
behavior of the corrupted players, i.e., all the possible actions
that the corrupted players can execute. The adversarial behav-
ior in an execution of a distributed protocol can be described
exactly by the set and the actions of the corrupted players. We
consider the byzantine adversary model which imposes no
restrictions on the behavior of the corrupted players. Regard-
ing the possible corruption sets we consider the t-locally
bounded model and the general adversary model which will
be defined in the following.

The network model that we use in this paper is defined
below.

Networkmodel We assume that the players V are arranged in
a communication network which is represented by a graph
G = (V, E) where E is a set of undirected, authenticated
channels of communication between pairs of players.

In this paper we address the problem of Reliable Broad-
cast with an honest dealer in generic (possibly incomplete)
networks. For brevity we will refer to it simply as the Broad-
cast problem. The problem is trivial in complete networks;
we will consider the case of incomplete networks here. As we
will see in Sect. 7, the case of an honest dealer in incomplete
networks essentially captures the difficulty of the general
problem, where even the dealer may be corrupted. A pro-
tocol for the general case can be devised by simulating the
message exchange of Broadcast protocols in complete net-
works, which have been extensively studied. We consider
deterministic protocols for the solution of the problem.

Definition 1 (Reliable broadcast with honest dealer/
broadcast) Let V = {v1, . . . , vn} be the set of n play-
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ers arranged in a communication network G = (V, E) as
described above and X be a finite domain. Consider a dis-
tributed protocol � among players V , where player D ∈ V
(called the dealer) holds an input value xD ∈ X and every
player v ∈ V finally decides on a single output value yv ∈ X .
Also assume any adversary model T s.t. the dealer can not be
corrupted. Protocol � achieves Broadcast in (G, D) under
the adversary model T if for any possible corruption set T
and any adversarial behavior of this set conforming to T ,
all honest players decide on the dealer’s input value, i.e.,
∀v ∈ V \ T, yv = xD .

Termination is also required by the standard definition of
Broadcast, i.e., it must be guaranteed that all correct players
eventually terminate the protocol. As usual in the related lit-
erature, we omit the termination study, which is often implied
directly by the algorithm’s correctness. We discuss this issue
briefly in Sect. 8.

In the sequel, we will informally use the term Broadcast
protocol (or algorithm) for any distributed algorithm that
aims to achieve Broadcast, no matter if it is successful or
not.

We will now formally define the adversary model by gen-
eralizing the notions originally developed in [9,15]. We will
also define basic notions and terminology that we will use
throughout the paper. We refer to the participants of the pro-
tocol by using the terms node and player interchangeably.

Corruption function Taking into account that each player
might be able to estimate her own upper bound on the corrup-
tions of its neighborhood, as discussed earlier, we introduce
a model in which the maximum number of corruptions in
each player’s neighborhood may vary from player to player.
We thus generalize the standard t-locally bounded model [9]
in which a uniform upper bound on the number of local cor-
ruptions was assumed. Here we consider t : V → N to be a
corruption function over the set of players V .

Non-uniform t-locally bounded adversary model The net-
work is represented by a graph G = (V, E) and one player
D ∈ V is the dealer (sender) as explained before. A corrup-
tion function t : V → N is also given, implying that an
adversary may corrupt at most t (u) nodes in the neighbor-
hood N (u) of each node u ∈ V . The family of t-local sets
(defined below) plays an important role in our study since it
coincides with the family of admissible corruption sets.

Definition 2 (t-local set) Given a graph G = (V, E) and a
function t : V → N a t-local set is a set C ⊆ V for which
∀u ∈ V, |N (u) ∩ C | ≤ t (u). For V ′ ⊆ V a t-local w.r.t. V ′
set is a set C ⊆ V for which ∀u ∈ V ′, |N (u) ∩ C | ≤ t (u).

Uniform vs non-uniform model Obviously the original t-
locally bounded model corresponds to the special case of

t being a constant function. Hereafter we will refer to the
original t-locally bounded model as the Uniform Model as
opposed to theNon-UniformModel which we introduce here.
Hereafter we will also refer to the Non-Uniform Model sim-
ply as the t-locally bounded model.

In our study we will often make use of node-cuts which
separate some players from the dealer, i.e., node-cuts that
do not include the dealer. From here on we will simply use
the term cut to denote such a node-cut. The notion of t-local
pair cut was introduced in [15] and is crucial in defining the
bounds for which correct dissemination of information in a
network is possible.

Definition 3 (t-local pair cut) Given a graph G = (V, E)

and a function t : V → N, a pair of t-local sets C1,C2 s.t.
C1 ∪ C2 is a cut of G is called a t-local pair cut.

The next definition extends the notion of t-local pair cut
and is particularly useful in describing capability of achieving
Broadcast in networks of unknown topology (ad hoc net-
works) where each player’s knowledge of the topology is
limited in its own neighborhood.

Definition 4 (t-partial local pair cut) Let C be a cut of G,
partitioning V \ C into sets A, B �= ∅ s.t. D ∈ A. C is a
t-partial local pair cut (t-plp cut) if there exists a partition
C = C1 ∪ C2 where C1 is t-local and C2 is t-local w.r.t. B.

In the uniform model the Local Pair Connectivity
(LPC(G, D)) [15] parameter of a graph G with dealer D, was
defined to be the minimum integer t s.t. G has a t-local pair
cut. To define the corresponding notion in the non-uniform
model we need to define a (partial) order among corruption
functions. Nevertheless, as implied by Theorems 2 and 3,
for reasoning about the feasibility of Broadcast it suffices to
consider the following decision problem:

Definition 5 (pLPC) Given a graph G, a dealer D and a
corruption function t determine whether there exists a t-plp
cut in G.

2.1 Protocol properties

We next define some protocol properties, introduced in [15],
that facilitate our study.

Definition 6 (t-locally resilient algorithm for(G, D)) An
algorithm which achieves Broadcast in a given graph G with
dealer D for any t-local corruption set T and any behavior
of T is called t-locally resilient for (G, D).

According to the definition Broadcast, a t-locally resilient
algorithm for (G, D) is an algorithm which achieves Broad-
cast in (G, D) under the t-locally bounded adversary model.
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Reliable broadcast with respect to topology knowledge 91

Definition 7 (safe / t-locally safe algorithm) An algorithm
which never causes an honest node to decide on (output)
an incorrect value, for any graph-dealer pair (G, D) under
any corruption set and any behavior of it (that is, under any
adversary model), is called safe.

An algorithm which never causes an honest node to decide
on an incorrect value under any t-local corruption set and any
behavior of it, for any graph-dealer pair (G, D), is called t-
locally safe.

Note that a safe algorithm might still fail, particularly by
not correctly delivering the message to all nodes of the net-
work. By not correctly we mean that the information received
by a player is not sufficient for it to decide. Essentially, a safe
Broadcast algorithm ensures that a player will decide on a
value only in the case she can undoubtedly deduce from her
view (input and exchanged messages) that this is the actual
value of the dealer.

Observe that an algorithm is t-locally safe if it satisfies
the desired property for every instance (G, D). On the other
hand, the algorithm is t-locally resilient for (G, D) if it satis-
fies the property for the specific instance (G, D). Therefore,
it might be the case that an algorithm is t-locally resilient for
(G, D) but not t-locally safe, even if the first trivially implies
that the safeness property holds for (G, D).

Definition 8 (Uniqueness of Algorithm) Let A be a family of
algorithms. An algorithm A is unique (for Broadcast) among
algorithms in A if the existence of an algorithm of family A
which achieves Broadcast in an instance (G, D) implies that
A also achieves Broadcast in (G, D).

A unique algorithm A among A, naturally defines the class
of instances (G, D) in which the problem is solvable by A-
algorithms, namely the ones that A achieves Broadcast in.

3 Ad Hoc networks

3.1 Certified Propagation Algorithm (CPA)

The Certified Propagation algorithm [9] uses only local infor-
mation and thus is particularly suitable for ad hoc networks.
CPA is probably the only safe Broadcast algorithm known
up to now for the t-locally bounded model, which does not
require knowledge of the network topology or use topology
discovery subroutines.

Probably another, more complex, algorithm for this set-
ting could be devised by employing a topology discovery
algorithm (e.g. variation of [13]), and then use the topol-
ogy knowledge obtained to execute some known Broadcast
algorithm which requires topology knowledge (e.g. RPA pre-
sented in [15]). CPA does not use any topology discovery
subroutine; despite its simplicity and minimal propagation

(a player only propagates the value she decides to all her
neighbors) it proves to be of optimal resilience (unique). The
latter means that one cannot achieve better solvability of the
problem by employing more complex schemes. Moreover the
combination of the results of the current section with those of
Sects. 4, 5 imply that there are instances in which the prob-
lem is not solvable under the Ad Hoc model but is solvable
assuming higher level of topology knowledge. This suggests
that employing any topology discovery topology algorithm
in the ad hoc model does not provide any useful information
which will affect the solvability of the problem.

Protocol 1, presented here, is a modification of the original
CPA that can be employed under the generalized corruption
model introduced here. Namely a node v, upon reception
of t (v) + 1 messages with the same value x from t (v) + 1
distinct neighbors, decides on x , sends it to all neighbors and
terminates. The description of the protocol follows:

Protocol 1: Certified Propagation Algorithm (CPA) for the
Non-uniform model

Input (for each node v): Dealer’s label D, labels of v’s neigh-
bors, corruption bound t (v).
Message format: A single value x ∈ X .

Code for D: send value xD ∈ X to all neighbors, decide on
xD and terminate.

Code for v ∈ N (D): upon reception of xD from the dealer,
decide on xD , send it to all neighbors and terminate.

(* certified propagation rule *)

Code for v /∈ N (D) ∪ D: upon reception of t (v) + 1 mes-
sages with the same value x from t (v)+1 distinct neighbors,
decide on x , send it to all neighbors and terminate.

As shown in [9], CPA is a t-locally safe Broadcast algo-
rithm. The proof is given for completeness.

Theorem 1 CPA is t-locally safe.

Proof We will show that if a player decides on a value x
through CPA then x = xD . Assume on contrary that there
is a set of players V ′ ⊆ V that decide on values different
than xD . Let v be the player of V ′ that decides in the earliest
round among all players in V ′, i.e., the first player to make an
incorrect decision, and assume that v decides on x �= xD . v

cannot be a neighbor of the dealer since all neighbors of the
dealer only decide on xD as can be shown in the respective
decision rule of CPA. Therefore v has received t (v)+1 copies
of x from t (v) + 1 distinct neighbors. Since at most t (v)

neighbors can be corrupted, at least one honest player has
decided in x �= xD before v. A contradiction to the fact that
v is the first player to make an incorrect decision. �
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3.2 CPA uniqueness in ad hoc networks

Based on the above definitions we can now prove the CPA
uniqueness conjecture for ad hoc networks, which was posed
as an open problem in [15]. The conjecture states that no algo-
rithm can locally tolerate more corrupted nodes than CPA in
networks of unknown topology.

We consider only the class of t-locally safe Broad-
cast algorithms. We assume the ad hoc network model, as
described e.g. in [15]. In particular we assume that nodes
know only their own labels, the labels of their neighbors
and the label of the dealer. We call a distributed Broadcast
algorithm that operates under these assumptions an ad hoc
Broadcast algorithm.

Theorem 2 (Sufficient Condition) Given a graph G, a cor-
ruption function t and a dealer D, if no t-plp cut exists, then
CPA is t-locally resilient for (G, D).

Proof Suppose that no t-plp cut exists in G. Assume an
execution of CPA where the actual corruption set is T .
By definition, T is t-local, since we are in the t-locally
bounded adversary model; clearly T ∪ N (D) is a cut on
G as defined before (i.e. not including node D). Since T is
t-local and T ∪ N (D) is not a t-plp cut there must exist
u1 ∈ V \ (T ∪ N (D) ∪ D) s.t. |N (u1) ∩ (N (D) \ T )| ≥
t (u1) + 1. Since u1 is honest and all players in N (D) \ T
will trivially decide on the correct value xD through CPA as
direct neighbors of the dealer, u1 will receive t (u1) copies
of xD and decide on the correct dealer’s value xD . Let us
now use the same argument inductively to show that every
honest node will eventually decide on the correct value xD
through CPA. Let Ck = (N (D)\T )∪{u1, u2, . . . , uk−1} be
the set of the honest nodes that have decided until a certain
round of the protocol, and assume that they decided on the
correct value xD . Then Ck ∪ T is a cut. Since T is t-local,
by the same argument as before there exists a node uk s.t.
|Ck ∩ N (uk)| ≥ t (uk) + 1 and uk will decide correctly on
xD . Eventually all honest players will correctly decide on
xD . Thus CPA is t-locally resilient in G. �

Observe that the latter proof does not explicitly use the
fact that CPA is t-locally safe. Instead, we inductively show
that in every step (before all terminate), there are some nodes
which decide and that all of them decide correctly. A slight

modification of the proof can be used as an alternative proof
for CPA’s t-local safety since in the induction hypothesis we
assume that all decided nodes have decided on the correct
value.

Theorem 3 (Necessary Condition) LetA be a t-locally safe
ad hoc Broadcast algorithm. Given a graph G, a corruption
function t and a dealer D, if a t-plp cut exists, then A is not
t-locally resilient in (G, D).

Proof Assume the partition of set V in the sets A, B, T, H
such that C = T ∪ H is a t-plp cut in graph G with dealer D
which disconnects the node sets A, B. Let T be the t-local set
of the cut partition and H the t-local w.r.t. to B set (Fig. 1).
Let G ′ be a graph that results from G if we remove some
edges that connect nodes in A ∪ T ∪ H with nodes in H so
that the set H becomes t-local in G ′ (e.g. we can remove all
edges that connect nodes in A ∪ T ∪ H with nodes in H ).
Note that the existence of a set of edges that guarantees such
a property is implied by the fact that H is t-local w.r.t. B.

The proof is by contradiction. Suppose that there exists
a t-locally safe Broadcast algorithm A which is t-locally
resilient in graph G with dealer D. We consider the following
executions σ and σ ′ of A :

– Execution σ is on the graph G with dealer D, with
dealer’s value xD = 0, and corruption set T ; in each
round, each corrupted player in T performs the actions
that its corresponding player performs in the respective
round of execution σ ′ (where T is a set of honest players).

– Execution σ ′ is on the graph G ′ with dealer D, with
dealer’s value xD = 1, and corruption set H ; in each
round, each corrupted player in H performs the actions
that its corresponding player performs in the respective
round of execution σ (where H is a set of honest players).

Although the above definitions of σ, σ ′ may seem circular,
in fact the actions of players are well defined as is explained
in the note after the proof. Note that T, H are admissible
corruption sets in G,G ′ respectively due to their t-locality.
It is easy to see that H ∪ T is a cut which separates D from
B in both G and G ′ and that actions of every node of this
cut are identical in both executions σ, σ ′. Consequently, the
actions of any honest node w ∈ B must be identical in both

Fig. 1 Graphs G and G ′
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executions. Since, by assumption, algorithm A is t-locally
resilient on G with dealer D, w must decide on the dealer’s
message 0 in execution σ on G with dealer D, and must do
the same in execution σ ′ on G ′ with dealer D. However, in
execution σ ′ the dealer’s message is 1. Therefore A makes w

decide on an incorrect message in (G ′, D). This contradicts
the assumption that A is locally safe. �

Note on the proof of Theorem 3 Although the argument
of the two simultaneous executions σ, σ ′ is standard in the
literature (e.g. [1,9,10,15]), it may seem that the definition of
the actions of the corrupted players is circular and thus are not
well defined. For ease of presentation we denote with T, H
the sets of the execution σ and with T ′, H ′ their respective
sets in the execution σ ′. The circularity of the definition may
(falsely) appear in the following example; the actions of T
depend on the actions of T ′ which may in turn depend on the
messages they receive from H ′ which depend on the actions
of H in σ which may lastly depend on the actions of T in the
same execution. To overcome this obstacle we observe that
the actions of all players are uniquely defined in an inductive
manner, i.e., in the first round of both executions the actions
of honest players in the sets H, T ′ are uniquely defined by the
deterministic protocol A and their initial values due to the fact
that no messages have been received. Therefore, the actions
of the first round that the respective corruption sets H ′, T take
are uniquely defined by the actions of H, T ′. Assuming that
the actions (exchanged messages) of all players are uniquely
defined until the end of round k, one can observe that the
actions of all players are uniquely defined in round k+1 due
to the fact that the exchanged messages of round k + 1 are
completely determined by actions taken until round k.

We can show that if we drop the requirement for t-local
safety, then Theorem 3 does not hold. Intuitively, the reason
is that an ad hoc protocol that assumes certain topological
properties for the network may be t-locally resilient in a fam-
ily of graphs that have the assumed topological properties.
Indeed, Pelc and Peleg [15] introduced another algorithm
for the uniform model, the Relaxed Propagation Algorithm
(RPA) which uses knowledge of the topology of the network
and they proved that there exists a graph G ′′ with dealer
D for which RPA is 1-locally resilient and CPA is not. So
if we use RPA in an ad hoc setting assuming that the net-
work is G ′′ then this algorithm will be t-locally resilient for
(G ′′, D) while CPA will not. Non-t-local safety of RPA fol-
lows from the fact that the decisions depend on the assumed
topology and therefore they could be incorrect if the topo-
logical assumptions do not hold. More specifically, a player,
running RPA, could decide on a message which she receives
from 2t + 1 disjoint paths and for which she can verify, from
the assumed topology, that at most t may contain corrupted
nodes. However, if the topology is actually not as assumed,
then it could even be the case that all 2t + 1 paths contain

corrupted nodes and thus the decision value is incorrect. The
fact that the non-safe algorithm RPA is resilient in instances
where CPA is not, shows that there exist non-safe algorithms
of higher resilience than CPA.

Corollary 1 (CPAUniqueness) Given a graph G and dealer
D, if there exists an ad hoc Broadcast algorithm which is t-
locally resilient in (G, D) and t-locally safe, then CPA is
t-locally resilient in (G, D).

Proof Immediate from Theorems 2,3. �
This, according to the definition of uniqueness means that,

CPA is unique among t-locally safe algorithms.

3.3 Hardness of pLPC

Ichimura and Shigeno in [8] prove that the set splitting prob-
lem, known as NP-hard [6], can be reduced to the problem of
computing the minimum integer t such that a t-local pair cut
exists in a graph G. By generalizing the notion of the t-local
pair cut to that of t-plp cut and defining the pLPC problem
analogously one can use a nearly identical proof to that of
[8] and show that the pLPC problem is NP-hard.

Theorem 4 pLPC is NP-hard.

Proof We first consider a different (general) version of the
pLPC problem which asks if there is a t-plp cut in the graph
where no dealer is specified, i.e., if there exists a t-plp cut
for any possible dealer-node in the node set. Concluding the
proof we will show that if the general pLPC problem is NP-
hard then so is our original pLPC problem (with specified
dealer).

We first show that the set splitting problem known as NP-
hard [6] can be reduced to the general pLPC problem. Given
a collection S of 3-element subsets of a finite set X , the set
splitting problem asks whether there is a partition of X into
two subsets X1 and X2 such that no subset in S is entirely
contained in either X1 or X2. An instance of this problem is
shown in Fig. 2.

We propose the following reduction. Let S+ be a multi-
ple collection adding dummy subsets {v} to S such that the
cardinality of {s ∈ S+ : v ∈ s} is at least six for each
v ∈ X . A complete graph with node set S+ and a copy of
it are denoted by K S+ and K ′

S+, respectively. We denote
with s′ ∈ V (K ′

S+) the copy of node s ∈ S+. We con-
struct a graph GSSP (Fig. 3) with vertex set V (GSSP ) =
V (K S+) ∪ V (K ′

S+) ∪ X and edge set

E(GSSP ) = E(K S+) ∪ E(K ′
S+) ∪ {(v, s), (v, s′) :

v ∈ X, s ∈ S+, v ∈ s}

where s′ is a copy of s as mentioned above.
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Fig. 2 An instance and the
solution of a set splitting
problem with
X = {1, 2, 3, 4, 5, 6} and A =
{{1, 2, 3}, {3, 4, 5}, {1, 4, 6}, {2, 4, 5}}.
The solution is depicted by the
the two sets X1 = {1, 3, 5} and
X2 = {2, 4, 6} the elements of
which are marked with squares
and triangles respectively.
Notice that all sets in A have at
least one node of both shapes

1

2

3

6

5

4

1

2

3

6

5

4

1

2

3

4

5

6

1, 2, 3

1, 4, 6

3, 4, 5

2, 4, 5

1

2

3

4

5

6

KS+ KS+

1, 2, 3

1, 4, 6

3, 4, 5

2, 4, 5

1

2

3

4

5

6

...

Fig. 3 The graph GSSP for the set splitting problem in Fig. 2. Edges
on the right side are formed symmetrically to those on the left side and
are omitted for simplicity

We next prove that there is a set splitting of X if and only
if there is a 2-plp cut C in GSSP .

For the “only-if” direction it suffices to observe that a
partition X = X1 ∪ X2 for which no subset in S is entirely
contained in either X1 or X2, implies that each of the sets
X1, X2 will contain at most 2 nodes (elements) that appear
in the neighborhood of every node (set) in K S+ and K ′

S+
and thus X = X1 ∪ X2 is a 2-plp cut.

For the “if” direction we argue as follows. Considering a
2-plp cut C on GSSP we distinguish between two cases, the
case X \C �= ∅ and the case X \C = ∅. In the first case we
observe that if a subgraph of GSSP obtained by removing C
from GSSP consists of at least two connected components,
then C must contain N (v) ∩ V (K S+) or N (v) ∩ V (K ′

S+)

for each v ∈ X \ C . Since each v ∈ X has at least six
neighbors in both V (K S+) and V (K ′

S+), for any possible
partition of C , either each node in V (K S+) \C or each node
in V (K ′

S+) \ C has at least 3 neighbors in some set of the
partition. Therefore, sinceC is a 2-plp cut the case X \C �= ∅
cannot hold.

It remains to consider the case of a 2-plp cut C = C1 ∪C2

where X \ C = ∅, which implies that X ⊆ C ; note that
C1,C2 are in fact 2-local due to symmetry. Observe that X
also constitutes a cut in GSSP ; moreover, in this case both
sets Xi = Ci ∩ X, i = 1, 2, are 2-local (being subsets of the
2-local sets Ci , i = 1, 2), hence X = X1 ∪ X2 is a 2-plp
cut. Therefore, no set in s ∈ S can be entirely contained in
some Xi , i = 1, 2, because |s| = 3, hence the corresponding
vertex s in K S+ (and s′ in K ′

S+) would have three neighbors
in Xi contradicting the fact that Xi is a 2-local set. Thus the
set splitting instance (S, X) has a solution X = X1 ∪ X2.

We conclude the proof by showing that NP-hardness
for pLPC(G, t) without a dealer (general case) implies
NP-hardness for the case with a dealer D, i.e., prob-
lem pLPC(G, t, D). Indeed, if pLPC(G, t, D) could
be solved with a polynomial-time algorithm then solving
pLPC(G, t, v) for every node v ∈ V would suffice to build
a polynomial algorithm for pLPC(G, t). Therefore to com-
pute pLPC(G, t, D) is NP-hard. �

We have thus established that computing the necessary and
sufficient condition for CPA to work is NP-hard. Observe
that this negative result also has a positive aspect, namely
that a polynomially bounded adversary is unable to always
compute an optimal attack unless P = NP.

4 Known topology networks

4.1 The path Propagation Algorithm

Considering only safe Broadcast algorithms, the unique-
ness of CPA in the ad hoc model implies that an algorithm
that achieves Broadcast in cases where CPA does not, must
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operate under a weaker model e.g., assuming additional infor-
mation on the topology of the network. It thus makes sense
to consider the setting where players have full knowledge
of the topology of the network. In this section we propose
the Path Propagation Algorithm (PPA) and show that is of
optimal resilience in the full-knowledge model.

For convenience we will use the following notions: a set
S ⊆ V \ D is called a cover of a set of paths P if and only if
∀p ∈ P, ∃s ∈ S s.t. s ∈ p (s is a node of p). As one can see in
the algorithm, each path which is propagated, is transmitted
along with a value which it carries. This value corresponds
to the value initially sent by the first node of the path (source
of the path). The other endpoint of the path, i.e., the last node
of path p will be denoted with tail(p). When a node v acts
as a relay of a value which has reached to it through path p,
it appends its id v to the last node of p and thus it creates a
new path p′ with tail(p′) = v, whereas the source of p and
p′ remains the same. The description of PPA follows.

Protocol 2: Path Propagation Algorithm (PPA)

Input (for each node v): dealer’s label D, graph G, t (v) =
max #corruptions in N (v).
Message format: pair (x, p), where x ∈ X (message space),
and p is a path of G (message’s propagation trail).

Code for D: send message (xD, D) to all neighbors, decide
on xD and terminate.

Code for v �= D: Initialize decisionv := ⊥.
upon reception of (x, p) from node u do:

if (v ∈ p) ∨ (tail(p) �= u) then discard the
message else send (x, p||v)2 to all neighbours.

if (decisionv = ⊥) ∧ (decision(v) �= ⊥) then
decisionv := decision(v);
send message (decisionv, v) to all neighbors;
decide on decisionv .

function decision(v)

(* dealer propagation rule *)

if v ∈ N (D) and v receives (xD, D) then return
xD .

(* honest path propagation rule *)

if v receives messages (x, p1), . . . , (x, pm)

and ∃P ⊆ {p1, . . . , pm} that does not have a t-local cover.

then return x else return ⊥.

2 By p||v we denote the path consisting of path p and node v, with the
last node of p connected to v.

Concerning the honest path propagation rule of PPA, note that
P is not the whole set of collected paths received by v but
rather any subset of the paths through whichv receives a value
x . Also observe that the criterion is existential, and thus the
existence of one subset P with the desired property suffices
for the player to decide on the corresponding value. Observe
that each player can check the validity of the honest path
propagation rule only if it has knowledge of the corruption
function t and the network’s topology. Next, we argue about
the safeness of PPA.

Theorem 5 PPA is t-locally safe.

Proof We will show that if a player decides on a value x
through PPA then x = xD . Assume on the contrary that there
is a set of players V ′ ⊆ V that decide on values different
than xD . Let v be the player of V ′ that decides in the earliest
round among all players in V ′, i.e., the first player to make
an incorrect decision, and assume that v decides on x �= xD .
Player v cannot be a neighbor of the dealer since all neighbors
of the dealer only decide on xD as can be seen in the respective
decision rule of PPA. Therefore v has decided on x through
the honest path propagation rule. This means that v received
value x from a set of paths P such that there does not exist a t-
local cover of P . Moreover, through the check tail(p) �= u,
we ensure that at least one corrupted node will be included in a
path which contains faulty nodes. Due to the latter, we avoid
the case where all the corrupted nodes hide their identity
in a path by changing the actual propagation trail; this is a
commonly used idea which was first presented in [1].

Since there does not exist a t-local cover for P , it is now
obvious that at least one path p of P is entirely corruption
free and if p is entirely corruption free, then value x , which
is relayed through p, is the actual value that the source-node
w of p has decided on. Thus, at least one honest player has
decided in x �= xD before v. A contradiction to the fact that
v is the first player to make an incorrect decision. �

4.2 A necessary and sufficient condition

We will now show that the non-existence of a t-local pair cut
is a sufficient condition for PPA to achieve Broadcast in the
t-locally bounded model in networks of known topology.

Theorem 6 (Sufficiency) Given a graph G with dealer D
and corruption function t, if no t-local pair cut exists in
(G, D) then all honest players will decide through PPA on
xD.

Proof All players in N (D) decide on xD due to the dealer
propagation rule, since the dealer is honest. We next show
the rest of the players will decide on xD due to the honest path
propagation rule. Observe that since PPA is t-locally safe, it
suffices to show that, at some step, every player will receive
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the correct value xD through a set of paths P which will allow
her to decide on xD through the honest path propagation rule
(if she has not aldready decided on it in a previous step).

Let v be any player in V \ N (D) and assume that no
t-local pair cut exist in (G, D). Let T be a t-local set and
consider an execution σT of PPA where T is the corruption
set. Let PD,v be the set of all paths connecting D with v

that are composed entirely by nodes in V \T (honest nodes).
Observe that PD,v �= ∅, otherwise T is a cut separating D
from v and T is trivially a t-local pair cut, a contradiction.
Since paths in PD,v are entirely composed by honest nodes it
is easy to see that v will receive the correct value xD through
all paths in PD,v i.e. the path set PD,v is a subset of all the
paths that propagate the same value xD to v.

We next prove that there does not exist a t-local cover
of PD,v . Assume that ∃T ′ : t-local cover of PD,v . Then
obviously T ∪ T ′ is a cut separating D from v, since every
path that connects D with v contains at least a node in T ∪
T ′. Moreover the cut T ∪ T ′ can be partitioned in the sets
T \ T ′, T ′ which are trivially t-local and thus, T ∪ T ′ is a
t-local pair cut, a contradiction. Hence, there does not exist
a t-local cover of PD,v . This means that there exists a path
set which propagates the correct value xD to v and does not
have a t-local cover, namely PD,v and thus, the honest path
propagation rule is verified, for instance by taking P = PD,v .

Consequently, in execution σT , node v will receive the
correct value, in some step k, through every path in PD,v

along with the corresponding propagation trail. If playerv has
already decided before step k then her decision will certainly
be on xD due to the t-local safety of PPA. In any other case,
v will also decide on the correct value xD by the end of step
k due to the honest path propagation rule, because PD,v is
not covered by any t-local set. �

Using the same arguments as in the proof of the neces-
sity of condition t < LPC(G, D) [15] it can be seen that the
non-existence of a t-local pair cut is a necessary condition for
any algorithm to achieve Broadcast under the non-uniform
model. The proof uses similar arguments with that of The-
orem 3 but is much simpler; the different executions are
considered in the same graph. One cannot consider execu-
tions in two different graphs since the topology is known to
all the players and the players would be able to distinguish
the two scenaria. For completeness the proof is presented
below.

Theorem 7 (Necessity) Given a graph G with dealer D
and corruption function t, if there exists a t-local pair cut
in (G, D) then there is no t-locally resilient algorithm for
(G, D).

Proof Assume that there exists a t-local pair cutC = C1∪C2

in (G, D) partitioning V \ C into sets A, B �= ∅ such that
D ∈ A. Also let A be a t-locally resilient algorithm for

(G, D). We will show that A does not allow any v ∈ B to
correctly decide on the value of the dealer xD in all possible
executions, which contradicts its t-local resilience. Consider
the following two executions σ and σ ′ of A on the instance
(G, D).

– In execution σ the dealer’s value is xD = 0 and the
corrupted players are precisely those inC1. In each round
t ≥ 1 of the execution σ , every player in C1 performs
the action that she is instructed to perform in round t of
execution σ ′ (where she is honest).

– In execution σ ′ the dealer’s value is xD = 1 and the
corrupted players are precisely those inC2. In each round
t ≥ 1 of the execution σ ′, every player in C2 performs
the action that she is instructed to perform in round t of
execution σ (where she is honest).

The same standard argument of the two simultaneous
executions is used here. Its correctness regarding the unam-
biguous definition of the players’ actions is proved in
Sect. 3.2 in the paragraph “Note on the proof of Theorem 3”.

Similarly with the proof of Theorem 3, it follows that any
player v ∈ B performs identical actions in executions σ and
σ ′ of A. Hence v decides on the same value in σ and σ ′,
which cannot be correct in both executions, since D has a
different initial value in each of them. �

Thus the non-existence of a t-local pair cut proves to be
a necessary and sufficient condition for the existence of a
t-locally resilient algorithm in both the uniform and the non-
uniform model. Therefore PPA is of optimal resilience.

4.3 On the hardness of broadcast in known networks

In order to run PPA we have to be able to deduce whether a
corruption-free path exists among a set of paths broadcasting
the same value. Formally, given a graph G(V, E), a set of
paths P , a node u (the one that executes decision(u)) and
a corruption function t we need to determine whether there
exists a t-local cover T of P . We call this problem the Local
Path Cover Problem, LPCP(G, D, u, t,P) and show that
is NP-hard.

Theorem 8 It isNP-hard to compute L PCP(G, D, u, t,P).

Proof We will describe a reduction from 3SAT to
LPCP(G, D, u, t,P). For every variable xi we construct
a gadget Gxi shown at the left of Fig. 4. We will make use
of a parameter μ that will serve as a corruption function of
constant value (that is, our hardness result holds even for the
uniform model). We will use several copies of the complete
graphs Kμ+1 and K2μ. Node D is connected to every vertex
of a Kμ+1 copy. Every vertex of that Kμ+1 copy is connected
to all the ‘upper’ μ vertices of a K2μ copy; let us call this
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Fig. 4 An instance of the reduction graph G for variables {x1, x2, x3} and clause c1 = {¬x1 ∨ x2 ∨ x3}. Literals ¬x1, x2, x3 of clause c1 are
represented by nodes l11, l12, l13 respectively

‘upper’ node set Xi . Symmetrically for the lower part, node
u is connected to every vertex of a ‘bottom’ Kμ+1 copy and
every vertex of that Kμ+1 copy is connected to all the ‘lower’
μ vertices of K2μ; let us denote by X ′

i this ‘lower’ part of
K2μ. Now assuming that P contains those paths in Gxi that
are of length 5 and connect D to u (and no other path in Gxi )
it is easy to show that :

Lemma 1 If L PCP(G, D, u, μ,P) = 1withμ-local cover
T , then either Xi ⊆ T or X ′

i ⊆ T .

T ∩ Gxi is a cut of Gxi . Since the only possible μ-local cuts
in Gxi are Xi and X ′

i , the claim is immediate.
Now for every clause ci = li1 ∨ li2 ∨ li3 in C we construct

the gadget shown on the right of Fig. 4. Node D is connected
to every vertex of Kμ+1. Every vertex of Kμ+1 is connected
to the first literal of the clause, say li1 . Literal li1 is connected
to li2 , and li2 to li3 . Symmetrically, node u is connected to
every vertex of another copy of Kμ+1, and every vertex of
Kμ+1 is connected to li3 . Let us call this subgraph of G,
Gci . Assuming that all paths from D to u of length 6 that go
through Gci are contained in P we show that:

Lemma 2 if L PCP(G, D, u, μ,P) = 1withμ-local cover
T , then li1 ∈ T or li2 ∈ T or li3 ∈ T .

The proof is by contradiction: if no li j node belongs to T ,
then it must be Kμ+1 ⊆ T , contradicting the t-locality of T .

The last thing we need to establish is that if Xi ⊆ T
(respectively X ′

i ⊆ T ), no ¬xi (resp. xi ) literal of Gcj is in
T . We achieve this by adding a node vi j connecting Xi (resp.
X ′
i ) to ¬xi (resp. xi ) for each appearance of these literals in

some Gcj . The following holds because If both Xi and ¬xi
are in T , then T is not μ-local since |N (vi j ) ∩ T | = μ + 1.

Lemma 3 If L PCP(G, D, u, μ,P) = 1withμ-local cover
T , then Xi ⊆ T (resp. X ′

i ⊆ T ) ⇒ ¬xi /∈ T (resp. xi /∈ T ).

So for graph G that is constructed as described above
and for path set P consisting of the paths used for proving
Lemmata 1 and 2 we have that LPCP(G, D, u, μ,P) = 1
iff there exists a truth assignment Awhich makes every clause
inC true. The ‘⇒’ direction follows from the lemmata proved
above. The truth assignment A is constructed as follows: if
Xi ⊆ T (resp. X ′

i ⊆ T ) then ¬xi (resp. xi ) is true in A.
The ‘⇐’ direction comes naturally by setting T contain Xi

if xi is true by A, otherwise T contains X ′
i ; T also contains

all literals in Gcj that are set true by A. Then T is a μ-local
cover of P and LPCP(G, D, u, μ,P) = 1. �

The above theorem implies that PPA may not be practi-
cal in some cases, since its decision rule cannot be always
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checked efficiently. It remains to show whether any other
algorithm which has the same resiliency as PPA can be effi-
cient. The following theorem provides an indication that the
answer is negative, by showing that algorithms which behave
exactly as PPA w.r.t. decision are unlikely to be efficient.

Theorem 9 AssumingP �= NP, no safe fully polynomial pro-
tocol� can satisfy the following: for any graph G, dealer D,
corruption function t, and admissible corruption set C exe-
cuting protocol�C , a node u decides through PPA on a value
x iff u will decide on x by running � on (G, D, t,C,�C ).

Proof We will show that if such � existed then it would
be a polynomial time solver for the 3-SAT problem. Let us
consider what happens when � is run on the graph G that
we used in the proof of Theorem 8, with dealer D and the
corrupted nodes being the ones that connect the “clause”
gadgets with the “variable” gadgets (e.g. C = {v1, v2, v3} in
Fig. 4). The adversary protocol �C is: the corrupted nodes
don’t send or relay any messages.

The 3-SAT instance used to make G has a solution iff
LPCP(G, D, u, t,P) = 1, i.e. a μ-local cover C1 on P
exists, where P is the set of paths we used in the proof of
Theorem 8. It can be seen from the decision rule of PPA that,
while running PPA on G, u will not decide on any value iff
a μ-local cover C1 on P exists. Moreover a node u does not
decide through PPA on a value x iff u does not decide on x
by running � on (G, D, t,C,�C ).

So u decides on xD while running � on G, with dealer D
and corruption set C which runs the �C protocol iff 3-SAT
does not have a solution. Apparently if � existed then 3-SAT
would have a polynomial time solver. �

5 Partial knowledge

Until now we have presented optimal resilience algorithms
for Broadcast in two extreme cases, with respect to the knowl-
edge over the network topology: the ad hoc model and the
full-knowledge model. A natural question arises: is there any
algorithm that works well in settings where nodes have par-
tial knowledge of the topology?

To address this question we introduce the partial knowl-
edgemodel, where each player has restricted knowledge over
the topology of the network and devise a new, generalized
version of PPA that can run with partial knowledge of the
topology of the network. More specifically we assume that
each player v only has knowledge of the topology of a certain
connected subgraph Gv of G which includes v. Namely if we
consider the family G of connected subgraphs ofG we use the
topology view function γ : V → G, where γ (v) represents
the subgraph over which player v has knowledge of the topol-
ogy. We also define the joint view of a set S as the subgraph
γ (S) of G with node-set V (γ (S)) = ⋃

u∈S V (γ (u)) and

edge-set E(γ (S)) = ⋃
u∈S E(γ (u)). We will call an algo-

rithm which achieves Broadcast for any t-local corruption set
in graph G with dealer D and view function γ , (γ, t)-locally
resilient for (G, D).

Now given a corruption function t and a view function
γ we define the Generalized Path Propagation Algorithm
(GPPA) to work exactly as PPA apart from a natural modifi-
cation of the path propagation rule.
Generalized path propagation rule: Player v receives the
same value x from a set P of paths that are completely inside
γ (v) and is able to deduce (from the topology) that no t-local
cover of P exists.

Remark Note that GPPA generalizes both CPA and PPA.
Indeed, if ∀v ∈ V, γ (v) = N (v), then GPPA(G, D, t, γ )

coincides with CPA(G, D, t). If, on the other hand, ∀v ∈
V, γ (v) = G then GPPA(G, D, t, γ ) coincides with
PPA(G, D, t).

We also notice that, quite naturally, as γ provides
more information for the topology of the graph, resilience
increases, with CPA being of minimal resilience in this fam-
ily of algorithms, and PPA achieving maximal resilience.

To prove necessary and sufficient conditions for GPPA
being t-locally resilient we need to generalize the notion of
t-plp cut as follows:

Definition 9 (type 1 (γ, t)-partial local pair cut) Let C be a
cut of G, partitioning V \ C into sets A, B �= ∅ s.t. D ∈ A.
C will be called a type 1 (γ, t)-partial local pair cut (plp1
cut) if there exists a partition C = C1 ∪ C2 s.t. C1 is t-local
and C2 is t-local in the graph γ (B).

Definition 10 (type 2 (γ, t)-partial local pair cut) Let C be
a cut of G, partitioning V \C into sets A, B �= ∅ s.t. D ∈ A.
C will be called a type 2 (γ, t)-partial local pair cut (plp2
cut) if there exists a partition C = C1 ∪ C2 s.t. C1 is t-local
and ∀u ∈ B, C2 ∩ N (u) is t-local in the graph γ (u).

We can now show the following two theorems. The proofs
build on the techniques presented for CPA and PPA.

Theorem 10 (sufficient condition) Let t be corruption func-
tion and γ be a view function, if no (γ, t)-plp2 cut exists in
G with dealer D then GPPA(G, D, t, γ ) is (γ, t)-locally
resilient for G, D.

Proof Suppose no (γ, t)-plp2 cut exists. Assume an exe-
cution of GPPA where the actual corruption set is T . By
definition, T is t-local, since we are in the t-locally bounded
adversary model; clearly T ∪ N (D) is a cut on G as defined
before (i.e. not including node D). Since T is t-local and
T ∪ N (D) is not a (γ, t)-plp2 cut there must exist u1 ∈
V \ (T ∪ N (D) ∪ D) s.t. N (D) ∩ N (u1) is not t-local on
γ (u1). But since all the honest nodes in N (D) ∩ N (u1)
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have decided correctly as neighbors of the dealer, u1 will
receive the value xD from paths of length 1, starting from
these nodes. Finding a t-local corruption set covering these
paths is impossible since it would have to include all these
nodes, and from the above, it would not be t-local. So u1

will decide on the dealer’s value xD . We can use the same
argument inductively to show that every honest node will
eventually decide on the correct value xD through GPPA.
Let Ck = (N (D) \ T ) ∪ {u1, u2, . . . , uk−1} be the set of the
nodes that have decided until a certain round of the protocol
and assume that they have decided correctly on xD . Then
Ck ∪ T is a cut. Since T is t-local by the same argument as
before there exists an undecided node uk s.t. Ck ∩ N (uk) is
not t-local on γ (uk). Using the same argument as before uk
will decide on the correct value. Eventually all honest players
will decide on xD . Thus GPPA is t-locally resilient in G.

�
Again, as in the proof of Theorem 2, observe that in this

proof we do not use the fact that GPPA is safe but rather prove
inductively that in the case discussed all nodes will decide
correctly.

Theorem 11 (necessary condition) Let t be a corruption
function, γ be a view function and A be a t-locally safe
Broadcast algorithm. If a (γ, t)-plp1 cut exists in graph G
with dealer D, thenA is not (γ, t)-locally resilient for G, D.

Proof Assume that there exists a (γ, t)-plp1 cut C = T ∪ H
in graph G with dealer D and with T being the t-local set of
the partition (Fig. 1). γ (B) is the joint view of the nodes in
B. G ′ is the graph that results from G if we remove edges
from A \ γ (B) s.t. the set H becomes t-local in G ′. The
existence of a set of edges that guarantees such a property is
implied by the second property of the (γ, t)-plp1 cut. Sup-
pose that there exists a t-locally safe Broadcast algorithm A
which is t-locally resilient in graph G with dealer D. We can
argue the same way we did on Theorem 3 which leads to a
contradiction. �

One can argue that increased topology knowledge implies
increased resilience for GPPA compared to CPA; for exam-
ple, the sufficient condition of GPPA holds in settings where
the sufficient condition of CPA does not hold. An overview
of our results concerning the t-local model with respect to
the level of topology knowledge appears in Fig. 5.

Notice that the reason for which GPPA is not optimal is
that nodes in γ (v) do not share their knowledge of topol-
ogy. An optimal resilience protocol would probably include
exchange of topological knowledge among players.

6 General adversary

Hirt and Maurer in [7] study the security of multiparty com-
putation protocols with respect to an adversary structure, that

G

∃ safe, t-locally resilient
Ad-Hoc algorithm (CPA)

⇔
a t-plp cut

a t-local pair cut

∃ t-locally resilient algorithm (PPA)
⇔

a type 1 (γ, t)-plp cut

a type 2 (γ, t)-plp cut

∃ a safe, (γ, t)-locally
resilient algorithm (GPPA)

Fig. 5 Overview of conditions concerning the existence of t-locally
resilient algorithms with respect to the level of topology knowledge.
Note that G refers to the family of pairs (G, D)

is, a family of subsets of the players; the adversary is able to
corrupt one of these subsets. More formally,

A structure Z for the set of players V is a monotone family
of subsets of V , i.e. Z ⊆ 2V , where all subsets of a set Z ∈ Z
are in Z too, (alternatively, ∀Z ∈ Z , if Z ′ ⊆ Z then it holds
that Z ′ ∈ Z).

Let us now redefine some notions that we have introduced
in this paper in order to extend our results to the case of a
general adversary. We will call an algorithm that achieves
Broadcast for any corruption set T ∈ Z in graph G with
dealer D, Z-resilient. A cover S ∈ Z of a set of paths P
will be called a Z-cover. We next generalize the notion of a
t-local pair cut.

Definition 11 (Z-pair cut) A cut C of G for which there
exists a partition C = C1 ∪ C2 and C1,C2 ∈ Z is called a
Z-pair cut of G.

6.1 Known topology networks

We adapt PPA in order to address the Broadcast
problem under a general adversary. The Generalized Z-PPA
algorithm can be obtained by a modification of the path prop-
agation rule of PPA (Protocol 2).
Z-PPA Honest Path Propagation Rule player v receives the
same value x from a set P of paths and is able to deduce that
for any T ∈ Z , T is not a cover of P .

Moreover, the following theorems hold and their proofs
are essentially the same as the proofs of Theorems 6, and
7. The only technical modification in the proofs is that one
should replace the notions of t-local pair cut, t-local set, t-
local cover, with that of Z-pair cut, admissible corruption set
(or set which belongs to Z) and Z-cover respectively.

Theorem 12 (Sufficiency) Given a graph G, dealer D, and
an adversary structure Z , if no Z-pair cut exists, then all
honest players will decide on xD through Z-PPA.
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Theorem 13 (Necessity) Given a graph G dealer D, and an
adversary structure Z , if there exists a Z-pair cut then there
exists no Z-resilient Broadcast algorithm for (G, D).

6.2 Ad hoc networks

Since in the ad hoc model the players know only their own
labels, the labels of their neighbors and the label of the
dealer it is reasonable to assume that a player has only
local knowledge on the actual adversary structure Z . Specif-
ically, given the actual adversary structure Z we assume
that each player v knows only the local adversary structure
Zv = {A ∩ N (v) : A ∈ Z}.

As in known topology networks, we can describe a gener-
alized version Z-CPA of CPA, which is an ad hoc Broadcast
algorithm for the general adversary model. In particular, we
modify step (3) of CPA (Protocol 1) in the following way.
Z-CPACertified Propagation Rule: if a node v is not a neigh-
bor of the dealer, then upon receiving the same value x from
all its neighbors in a set N ⊆ N (v) s.t. N /∈ Zv , it decides
on value x .

In order to argue about the topological conditions which
determine the effectiveness of Z-CPA we generalize the
notion of partial t-local pair cut.

Definition 12 (Z-partial pair cut) Let C be a cut of G parti-
tioning V \C into sets A, B �= ∅ s.t. D ∈ A. C is a Z-partial
pair cut (Z-pp cut) if there exists a partition C = C1 ∪ C2

with C1 ∈ Z and ∀u ∈ B, N (u) ∩ C2 ∈ Zu .

Analogously to CPA Uniqueness, we can now prove Z-
CPA Uniqueness in the general adversary model.

Theorem 14 (Sufficient Condition)GivenagraphG, dealer
D, and an adversary structure Z , if no Z-pp cut exists, then
Z-CPA is Z-resilient.

Proof Suppose that Z-CPA is not Z-resilient. Then there
exists a scenario where C are the corrupted nodes, A are the
honest and decided nodes, and B are the honest undecided
nodes. All nodes in A have decided on the correct value
because Z-CPA is safe. Since every node in B is undecided
we have that ∀u ∈ B : N (u) ∩ A ∈ Zu , otherwise u would
have decided because a set of nodes that are not in Zu would
have sent him the same broadcast value. But then C ∪ A is
a Z-pp cut which is a contradiction. Hence, Z-CPA is Z-
resilient. �
Theorem 15 (Necessary Condition) Let A be a safe ad hoc
Broadcast algorithm. Given a graph G, dealer D, and an
adversary structure Z , if a Z-pp cut exists then A is not
Z-resilient for G, D.

Proof Let C = C1 ∪ C2 be the Z-pp cut which partitions
V \ C in sets A, B �= ∅ s.t. D ∈ A. Let Z ′ = {⋃u∈B Z ∩
N (u) : Z ∈ Z} ∪ {C2}.

For every node u in B we have:

Z ′
u = {

Z ∩ N (u) : Z ∈ Z ′} ∪ {C2 ∩ N (u)}

=
{

(
⋃

v∈B
Z ∩ N (v)) ∩ N (u) : Z ∈ Z

}

∪ {C2 ∩ N (u)}

= {Z ∩ N (u) : Z ∈ Z} ∪ {C2 ∩ N (u)}
= Zu

since ∀u ∈ B : N (u) ∩ C2 ∈ Zu .
So far we have established that (a) nodes in B cannot tell

whether Z or Z ′ is the adversary structure since ∀u ∈ B :
Zu = Z ′

u and (b) C2 is an admissible corruption set in Z ′.
Suppose a node in B could decide on some value in the

scenario where Z is the adversary structure. Then using the
standard argument employed in Theorem 3, an attack on the
safeness of the algorithm would be possible in a different
scenario where Z ′ is the adversary structure. The details of
the proof are similar and are based on the difficulty of the
honest players in B to distinguish which scenario they par-
ticipate in, with respect to the adversary structure: the one
with Z or the one with Z ′. �

Complexity of Z-CPA

We will now make a simple but practical observation on the
complexity of Z-CPA. We measure the complexity of Z-
CPA with respect to the size of the graph |G| only, because
it is interesting to consider if CPA is fully-polynomial (of
polynomial round, communication and local computations
complexity) regardless of the size of the adversary struc-
ture description. We consider its complexity on the instances
where Broadcast is solvable, i.e., there does not exist a Z-pp
cut.

Since Z-CPA is trivially of polynomial round and com-
munication complexity it holds that Z-CPA is fully poly-
nomial if its local computations complexity is polynomial.
Observe that the local computations of every node essen-
tially are comprised of membership checks dictated by the
Z-CPA Certified Propagation rule. Thus given any instance
(G, D,Z) of a family of instances I, if there exists a poly-
nomial algorithm B which given a set S ⊆ N (v) decides
whether S ∈ Zv , for every player v, then Z-CPA, with sub-
routine B for membership checks, is fully polynomial in I.
Practically, if the description of the adversary structure allows
polynomial membership checks on the local adversary struc-
tures of all players then Z-CPA is fully polynomial. Such an
example is the t-locally bounded adversary model described
is the first sections. In that model the description of the adver-
sary structure is Z = {S ∈ V : ∀v ∈ V, |S ∩ N (v)| ≤
t}, which allows efficient local membership checks which
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essentially constitute of comparing the cardinality of a set
with t .

7 Dealer corruption

We have studied the problem of Broadcast in the case where
the dealer is honest. In order to address the general case in
which the dealer may also be corrupted one may observe that
for a given adversary structure Z and graph G, Z-resilient
Broadcast in ad hoc networks can be achieved if the following
conditions both hold:

(1) �Z1, Z2, Z3 ∈ Z s.t. Z1 ∪ Z2 ∪ Z3 = V .
(2) ∀v ∈ V there does not exist a Z-pp cut

for G with dealer v.

Condition 1 was proved by Hirt and Maurer [7] sufficient and
necessary for the existence of secure multiparty protocols in
complete networks. Z-resilient Broadcast in the general case
where the network is incomplete can be achieved by simu-
lating any protocol for complete graphs (e.g. the protocol
presented in [4]) as follows: each one-to-many transmission
is replaced by an execution of Z-CPA. It is not hard to see that
the conjunction of the above two conditions is necessary and
sufficient for Broadcast in incomplete networks in the case of
corrupted dealer. Similarly in networks of known topology,
there exists a Z-resilient Broadcast algorithm if condition
1 holds and for every v ∈ V a Z-pair cut does not exist for
graphG with dealer v. Naturally, the above observations hold
also in the special case of a locally bounded adversary.

8 Conclusions and open questions

As already mentioned in Sect. 5, GPPA is not of optimal
resilience regarding the partial knowledge model. A neces-
sary and sufficient condition for achieving Broadcast together
with a unique protocol for the partial knowledge model with
a general adversary were very recently presented in [14];
however, the latter algorithm is not efficient. Devising an effi-
cient unique algorithm, or showing that such an algorithm is
unlikely to exist, would be of great interest. To this end, a
different approach from that of [14] would be to consider
discovering network topology under a Byzantine adversary,
as studied in [3,13].

We have shown that necessary and sufficient criteria for
Broadcast on known topology and ad-hoc networks are NP-
hard to compute. So what is the best attack a polynomially
bounded adversary could deploy? Similar issues may be
raised from the point of view of system designers. Defin-
ing an appropriate meaningful optimization objective on the
network resilience is essential in answering such questions.

We have provided an indication that no safe, fully polyno-
mial algorithm can achieve optimal resilience in the known
topology locally bounded setting. It remains to prove or dis-
prove this conjecture.

Finally, regarding protocol termination, we note that in
the ad hoc case all honest players terminate since termination
follows decision. In the full knowledge case it is easy to adapt
the protocol since the number of nodes |V | in the network
is known by each player and no path can have length more
than |V | − 1. Hence, each player can terminate and stop
the propagation of messages after |V − 1| rounds. The same
applies to the partial knowledge case provided that the size of
the network |V | is known. If this is not the case then it is not
obvious how to adapt GPPA in order to ensure termination;
we leave this as an open question.
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